1
|
Omotoso MO, Est-Witte SE, Shannon SR, Li S, Nair NM, Neshat SY, Kang SS, Tzeng SY, Green JJ, Schneck JP. Alginate-based artificial antigen presenting cells expand functional CD8 + T cells with memory characteristics for adoptive cell therapy. Biomaterials 2025; 313:122773. [PMID: 39217794 PMCID: PMC11423771 DOI: 10.1016/j.biomaterials.2024.122773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 07/23/2024] [Accepted: 08/24/2024] [Indexed: 09/04/2024]
Abstract
The development of artificial Antigen Presenting Cells (aAPCs) has led to improvements in adoptive T cell therapy (ACT), an immunotherapy, for cancer treatment. aAPCs help to streamline the consistent production and expansion of T cells, thus reducing the time and costs associated with ACT. However, several issues still exist with ACT, such as insufficient T cell potency, which diminishes the translational potential for ACT. While aAPCs have been used primarily to increase production efficiency of T cells for ACT, the intrinsic properties of a biomaterial-based aAPC may affect T cell phenotype and function. In CD8+ T cells, reactive oxygen species (ROS) and oxidative stress accumulation can activate Forkhead box protein O1 (FOXO1) to transcribe antioxidants which reduce ROS and improve memory formation. Alginate, a biocompatible and antioxidant rich biomaterial, is promising for incorporation into an aAPC formulation to modulate T cell phenotype. To investigate its utility, a novel alginate-based aAPC platform was developed that preferentially expanded CD8+ T cells with memory related features. Alginate-based aAPCs allowed for greater control of CD8+ T cell qualities, including, significantly improved in vivo persistence and augmented in vivo anti-tumor T cell responses.
Collapse
Affiliation(s)
- Mary O Omotoso
- Department of Biomedical Engineering, School of Medicine, USA; Institute for Cell Engineering, School of Medicine, USA; Department of Pathology, School of Medicine, USA
| | - Savannah E Est-Witte
- Department of Biomedical Engineering, School of Medicine, USA; Translational Tissue Engineering Center, USA; Institute for NanoBioTechnology, USA
| | - Sydney R Shannon
- Department of Biomedical Engineering, School of Medicine, USA; Department of Pathology, School of Medicine, USA; Translational Tissue Engineering Center, USA; Institute for NanoBioTechnology, USA
| | - Shuyi Li
- Department of Pathology, School of Medicine, USA; Institute for NanoBioTechnology, USA
| | - Nina M Nair
- Department of Biomedical Engineering, Whiting School of Engineering, USA
| | - Sarah Y Neshat
- Department of Biomedical Engineering, School of Medicine, USA; Translational Tissue Engineering Center, USA; Institute for NanoBioTechnology, USA
| | - Si-Sim Kang
- Department of Pathology, School of Medicine, USA
| | - Stephany Y Tzeng
- Translational Tissue Engineering Center, USA; Department of Biomedical Engineering, Whiting School of Engineering, USA; Johns Hopkins Translational ImmunoEngineering Center, USA
| | - Jordan J Green
- Department of Biomedical Engineering, School of Medicine, USA; Translational Tissue Engineering Center, USA; Institute for NanoBioTechnology, USA; Johns Hopkins Translational ImmunoEngineering Center, USA.
| | - Jonathan P Schneck
- Department of Biomedical Engineering, School of Medicine, USA; Institute for Cell Engineering, School of Medicine, USA; Department of Pathology, School of Medicine, USA; Johns Hopkins Translational ImmunoEngineering Center, USA; Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
2
|
Yan T, Zhou W, Li C. Discovery of a T cell proliferation-associated regulator signature correlates with prognosis risk and immunotherapy response in bladder cancer. Int Urol Nephrol 2024; 56:3447-3462. [PMID: 38789872 DOI: 10.1007/s11255-024-04086-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024]
Abstract
BACKGROUND The efficacy of immunotherapy is heavily influenced by T cell activity. This study aimed to examine how T cell proliferation regulators can predict the prognosis and response to immunotherapy in patients with bladder cancer (BCa). METHODS T cell proliferation-related subtypes were determined by employing the non-negative matrix factorization (NMF) algorithm that analyzed the expression patterns of T cell proliferation regulators. Subtypes were assessed for variations in prognosis, immune infiltration, and functional behaviors. Subsequently, a risk model related to T cell proliferation was created through Cox and Lasso regression analyses in the TCGA cohort and then confirmed in two GEO cohorts and an immunotherapy cohort. RESULTS BCa patients were categorized into two subtypes (C1 and C2) according to the expression profiles of 31 T cell proliferation-related genes (TRGs) with distinct prognoses and immune landscapes. The C2 subtype had a shorter overall survival (OS), with higher levels of M2 macrophage infiltration, and the activation of cancer-related pathways than the C1 subtype. Following this, thirteen prognosis-related genes that were involved in T cell proliferation were utilized to create the prognostic signature. The model's predictive accuracy was confirmed by analyzing both internal and external datasets. Individuals in the high-risk category experienced a poorer prognosis, increased immunosuppressive factors in the tumor microenvironment, and diminished responses to immunotherapy. Additionally, the immunotherapeutic prediction efficacy of the model was further confirmed by an immunotherapy cohort (anti-PD-L1 in the IMvigor210 cohort). CONCLUSIONS Our study characterized two subtypes linked to T cell proliferation in BCa patients with distinct prognoses and tumor microenvironment (TME) patterns, providing new insights into the heterogeneity of T cell proliferation in BCa and its connection to the immune landscape. The signature has prospective clinical implications for predicting outcomes and may help physicians to select prospective responders who prioritize current immunotherapy.
Collapse
Affiliation(s)
- Ting Yan
- Department of Blood Purification Center, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, No.141, Tianjin Road, Huangshi, 435000, Hubei, People's Republic of China
| | - Wei Zhou
- Department of Urology, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Huangshi, People's Republic of China
| | - Chun Li
- Department of Blood Purification Center, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, No.141, Tianjin Road, Huangshi, 435000, Hubei, People's Republic of China.
| |
Collapse
|
3
|
Su YY, Yu YF, Yan ZY, Zhao YJ, Lou JW, Xue F, Xu M, Feng Q, Ji XB, Dong XY, Wang W, Liu CF, Peng J, Liu XG. Post-transplant lymphoproliferative disorders after allogeneic hematopoietic stem cell transplantation: a case report, meta-analysis, and systematic review. Diagn Pathol 2024; 19:122. [PMID: 39244586 PMCID: PMC11380407 DOI: 10.1186/s13000-024-01544-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 08/28/2024] [Indexed: 09/09/2024] Open
Abstract
BACKGROUND Post-transplant lymphoproliferative disorders (PTLD) are rare but severe complications that occur after solid organ or allogeneic hematopoietic stem cell transplantations (allo-HSCT), with rapid progression and high mortality. Primary central nervous system (CNS)-PTLD are rarely recognized histo-pathologically. In addition, the diagnostic value of the Epstein-Barr virus (EBV) DNA copies in CNS-PTLD remains poorly understood. OBJECTIVES We herein report a case of monomorphic EBV-associated CNS-PTLD (diffuse large B-cell lymphoma, DLBCL) after allo-HSCT and perform a meta-analysis to assess the efficacy of PTLD treatment strategies in recent years. METHODS We present the case report covering clinical manifestations, diagnosis, treatment, and outcomes of a patient with primary CNS-PTLD. Additionally, we include a systematic review and meta-analysis of the clinical characteristics of 431 patients with PTLD after allo-HSCT. We evaluate the main treatment options and outcomes of PTLD management, including rituximab, chemotherapies, and autologous or human leukocyte antigen (HLA)-matched EBV-specific cytotoxic T lymphocyte infusion (EBV-CTLs)/donor lymphocyte infusion (DLI). RESULTS The meta-analysis revealed an overall response rate of 69.0% for rituximab alone (95% CI: 0.47-0.84), 45.0% for rituximab plus chemotherapies (95% CI: 0.15-0.80), and 91.0% for rituximab plus EBV-CTLs/DLI (95% CI: 0.83-0.96). The complete response (CR) rate after treatments for PTLD was 67.0% (95% CI: 0.56-0.77). Moreover, the 6-month and 1-year overall survival (OS) rate was 64.0% (95% CI: 0.31-0.87) and 49.0% (95% CI: 0.31-0.68), respectively. CONCLUSIONS This case highlighted the urgent need for effective, low-toxic treatment regimens for CNS-PTLD. Our meta-analysis suggested that rituximab combined with EBV-CTLs/DLI could be a favorable strategy for the management of PTLD after allo-HSCT.
Collapse
Affiliation(s)
- You-Yuan Su
- Department of Hematology, Qilu Hospital of Shandong University, 107 West Wenhua Road, Jinan, Shandong, 250012, China
| | - Ya-Fei Yu
- Department of Hematology, Qilu Hospital of Shandong University, 107 West Wenhua Road, Jinan, Shandong, 250012, China
| | - Zhen-Yu Yan
- North China University of Science and Technology Affiliated Hospital, Tangshan, China
| | - Ya-Jing Zhao
- Department of Hematology, Qilu Hospital of Shandong University, 107 West Wenhua Road, Jinan, Shandong, 250012, China.
| | - Jian-Wei Lou
- Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Feng Xue
- Department of Radiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Miao Xu
- Department of Hematology, Qilu Hospital of Shandong University, 107 West Wenhua Road, Jinan, Shandong, 250012, China
| | - Qi Feng
- Department of Hematology, Qilu Hospital of Shandong University, 107 West Wenhua Road, Jinan, Shandong, 250012, China
| | - Xue-Bin Ji
- Department of Hematology, Qilu Hospital of Shandong University, 107 West Wenhua Road, Jinan, Shandong, 250012, China
| | - Xiao-Yuan Dong
- Department of Hematology, Qilu Hospital of Shandong University, 107 West Wenhua Road, Jinan, Shandong, 250012, China
| | - Wen Wang
- Department of Hematology, Qilu Hospital of Shandong University, 107 West Wenhua Road, Jinan, Shandong, 250012, China
| | - Chuan-Fang Liu
- Department of Hematology, Qilu Hospital of Shandong University, 107 West Wenhua Road, Jinan, Shandong, 250012, China
| | - Jun Peng
- Department of Hematology, Qilu Hospital of Shandong University, 107 West Wenhua Road, Jinan, Shandong, 250012, China
| | - Xin-Guang Liu
- Department of Hematology, Qilu Hospital of Shandong University, 107 West Wenhua Road, Jinan, Shandong, 250012, China.
- Shandong Provincial Key Laboratory of Immunohematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.
| |
Collapse
|
4
|
Espelage L, Wagner N, Placke JM, Ugurel S, Tasdogan A. The Interplay between Metabolic Adaptations and Diet in Cancer Immunotherapy. Clin Cancer Res 2024; 30:3117-3127. [PMID: 38771898 DOI: 10.1158/1078-0432.ccr-22-3468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/07/2023] [Accepted: 04/15/2024] [Indexed: 05/23/2024]
Abstract
Over the past decade, cancer immunotherapy has significantly advanced through the introduction of immune checkpoint inhibitors and the augmentation of adoptive cell transfer to enhance the innate cancer defense mechanisms. Despite these remarkable achievements, some cancers exhibit resistance to immunotherapy, with limited patient responsiveness and development of therapy resistance. Metabolic adaptations in both immune cells and cancer cells have emerged as central contributors to immunotherapy resistance. In the last few years, new insights emphasized the critical role of cancer and immune cell metabolism in animal models and patients. During therapy, immune cells undergo important metabolic shifts crucial for their acquired effector function against cancer cells. However, cancer cell metabolic rewiring and nutrient competition within tumor microenvironment (TME) alters many immune functions, affecting their fitness, polarization, recruitment, and survival. These interactions have initiated the development of novel therapies targeting tumor cell metabolism and favoring antitumor immunity within the TME. Furthermore, there has been increasing interest in comprehending how diet impacts the response to immunotherapy, given the demonstrated immunomodulatory and antitumor activity of various nutrients. In conclusion, recent advances in preclinical and clinical studies have highlighted the capacity of immune-based cancer therapies. Therefore, further exploration into the metabolic requirements of immune cells within the TME holds significant promise for the development of innovative therapeutic approaches that can effectively combat cancer in patients.
Collapse
Affiliation(s)
- Lena Espelage
- Department of Dermatology, University Hospital Essen and German Cancer Consortium (DKTK), Essen, Germany
| | - Natalie Wagner
- Department of Dermatology, University Hospital Essen and German Cancer Consortium (DKTK), Essen, Germany
| | - Jan-Malte Placke
- Department of Dermatology, University Hospital Essen and German Cancer Consortium (DKTK), Essen, Germany
| | - Selma Ugurel
- Department of Dermatology, University Hospital Essen and German Cancer Consortium (DKTK), Essen, Germany
| | - Alpaslan Tasdogan
- Department of Dermatology, University Hospital Essen and German Cancer Consortium (DKTK), Essen, Germany
| |
Collapse
|
5
|
Hheidari A, Mohammadi J, Ghodousi M, Mahmoodi M, Ebrahimi S, Pishbin E, Rahdar A. Metal-based nanoparticle in cancer treatment: lessons learned and challenges. Front Bioeng Biotechnol 2024; 12:1436297. [PMID: 39055339 PMCID: PMC11269265 DOI: 10.3389/fbioe.2024.1436297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 06/17/2024] [Indexed: 07/27/2024] Open
Abstract
Cancer, being one of the deadliest diseases, poses significant challenges despite the existence of traditional treatment approaches. This has led to a growing demand for innovative pharmaceutical agents that specifically target cancer cells for effective treatment. In recent years, the use of metal nanoparticles (NPs) as a promising alternative to conventional therapies has gained prominence in cancer research. Metal NPs exhibit unique properties that hold tremendous potential for various applications in cancer treatment. Studies have demonstrated that certain metals possess inherent or acquired anticancer capabilities through their surfaces. These properties make metal NPs an attractive focus for therapeutic development. In this review, we will investigate the applicability of several distinct classes of metal NPs for tumor targeting in cancer treatment. These classes may include gold, silver, iron oxide, and other metals with unique properties that can be exploited for therapeutic purposes. Additionally, we will provide a comprehensive summary of the risk factors associated with the therapeutic application of metal NPs. Understanding and addressing these factors will be crucial for successful clinical translation and to mitigate any potential challenges or failures in the translation of metal NP-based therapies. By exploring the therapeutic potential of metal NPs and identifying the associated risk factors, this review aims to contribute to the advancement of cancer treatment strategies. The anticipated outcome of this review is to provide valuable insights and pave the way for the advancement of effective and targeted therapies utilizing metal NPs specifically for cancer patients.
Collapse
Affiliation(s)
- Ali Hheidari
- Department of Mechanical Engineering, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Javad Mohammadi
- School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
| | - Maryam Ghodousi
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, United States
| | - Mohammadreza Mahmoodi
- Bio-microfluidics Lab, Department of Electrical Engineering and Information Technology, Iranian Research Organization for Science and Technology, Tehran, Iran
| | - Sina Ebrahimi
- School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
| | - Esmail Pishbin
- Bio-microfluidics Lab, Department of Electrical Engineering and Information Technology, Iranian Research Organization for Science and Technology, Tehran, Iran
| | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol, Iran
| |
Collapse
|
6
|
Sueangoen N, Thuwajit P, Yenchitsomanus PT, Thuwajit C. Public neoantigens in breast cancer immunotherapy (Review). Int J Mol Med 2024; 54:65. [PMID: 38904202 PMCID: PMC11188978 DOI: 10.3892/ijmm.2024.5388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 05/15/2024] [Indexed: 06/22/2024] Open
Abstract
Among women globally, breast cancer is the most prevalent cancer and the leading cause of cancer‑related death. Interestingly, though genetic mutations contribute to the disease, <15% of women diagnosed with breast cancer have a family history of the disease, suggesting a prevalence of sporadic genetic mutations in breast cancer development. In the rapidly rising field of cancer genomics, neoantigen‑based immunotherapy has come to the fore. The investigation of novel proteins arising from unique somatic mutations or neoantigens have opened a new pathway for both individualized and public cancer treatments. Because they are shared among individuals with similar genetic changes, public neoantigens provide an opportunity for 'off‑the‑shelf' anticancer therapies, potentially extending the benefits to a wider patient group. The present review aimed to highlight the role of shared or public neoantigens as therapeutic targets for patients with breast cancer, emphasizing common hotspot mutations of certain genes identified in breast cancer. The clinical utilization of public neoantigen‑based therapies for breast cancer treatment were also discussed.
Collapse
Affiliation(s)
- Natthaporn Sueangoen
- Research Center, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Peti Thuwajit
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Pa-Thai Yenchitsomanus
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Chanitra Thuwajit
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| |
Collapse
|
7
|
Tang S, Sun R, Tang K, Wei X, Liu M, Zhang H. A novel prognostic model for predicting patient survival and immunotherapy responsiveness in hepatocellular carcinoma: insights into the involvement of T-cell proliferation. Clin Transl Oncol 2024; 26:1368-1383. [PMID: 38123874 PMCID: PMC11108937 DOI: 10.1007/s12094-023-03363-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 11/26/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND The cancer-associated biological mechanisms and the implementation of immunotherapy are heavily impacted by the activities of T cells, consequently influencing the effectiveness of therapeutic interventions. Nevertheless, the mechanistic actions of T-cell proliferation in response to immunotherapy and the overall prognosis of individuals diagnosed with hepatocellular carcinoma (HCC) remains insufficiently understood. The present work seeks to present a comprehensive analysis immune landscape in the context of HCC. METHODS To achieve this objective, both clinical data and RNA sequencing data were acquired from authoritative databases such as The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO). RESULTS Through the utilization of consensus clustering techniques, distinct molecular subtypes associated with T-cell proliferation were delineated. Following this, seven genes of prognostic significance were identified via a combination of Cox and Lasso regression analyses. By integrating these genes into a prognostic signature, the predictive capability of the model was verified through an examination of internal and external datasets. Moreover, immunohistochemistry and qRT-PCR tests have verified the reliability of prognostic markers. Notably, the high-risk group exhibited elevated expression of immune checkpoint genes as well as higher benefit in terms of drug sensitivity testing, as determined by the Chi-square test (P < 0.001). The risk score derived from the prognostic signature depicted considerable efficacy in predicting the survival outcomes of HCC cases. CONCLUSIONS Overall, prognostic markers may become valuable predictive tool for individuals diagnosed with HCC, allowing for the prediction of their prognosis as well as the assessment of their immunological condition and response to immunotherapy.
Collapse
Affiliation(s)
- Shengjie Tang
- The First Clinical Medical College, Xuzhou Medical University, Xuzhou, 221004, China
| | - Rui Sun
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Kechao Tang
- Department of Biochemistry and Molecular Biology, Metabolic Disease Research Center, School of Basic Medicine, Anhui Medical University, Hefei, 230032, China
| | - Xiang Wei
- Department of Biochemistry and Molecular Biology, Metabolic Disease Research Center, School of Basic Medicine, Anhui Medical University, Hefei, 230032, China
| | - Ming Liu
- Department of Biochemistry and Molecular Biology, Metabolic Disease Research Center, School of Basic Medicine, Anhui Medical University, Hefei, 230032, China.
| | - Huabing Zhang
- Department of Biochemistry and Molecular Biology, Metabolic Disease Research Center, School of Basic Medicine, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
8
|
Choudhery MS, Arif T, Mahmood R, Harris DT. CAR-T-Cell-Based Cancer Immunotherapies: Potentials, Limitations, and Future Prospects. J Clin Med 2024; 13:3202. [PMID: 38892913 PMCID: PMC11172642 DOI: 10.3390/jcm13113202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/17/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Cancer encompasses various elements occurring at the cellular and genetic levels, necessitating an immunotherapy capable of efficiently addressing both aspects. T cells can combat cancer cells by specifically recognizing antigens on them. This innate capability of T cells has been used to develop cellular immunotherapies, but most of them can only target antigens through major histocompatibility complexes (MHCs). New gene-editing techniques such as clustered regularly interspaced short palindromic repeat (CRISPR)-associated protein 9 (CRISPR-cas9) can precisely edit the DNA sequences. CRISPR-cas9 has made it possible to generate genetically engineered chimeric antigen receptors (CARs) that can overcome the problems associated with old immunotherapies. In chimeric antigen receptor T (CAR-T) cell therapy, the patient's T cells are isolated and genetically modified to exhibit synthetic CAR(s). CAR-T cell treatment has shown remarkably positive clinical outcomes in cancers of various types. Nevertheless, there are various challenges that reduce CAR-T effectiveness in solid tumors. It is required to address these challenges in order to make CAR-T cell therapy a better and safer option. Combining CAR-T treatment with other immunotherapies that target multiple antigens has shown positive outcomes. Moreover, recently generated Boolean logic-gated advanced CARs along with artificial intelligence has expanded its potential to treat solid tumors in addition to blood cancers. This review aims to describe the structure, types, and various methods used to develop CAR-T cells. The clinical applications of CAR-T cells in hematological malignancies and solid tumours have been described in detail. In addition, this discussion has addressed the limitations associated with CAR-T cells, explored potential strategies to mitigate CAR-T-related toxicities, and delved into future perspectives.
Collapse
Affiliation(s)
- Mahmood S. Choudhery
- Department of Human Genetics & Molecular Biology, University of Health Sciences, Lahore 54600, Pakistan;
| | - Taqdees Arif
- Department of Human Genetics & Molecular Biology, University of Health Sciences, Lahore 54600, Pakistan;
| | - Ruhma Mahmood
- Jinnah Hospital, Allama Iqbal Medical College, Lahore 54700, Pakistan;
| | - David T. Harris
- Department of Immunobiology, College of Medicine, University of Arizona Health Sciences Biorepository, The University of Arizona, Tucson, AZ 85724-5221, USA;
| |
Collapse
|
9
|
Aggeletopoulou I, Kalafateli M, Triantos C. Chimeric Antigen Receptor T Cell Therapy for Hepatocellular Carcinoma: Where Do We Stand? Int J Mol Sci 2024; 25:2631. [PMID: 38473878 DOI: 10.3390/ijms25052631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Hepatocellular carcinoma (HCC) remains a global health challenge that urgently calls for innovative therapeutic strategies. Chimeric antigen receptor T cell (CAR T) therapy has emerged as a promising avenue for HCC treatment. However, the therapeutic efficacy of CAR T immunotherapy in HCC patients is significantly compromised by some major issues including the immunosuppressive environment within the tumor, antigen heterogeneity, CAR T cell exhaustion, and the advanced risk for on-target/off-tumor toxicity. To overcome these challenges, many ongoing preclinical and clinical trials are underway focusing on the identification of optimal target antigens and the decryption of the immunosuppressive milieu of HCC. Moreover, limited tumor infiltration constitutes a significant obstacle of CAR T cell therapy that should be addressed. The continuous effort to design molecular targets for CAR cells highlights the importance for a more practical approach for CAR-modified cell manufacturing. This review critically examines the current landscape of CAR T cell therapy for HCC, shedding light on the changes in innate and adaptive immune responses in the context of HCC, identifying potential CAR T cell targets, and exploring approaches to overcome inherent challenges. Ongoing advancements in scientific research and convergence of diverse treatment modalities offer the potential to greatly enhance HCC patients' care in the future.
Collapse
Affiliation(s)
- Ioanna Aggeletopoulou
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, 26504 Patras, Greece
| | - Maria Kalafateli
- Department of Gastroenterology, General Hospital of Patras, 26332 Patras, Greece
| | - Christos Triantos
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, 26504 Patras, Greece
| |
Collapse
|
10
|
da Silva SF, Murta EF, Michelin MA. ICAM2 is related to good prognosis in dendritic cell immunotherapy for cancer. Immunotherapy 2024; 16:173-185. [PMID: 38126167 DOI: 10.2217/imt-2021-0097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
Objective: To evaluate the behavior of adhesion molecules ICAM-1 and ICAM-2 in dendritic cell (DC) immunotherapy. Materials & methods: 88 female Balb/c mice were divided into experimental groups. Tumors and lymph nodes were evaluated 7 and 14 days after immunotherapy. Results: Higher mean fluorescence intensity of ICAM-1 in the lymph nodes and tumors in the tumor group at 14 days was observed. Higher mean fluorescence intensity of ICAM-2 in the tumor DC vaccine group was observed after 14 days. A positive correlation was observed in the lymph nodes with ICAM-1 against tumoral volume in the tumor group. A negative correlation was found between ICAM-2 and tumoral volume in the lymph nodes of the tumor group. Conclusion: An increase in ICAM-2 in tumor DC vaccine and a decrease in ICAM-1 suggests the DC vaccine positively influences the immune system and that ICAM-2 could be a marker of good prognosis.
Collapse
Affiliation(s)
- Saulo Fm da Silva
- Oncology Research Institute (IPON), Federal University of Triângulo Mineiro (UFTM), Uberaba, MG, Brazil
| | - Eddie Fc Murta
- Oncology Research Institute (IPON), Federal University of Triângulo Mineiro (UFTM), Uberaba, MG, Brazil
- Department of Gynecology and Obstetrics, Federal University of Triangulo Mineiro (UFTM), Uberaba, MG, 38.025-350, Brazil
| | - Márcia A Michelin
- Oncology Research Institute (IPON), Federal University of Triângulo Mineiro (UFTM), Uberaba, MG, Brazil
- Immunology Discipline, Federal University of Triângulo Mineiro (UFTM), Uberaba, MG, 38.025-500, Brazil
| |
Collapse
|
11
|
Rathore AS, Chirmule N, Dash R, Chowdhury A. Current status and future prospective of breast cancer immunotherapy. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 140:293-326. [PMID: 38762272 DOI: 10.1016/bs.apcsb.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2024]
Abstract
The immune system is complicated, interconnected, and offers a powerful defense system that protects its host from foreign pathogens. Immunotherapy involves boosting the immune system to kill cancer cells, and nowadays, is a major emerging treatment for cancer. With the advances in our understanding of the immunology of cancer, there has been an explosion of studies to develop and evaluate therapies that engage the immune system in the fight against cancer. Nevertheless, conventional therapies have been effective in reducing tumor burden and prolonging patient life, but the overall efficacy of these treatment regimens has been somewhat mixed and often with severe side effects. A common reason for this is the activation of molecular mechanisms that lead to apoptosis of anti-tumor effector cells. The competency to block tumor escape entirely depends on our understanding of the cellular and molecular pathways which operate in the tumor microenvironment. Numerous strategies have been developed for activating the immune system to kill tumor cells. Breast cancer is one of the major causes of cancer death in women, and is characterized by complex molecular and cellular events that closely intertwine with the host immune system. In this regard, predictive biomarkers of immunotherapy, use of nanotechnology, personalized cancer vaccines, antibodies to checkpoint inhibitors, engineered chimeric antigen receptor-T cells, and the combination with other therapeutic modalities have transformed cancer therapy and optimized the therapeutic effect. In this chapter, we will offer a holistic view of the different therapeutic modalities and recent advances in immunotherapy. Additionally, we will summarize the recent advances and future prospective of breast cancer immunotherapies, as a case study.
Collapse
|
12
|
Patel NP, Dalal PJ, Meng Z, Baldridge AS, Cascino GJ, Sunderraj A, Sinha A, Karmali R, Feinstein MJ, Akhter N. Myocardial strain is associated with adverse cardiac events in patients treated with chimeric antigen receptor (CAR) T-cell therapy. Eur J Haematol 2024; 112:102-110. [PMID: 37649240 DOI: 10.1111/ejh.14088] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 08/10/2023] [Accepted: 08/16/2023] [Indexed: 09/01/2023]
Abstract
BACKGROUND Cardiovascular events, including heart failure and arrhythmias, following chimeric antigen receptor (CAR) T-cell therapy are increasingly recognized. Although global longitudinal strain (GLS) has demonstrated prognostic utility for other cancer therapy-related cardiac dysfunction, less is known regarding the association of GLS with adverse cardiac events following CAR T-cell therapy. OBJECTIVES To determine the association of baseline GLS with adverse cardiovascular events in adults receiving CAR-T cell therapy. METHODS Patients who had an echocardiogram within 6 months prior to receiving CAR T-cell therapy were retrospectively identified. Clinical data and cardiac events were collected via chart review. Echocardiograms were analyzed offline for GLS, left ventricular ejection fraction, and Doppler parameters. Multivariable logistic regression was used to determine the association between adverse cardiovascular events and echocardiographic parameters. RESULTS Among 75 CAR T-cell therapy patients (mean age 63.9, 34.7% female), nine patients (12%) experienced cardiac events (CEs) including cardiovascular death, new/worsening heart failure, and new/worsening arrhythmia within 1 year of treatment. In univariable models, higher baseline GLS (OR 0.78 [0.63, 0.96], p = .021) was associated with a lower risk of CE and higher baseline mitral E/e' (OR 1.40 [1.08, 1.81], p = .012) was associated with a higher risk of CE. After adjusting for age and LDH, higher baseline GLS (OR 0.65 [0.48-0.88], p = <.01) was associated with a lower risk of CE and higher baseline mitral E/e' (OR 1.56 [1.06, 2.29], p = .024) was associated with a higher risk of CE. CONCLUSION Lower GLS and higher mitral E/e' on a baseline echocardiogram were associated with higher risk for CEs in patients receiving CAR T-cell therapy.
Collapse
Affiliation(s)
- Nikita P Patel
- Robert H Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois, USA
| | - Prarthana J Dalal
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Zhiying Meng
- Division of Cardiovascular Medicine, Feinberg School of Medicine, Northwestern University, Illinois, USA
| | - Abigail S Baldridge
- Division of Cardiovascular Medicine, Feinberg School of Medicine, Northwestern University, Illinois, USA
| | - Gregory J Cascino
- Division of Cardiovascular Medicine, Feinberg School of Medicine, Northwestern University, Illinois, USA
| | - Ashwin Sunderraj
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Arjun Sinha
- Division of Cardiovascular Medicine, Feinberg School of Medicine, Northwestern University, Illinois, USA
| | - Reem Karmali
- Robert H Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois, USA
| | - Matthew J Feinstein
- Division of Cardiovascular Medicine, Feinberg School of Medicine, Northwestern University, Illinois, USA
| | - Nausheen Akhter
- Division of Cardiovascular Medicine, Feinberg School of Medicine, Northwestern University, Illinois, USA
| |
Collapse
|
13
|
Laureano RS, Vanmeerbeek I, Sprooten J, Govaerts J, Naulaerts S, Garg AD. The cell stress and immunity cycle in cancer: Toward next generation of cancer immunotherapy. Immunol Rev 2024; 321:71-93. [PMID: 37937803 DOI: 10.1111/imr.13287] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/05/2023] [Accepted: 10/20/2023] [Indexed: 11/09/2023]
Abstract
The cellular stress and immunity cycle is a cornerstone of organismal homeostasis. Stress activates intracellular and intercellular communications within a tissue or organ to initiate adaptive responses aiming to resolve the origin of this stress. If such local measures are unable to ameliorate this stress, then intercellular communications expand toward immune activation with the aim of recruiting immune cells to effectively resolve the situation while executing tissue repair to ameliorate any damage and facilitate homeostasis. This cellular stress-immunity cycle is severely dysregulated in diseased contexts like cancer. On one hand, cancer cells dysregulate the normal cellular stress responses to reorient them toward upholding growth at all costs, even at the expense of organismal integrity and homeostasis. On the other hand, the tumors severely dysregulate or inhibit various components of organismal immunity, for example, by facilitating immunosuppressive tumor landscape, lowering antigenicity, and increasing T-cell dysfunction. In this review we aim to comprehensively discuss the basis behind tumoral dysregulation of cellular stress-immunity cycle. We also offer insights into current understanding of the regulators and deregulators of this cycle and how they can be targeted for conceptualizing successful cancer immunotherapy regimen.
Collapse
Affiliation(s)
- Raquel S Laureano
- Cell Stress & Immunity (CSI) Lab, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Isaure Vanmeerbeek
- Cell Stress & Immunity (CSI) Lab, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Jenny Sprooten
- Cell Stress & Immunity (CSI) Lab, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Jannes Govaerts
- Cell Stress & Immunity (CSI) Lab, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Stefan Naulaerts
- Cell Stress & Immunity (CSI) Lab, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Abhishek D Garg
- Cell Stress & Immunity (CSI) Lab, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| |
Collapse
|
14
|
Garg S, Ni W, Griffin JD, Sattler M. Chimeric Antigen Receptor T Cell Therapy in Acute Myeloid Leukemia: Trials and Tribulations. Hematol Rep 2023; 15:608-626. [PMID: 37987319 PMCID: PMC10660693 DOI: 10.3390/hematolrep15040063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/01/2023] [Accepted: 11/08/2023] [Indexed: 11/22/2023] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous hematological malignancy that is often associated with relapse and drug resistance after standard chemotherapy or targeted therapy, particularly in older patients. Hematopoietic stem cell transplants are looked upon as the ultimate salvage option with curative intent. Adoptive cell therapy using chimeric antigen receptors (CAR) has shown promise in B cell malignancies and is now being investigated in AML. Initial clinical trials have been disappointing in AML, and we review current strategies to improve efficacy for CAR approaches. The extensive number of clinical trials targeting different antigens likely reflects the genetic heterogeneity of AML. The limited number of patients reported in multiple early clinical studies makes it difficult to draw conclusions about CAR safety, but it does suggest that the efficacy of this approach in AML lags behind the success observed in B cell malignancies. There is a clear need not only to improve CAR design but also to identify targets in AML that show limited expression in normal myeloid lineage cells.
Collapse
Affiliation(s)
- Swati Garg
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; (W.N.); (J.D.G.); (M.S.)
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Wei Ni
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; (W.N.); (J.D.G.); (M.S.)
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - James D. Griffin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; (W.N.); (J.D.G.); (M.S.)
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Martin Sattler
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; (W.N.); (J.D.G.); (M.S.)
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
15
|
Koh CH, Lee S, Kwak M, Kim BS, Chung Y. CD8 T-cell subsets: heterogeneity, functions, and therapeutic potential. Exp Mol Med 2023; 55:2287-2299. [PMID: 37907738 PMCID: PMC10689838 DOI: 10.1038/s12276-023-01105-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/11/2023] [Accepted: 08/12/2023] [Indexed: 11/02/2023] Open
Abstract
CD8 T cells play crucial roles in immune surveillance and defense against infections and cancer. After encountering antigenic stimulation, naïve CD8 T cells differentiate and acquire effector functions, enabling them to eliminate infected or malignant cells. Traditionally, cytotoxic T cells, characterized by their ability to produce effector cytokines and release cytotoxic granules to directly kill target cells, have been recognized as the constituents of the predominant effector T-cell subset. However, emerging evidence suggests distinct subsets of effector CD8 T cells that each exhibit unique effector functions and therapeutic potential. This review highlights recent advancements in our understanding of CD8 T-cell subsets and the contributions of these cells to various disease pathologies. Understanding the diverse roles and functions of effector CD8 T-cell subsets is crucial to discern the complex dynamics of immune responses in different disease settings. Furthermore, the development of immunotherapeutic approaches that specifically target and regulate the function of distinct CD8 T-cell subsets holds great promise for precision medicine.
Collapse
Affiliation(s)
- Choong-Hyun Koh
- Laboratory of Immune Regulation, Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Suyoung Lee
- Laboratory of Immune Regulation, Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
- BK21 Plus Program, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Minkyeong Kwak
- Laboratory of Immune Regulation, Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
- BK21 Plus Program, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Byung-Seok Kim
- Division of Life Sciences, College of Life Science and Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Yeonseok Chung
- Laboratory of Immune Regulation, Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
- BK21 Plus Program, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea.
- Wide River Institute of Immunology, Seoul National University, Hongcheon, Gangwon, 25159, Republic of Korea.
| |
Collapse
|
16
|
Fonseca AF, Antunes DA. CrossDome: an interactive R package to predict cross-reactivity risk using immunopeptidomics databases. Front Immunol 2023; 14:1142573. [PMID: 37377956 PMCID: PMC10291144 DOI: 10.3389/fimmu.2023.1142573] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
T-cell-based immunotherapies hold tremendous potential in the fight against cancer, thanks to their capacity to specifically targeting diseased cells. Nevertheless, this potential has been tempered with safety concerns regarding the possible recognition of unknown off-targets displayed by healthy cells. In a notorious example, engineered T-cells specific to MAGEA3 (EVDPIGHLY) also recognized a TITIN-derived peptide (ESDPIVAQY) expressed by cardiac cells, inducing lethal damage in melanoma patients. Such off-target toxicity has been related to T-cell cross-reactivity induced by molecular mimicry. In this context, there is growing interest in developing the means to avoid off-target toxicity, and to provide safer immunotherapy products. To this end, we present CrossDome, a multi-omics suite to predict the off-target toxicity risk of T-cell-based immunotherapies. Our suite provides two alternative protocols, i) a peptide-centered prediction, or ii) a TCR-centered prediction. As proof-of-principle, we evaluate our approach using 16 well-known cross-reactivity cases involving cancer-associated antigens. With CrossDome, the TITIN-derived peptide was predicted at the 99+ percentile rank among 36,000 scored candidates (p-value < 0.001). In addition, off-targets for all the 16 known cases were predicted within the top ranges of relatedness score on a Monte Carlo simulation with over 5 million putative peptide pairs, allowing us to determine a cut-off p-value for off-target toxicity risk. We also implemented a penalty system based on TCR hotspots, named contact map (CM). This TCR-centered approach improved upon the peptide-centered prediction on the MAGEA3-TITIN screening (e.g., from 27th to 6th, out of 36,000 ranked peptides). Next, we used an extended dataset of experimentally-determined cross-reactive peptides to evaluate alternative CrossDome protocols. The level of enrichment of validated cases among top 50 best-scored peptides was 63% for the peptide-centered protocol, and up to 82% for the TCR-centered protocol. Finally, we performed functional characterization of top ranking candidates, by integrating expression data, HLA binding, and immunogenicity predictions. CrossDome was designed as an R package for easy integration with antigen discovery pipelines, and an interactive web interface for users without coding experience. CrossDome is under active development, and it is available at https://github.com/AntunesLab/crossdome.
Collapse
Affiliation(s)
| | - Dinler A. Antunes
- Antunes Lab, Center for Nuclear Receptors and Cell Signaling (CNRCS), Department of Biology and Biochemistry, University of Houston, Houston, TX, United States
| |
Collapse
|
17
|
Tang HKC, Wang B, Tan HX, Sarwar MA, Baraka B, Shafiq T, Rao AR. CAR T-Cell Therapy for Cancer: Latest Updates and Challenges, with a Focus on B-Lymphoid Malignancies and Selected Solid Tumours. Cells 2023; 12:1586. [PMID: 37371056 DOI: 10.3390/cells12121586] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/25/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Although exponential progress in treating advanced malignancy has been made in the modern era with immune checkpoint blockade, survival outcomes remain suboptimal. Cellular immunotherapy, such as chimeric antigen receptor T cells, has the potential to improve this. CAR T cells combine the antigen specificity of a monoclonal antibody with the cytotoxic 'power' of T-lymphocytes through expression of a transgene encoding the scFv domain, CD3 activation molecule, and co-stimulatory domains. Although, very rarely, fatal cytokine-release syndrome may occur, CAR T-cell therapy gives patients with refractory CD19-positive B-lymphoid malignancies an important further therapeutic option. However, low-level expression of epithelial tumour-associated-antigens on non-malignant cells makes the application of CAR T-cell technology to common solid cancers challenging, as does the potentially limited ability of CAR T cells to traffic outside the blood/lymphoid microenvironment into metastatic lesions. Despite this, in advanced neuroblastoma refractory to standard therapy, 60% long-term overall survival and an objective response in 63% was achieved with anti GD2-specific CAR T cells.
Collapse
Affiliation(s)
| | - Bo Wang
- University of Cambridge, Trinity Hall, Cambridge CB3 9DP, UK
| | - Hui Xian Tan
- Department of Oncology, Nottingham University Hospitals, Nottingham NG5 1PB, UK
| | | | - Bahaaeldin Baraka
- Department of Oncology, Nottingham University Hospitals, Nottingham NG5 1PB, UK
| | - Tahir Shafiq
- Department of Oncology, Nottingham University Hospitals, Nottingham NG5 1PB, UK
| | - Ankit R Rao
- Department of Oncology, Nottingham University Hospitals, Nottingham NG5 1PB, UK
| |
Collapse
|
18
|
Chen J, Wang D, Chan S, Yang Q, Wang C, Wang X, Sun R, Gui Y, Yu S, Yang J, Zhang H, Zhang X, Tang K, Zhang H, Liu S. Development and validation of a novel T cell proliferation-related prognostic model for predicting survival and immunotherapy benefits in melanoma. Aging (Albany NY) 2023; 15:204748. [PMID: 37227816 DOI: 10.18632/aging.204748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/09/2023] [Indexed: 05/27/2023]
Abstract
BACKGROUND T cell plays a crucial role in the occurrence and progression of Skin cutaneous melanoma (SKCM). This research aims to identify the actions of T cell proliferation-related genes (TRGs) on the prognosis and immunotherapy response of tumor patients. METHOD The clinical manifestation and gene expression data of SKCM patients were obtained from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. T cell proliferation-related molecular subtypes were identified utilizing consensus clustering. Subsequently, Cox and Lasso regression analysis was conducted to identify six prognostic genes, and a prognostic signature was constructed. A series of experiments, such as qRT-PCR, Western blotting and CCK8 assay, were then conducted to verify the reliability of the six genes. RESULTS In this study, a grading system was established to forecast survival time and responses to immunotherapy, providing an overview of the tumoral immune landscape. Meanwhile, we identified six prognostic signature genes. Notably, we also found that C1RL protein may inhibit the growth of melanoma cell lines. CONCLUSION The scoring system depending on six prognostic genes showed great efficiency in predicting survival time. The system could help to forecast prognosis of SKCM patients, characterize SKCM immunological condition, assess patient immunotherapy response.
Collapse
Affiliation(s)
- Jiajie Chen
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
- Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, Anhui 230022, China
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui 230022, China
| | - Daiyue Wang
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
- Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, Anhui 230022, China
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui 230022, China
| | - Shixin Chan
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| | - Qingqing Yang
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
- Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, Anhui 230022, China
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui 230022, China
| | - Chen Wang
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
- Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, Anhui 230022, China
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui 230022, China
| | - Xu Wang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| | - Rui Sun
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| | - Yu Gui
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
- Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, Anhui 230022, China
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui 230022, China
| | - Shuling Yu
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
- Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, Anhui 230022, China
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui 230022, China
| | - Jinwei Yang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| | - Haoxue Zhang
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
- Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, Anhui 230022, China
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui 230022, China
| | - Xiaomin Zhang
- Department of Biochemistry and Molecular Biology, Metabolic Disease Research Center, School of Basic Medicine, Anhui Medical University, Hefei, Anhui 230022, China
| | - Kechao Tang
- Department of Biochemistry and Molecular Biology, Metabolic Disease Research Center, School of Basic Medicine, Anhui Medical University, Hefei, Anhui 230022, China
| | - Huabing Zhang
- Affiliated Chuzhou Hospital of Anhui Medical University, The First People’s Hospital of Chuzhou, Chuzhou, Anhui 230022, China
- Department of Biochemistry and Molecular Biology, Metabolic Disease Research Center, School of Basic Medicine, Anhui Medical University, Hefei, Anhui 230022, China
| | - Shengxiu Liu
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
- Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, Anhui 230022, China
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui 230022, China
| |
Collapse
|
19
|
Zhao M, Huang H, He F, Fu X. Current insights into the hepatic microenvironment and advances in immunotherapy for hepatocellular carcinoma. Front Immunol 2023; 14:1188277. [PMID: 37275909 PMCID: PMC10233045 DOI: 10.3389/fimmu.2023.1188277] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/04/2023] [Indexed: 06/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer and shows high global incidence and mortality rates. The liver is an immune-tolerated organ with a specific immune microenvironment that causes traditional therapeutic approaches to HCC, such as chemotherapy, radiotherapy, and molecular targeted therapy, to have limited efficacy. The dramatic advances in immuno-oncology in the past few decades have modified the paradigm of cancer therapy, ushering in the era of immunotherapy. Currently, despite the rapid integration of cancer immunotherapy into clinical practice, some patients still show no response to treatment. Therefore, a rational approach is to target the tumor microenvironment when developing the next generation of immunotherapy. This review aims to provide insights into the hepatic immune microenvironment in HCC and summarize the mechanisms of action and clinical usage of immunotherapeutic options for HCC, including immune checkpoint blockade, adoptive therapy, cytokine therapy, vaccine therapy, and oncolytic virus-based therapy.
Collapse
Affiliation(s)
| | | | - Feng He
- *Correspondence: Feng He, ; Xiangsheng Fu,
| | | |
Collapse
|
20
|
Choi JY, Kim TJ. The Current Status and Future Perspectives of Chimeric Antigen Receptor-Engineered T Cell Therapy for the Management of Patients with Endometrial Cancer. Curr Issues Mol Biol 2023; 45:3359-3374. [PMID: 37185744 PMCID: PMC10136476 DOI: 10.3390/cimb45040220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/11/2023] [Accepted: 04/11/2023] [Indexed: 05/17/2023] Open
Abstract
Endometrial cancer (EC) is a gynecological neoplasm that is increasing in occurrence and mortality rates. Although endometrial cancer in the early stages shows a relatively favorable prognosis, there is an increase in cancer-related mortality rates in the advanced or recurrent endometrial carcinoma population and patients in the metastatic setting. This discrepancy has presented an opportunity for research and development of target therapies in this population. After obtaining promising results with hematologic cancers, chimeric antigen receptor (CAR)-T cell immunotherapy is gaining acceptance as a treatment for solid neoplasms. This treatment platform allows T cells to express tumor-specific CARs on the cell surface, which are administered to the patient to treat neoplastic cells. Given that CAR-T cell therapy has shown potential and clinical benefit compared to other T cell treatment platforms, additional research is required to overcome physiological limitations such as CAR-T cell depletion, immunosuppressive tumor microenvironment, and the lack of specific target molecules. Different approaches and development are ongoing to overcome these complications. This review examines CAR-T cell therapy's current use for endometrial carcinomas. We also discuss the significant adverse effects and limitations of this immunotherapeutic approach. Finally, we consolidate signal-seeking early-phase clinical trials and advancements that have shown promising results, leading to the approval of new immunotherapeutic agents for the disease.
Collapse
Affiliation(s)
- Ji-Young Choi
- Department of Gynecology and Infertility Medicine, CHA University Ilsan Medical Center, Goyang 1205, Republic of Korea
| | - Tae-Jin Kim
- Department of Urology, CHA University Ilsan Medical Center, CHA University School of Medicine, Goyang 1205, Republic of Korea
| |
Collapse
|
21
|
Chen Y, Zhu Y, Kramer A, Fang Y, Wilson M, Li YR, Yang L. Genetic engineering strategies to enhance antitumor reactivity and reduce alloreactivity for allogeneic cell-based cancer therapy. Front Med (Lausanne) 2023; 10:1135468. [PMID: 37064017 PMCID: PMC10090359 DOI: 10.3389/fmed.2023.1135468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 03/09/2023] [Indexed: 03/31/2023] Open
Abstract
The realm of cell-based immunotherapy holds untapped potential for the development of next-generation cancer treatment through genetic engineering of chimeric antigen receptor (CAR)-engineered T (CAR-T) cell therapies for targeted eradication of cancerous malignancies. Such allogeneic "off-the-shelf" cell products can be advantageously manufactured in large quantities, stored for extended periods, and easily distributed to treat an exponential number of cancer patients. At current, patient risk of graft-versus-host disease (GvHD) and host-versus-graft (HvG) allorejection severely restrict the development of allogeneic CAR-T cell products. To address these limitations, a variety of genetic engineering strategies have been implemented to enhance antitumor efficacy, reduce GvHD and HvG onset, and improve the overall safety profile of T-cell based immunotherapies. In this review, we summarize these genetic engineering strategies and discuss the challenges and prospects these approaches provide to expedite progression of translational and clinical studies for adoption of a universal cell-based cancer immunotherapy.
Collapse
Affiliation(s)
- Yuning Chen
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, United States
| | - Yichen Zhu
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, United States
| | - Adam Kramer
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, United States
| | - Ying Fang
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, United States
| | - Matthew Wilson
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, United States
| | - Yan-Ruide Li
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, United States
| | - Lili Yang
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, United States
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, United States
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
22
|
Yang T, Kang L, Li D, Song Y. Immunotherapy for HER-2 positive breast cancer. Front Oncol 2023; 13:1097983. [PMID: 37007133 PMCID: PMC10061112 DOI: 10.3389/fonc.2023.1097983] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 03/03/2023] [Indexed: 03/18/2023] Open
Abstract
Immunotherapy is a developing treatment for advanced breast cancer. Immunotherapy has clinical significance for the treatment of triple-negative breast cancers and human epidermal growth factor receptor-2 positive (HER2+) breast cancers. As a proved effective passive immunotherapy, clinical application of the monoclonal antibodies trastuzumab, pertuzumab and T-DM1 (ado-trastuzumab emtansine) has significantly improved the survival of patients with HER2+ breast cancers. Immune checkpoint inhibitors that block programmed death receptor-1 and its ligand (PD-1/PD-L1) have also shown benefits for breast cancer in various clinical trials. Adoptive T-cell immunotherapies and tumor vaccines are emerging as novel approaches to treating breast cancer, but require further study. This article reviews recent advances in immunotherapy for HER2+ breast cancers.
Collapse
|
23
|
Hamdan F, Cerullo V. Cancer immunotherapies: A hope for the uncurable? FRONTIERS IN MOLECULAR MEDICINE 2023; 3:1140977. [PMID: 39086690 PMCID: PMC11285639 DOI: 10.3389/fmmed.2023.1140977] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/07/2023] [Indexed: 08/02/2024]
Abstract
The use of cancer immunotherapies is not novel but has been used over the decades in the clinic. Only recently have we found the true potential of stimulating an anti-tumor response after the breakthrough of checkpoint inhibitors. Cancer immunotherapies have become the first line treatment for many malignancies at various stages. Nevertheless, the clinical results in terms of overall survival and progression free survival were not as anticipated. Majority of cancer patients do not respond to immunotherapies and the reasons differ. Hence, further improvements for cancer immunotherapies are crucially needed. In the review, we will discuss various forms of cancer immunotherapies that are being tested or already in the clinic. Moreover, we also highlight future directions to improve such therapies.
Collapse
Affiliation(s)
- Firas Hamdan
- Laboratory of Immunovirotherapy, Drug Research Program, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
- TRIMM, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
- Drug Delivery, Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Vincenzo Cerullo
- Laboratory of Immunovirotherapy, Drug Research Program, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
- TRIMM, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
- Drug Delivery, Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland
- Department of Molecular Medicine and Medical Biotechnology and CEINGE, Naples University Federico II, Naples, Italy
| |
Collapse
|
24
|
Kim HR, Park JS, Soh WC, Kim NY, Moon HY, Lee JS, Jun CD. T Cell Microvilli: Finger-Shaped External Structures Linked to the Fate of T Cells. Immune Netw 2023; 23:e3. [PMID: 36911802 PMCID: PMC9995986 DOI: 10.4110/in.2023.23.e3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 02/11/2023] [Accepted: 02/11/2023] [Indexed: 03/07/2023] Open
Abstract
Microvilli are outer membrane organelles that contain cross-linked filamentous actin. Unlike well-characterized epithelial microvilli, T-cell microvilli are dynamic similar to those of filopodia, which grow and shrink intermittently via the alternate actin-assembly and -disassembly. T-cell microvilli are specialized for sensing Ags on the surface of Ag-presenting cells (APCs). Thus, these finger-shaped microprotrusions contain many signaling-related proteins and can serve as a signaling platforms that induce intracellular signals. However, they are not limited to sensing external information but can provide sites for parts of the cell-body to tear away from the cell. Cells are known to produce many types of extracellular vesicles (EVs), such as exosomes, microvesicles, and membrane particles. T cells also produce EVs, but little is known about under what conditions T cells generate EVs and which types of EVs are released. We discovered that T cells produce few exosomes but release large amounsts of microvilli-derived particles during physical interaction with APCs. Although much is unanswered as to why T cells use the same organelles to sense Ags or to produce EVs, these events can significantly affect T cell fate, including clonal expansion and death. Since TCRs are localized at microvilli tips, this membrane event also raises a new question regarding long-standing paradigm in T cell biology; i.e., surface TCR downmodulation following T cell activation. Since T-cell microvilli particles carry T-cell message to their cognate partner, these particles are termed T-cell immunological synaptosomes (TISs). We discuss the potential physiological role of TISs and their application to immunotherapies.
Collapse
Affiliation(s)
- Hye-Ran Kim
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
- Immune Synapse and Cell Therapy Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
- Division of Rare and Refractory Cancer, Tumor Immunology, Research Institute, National Cancer Center, Goyang 10408, Korea
| | - Jeong-Su Park
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
- Immune Synapse and Cell Therapy Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
| | - Won-Chang Soh
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
- Immune Synapse and Cell Therapy Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
| | - Na-Young Kim
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
- Immune Synapse and Cell Therapy Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
| | - Hyun-Yoong Moon
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
- Immune Synapse and Cell Therapy Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
| | - Ji-Su Lee
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
- Immune Synapse and Cell Therapy Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
| | - Chang-Duk Jun
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
- Immune Synapse and Cell Therapy Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
| |
Collapse
|
25
|
Chakraborty R, Darido C, Liu F, Maselko M, Ranganathan S. Head and Neck Cancer Immunotherapy: Molecular Biological Aspects of Preclinical and Clinical Research. Cancers (Basel) 2023; 15:cancers15030852. [PMID: 36765809 PMCID: PMC9913716 DOI: 10.3390/cancers15030852] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/23/2023] [Accepted: 01/27/2023] [Indexed: 02/01/2023] Open
Abstract
Breakthrough research in the field of immune checkpoint inhibitors and the development of a human papilloma virus vaccine triggered a plethora of research in the field of cancer immunotherapy. Both had significant effects on the treatment of head and neck squamous cell carcinoma. The advent of preclinical models and multidisciplinary approaches including bioinformatics, genetic engineering, clinical oncology, and immunology helped in the development of tumour-infiltrating lymphocytes (TILs) and chimeric antigen receptor (CAR) T-cell therapy. Here, we discuss different immunotherapies such as adoptive T-cell transfer, immune checkpoint inhibitors, interleukins, and cancer vaccines for the treatment of head and neck cancer. This review showcases the intrinsic relation between the understanding and implementation of basic biology and clinical practice. We also address potential limitations of each immunotherapy approach and the advantages of personalized immunotherapy. Overall, the aim of this review is to encourage further research in the field of immunotherapy for head and neck cancer.
Collapse
Affiliation(s)
- Rajdeep Chakraborty
- Applied Biosciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW 2109, Australia
| | - Charbel Darido
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Fei Liu
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW 2109, Australia
| | - Maciej Maselko
- Applied Biosciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW 2109, Australia
| | - Shoba Ranganathan
- Applied Biosciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW 2109, Australia
- Correspondence:
| |
Collapse
|
26
|
Fuchs JR, Schulte BC, Fuchs JW, Agulnik M. Emerging targeted and cellular therapies in the treatment of advanced and metastatic synovial sarcoma. Front Oncol 2023; 13:1123464. [PMID: 36761952 PMCID: PMC9905840 DOI: 10.3389/fonc.2023.1123464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/09/2023] [Indexed: 01/26/2023] Open
Abstract
Synovial sarcoma is a soft tissue sarcoma accounting for approximately 1,000 cases per year in the United States. Currently, standard treatment of advanced and metastatic synovial sarcoma is anthracycline-based chemotherapy. While advanced synovial sarcoma is more responsive to chemotherapy compared to other soft tissue sarcomas, survival rates are poor, with a median survival time of less than 18 months. Enhanced understanding of tumor antigen expression and molecular mechanisms behind synovial sarcoma provide potential targets for treatment. Adoptive Cell Transfer using engineered T-cell receptors is in clinical trials for treatment of synovial sarcoma, specifically targeting New York esophageal squamous cell carcinoma-1 (NY-ESO-1), preferentially expressed antigen in melanoma (PRAME), and melanoma antigen-A4 (MAGE-A4). In this review, we explore the opportunities and challenges of these treatments. We also describe artificial adjuvant vector cells (aAVCs) and BRD9 inhibitors, two additional potential targets for treatment of advanced synovial sarcoma. This review demonstrates the progress that has been made in treatment of synovial sarcoma and highlights the future study and qualification needed to implement these technologies as standard of care.
Collapse
Affiliation(s)
- Joseph R. Fuchs
- Department of Medicine, McGaw Medical Center of Northwestern University, Chicago, IL, United States
| | - Brian C. Schulte
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Jeffrey W. Fuchs
- Department of Medicine, McGaw Medical Center of Northwestern University, Chicago, IL, United States
| | - Mark Agulnik
- Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center, Duarte, CA, United States,*Correspondence: Mark Agulnik,
| |
Collapse
|
27
|
Chi X, Luo S, Ye P, Hwang WL, Cha JH, Yan X, Yang WH. T-cell exhaustion and stemness in antitumor immunity: Characteristics, mechanisms, and implications. Front Immunol 2023; 14:1104771. [PMID: 36891319 PMCID: PMC9986432 DOI: 10.3389/fimmu.2023.1104771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 02/07/2023] [Indexed: 02/22/2023] Open
Abstract
T cells play a crucial role in the regulation of immune response and are integral to the efficacy of cancer immunotherapy. Because immunotherapy has emerged as a promising treatment for cancer, increasing attention has been focused on the differentiation and function of T cells in immune response. In this review, we describe the research progress on T-cell exhaustion and stemness in the field of cancer immunotherapy and summarize advances in potential strategies to intervene and treat chronic infection and cancer by reversing T-cell exhaustion and maintaining and increasing T-cell stemness. Moreover, we discuss therapeutic strategies to overcome T-cell immunodeficiency in the tumor microenvironment and promote continuous breakthroughs in the anticancer activity of T cells.
Collapse
Affiliation(s)
- Xiaoxia Chi
- Affiliated Cancer Hospital & Institute and Key Laboratory for Cell Homeostasis and Cancer Research of Guangdong Higher Education Institutes, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Shahang Luo
- Affiliated Cancer Hospital & Institute and Key Laboratory for Cell Homeostasis and Cancer Research of Guangdong Higher Education Institutes, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Peng Ye
- Department of Infectious Diseases, Guangzhou Panyu Central Hospital, Guangzhou, Guangdong, China
| | - Wei-Lun Hwang
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Cancer Progression Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jong-Ho Cha
- Department of Biomedical Science, College of Medicine, and Program in Biomedical Sciences and Engineering, Inha University, Incheon, Republic of Korea
| | - Xiuwen Yan
- Affiliated Cancer Hospital & Institute and Key Laboratory for Cell Homeostasis and Cancer Research of Guangdong Higher Education Institutes, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Wen-Hao Yang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| |
Collapse
|
28
|
Pinto IS, Cordeiro RA, Faneca H. Polymer- and lipid-based gene delivery technology for CAR T cell therapy. J Control Release 2023; 353:196-215. [PMID: 36423871 DOI: 10.1016/j.jconrel.2022.11.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/17/2022] [Accepted: 11/19/2022] [Indexed: 11/27/2022]
Abstract
Chimeric antigen receptor T cell (CAR T cell) therapy is a revolutionary approach approved by the FDA and EMA to treat B cell malignancies and multiple myeloma. The production of these T cells has been done through viral vectors, which come with safety concerns, high cost and production challenges, and more recently also through electroporation, which can be extremely cytotoxic. In this context, nanosystems can constitute an alternative to overcome the challenges associated with current methods, resulting in a safe and cost-effective platform. However, the barriers associated with T cells transfection show that the design and engineering of novel approaches in this field are highly imperative. Here, we present an overview from CAR constitution to transfection technologies used in T cells, highlighting the lipid- and polymer-based nanoparticles as a potential delivery platform. Specifically, we provide examples, strengths and weaknesses of nanosystem formulations, and advances in nanoparticle design to improve transfection of T cells. This review will guide the researchers in the design and development of novel nanosystems for next-generation CAR T therapeutics.
Collapse
Affiliation(s)
- Inês S Pinto
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; Department of Medical Sciences, University of Aveiro, Campus Universitário de Santiago, Agra do Castro, 3810-193 Aveiro, Portugal
| | - Rosemeyre A Cordeiro
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; Institute of Interdisciplinary Research (III), University of Coimbra, Casa Costa Alemão - Pólo II, 3030-789 Coimbra, Portugal
| | - Henrique Faneca
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; Institute of Interdisciplinary Research (III), University of Coimbra, Casa Costa Alemão - Pólo II, 3030-789 Coimbra, Portugal.
| |
Collapse
|
29
|
Jin Y, Deng Z, Zhu T. Membrane protein trafficking in the anti-tumor immune response: work of endosomal-lysosomal system. Cancer Cell Int 2022; 22:413. [PMID: 36528587 PMCID: PMC9759898 DOI: 10.1186/s12935-022-02805-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 11/24/2022] [Indexed: 12/23/2022] Open
Abstract
Immunotherapy has changed the treatment landscape for multiple cancer types. In the recent decade, great progress has been made in immunotherapy, including immune checkpoint inhibitors, adoptive T-cell therapy, and cancer vaccines. ICIs work by reversing tumor-induced immunosuppression, resulting in robust activation of the immune system and lasting immune responses. Whereas, their clinical use faces several challenges, especially the low response rate in most patients. As an increasing number of studies have focused on membrane immune checkpoint protein trafficking and degradation, which interferes with response to immunotherapy, it is necessary to summarize the mechanism regulating those transmembrane domain proteins translocated into the cytoplasm and degraded via lysosome. In addition, other immune-related transmembrane domain proteins such as T-cell receptor and major histocompatibility are associated with neoantigen presentation. The endosomal-lysosomal system can also regulate TCR and neoantigen-MHC complexes on the membrane to affect the efficacy of adoptive T-cell therapy and cancer vaccines. In conclusion, we discuss the process of surface delivery, internalization, recycling, and degradation of immune checkpoint proteins, TCR, and neoantigen-MHC complexes on the endosomal-lysosomal system in biology for optimizing cancer immunotherapy.
Collapse
Affiliation(s)
- Yan Jin
- grid.412632.00000 0004 1758 2270Cancer Center, Renmin Hospital of Wuhan University, Wuhan, 430060 China
| | - Zhifeng Deng
- grid.412632.00000 0004 1758 2270Department of Otolaryngology Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060 China
| | - Ting Zhu
- grid.412632.00000 0004 1758 2270Department of Otolaryngology Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060 China
| |
Collapse
|
30
|
Asmamaw Dejenie T, Tiruneh G/Medhin M, Dessie Terefe G, Tadele Admasu F, Wale Tesega W, Chekol Abebe E. Current updates on generations, approvals, and clinical trials of CAR T-cell therapy. Hum Vaccin Immunother 2022; 18:2114254. [PMID: 36094837 DOI: 10.1080/21645515.2022.2114254] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Chimeric antigen receptor (CAR) T-cell therapy is a novel, customized immunotherapy that is considered a 'living' and self-replicating drug to treat cancer, sometimes resulting in a complete cure. CAR T-cells are manufactured through genetic engineering of T-cells by equipping them with CARs to detect and target antigen-expressing cancer cells. CAR is designed to have an ectodomain extracellularly, a transmembrane domain spanning the cell membrane, and an endodomain intracellularly. Since its first discovery, the CAR structure has evolved greatly, from the first generation to the fifth generation, to offer new therapeutic alternatives for cancer patients. This treatment has achieved long-term and curative therapeutic efficacy in multiple blood malignancies that nowadays profoundly change the treatment landscape of lymphoma, leukemia, and multiple myeloma. But CART-cell therapy is associated with several hurdles, such as limited therapeutic efficacy, little effect on solid tumors, adverse effects, expensive cost, and feasibility issues, hindering its broader implications.
Collapse
Affiliation(s)
- Tadesse Asmamaw Dejenie
- Department of Biochemistry, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Markeshaw Tiruneh G/Medhin
- Department of Biochemistry, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Gashaw Dessie Terefe
- Department of Biochemistry, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Fitalew Tadele Admasu
- Department of Biochemistry, College of Medicine and Health Science Arbaminch University, Arbaminch, Ethiopia
| | - Wondwossen Wale Tesega
- Department of Biochemistry, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Endeshaw Chekol Abebe
- Department of Biochemistry, College of Medicine and Health Science Arbaminch University, Arbaminch, Ethiopia
| |
Collapse
|
31
|
Jinna N, Rida P, Su T, Gong Z, Yao S, LaBarge M, Natarajan R, Jovanovic-Talisman T, Ambrosone C, Seewaldt V. The DARC Side of Inflamm-Aging: Duffy Antigen Receptor for Chemokines (DARC/ACKR1) as a Potential Biomarker of Aging, Immunosenescence, and Breast Oncogenesis among High-Risk Subpopulations. Cells 2022; 11:cells11233818. [PMID: 36497078 PMCID: PMC9740232 DOI: 10.3390/cells11233818] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/09/2022] [Accepted: 11/23/2022] [Indexed: 11/30/2022] Open
Abstract
The proclivity of certain pre-malignant and pre-invasive breast lesions to progress while others do not continues to perplex clinicians. Clinicians remain at a crossroads with effectively managing the high-risk patient subpopulation owing to the paucity of biomarkers that can adequately risk-stratify and inform clinical decisions that circumvent unnecessary administration of cytotoxic and invasive treatments. The immune system mounts the most important line of defense against tumorigenesis and progression. Unfortunately, this defense declines or "ages" over time-a phenomenon known as immunosenescence. This results in "inflamm-aging" or the excessive infiltration of pro-inflammatory chemokines, which alters the leukocyte composition of the tissue microenvironment, and concomitant immunoediting of these leukocytes to diminish their antitumor immune functions. Collectively, these effects can foster the sequelae of neoplastic transformation and progression. The erythrocyte cell antigen, Duffy antigen receptor for chemokines(DARC/ACKR1), binds and internalizes chemokines to maintain homeostatic levels and modulate leukocyte trafficking. A negative DARC status is highly prevalent among subpopulations of West African genetic ancestry, who are at higher risk of developing breast cancer and disease progression at a younger age. However, the role of DARC in accelerated inflamm-aging and malignant transformation remains underexplored. Herein, we review compelling evidence suggesting that DARC may be protective against inflamm-aging and, therefore, reduce the risk of a high-risk lesion progressing to malignancy. We also discuss evidence supporting that immunotherapeutic intervention-based on DARC status-among high-risk subpopulations may evade malignant transformation and progression. A closer look into this unique role of DARC could glean deeper insight into the immune response profile of individual high-risk patients and their predisposition to progress as well as guide the administration of more "cyto-friendly" immunotherapeutic intervention to potentially "turn back the clock" on inflamm-aging-mediated oncogenesis and progression.
Collapse
Affiliation(s)
- Nikita Jinna
- Department of Population Science, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Padmashree Rida
- Department of Science, Rowland Hall, Salt Lake City, UT 84102, USA
| | - Tianyi Su
- Department of Science, Rowland Hall, Salt Lake City, UT 84102, USA
| | - Zhihong Gong
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Song Yao
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Mark LaBarge
- Department of Population Science, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Rama Natarajan
- Department of Diabetes Complications and Metabolism, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | | | - Christine Ambrosone
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Victoria Seewaldt
- Department of Population Science, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
- Correspondence:
| |
Collapse
|
32
|
Song Z, Lu L, Gao Z, Zhou Q, Wang Z, Sun L, Zhou Y. Immunotherapy for liposarcoma: emerging opportunities and challenges. Future Oncol 2022; 18:3449-3461. [PMID: 36214331 DOI: 10.2217/fon-2021-1549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Liposarcoma (LPS) is a rare adipocyte-derived malignancy accounting for 20% of all soft tissue sarcomas. Although surgery and chemotherapy are the standard treatment for LPS, the large tumor burden and high recurrence rate make it difficult to treat, especially when the disease progresses. With the progress of immunotherapies in other tumors such as melanoma and lung cancer, interest has been risen in exploring immunotherapy for LPS. This review discusses the understanding of the tumor microenvironment of LPS; the current status of immunotherapy in LPS, including immune checkpoint inhibitors, adoptive cell therapy, cancer vaccines, oncolytic viruses and combination therapies; and the future directions for exploiting strategies to make the effect of immunotherapy stronger and more durable.
Collapse
Affiliation(s)
- Zhengqing Song
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Lili Lu
- Biotherapy Centre, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Zixu Gao
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Qiwen Zhou
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Zhiming Wang
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Lei Sun
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.,Institute of Developmental Biology and Molecular Medicine, Fudan University, Shanghai, 200032, China
| | - Yuhong Zhou
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.,Biotherapy Centre, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| |
Collapse
|
33
|
Chekol Abebe E, Yibeltal Shiferaw M, Tadele Admasu F, Asmamaw Dejenie T. Ciltacabtagene autoleucel: The second anti-BCMA CAR T-cell therapeutic armamentarium of relapsed or refractory multiple myeloma. Front Immunol 2022; 13:991092. [PMID: 36119032 PMCID: PMC9479060 DOI: 10.3389/fimmu.2022.991092] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/12/2022] [Indexed: 11/13/2022] Open
Abstract
Ciltacabtagene autoleucel (also known as cilta-cel) is a chimeric antigen receptor (CAR) T-cell therapy that targets B-cell maturation antigen (BCMA) on the surface of cancer cells in B cell malignancies, such as multiple myeloma (MM). It is a second-generation CAR that is outfitted with an ectodomain comprising two BCMA-binding single chain variable fragment (ScFv) domains, a transmembrane domain, and an endodomain possessing CD3ζ and 4-1BB. Cilta-cel is an autologous, gene-edited CAR T-cell that is prepared by collecting and modifying the recipient’s T-cells to create a patient personalized treatment in the laboratory to be infused back. This CAR T-cell product exceptionally entails CARs with two BCMA-targeting single-domain antibodies that detect two epitopes of BCMA expressed on the malignant cells of MM. Cilta-cel is the current addition to the treatment armamentarium of relapsed or refractory (r/r) MM after its approval by the FDA on February 28, 2022, based on the results of the Phase 1b/2 CARTITUDE-1 study. It was the second approved anti-BCMA CAR T-cell product after idecabtagene vicleucel (ide-cel) to treat myeloma patients. It induces early, deep, and long-lasting responses with a tolerable safety profile in r/r MM. Cilta-cel-treated myeloma patients may potentially experience adverse effects ranging from mild to life-threatening, but they are mostly manageable toxicities. Besides, it has a consistent safety profile upon a longer follow-up of patients. Cilta-cel generally outperforms ide cel in terms of efficacy in MM, but shows comparable adverse events. This review highlights the current updates on cilta-cel efficacy, adverse events, comparison with ide-cel, and its future direction in the treatment of MM.
Collapse
Affiliation(s)
- Endeshaw Chekol Abebe
- Department of Biochemistry, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
- *Correspondence: Endeshaw Chekol Abebe,
| | - Mestet Yibeltal Shiferaw
- Department of Medicine, College of Health Science, Debre Tabor University, Debre Tabor, Ethiopia
| | - Fitalew Tadele Admasu
- Department of Biochemistry, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Tadesse Asmamaw Dejenie
- Department of Biochemistry, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
34
|
Assessment of T Cell Receptor Complex Expression Kinetics in Natural Killer Cells. Curr Issues Mol Biol 2022; 44:3859-3871. [PMID: 36135177 PMCID: PMC9497757 DOI: 10.3390/cimb44090265] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/15/2022] [Accepted: 08/23/2022] [Indexed: 11/17/2022] Open
Abstract
Among the polypeptides that comprise the T cell receptor (TCR), only CD3ζ is found in Natural Killer (NK) cells, where it transmits signals from activating receptors such as CD16 and NKp46. NK cells are potent immune cells that recognize target cells through germline-encoded activating and inhibitory receptors. Genetic engineering of NK cells enables tumor-specific antigen recognition and, thus, has a significant promise in adoptive cell therapy. Ectopic expression of engineered TCR components in T cells leads to mispairing with the endogenous components, making a knockout of the endogenous TCR necessary. To circumvent the mispairing of TCRs or the need for knockout technologies, TCR complex expression has been studied in NK cells. In the current study, we explored the cellular processing of the TCR complex in NK cells. We observed that in the absence of CD3 subunits, the TCR was not expressed on the surface of NK cells and vice versa. Moreover, a progressive increase in surface expression of TCR between day three and day seven was observed after transduction. Interestingly, the TCR complex expression in NK92 cells was enhanced with a proteasome inhibitor (bortezomib) but not a lysosomal inhibitor (chloroquine). Additionally, we observed that the TCR complex was functional in NK92 cells as measured by estimating CD107a as a degranulation marker, IFNγ cytokine production, and killing assays. NK92 cells strongly degranulated when CD3ε was engaged in the presence of TCR, but not when only CD3 was overexpressed. Therefore, our findings encourage further investigation to unravel the mechanisms that prevent the surface expression of the TCR complex.
Collapse
|
35
|
Borówka M, Łącki-Zynzeling S, Nicze M, Kozak S, Chudek J. Adverse Renal Effects of Anticancer Immunotherapy: A Review. Cancers (Basel) 2022; 14:4086. [PMID: 36077623 PMCID: PMC9454552 DOI: 10.3390/cancers14174086] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/18/2022] [Accepted: 08/22/2022] [Indexed: 11/17/2022] Open
Abstract
Modern oncological therapy utilizes various types of immunotherapy. Immune checkpoint inhibitors (ICIs), chimeric antigen receptor T cells (CAR-T) therapy, cancer vaccines, tumor-targeting monoclonal antibodies (TT-mAbs), bispecific antibodies and cytokine therapy improve patients' outcomes. However, stimulation of the immune system, beneficial in terms of fighting against cancer, generates the risk of harm to other cells in a patient's body. Kidney damage belongs to the relatively rare adverse events (AEs). Best described, but still, superficially, are renal AEs in patients treated with ICIs. International guidelines issued by the European Society for Medical Oncology (ESMO) and the American Society of Clinical Oncology (ASCO) cover the management of immune-related adverse events (irAEs) during ICI therapy. There are fewer data concerning real occurrence and possible presentations of renal adverse drug reactions of other immunotherapeutic methods. This implies the need for the collection of safety data during ongoing clinical trials and in the real-life world to characterize the hazard related to the use of new immunotherapies and management of irAEs.
Collapse
Affiliation(s)
| | - Stanisław Łącki-Zynzeling
- Department of Internal Medicine and Oncological Chemotherapy, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Reymonta 8, 40-027 Katowice, Poland
| | | | | | | |
Collapse
|
36
|
Gao MG, Zhao XS. Mining the multifunction of mucosal-associated invariant T cells in hematological malignancies and transplantation immunity: A promising hexagon soldier in immunomodulatory. Front Immunol 2022; 13:931764. [PMID: 36052080 PMCID: PMC9427077 DOI: 10.3389/fimmu.2022.931764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/25/2022] [Indexed: 12/05/2022] Open
Abstract
Mucosal-associated invariant T (MAIT) cells are evolutionarily conserved innate-like T cells capable of recognizing bacterial and fungal ligands derived from vitamin B biosynthesis. Under different stimulation conditions, MAIT cells can display different immune effector phenotypes, exerting immune regulation and anti-/protumor responses. Based on basic biological characteristics, including the enrichment of mucosal tissue, the secretion of mucosal repair protective factors (interleukin-17, etc.), and the activation of riboflavin metabolites by intestinal flora, MAIT cells may play an important role in the immune regulation effect of mucosal lesions or inflammation. At the same time, activated MAIT cells secrete granzyme B, perforin, interferon γ, and other toxic cytokines, which can mediate anti-tumor effects. In addition, since a variety of hematological malignancies express the targets of MAIT cell-specific effector molecules, MAIT cells are also a potentially attractive target for cell therapy or immunotherapy for hematological malignancies. In this review, we will provide an overview of MAIT research related to blood system diseases and discuss the possible immunomodulatory or anti-tumor roles that unique biological characteristics or effector phenotypes may play in hematological diseases.
Collapse
Affiliation(s)
- Meng-Ge Gao
- Peking University People’s Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
| | - Xiao-Su Zhao
- Peking University People’s Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China
- Research Unit of Key Technique for Diagnosis and Treatments of Hematologic Malignancies, Chinese Academy of Medical Sciences, Beijing, China
- Collaborative Innovation Center of Hematology, Peking University, Beijing, China
- *Correspondence: Xiao-Su Zhao,
| |
Collapse
|
37
|
Engineering off-the-shelf universal CAR T cells: A silver lining in the cloud. Cytokine 2022; 156:155920. [DOI: 10.1016/j.cyto.2022.155920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/29/2022] [Accepted: 05/16/2022] [Indexed: 11/20/2022]
|
38
|
Kandula UR, Wake AD. Promising Stem Cell therapy in the Management of HIV and AIDS: A Narrative Review. Biologics 2022; 16:89-105. [PMID: 35836496 PMCID: PMC9275675 DOI: 10.2147/btt.s368152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 07/02/2022] [Indexed: 11/23/2022]
Abstract
Stem cell therapies are becoming a major topic in biomedical research all over the planet. It may be a viable treatment choice for people suffering from a wide range of illnesses and injuries. It has recently emerged as an extremely intriguing and well-established science and research topic. Expectations have risen due to advancements in therapeutic approaches. Multiple laboratory testing of regulated stem cell culture and derivation is carried out before the formation of stem cells for the use of therapeutic process. Whereas HIV infection is contagious and can last a lifetime. Researchers are still working to develop a comprehensive and effective treatment for HIV and its associated condition, as well as AIDS. HIV propagation is primarily restricted to the immune system, notably T lymphocytes, as well as macrophages. Large numbers of research studies have contributed to a plethora of data about the enigmatic AIDS life cycle. This vast amount of data provides potential targets for AIDS therapies. Currently, stem cell transplantation, along with other procedures, provided novel insights into HIV pathogenesis and offered a glimpse of hope for the development of a viable HIV cure technique. One of its existing focus areas in HIV and AIDS research is to develop a novel therapeutic strategic plan capable of providing life-long complete recovery of HIV and AIDS without regular drug treatment and, inevitably, curative therapy for HIV and AIDS. The current paper tries to address the possibilities for improved stem cell treatments with "bone marrow, Hematopoietic, human umbilical cord mesenchymal, Genetical modifications with CRISPR/Cas9 in combination of stem cells, induced pluripotent stem cells applications" are discussed which are specifically applied in the HIV and AIDS therapeutic management advancement procedures.
Collapse
Affiliation(s)
- Usha Rani Kandula
- Department of Clinical Nursing, College of Health Sciences, Arsi University, Asella, Ethiopia
| | - Addisu Dabi Wake
- Department of Clinical Nursing, College of Health Sciences, Arsi University, Asella, Ethiopia
| |
Collapse
|
39
|
Ding Y, Wang Y, Hu Q. Recent advances in overcoming barriers to cell-based delivery systems for cancer immunotherapy. EXPLORATION (BEIJING, CHINA) 2022; 2:20210106. [PMID: 37323702 PMCID: PMC10190958 DOI: 10.1002/exp.20210106] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 01/10/2022] [Indexed: 06/15/2023]
Abstract
Immunotherapy strategies that use cell-based delivery systems have sparked much interest in the treatment of malignancies, owing to their high biocompatibility, excellent tumor targeting capability, and unique biofunctionalities in the tumor growth process. A variety of design principles for cell-based immunotherapy, including cell surface decoration, cell membrane coating, cell encapsulation, genetically engineered cell, and cell-derived exosomes, give cancer immunotherapy great potential to improve therapeutic efficacy and reduce adverse effects. However, the treatment efficacy of cell-based delivery methods for immunotherapy is still limited, and practical uses are hampered due to complex physiological and immunological obstacles, such as physical barriers to immune infiltration, immunosuppressive tumor microenvironment, upregulation of immunosuppressive pathways, and metabolic restriction. In this review, we present an overview of the design principles of cell-based delivery systems in cancer immunotherapy to maximize the therapeutic impact, along with anatomical, metabolic, and immunological impediments in using cell-based immunotherapy to treat cancer. Following that, a summary of novel delivery strategies that have been created to overcome these obstacles to cell-based immunotherapeutic delivery systems is provided. Also, the obstacles and prospects of next-step development of cell-based delivery systems for cancer immunotherapy are concluded in the end.
Collapse
Affiliation(s)
- Yingyue Ding
- Pharmaceutical Sciences DivisionSchool of PharmacyUniversity of Wisconsin–MadisonMadisonWisconsinUSA
- Carbone Cancer CenterSchool of Medicine and Public HealthUniversity of Wisconsin–MadisonMadisonWisconsinUSA
- Wisconsin Center for NanoBioSystemsSchool of PharmacyUniversity of Wisconsin–MadisonMadisonWisconsinUSA
| | - Yixin Wang
- Pharmaceutical Sciences DivisionSchool of PharmacyUniversity of Wisconsin–MadisonMadisonWisconsinUSA
- Carbone Cancer CenterSchool of Medicine and Public HealthUniversity of Wisconsin–MadisonMadisonWisconsinUSA
- Wisconsin Center for NanoBioSystemsSchool of PharmacyUniversity of Wisconsin–MadisonMadisonWisconsinUSA
| | - Quanyin Hu
- Pharmaceutical Sciences DivisionSchool of PharmacyUniversity of Wisconsin–MadisonMadisonWisconsinUSA
- Carbone Cancer CenterSchool of Medicine and Public HealthUniversity of Wisconsin–MadisonMadisonWisconsinUSA
- Wisconsin Center for NanoBioSystemsSchool of PharmacyUniversity of Wisconsin–MadisonMadisonWisconsinUSA
| |
Collapse
|
40
|
Alausa A, Lawal KA, Babatunde OA, Obiwulu ENO, Oladokun OC, Fadahunsi OS, Celestine UO, Moses EU, Rejoice AI, Adegbola PI. Overcoming Immunotherapeutic Resistance in PDAC: SIRPα-CD47 blockade. Pharmacol Res 2022; 181:106264. [PMID: 35597384 DOI: 10.1016/j.phrs.2022.106264] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 05/15/2022] [Indexed: 11/25/2022]
Abstract
A daily increase in the number of new cases of pancreatic ductal adenocarcinoma remains an issue of contention in cancer research. The data revealed that a global cumulated case of about 500, 000 have been reported. This has made PDAC the fourteenth most occurring tumor case in cancer research. Furthermore, PDAC is responsible for about 466,003 deaths annually, representing the seventh prevalent type of cancer mortality. PDAC has no salient symptoms in its early stages. This has exasperated several attempts to produce a perfect therapeutic agent against PDAC. Recently, immunotherapeutic research has shifted focus to the blockade of checkpoint proteins in the management and of some cancers. Investigations have centrally focused on developing therapeutic agents that could at least to a significant extent block the SIRPα-CD47 signaling cascade (a cascade which prevent phagocytosis of tumors by dendritic cells, via the deactivation of innate immunity and subsequently resulting in tumor regression) with minimal side effects. The concept on the blockade of this interaction as a possible mechanism for inhibiting the progression of PDAC is currently being debated. This review examined the structure--function activity of SIRPα-CD47 interaction while discussing in detail the mechanism of tumor resistance in PDAC. Further, this review details how the blockade of SIRPα-CD47 interaction serve as a therapeutic option in the management of PDAC.
Collapse
Affiliation(s)
- Abdullahi Alausa
- Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomoso, Oyo state.
| | - Khadijat Ayodeji Lawal
- Heamtalogy and Blood Transfusion Unit, Department of Medical Laboratory Science, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | | | - E N O Obiwulu
- Department of Chemical Science, University of Delta, Agbor, Delta State
| | | | | | - Ugwu Obiora Celestine
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Enugu State University of Science and Technology
| | | | | | | |
Collapse
|
41
|
Nowroozi A, Khalili N, Razi S, Keshavarz-Fathi M, Rezaei N. Tumor-infiltrating lymphocyte therapy for lung cancer and its future paradigms. Expert Opin Biol Ther 2022; 22:735-745. [PMID: 35477305 DOI: 10.1080/14712598.2022.2072206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Lung cancer is the leading cause of cancer death, with an estimated 1.8 million deaths contributing to this cancer in 2020. Despite advances in treatment options and various approaches being attempted, the survival rate remains low. AREAS COVERED In this review, we aim to provide an overview of the efficacy of tumor-infiltrating lymphocyte (TIL) therapy for lung cancer based on existing clinical trials. We also discuss the current challenges and future landscape of this treatment modality. EXPERT OPINION Lung cancer can be a suitable candidate for TIL therapy due to its high mutational burden. Specifically, it has shown promising results for non-small cell lung cancer resistant to immune checkpoint inhibitors. Still, there are many restrictions associated with the ex vivo expansion and delivery of TILs, limiting their availability. For this reason, applying TIL for the treatment of lung cancer has not been extensively investigated yet and only a few clinical trials have shown favorable results of TIL therapy in patients with lung cancer. Thus, facilitating this costly, labor-intensive and time-consuming process is of utmost importance to increase the number of performed studies and to detect eligible patients who could benefit most from this treatment modality.
Collapse
Affiliation(s)
- Ali Nowroozi
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nastaran Khalili
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sepideh Razi
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahsa Keshavarz-Fathi
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Stockholm, Sweden
| |
Collapse
|
42
|
Ex Vivo Generation of CAR Macrophages from Hematopoietic Stem and Progenitor Cells for Use in Cancer Therapy. Cells 2022; 11:cells11060994. [PMID: 35326445 PMCID: PMC8947001 DOI: 10.3390/cells11060994] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 03/11/2022] [Indexed: 12/21/2022] Open
Abstract
Chimeric antigen receptor (CAR) T-cell therapies have shown impressive results in patients with hematological malignancies; however, little success has been achieved in the treatment of solid tumors. Recently, macrophages (MΦs) were identified as an additional candidate for the CAR approach, and initial proof of concept studies using peripheral blood-derived monocytes showed antigen-redirected activation of CAR MΦs. However, some patients may not be suitable for monocyte-apheresis, and prior cancer treatment regimens may negatively affect immune cell number and functionality. To address this problem, we here introduce primary human hematopoietic stem and progenitor cells (HSPCs) as a cell source to generate functional CAR MΦs ex vivo. Our data showed successful CAR expression in cord blood (CB)-derived HSPCs, with considerable cell expansion during differentiation to CAR MΦs. HSPC-derived MΦs showed typical MΦ morphology, phenotype, and basic anti-bacterial functionality. CAR MΦs targeting the carcinoembryonic antigen (CEA) and containing either a DAP12- or a CD3ζ-derived signaling domain showed antigen redirected activation as they secreted pro-inflammatory cytokines specifically upon contact with CEA+ target cells. In addition, CD3ζ-expressing CAR MΦs exhibited significantly enhanced phagocytosis of CEA+ HT1080 cells. Our data establish human HSPCs as a suitable cell source to generate functional CAR MΦs and further support the use of CAR MΦs in the context of solid tumor therapy.
Collapse
|
43
|
Juat DJ, Hachey SJ, Billimek J, Del Rosario MP, Nelson EL, Hughes CCW, Zell JA. Adoptive T-Cell Therapy in Advanced Colorectal Cancer: A Systematic Review. Oncologist 2022; 27:210-219. [PMID: 35274719 PMCID: PMC8914488 DOI: 10.1093/oncolo/oyab038] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 10/15/2021] [Indexed: 11/12/2022] Open
Abstract
Abstract
Colorectal cancer (CRC) is the second leading cause of cancer-related deaths in the US. For the vast majority of patients with advanced CRC (ie, for those in whom metastatic tumors are unresectable), treatment is palliative and typically involves chemotherapy, biologic therapy, and/or immune checkpoint inhibition. In recent years, the use of adoptive T-cell therapy (ACT), leveraging the body’s own immune system to recognize and target cancer, has become increasingly popular. Unfortunately, while ACT has been successful in the treatment of hematological malignancies, it is less efficacious in advanced CRC due in part to a lack of productive immune infiltrate. This systematic review was conducted to summarize the current data for the efficacy and safety of ACT in advanced CRC. We report that ACT is well tolerated in patients with advanced CRC. Favorable survival estimates among patients with advanced CRC receiving ACT demonstrate promise for this novel treatment paradigm. However, additional stage I/II clinical trials are needed to establish the efficacy and safety of ACT in patients with CRC.
Collapse
Affiliation(s)
- Damie J Juat
- Department of Molecular Biology & Biochemistry, University of California Irvine, Irvine, CA, USA
| | - Stephanie J Hachey
- Department of Family Medicine, University of California Irvine, Irvine, CA, USA
| | - John Billimek
- Department of Family Medicine, University of California Irvine, Irvine, CA, USA
| | - Michael P Del Rosario
- Division of Hematology/Oncology, Department of Medicine, University of California Irvine, Irvine, CA, USA
- Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
| | - Edward L Nelson
- Department of Molecular Biology & Biochemistry, University of California Irvine, Irvine, CA, USA
- Division of Hematology/Oncology, Department of Medicine, University of California Irvine, Irvine, CA, USA
- Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
| | - Christopher C W Hughes
- Department of Molecular Biology & Biochemistry, University of California Irvine, Irvine, CA, USA
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA
| | - Jason A Zell
- Division of Hematology/Oncology, Department of Medicine, University of California Irvine, Irvine, CA, USA
- Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA
| |
Collapse
|
44
|
Rezalotfi A, Fritz L, Förster R, Bošnjak B. Challenges of CRISPR-Based Gene Editing in Primary T Cells. Int J Mol Sci 2022; 23:ijms23031689. [PMID: 35163611 PMCID: PMC8835901 DOI: 10.3390/ijms23031689] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 01/29/2022] [Indexed: 12/30/2022] Open
Abstract
Adaptive T-cell immunotherapy holds great promise for the successful treatment of leukemia, as well as other types of cancers. More recently, it was also shown to be an effective treatment option for chronic virus infections in immunosuppressed patients. Autologous or allogeneic T cells used for immunotherapy are usually genetically modified to express novel T-cell or chimeric antigen receptors. The production of such cells was significantly simplified with the CRISPR/Cas system, allowing for the deletion or insertion of novel genes at specific locations within the genome. In this review, we describe recent methodological breakthroughs that were important for the conduction of these genetic modifications, summarize crucial points to be considered when conducting such experiments, and highlight the potential pitfalls of these approaches.
Collapse
Affiliation(s)
- Alaleh Rezalotfi
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany; (A.R.); (L.F.); (R.F.)
| | - Lea Fritz
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany; (A.R.); (L.F.); (R.F.)
| | - Reinhold Förster
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany; (A.R.); (L.F.); (R.F.)
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, 30625 Hannover, Germany
- German Centre for Infection Research (DZIF), Partner Site Hannover, 30625 Hannover, Germany
| | - Berislav Bošnjak
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany; (A.R.); (L.F.); (R.F.)
- Correspondence: ; Tel.: +49-511-532-9731
| |
Collapse
|
45
|
İPEK N, PINARBAŞI B, GÜNEŞ BAYIR A. The Place and Importance of Propolis in Cancer Immunotherapy. BEZMIALEM SCIENCE 2022. [DOI: 10.14235/bas.galenos.2021.4790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
46
|
Tokarew NJ, Gosálvez JS, Nottebrock A, Briukhovestka D, Endres S, Cadilha BL, Kobold S. Flow cytometry detection and quantification of CAR T cells into solid tumors. Methods Cell Biol 2022; 167:99-122. [DOI: 10.1016/bs.mcb.2021.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
47
|
Fatemi SA, Seifi N, Rasekh S, Amiri S, Moezzi SMI, Bagheri A, Fathi S, Negahdaripour M. Immunotherapeutic approaches for HPV-caused cervical cancer. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2021; 129:51-90. [PMID: 35305725 DOI: 10.1016/bs.apcsb.2021.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cervical cancer, the fourth most frequent women cancer worldwide, is mostly (about 99%) associated with human papillomavirus (HPV). Despite availability of three effective prophylactic vaccines for more than one decade and some other preventive measures, it is still the fourth cause of cancer death among women globally. Thus, development of therapeutic vaccines seems essential, which has been vastly studied using different vaccine platforms. Even with very wide efforts during the past years, no therapeutic vaccine has been approved yet, which might be partly due to the complex events and interactions taken place in the tumor microenvironment. On the other hand, immunotherapy has opened its way into the management plans of some cancers. The recent approval of pembrolizumab for the treatment of metastatic/recurrent cervical cancer brings new hopes to the management of this disease, while some other immunotherapeutic approaches are also under investigation either alone or in combination with vaccines. Here, following a summary about HPV and its pathogenesis, cervical cancer therapeutic vaccines would be reviewed. Cell-based vaccines as well as immunomodulation and other modalities used along with vaccines would be also discussed.
Collapse
Affiliation(s)
- Seyed Amirreza Fatemi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nadia Seifi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shiva Rasekh
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sogand Amiri
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Mohammad Iman Moezzi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ashkan Bagheri
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shirin Fathi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Manica Negahdaripour
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
48
|
Shah K, Al-Haidari A, Sun J, Kazi JU. T cell receptor (TCR) signaling in health and disease. Signal Transduct Target Ther 2021; 6:412. [PMID: 34897277 PMCID: PMC8666445 DOI: 10.1038/s41392-021-00823-w] [Citation(s) in RCA: 162] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 11/02/2021] [Accepted: 11/02/2021] [Indexed: 12/18/2022] Open
Abstract
Interaction of the T cell receptor (TCR) with an MHC-antigenic peptide complex results in changes at the molecular and cellular levels in T cells. The outside environmental cues are translated into various signal transduction pathways within the cell, which mediate the activation of various genes with the help of specific transcription factors. These signaling networks propagate with the help of various effector enzymes, such as kinases, phosphatases, and phospholipases. Integration of these disparate signal transduction pathways is done with the help of adaptor proteins that are non-enzymatic in function and that serve as a scaffold for various protein-protein interactions. This process aids in connecting the proximal to distal signaling pathways, thereby contributing to the full activation of T cells. This review provides a comprehensive snapshot of the various molecules involved in regulating T cell receptor signaling, covering both enzymes and adaptors, and will discuss their role in human disease.
Collapse
Affiliation(s)
- Kinjal Shah
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Amr Al-Haidari
- Clinical Genetics and Pathology, Skåne University Hospital, Region Skåne, Lund, Sweden
- Clinical Sciences Department, Surgery Research Unit, Lund University, Malmö, Sweden
| | - Jianmin Sun
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund, Sweden
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Science and Technology center, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Julhash U Kazi
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden.
- Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund, Sweden.
| |
Collapse
|
49
|
Jarboe T, Tuli NY, Chakraborty S, Maniyar RR, DeSouza N, Xiu-Min Li, Moscatello A, Geliebter J, Tiwari RK. Inflammatory Components of the Thyroid Cancer Microenvironment: An Avenue for Identification of Novel Biomarkers. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1350:1-31. [PMID: 34888842 DOI: 10.1007/978-3-030-83282-7_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The incidence of thyroid cancer in the United States is on the rise with an appreciably high disease recurrence rate of 20-30%. Anaplastic thyroid cancer (ATC), although rare in occurrence, is an aggressive form of cancer with limited treatment options and bleak cure rates. This chapter uses discussions of in vitro models that are representative of papillary, anaplastic, and follicular thyroid cancer to evaluate the crosstalk between specific cells of the tumor microenvironment (TME), which serves as a highly heterogeneous realm of signaling cascades and metabolism that are associated with tumorigenesis. The cellular constituents of the TME carry out varying characteristic immunomodulatory functions that are discussed throughout this chapter. The aforementioned cell types include cancer-associated fibroblasts (CAFs), endothelial cells (ECs), and cancer stem cells (CSCs), as well as specific immune cells, including natural killer (NK) cells, dendritic cells (DCs), mast cells, T regulatory (Treg) cells, CD8+ T cells, and tumor-associated macrophages (TAMs). TAM-mediated inflammation is associated with a poor prognosis of thyroid cancer, and the molecular basis of the cellular crosstalk between macrophages and thyroid cancer cells with respect to inducing a metastatic phenotype is not yet known. The dynamic nature of the physiological transition to pathological metastatic phenotypes when establishing the TME encompasses a wide range of characteristics that are further explored within this chapter, including the roles of somatic mutations and epigenetic alterations that drive the genetic heterogeneity of cancer cells, allowing for selective advantages that aid in their proliferation. Induction of these proliferating cells is typically accomplished through inflammatory induction, whereby chronic inflammation sets up a constant physiological state of inflammatory cell recruitment. The secretions of these inflammatory cells can alter the genetic makeup of proliferating cells, which can in turn, promote tumor growth.This chapter also presents an in-depth analysis of molecular interactions within the TME, including secretory cytokines and exosomes. Since the exosomal cargo of a cell is a reflection and fingerprint of the originating parental cells, the profiling of exosomal miRNA derived from thyroid cancer cells and macrophages in the TME may serve as an important step in biomarker discovery. Identification of a distinct set of tumor suppressive miRNAs downregulated in ATC-secreted exosomes indicates their role in the regulation of tumor suppressive genes that may increase the metastatic propensity of ATC. Additionally, the high expression of pro-inflammatory cytokines in studies looking at thyroid cancer and activated macrophage conditioned media suggests the existence of an inflammatory TME in thyroid cancer. New findings are suggestive of the presence of a metastatic niche in ATC tissues that is influenced by thyroid tumor microenvironment secretome-induced epithelial to mesenchymal transition (EMT), mediated by a reciprocal interaction between the pro-inflammatory M1 macrophages and the thyroid cancer cells. Thus, targeting the metastatic thyroid carcinoma microenvironment could offer potential therapeutic benefits and should be explored further in preclinical and translational models of human metastatic thyroid cancer.
Collapse
Affiliation(s)
- Tara Jarboe
- Departments of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY, USA
| | - Neha Y Tuli
- Departments of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY, USA
| | - Sanjukta Chakraborty
- Departments of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY, USA.,Weill Cornell Medicine, New York, NY, USA
| | - Rachana R Maniyar
- Departments of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY, USA.,Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nicole DeSouza
- Departments of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY, USA
| | - Xiu-Min Li
- Departments of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY, USA
| | | | - Jan Geliebter
- Departments of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY, USA
| | - Raj K Tiwari
- Departments of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY, USA.
| |
Collapse
|
50
|
Khan AA, Liu ZK, Xu X. Recent advances in immunotherapy for hepatocellular carcinoma. Hepatobiliary Pancreat Dis Int 2021; 20:511-520. [PMID: 34344612 DOI: 10.1016/j.hbpd.2021.06.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 06/22/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND Treatment of hepatocellular carcinoma (HCC) is challenging as most patients are diagnosed at advanced stage with underlying chronic liver conditions. Conventional systemic chemotherapy has failed in HCC, and the clinical efficacy of FDA-approved molecular targeted agents such as sorafenib and lenvatinib remains unsatisfactory. DATA SOURCES Literature search was conducted in PubMed for relevant articles published before January 2021. The search aimed to identify recent developments in immune-based treatment approaches for HCC. Information of clinical trials was obtained from https://clinicaltrials.gov/. RESULTS Two immune checkpoint inhibitors (ICIs), nivolumab and pembrolizumab were approved as monotherapies, which has revolutionized HCC treatment. Besides, combination ICIs have also got accelerated FDA approval recently. Immune-based therapies have challenged targeted drugs owing to their safety, tolerability, and survival benefits. In addition to the significant success in ICIs, other immunotherapeutic strategies such as cancer vaccine, chimeric antigen receptor T-cells, natural killer cells, cytokines, and combination therapy, have also shown promising outcomes in clinical trials. Various diagnostic and prognostic biomarkers have been identified which can help in clinical decision making when starting treatment with ICIs. CONCLUSIONS Immunotherapy has emerged as one of the mainstream treatment modalities for advanced HCC in recent years. However, challenges such as low response rate and acquired resistance in previously respondent patients still exist. Further research is needed to understand the unique resistance mechanism to immunotherapy and to discover more predictive biomarkers to guide clinical decision making.
Collapse
Affiliation(s)
- Abid Ali Khan
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Key Lab of Combined Multi-Organ Transplantation, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Ministry of Public Health, Hangzhou 310003, China
| | - Zhi-Kun Liu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Key Lab of Combined Multi-Organ Transplantation, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Ministry of Public Health, Hangzhou 310003, China
| | - Xiao Xu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Key Lab of Combined Multi-Organ Transplantation, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Ministry of Public Health, Hangzhou 310003, China; Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China.
| |
Collapse
|