1
|
|
Liu C, Shen Y, Cavdar O, Huang J, Fang H. Angiotensin II-induced vascular endothelial cells ferroptosis via P53-ALOX12 signal axis. Clin Exp Hypertens 2023; 45:2180019. [PMID: 36860117 DOI: 10.1080/10641963.2023.2180019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
OBJECTIVES The present study aimed to investigate the effect and mechanism of angiotensin II-induced ferroptosis in vascular endothelial cells. METHODS In vitro, HUVECs were treated with AngII, AT1/2 R antagonist, P53 inhibitor, or their combinations. MDA and intracellular iron content were evaluated using an ELISA assay. The expression of ALOX12, P53, P21, and SLC7A11 were determined by western blotting in HUVECs and then confirmed through RT-PCR. RESULTS As the concentration of Ang II (0, 0.1,1,10,100, and 1000uM for 48 h) increased, the level of MDA and intracellular iron content increased in HUVECs. Compared with the single AngII group, ALOX12, p53, MDA, and intracellular iron content in AT1/2R antagonist group decreased significantly. In pifithrin-α hydrobromide-treated, ALOX12, P21,MDA, and intracellular iron content decreased significantly as compared to the single AngII group. Similarly, the effect of combined use of blockers is stronger than that of blockers alone. CONCLUSIONS AngII can induce ferroptosis of vascular endothelial cells. The mechanism of AngII-induced ferroptosis may be regulated through the signal axis of p53-ALOX12.
Collapse
Affiliation(s)
- Chi Liu
- Department of Cardiology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China.,National Clinical Research Center for Aging and Medicine, Jing an District Central Hospital, Shanghai, China
| | - Yi Shen
- Department of General Practice, Pudong New Area District Zhoupu Hospital, Shanghai, China
| | - Omer Cavdar
- Department of Cardiology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Junling Huang
- Department of Geriatrics, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Hong Fang
- Department of Cardiology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
2
|
|
Kubala JM, Laursen KB, Schreiner R, Williams RM, van der Mijn JC, Crowley MJ, Mongan NP, Nanus DM, Heller DA, Gudas LJ. NDUFA4L2 reduces mitochondrial respiration resulting in defective lysosomal trafficking in clear cell renal cell carcinoma. Cancer Biol Ther 2023; 24:2170669. [PMID: 36722045 DOI: 10.1080/15384047.2023.2170669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
In clear cell renal cell carcinoma (ccRCC), activation of hypoxic signaling induces NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 4-like 2 (NDUFA4L2) expression. Over 90% of ccRCCs exhibit overexpression of NDUFA4L2, which we previously showed contributes to ccRCC proliferation and survival. The function of NDUFA4L2 in ccRCC has not been fully elucidated. NDUFA4L2 was reported to reduce mitochondrial respiration via mitochondrial complex I inhibition. We found that NDUFA4L2 expression in human ccRCC cells increases the extracellular acidification rate, indicative of elevated glycolysis. Conversely, NDUFA4L2 expression in non-cancerous kidney epithelial cells decreases oxygen consumption rate while increasing extracellular acidification rate, suggesting that a Warburg-like effect is induced by NDUFA4L2 alone. We performed mass-spectrometry (MS)-based proteomics of NDUFA4L2 associated complexes. Comparing RCC4-P (parental) ccRCC cells with RCC4 in which NDUFA4L2 is knocked out by CRISPR-Cas9 (RCC4-KO-643), we identified 3,215 proteins enriched in the NDUFA4L2 immunoprecipitates. Among the top-ranking pathways were "Metabolic Reprogramming in Cancer" and "Glycolysis Activation in Cancer (Warburg Effect)." We also show that NDUFA4L2 enhances mitochondrial fragmentation, interacts with lysosomes, and increases mitochondrial-lysosomal associations, as assessed by high-resolution fluorescence microscopy and live cell imaging. We identified 161 lysosomal proteins, including Niemann-Pick Disease Type C Intracellular Cholesterol Transporters 1 and 2 (NPC1, NPC2), that are associated with NDUFA4L2 in RCC4-P cells. RCC4-P cells have larger and decreased numbers of lysosomes relative to RCC4 NDUFA4L2 knockout cells. These findings suggest that NDUFA4L2 regulates mitochondrial-lysosomal associations and potentially lysosomal size and abundance. Consequently, NDUFA4L2 may regulate not only mitochondrial, but also lysosomal functions in ccRCC.
Collapse
Affiliation(s)
- Jaclyn M. Kubala
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA,Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA,Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA,CONTACT Lorraine J. Gudas Department of Pharmacology, Weill Cornell Medicine, New York, NY10065
| | | | - Ryan Schreiner
- Division of Regenerative Medicine Research, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Ryan M. Williams
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA,Department of Biomedical Engineering, the City College of New York, New York, NY, USA
| | | | - Michael J. Crowley
- Department of Physiology, Biophysics, and Systems Biology, Weill Cornell Medicine, New York, NY, USA
| | - Nigel P. Mongan
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA,Faculty of Medicine and Health Sciences, Center for Cancer Sciences, University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | - David M. Nanus
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA,Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA,Department of Urology; New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY, USA
| | - Daniel A. Heller
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA,Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA,Department of Physiology, Biophysics, and Systems Biology, Weill Cornell Medicine, New York, NY, USA
| | - Lorraine J. Gudas
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA,Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA,Department of Urology; New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
3
|
|
Romano PS, Akematsu T, Besteiro S, Bindschedler A, Carruthers VB, Chahine Z, Coppens I, Descoteaux A, Lopes Alberto Duque T, He CY, Heussler V, Le Roch KG, Li F, Perrone Bezerra de Menezes J, Menna-barreto RFS, Mottram JC, Schmuckli-maurer J, Turk B, Tavares Veras PS, Salassa BN, Vanrell MC. Autophagy in protists and their hosts: When, how and why? Autophagy Reports 2023; 2. [PMID: 37064813 DOI: 10.1080/27694127.2022.2149211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Pathogenic protists are a group of organisms responsible for causing a variety of human diseases including malaria, sleeping sickness, Chagas disease, leishmaniasis, and toxoplasmosis, among others. These diseases, which affect more than one billion people globally, mainly the poorest populations, are characterized by severe chronic stages and the lack of effective antiparasitic treatment. Parasitic protists display complex life-cycles and go through different cellular transformations in order to adapt to the different hosts they live in. Autophagy, a highly conserved cellular degradation process, has emerged as a key mechanism required for these differentiation processes, as well as other functions that are crucial to parasite fitness. In contrast to yeasts and mammals, protist autophagy is characterized by a modest number of conserved autophagy-related proteins (ATGs) that, even though, can drive the autophagosome formation and degradation. In addition, during their intracellular cycle, the interaction of these pathogens with the host autophagy system plays a crucial role resulting in a beneficial or harmful effect that is important for the outcome of the infection. In this review, we summarize the current state of knowledge on autophagy and other related mechanisms in pathogenic protists and their hosts. We sought to emphasize when, how, and why this process takes place, and the effects it may have on the parasitic cycle. A better understanding of the significance of autophagy for the protist life-cycle will potentially be helpful to design novel anti-parasitic strategies.
Collapse
Affiliation(s)
- Patricia Silvia Romano
- Laboratorio de Biología de Trypanosoma cruzi y de la célula hospedadora. Instituto de Histología y Embriología de Mendoza. Universidad Nacional de Cuyo. (IHEM-CONICET-UNCUYO). Facultad de Ciencias Médicas. Universidad Nacional de Cuyo. Av. Libertador 80 , Mendoza, Argentina
| | - Takahiko Akematsu
- Department of Biosciences, College of Humanities and Sciences, Nihon University, Tokyo, Japan
| | | | | | - Vern B. Carruthers
- Department of Microbiology and Immunology, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Zeinab Chahine
- Department of Molecular, Cell and Systems Biology, University of California Riverside, CA, USA
| | - Isabelle Coppens
- Department of Molecular Microbiology and Immunology. Department of Molecular Microbiology and Immunology. Johns Hopkins Malaria Research Institute. Johns Hopkins University Bloomberg School of Public Health. Baltimore, MD, USA
| | - Albert Descoteaux
- Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique, Laval, QC, Canada
| | - Thabata Lopes Alberto Duque
- Autophagy Inflammation and Metabolism Center, University of New Mexico Health Sciences Center, Albuquerque, NM, USA; Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Cynthia Y. He
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Volker Heussler
- Institute of Cell Biology.University of Bern. Baltzerstr, Bern, Switzerland
| | - Karine G. Le Roch
- Department of Molecular, Cell and Systems Biology, University of California Riverside, CA, USA
| | - Feng-Jun Li
- Department of Biological Sciences, National University of Singapore, Singapore
| | | | | | - Jeremy C. Mottram
- York Biomedical Research Institute, Department of Biology, University of York, York, UK
| | | | - Boris Turk
- Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Patricia Sampaio Tavares Veras
- Laboratory of Host-Parasite Interaction and Epidemiology, Gonçalo Moniz Institute, Fiocruz-Bahia, Brazil
- National Institute of Science and Technology of Tropical Diseases - National Council for Scientific Research and Development (CNPq), Brazil
| | - Betiana Nebai Salassa
- Laboratorio de Biología de Trypanosoma cruzi y de la célula hospedadora. Instituto de Histología y Embriología de Mendoza. Universidad Nacional de Cuyo. (IHEM-CONICET-UNCUYO). Facultad de Ciencias Médicas. Universidad Nacional de Cuyo. Av. Libertador 80 , Mendoza, Argentina
| | - María Cristina Vanrell
- Laboratorio de Biología de Trypanosoma cruzi y de la célula hospedadora. Instituto de Histología y Embriología de Mendoza. Universidad Nacional de Cuyo. (IHEM-CONICET-UNCUYO). Facultad de Ciencias Médicas. Universidad Nacional de Cuyo. Av. Libertador 80 , Mendoza, Argentina
| |
Collapse
|
4
|
|
Zhang K, An X, Zhu Y, Huang L, Yao X, Zeng X, Liang S, Yu J. Netrin-1 inducing antiapoptotic effect of acute myeloid leukemia cells in a concentration-dependent manner through the Unc-5 netrin receptor B-focal adhesion kinase axis. Cancer Biol Ther 2023; 24:2200705. [PMID: 37038247 DOI: 10.1080/15384047.2023.2200705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023] Open
Abstract
Acute myeloid leukemia (AML) is a hematological malignancy that commonly occurs in children. The prognosis of pediatric AML is relatively poor, thus threatening the patient's survival. The aberrant expression of the axon guidance factor, netrin-1, is observed in various types of malignancies, and it participates in the proliferation and apoptosis of tumor cells. Herein, we aimed to explore the role of netrin-1 in AML cells. Netrin-1 is highly expressed in AML patients. Proliferation and anti-apoptosis were observed in AML cells treated with netrin-1. The interaction between netrin-1 and Unc-5 netrin receptor B (UNC5B) was detected through coimmunoprecipitation, and UNC5B ribonucleic acid interference restrained the influence of netrin-1 on the AML cells. The phosphorylation of focal adhesion kinase-protein kinase B (FAK-Akt) was upregulated in AML cells treated with netrin-1. Both FAK and Akt inhibitors abrogated the effects of netrin-1 on the proliferation and apoptosis of AML cells. In conclusion, netrin-1 could promote the growth and reduce the apoptosis of AML cells in a concentration-dependent manner, and that these effects were mediated by activating the FAK-Akt signaling pathway via the UNC5B.
Collapse
Affiliation(s)
- Kainan Zhang
- Department of Hematology and Oncology, Children's Hospital of Chongqing Medical University; National Clinical Research Center for Child Health and Disorders; Ministry of Education Key Laboratory of Child Development and Disorders; Chongqing Key Laboratory of Pediatrics, Chongqing, China
- Pediatric research institute, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Xizhou An
- Department of Hematology and Oncology, Children's Hospital of Chongqing Medical University; National Clinical Research Center for Child Health and Disorders; Ministry of Education Key Laboratory of Child Development and Disorders; Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Yao Zhu
- Department of Hematology and Oncology, Children's Hospital of Chongqing Medical University; National Clinical Research Center for Child Health and Disorders; Ministry of Education Key Laboratory of Child Development and Disorders; Chongqing Key Laboratory of Pediatrics, Chongqing, China
- Pediatric research institute, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Lan Huang
- Department of Hematology and Oncology, Children's Hospital of Chongqing Medical University; National Clinical Research Center for Child Health and Disorders; Ministry of Education Key Laboratory of Child Development and Disorders; Chongqing Key Laboratory of Pediatrics, Chongqing, China
- Pediatric research institute, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Xinyuan Yao
- Department of Hematology and Oncology, Children's Hospital of Chongqing Medical University; National Clinical Research Center for Child Health and Disorders; Ministry of Education Key Laboratory of Child Development and Disorders; Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Xing Zeng
- Department of Hematology and Oncology, Children's Hospital of Chongqing Medical University; National Clinical Research Center for Child Health and Disorders; Ministry of Education Key Laboratory of Child Development and Disorders; Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Shaoyan Liang
- Pediatric research institute, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Jie Yu
- Department of Hematology and Oncology, Children's Hospital of Chongqing Medical University; National Clinical Research Center for Child Health and Disorders; Ministry of Education Key Laboratory of Child Development and Disorders; Chongqing Key Laboratory of Pediatrics, Chongqing, China
| |
Collapse
|
5
|
|
Wen Z, Fang C, Liu X, Liu Y, Li M, Yuan Y, Han Z, Wang C, Zhang T, Sun C. A recombinant Mycobacterium smegmatis-based surface display system for developing the T cell-based COVID-19 vaccine. Hum Vaccin Immunother 2023; 19:2171233. [PMID: 36785935 DOI: 10.1080/21645515.2023.2171233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023] Open
Abstract
The immune escape mutations of SARS-CoV-2 variants emerged frequently, posing a new challenge to weaken the protective efficacy of current vaccines. Thus, the development of novel SARS-CoV-2 vaccines is of great significance for future epidemic prevention and control. We herein reported constructing the attenuated Mycobacterium smegmatis (M. smegmatis) as a bacterial surface display system to carry the spike (S) and nucleocapsid (N) of SARS-CoV-2. To mimic the native localization on the surface of viral particles, the S or N antigen was fused with truncated PE_PGRS33 protein, which is a transportation component onto the cell wall of Mycobacterium tuberculosis (M.tb). The sub-cellular fraction analysis demonstrated that S or N protein was exactly expressed onto the surface (cell wall) of the recombinant M. smegmatis. After the immunization of the M. smegmatis-based COVID-19 vaccine candidate in mice, S or N antigen-specific T cell immune responses were effectively elicited, and the subsets of central memory CD4+ T cells and CD8+ T cells were significantly induced. Further analysis showed that there were some potential cross-reactive CTL epitopes between SARS-CoV-2 and M.smegmatis. Overall, our data provided insights that M. smegmatis-based bacterial surface display system could be a suitable vector for developing T cell-based vaccines against SARS-CoV-2 and other infectious diseases.
Collapse
Affiliation(s)
- Ziyu Wen
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Cuiting Fang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, China.,University of Chinese Academy of Sciences (UCAS), Beijing, China.,Guangdong-Hong Kong-Macau Joint Laboratory of Respiratory Infectious Diseases, Guangzhou, China.,China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou, China
| | - Xinglai Liu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Yan Liu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, China.,University of Chinese Academy of Sciences (UCAS), Beijing, China.,Guangdong-Hong Kong-Macau Joint Laboratory of Respiratory Infectious Diseases, Guangzhou, China
| | - Minchao Li
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Yue Yuan
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Zirong Han
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Congcong Wang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Tianyu Zhang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, China.,University of Chinese Academy of Sciences (UCAS), Beijing, China.,Guangdong-Hong Kong-Macau Joint Laboratory of Respiratory Infectious Diseases, Guangzhou, China.,China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou, China
| | - Caijun Sun
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China.,Ministry of Education, Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Guangzhou, China
| |
Collapse
|
6
|
|
Cheng H, Wang S, Huang A, Ma J, Gao D, Li M, Chen H, Guo K. HSF1 is involved in immunotherapeutic response through regulating APOJ/STAT3-mediated PD-L1 expression in hepatocellular carcinoma. Cancer Biol Ther 2023; 24:1-9. [PMID: 36482717 DOI: 10.1080/15384047.2022.2156242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Hepatocellular cancer (HCC) is a serious illness with high prevalence and mortality throughout the whole world. For advanced HCC, immunotherapy is somewhat impactful and encouraging. Nevertheless, a substantial proportion of patients with advanced HCC are still unable to achieve a durable response, owing to heterogeneity from clonal variability and differential expression of the PD-1/PD-L1 axis. Recently, heat shock factor 1 (HSF1) is recognized as an important component of tumor immunotherapeutic response as well as related to PD-L1 expression in cancer. However, the mechanism of HSF1 regulating PD-L1 in cancer, especially in HCC, is still not fully clear. In this study, we observed the significantly positive correlation between HSF1 expression and PD-L1 expression in HCC samples; meanwhile combination expressions of HSF1 and PD-L1 served as the signature for predicting prognosis of patients with HCC. Mechanistically, HSF1 upregulated PD-L1 expression by inducing APOJ expression and activating STAT3 signaling pathway in HCC. In addition, we explored further the potential values of targeting the HSF1-APOJ-STAT3 axis against CD8+ T cells-mediated cancer cells cytotoxicity. These findings unveiled the important involvement of HSF1 in regulating PD-L1 expression in HCC as well as provided a novel invention component for improving the clinical response rate and efficacy of PD-1/PD-L1 blockade.
Collapse
Affiliation(s)
- Hongxia Cheng
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion Ministry of Education, Shanghai, People’s Republic of China
| | - Sikai Wang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion Ministry of Education, Shanghai, People’s Republic of China
| | - Aidan Huang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion Ministry of Education, Shanghai, People’s Republic of China,Guangxi Zhuang Autonomous Region Women and Children Care Hospital, Guangxi, China
| | - Jing Ma
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion Ministry of Education, Shanghai, People’s Republic of China
| | - Dongmei Gao
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion Ministry of Education, Shanghai, People’s Republic of China
| | - Miaomiao Li
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion Ministry of Education, Shanghai, People’s Republic of China
| | - Huaping Chen
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University Nanning, Guangxi, China
| | - Kun Guo
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion Ministry of Education, Shanghai, People’s Republic of China,CONTACT Kun Guo Liver Cancer Institute, Zhongshan Hospital, Fudan University, 131 Dongan Road, Mingdao Building, Room 616, Shanghai200032, People’s Republic of China
| |
Collapse
|
7
|
|
Liton PB, Boesze-battaglia K, Boulton ME, Boya P, Ferguson TA, Ganley IG, Kauppinnen A, Laurie GW, Mizushima N, Morishita H, Russo R, Sadda J, Shyam R, Sinha D, Thompson DA, Zacks DN. Autophagy in the eye: from physiology to pathophysology. Autophagy Reports 2023; 2. [PMID: 37034386 DOI: 10.1080/27694127.2023.2178996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
Autophagy is a catabolic self-degradative pathway that promotes the degradation and recycling of intracellular material through the lysosomal compartment. Although first believed to function in conditions of nutritional stress, autophagy is emerging as a critical cellular pathway, involved in a variety of physiological and pathophysiological processes. Autophagy dysregulation is associated with an increasing number of diseases, including ocular diseases. On one hand, mutations in autophagy-related genes have been linked to cataracts, glaucoma, and corneal dystrophy; on the other hand, alterations in autophagy and lysosomal pathways are a common finding in essentially all diseases of the eye. Moreover, LC3-associated phagocytosis, a form of non-canonical autophagy, is critical in promoting visual cycle function. This review collects the latest understanding of autophagy in the context of the eye. We will review and discuss the respective roles of autophagy in the physiology and/or pathophysiology of each of the ocular tissues, its diurnal/circadian variation, as well as its involvement in diseases of the eye.
Collapse
Affiliation(s)
- Paloma B. Liton
- Departments of Ophthalmology & Pathology, Duke School of Medicine, Duke University, Durham, NC 27705, USA
| | - Kathleen Boesze-Battaglia
- Department of Basic and Translational Sciences, University of Pennsylvania, School of Dental Medicine, Philadelphia, PA 19104, USA
| | - Michael E. Boulton
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham (UAB), Birmingham, AL, USA
| | - Patricia Boya
- Department of Neuroscience and Movement Science. Faculty of Science and Medicine, University of Fribourg, 1700 Fribourg, Switzerland
| | - Thomas A. Ferguson
- Department of Ophthalmology and Visual Sciences, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Ian G. Ganley
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Anu Kauppinnen
- Faculty of Health and Sciences, School of Pharmacy, University of Eastern Finland, 70210 Kuopio, Finland
| | - Gordon W. Laurie
- Departments of Cell Biology, Ophthalmology and Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Noboru Mizushima
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, 113-0033, Japan
| | - Hideaki Morishita
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, 113-0033, Japan
- Department of Physiology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Rossella Russo
- Preclinical and Translational Pharmacology, Glaucoma Unit, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Jaya Sadda
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | | | - Debasish Sinha
- Department of Ophthalmology, Cell Biology, and Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Debra A. Thompson
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - David N. Zacks
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
8
|
|
Huang Y, Ge MX, Li YH, Li JL, Yu Q, Xiao FH, Ao HS, Yang LQ, Li J, He Y, Kong QP. Longevity-Associated Transcription Factor ATF7 Promotes Healthspan by Suppressing Cellular Senescence and Systematic Inflammation. Aging Dis 2023. [PMID: 37163432 DOI: 10.14336/AD.2022.1217] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023] Open
Abstract
Aging is characterized by persistent low-grade systematic inflammation, which is largely responsible for the occurrence of various age-associated diseases. We and others have previously reported that long-lived people (such as centenarians) can delay the onset of or even escape certain major age-related diseases. Here, by screening blood transcriptome and inflammatory profiles, we found that long-lived individuals had a relatively lower inflammation level (IL6, TNFα), accompanied by up-regulation of activating transcription factor 7 (ATF7). Interestingly, ATF7 expression was gradually reduced during cellular senescence. Loss of ATF7 induced cellular senescence, while overexpression delayed senescence progress and senescence-associated secretory phenotype (SASP) secretion. We showed that the anti-senescence effects of ATF7 were achieved by inhibiting nuclear factor kappa B (NF-κB) signaling and increasing histone H3K9 dimethylation (H3K9me2). In Caenorhabditis elegans, ATF7 overexpression significantly suppressed aging biomarkers and extended lifespan. Our findings suggest that ATF7 is a longevity-promoting factor that lowers cellular senescence and inflammation in long-lived individuals.
Collapse
Affiliation(s)
- Yaqun Huang
- State Key Laboratory of Genetic Resources and Evolution, Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Department of Dermatology/National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410000, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
| | - Ming-Xia Ge
- State Key Laboratory of Genetic Resources and Evolution, Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Yu-Hong Li
- State Key Laboratory of Genetic Resources and Evolution, Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Jing-Lin Li
- State Key Laboratory of Genetic Resources and Evolution, Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Department of Dermatology/National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410000, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
| | - Qin Yu
- State Key Laboratory of Genetic Resources and Evolution, Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Fu-Hui Xiao
- State Key Laboratory of Genetic Resources and Evolution, Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Hong-Shun Ao
- State Key Laboratory of Genetic Resources and Evolution, Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Li-Qin Yang
- State Key Laboratory of Genetic Resources and Evolution, Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Ji Li
- Department of Dermatology/National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410000, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China
| | - Yonghan He
- State Key Laboratory of Genetic Resources and Evolution, Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Qing-Peng Kong
- State Key Laboratory of Genetic Resources and Evolution, Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
9
|
|
Sungguan Hong, Seungwoo Hong, Sung Hoon Lee. Association of overexpressed carboxyl-terminal amyloid precursor protein in brains with altered glucose metabolism and liver toxicity. Anim Cells Syst (Seoul); 27. [PMID: 37033452 DOI: 10.1080/19768354.2023.2197761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023] Open
Abstract
Alzheimer’s disease (AD) is the most prevalent neurodegenerative disease. The deposition of amyloid plaques mainly composed of amyloid beta (Aβ) is observed in brain regions in AD patients. AD presents with similar pathophysiology to that of metabolic syndrome, including glucose and insulin resistance. In addition, epidemiological studies indicate diabetes, impaired glucose metabolism, and obesity increase the prevalence of AD. The liver is considered a key organ in the reciprocal relationship between AD and metabolic syndrome and is the major organ for the clearance of Aβ in the periphery. Furthermore, liver dysfunction aggravates Aβ-induced pathophysiology. Aβ is produced in the brain and peripheral tissues and penetrates the blood–brain barrier. However, in vivo evidence showing the effect of Aβ on the crosstalk between the brain and liver has not been reported yet. In the present study, we investigated the toxicity of brain-derived Aβ on glucose metabolism and the liver using transgenic mice overexpressing the carboxyl-terminal of amyloid precursor protein in the brain. The transgenic mice were overweight, which was associated with impaired glucose metabolism and insulin resistance, but not due to increased food intake. In addition, transgenic mice had enlarged livers and reduced gene expressions associated with glucose and lipid metabolism. Thus, overexpressed amyloid precursor protein in the brain may promote being overweight and glucose resistance, possibly through liver toxicity.
Collapse
Affiliation(s)
- Sungguan Hong
- Department of Chemistry, Chung-Ang University, Seoul, Republic of Korea
| | - Seungwoo Hong
- Department of Chemistry, Chung-Ang University, Seoul, Republic of Korea
| | - Sung Hoon Lee
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
- Sung Hoon Lee College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul06974, Republic of Korea
| |
Collapse
|
10
|
|
Wang Z, Cui L, Nan Y, Liu J, Li C. Periodontitis & preeclampsia: were outer membrane vesicles a potential connection? J Matern Fetal Neonatal Med 2023; 36:2183767. [PMID: 36860094 DOI: 10.1080/14767058.2023.2183767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Introduction: Preeclampsia (PE) is gestation-specific hypertension coupled by systemic multiple organ damages, remaining the leading causes of maternal and infant death worldwide.Materials and methods: Though numerous pathogenetic mechanisms have been engaged in this disorder and several methods have been undertaken to treat PE, few clinical strategies are effective in PE management, suggesting more studies from novel perspective being in great need to decipher the underlying mechanisms of PE.Results: Growing evidence shows that women with periodontitis, an oral microflora-induced chronic inflammation of the periodontal tissues, are more inclined to suffer PE, which may be tightly associated with microflora-derived outer membrane vesicles (OMVs). Latest studies reveal that OMVs are spherical membrane-enclosed entities released by bacteria and can gain free access to the circulation of the host and therefore reach the remote tissue of the host, participating the interaction among oral bacterial with the host and contribute to some systemic disease with carried bioactive materials.Conclusions: OMVs may be the underlying mechanism linking oral flora-induced periodontitis with dysfunction trophoblast and finally contributes to the pathogenesis of in PE. Here we provide evidence to support the potential roles of OMVs linking periodontal disease between PE.
Collapse
Affiliation(s)
- Zheng Wang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Jiaotong University, Xi'an, China
| | - Leyun Cui
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xian Jiaotong University, Xi'an, China
| | - Yanglong Nan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xian Jiaotong University, Xi'an, China
| | - Jinjun Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xian Jiaotong University, Xi'an, China
| | - Chunfang Li
- Department of Obstetrics & Gynecology, the First affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
11
|
|
A J, S S S, K S, T S M. Extracellular vesicles in bacterial and fungal diseases - Pathogenesis to diagnostic biomarkers. Virulence 2023; 14:2180934. [PMID: 36794396 DOI: 10.1080/21505594.2023.2180934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
Abstract
Intercellular communication among microbes plays an important role in disease exacerbation. Recent advances have described small vesicles, termed as "extracellular vesicles" (EVs), previously disregarded as "cellular dust" to be vital in the intracellular and intercellular communication in host-microbe interactions. These signals have been known to initiate host damage and transfer of a variety of cargo including proteins, lipid particles, DNA, mRNA, and miRNAs. Microbial EVs, referred to generally as "membrane vesicles" (MVs), play a key role in disease exacerbation suggesting their importance in pathogenicity. Host EVs help coordinate antimicrobial responses and prime the immune cells for pathogen attack. Hence EVs with their central role in microbe-host communication, may serve as important diagnostic biomarkers of microbial pathogenesis. In this review, we summarize current research regarding the roles of EVs as markers of microbial pathogenesis with specific focus on their interaction with host immune defence and their potential as diagnostic biomarkers in disease conditions.
Collapse
Affiliation(s)
- Jnana A
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Sadiya S S
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Satyamoorthy K
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Murali T S
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
12
|
|
Keuenhof KS, Kohler V, Broeskamp F, Panagaki D, Speese SD, Büttner S, Höög JL. Nuclear envelope budding and its cellular functions. Nucleus 2023; 14:2178184. [PMID: 36814098 DOI: 10.1080/19491034.2023.2178184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
The nuclear pore complex (NPC) has long been assumed to be the sole route across the nuclear envelope, and under normal homeostatic conditions it is indeed the main mechanism of nucleo-cytoplasmic transport. However, it has also been known that e.g. herpesviruses cross the nuclear envelope utilizing a pathway entitled nuclear egress or envelopment/de-envelopment. Despite this, a thread of observations suggests that mechanisms similar to viral egress may be transiently used also in healthy cells. It has since been proposed that mechanisms like nuclear envelope budding (NEB) can facilitate the transport of RNA granules, aggregated proteins, inner nuclear membrane proteins, and mis-assembled NPCs. Herein, we will summarize the known roles of NEB as a physiological and intrinsic cellular feature and highlight the many unanswered questions surrounding these intriguing nuclear events.
Collapse
Affiliation(s)
| | - Verena Kohler
- Institute of Molecular Biosciences, University of Graz, Austria,Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Sweden
| | - Filomena Broeskamp
- Department for Chemistry and Molecular biology, University of Gothenburg, Sweden
| | - Dimitra Panagaki
- Department for Chemistry and Molecular biology, University of Gothenburg, Sweden
| | - Sean D. Speese
- Knight Cancer Early Detection Advanced Research Center, Oregon Health and Science University, 2720 S Moody Ave, Portland, OR, 97201, USA
| | - Sabrina Büttner
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Sweden
| | - Johanna L. Höög
- Department for Chemistry and Molecular biology, University of Gothenburg, Sweden,CONTACT Johanna L. Höög Department for Chemistry and Molecular biology, University of Gothenburg, Medicinaregatan 9C, Göteborg413 90, Sweden
| |
Collapse
|
13
|
|
Boateng ST, Roy T, Torrey K, Owunna U, Banang-Mbeumi S, Basnet D, Niedda E, Alexander AD, Hage DE, Atchimnaidu S, Nagalo BM, Aryal D, Findley A, Seeram NP, Efimova T, Sechi M, Hill RA, Ma H, Chamcheu JC, Murru S. Synthesis, in silico modelling, and in vitro biological evaluation of substituted pyrazole derivatives as potential anti-skin cancer, anti-tyrosinase, and antioxidant agents. J Enzyme Inhib Med Chem 2023; 38:2205042. [PMID: 37184042 DOI: 10.1080/14756366.2023.2205042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023] Open
Abstract
Twenty-five azole compounds (P1-P25) were synthesised using regioselective base-metal catalysed and microwave-assisted approaches, fully characterised by high-resolution mass spectrometry (HRMS), nuclear magnetic resonance (NMR), and infrared spectra (IR) analyses, and evaluated for anticancer, anti-tyrosinase, and anti-oxidant activities in silico and in vitro. P25 exhibited potent anticancer activity against cells of four skin cancer (SC) lines, with selectivity for melanoma (A375, SK-Mel-28) or non-melanoma (A431, SCC-12) SC cells over non-cancerous HaCaT-keratinocytes. Clonogenic, scratch-wound, and immunoblotting assay data were consistent with anti-proliferative results, expression profiling therewith implicating intrinsic and extrinsic apoptosis activation. In a mushroom tyrosinase inhibition assay, P14 was most potent among the compounds (half-maximal inhibitory concentration where 50% of cells are dead, IC50 15.9 μM), with activity greater than arbutin and kojic acid. Also, P6 exhibited noteworthy free radical-scavenging activity. Furthermore, in silico docking and absorption, distribution, metabolism, excretion, and toxicity (ADMET) simulations predicted prominent-phenotypic actives to engage diverse cancer/hyperpigmentation-related targets with relatively high affinities. Altogether, promising early-stage hits were identified - some with multiple activities - warranting further hit-to-lead optimisation chemistry with further biological evaluations, towards identifying new skin-cancer and skin-pigmentation renormalising agents.
Collapse
Affiliation(s)
- Samuel T Boateng
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA, USA
| | - Tithi Roy
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA, USA
| | - Kara Torrey
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, Bioactive Botanical Research Laboratory, University of Rhode Island, Kingston, RI, USA
| | - Uchechi Owunna
- School of Sciences, College of Arts, Education and Sciences, University of Louisiana at Monroe, Monroe, LA, USA
| | - Sergette Banang-Mbeumi
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA, USA
- School of Nursing and Allied Health Sciences, Louisiana Delta Community College, Monroe, LA, USA
| | - David Basnet
- School of Sciences, College of Arts, Education and Sciences, University of Louisiana at Monroe, Monroe, LA, USA
| | - Eleonora Niedda
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Sassari, Italy
| | - Alexis D Alexander
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA, USA
| | - Denzel El Hage
- School of Sciences, College of Arts, Education and Sciences, University of Louisiana at Monroe, Monroe, LA, USA
| | - Siriki Atchimnaidu
- School of Sciences, College of Arts, Education and Sciences, University of Louisiana at Monroe, Monroe, LA, USA
| | - Bolni Marius Nagalo
- Department of Pathology, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, USA
- The Winthrop P. Rockefeller Cancer Institute, UAMS, Little Rock, AR, USA
| | - Dinesh Aryal
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA, USA
- Department of Biomedical Affairs and Research, Edward Via College of Osteopathic Medicine, Monroe, LA, USA
| | - Ann Findley
- School of Sciences, College of Arts, Education and Sciences, University of Louisiana at Monroe, Monroe, LA, USA
| | - Navindra P Seeram
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, Bioactive Botanical Research Laboratory, University of Rhode Island, Kingston, RI, USA
| | - Tatiana Efimova
- Department of Biomedical Engineering, Northwestern University, Chicago, IL, USA
| | - Mario Sechi
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Sassari, Italy
| | - Ronald A Hill
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA, USA
| | - Hang Ma
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, Bioactive Botanical Research Laboratory, University of Rhode Island, Kingston, RI, USA
| | - Jean Christopher Chamcheu
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA, USA
| | - Siva Murru
- School of Sciences, College of Arts, Education and Sciences, University of Louisiana at Monroe, Monroe, LA, USA
| |
Collapse
|
14
|
|
Jiao Y, Zhang X, Yang H, Ma H, Zou J. Mesoporous tantalum oxide nanomaterials induced cardiovascular endothelial cell apoptosis via mitochondrial-endoplasmic reticulum stress apoptotic pathway. Drug Deliv 2023; 30:108-20. [PMID: 36533874 DOI: 10.1080/10717544.2022.2147251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Along with its wide range of potential applications, human exposure to mesoporous tantalum oxide nanomaterials (PEG@mTa2O5) has substantially risen. Accumulative toxic investigations have shown the PEG@mTa2O5 intake and cardiovascular diseases (CVD). Endothelial cell death is crucial in the onset and development of atherosclerosis. Still, the molecular mechanism connecting PEG@mTa2O5 and endothelium apoptosis remains unclear. Herein, we studied the absorption and toxic action of mesoporous tantalum oxide (mTa2O5) nanomaterials with polyethylene glycol (PEG) utilizing human cardio microvascular endothelial cells (HCMECs). We also showed that PEG@mTa2O5 promoted apoptosis in endothelial cells using flow cytometry and AO-EB staining. In conjunction with the ultrastructure modifications, PEG@mTa2O5 prompted mitochondrial ROS production, cytosolic Ca2+ overload, ΔΨm collapse, and ER stress verified by elevated ER-Tracker staining, upregulated XBP1 and GRP78/BiP splicing. Remarkably, the systemic toxicity and blood compatibility profile of PEG@mTa2O5 can greatly improve successive therapeutic outcomes of NMs while reducing their adverse side effects. Overall, our findings suggested that PEG@mTa2O5-induced endothelium apoptosis was partially mediated by the activation of the endoplasmic reticulum stress-mitochondrial cascade.
Collapse
Affiliation(s)
- Yuanyong Jiao
- Department of Vascular Surgery, The First Affiliated Hospital with Nanjing Medical University (Jiangsu Province Hospital), Nanjing, China
| | - Xiwei Zhang
- Department of Vascular Surgery, The First Affiliated Hospital with Nanjing Medical University (Jiangsu Province Hospital), Nanjing, China
| | - Hongyu Yang
- Department of Vascular Surgery, The First Affiliated Hospital with Nanjing Medical University (Jiangsu Province Hospital), Nanjing, China
| | - Hao Ma
- Department of Vascular Surgery, The First Affiliated Hospital with Nanjing Medical University (Jiangsu Province Hospital), Nanjing, China
| | - Junjie Zou
- Department of Vascular Surgery, The First Affiliated Hospital with Nanjing Medical University (Jiangsu Province Hospital), Nanjing, China,CONTACT Junjie Zou Department of Vascular Surgery, The First Affiliated Hospital with Nanjing Medical University (Jiangsu Province Hospital), Guangzhou Road 300, Gulou District, Nanjing210029, China
| |
Collapse
|
15
|
|
Zheng Y, Lang Y, Qi B, Li T. TSPAN4 and migrasomes in atherosclerosis regression correlated to myocardial infarction and pan-cancer progression. Cell Adh Migr 2023; 17:14-9. [PMID: 36513632 DOI: 10.1080/19336918.2022.2155337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The migrasomes formation is mediated by the assembly of micron-scale tetraspanin macrodomains and the recruitment of tetraspanin 4 (TSPAN4). However, the physiological functions of TSPAN4 on migrasomes are less known. The TSPAN4 expression in macrophages in single-cell sequencing data, GEO datasets and TCGA database were determined. TSPAN4 expression was highly associated with atherosclerosis regression-related macrophages, intraplaque hemorrhage and ruptured plaques. TSPAN4 expression was upregulated in spontaneous MI and inducible MI mice model. Besides, TSPAN4 expression was highly correlated with tumor-associated macrophages. The study provided a critical role of TSPAN4 aberrant expression in the progression of atherosclerosis and pan-cancer, and the intervention of TSPAN4 and migrasomes may save dying patients' lives and improve their prognosis.
Collapse
Affiliation(s)
- Yue Zheng
- School of Medicine, Nankai University, Tianjin, Binhai, China,Department of Heart Center, the Third Central Hospital of Tianjin, Tianjin, Binhai, China,Department of Heart Center, Nankai University Affiliated Third Center Hospital, Tianjin, Binhai, China,Artificial Cell Engineering Technology Research Center, Tianjin, Binhai, China
| | - Yuheng Lang
- Department of Heart Center, the Third Central Hospital of Tianjin, Tianjin, Binhai, China,Department of Heart Center, Nankai University Affiliated Third Center Hospital, Tianjin, Binhai, China,Artificial Cell Engineering Technology Research Center, Tianjin, Binhai, China,Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, Binhai, China
| | - Bingcai Qi
- Department of Heart Center, the Third Central Hospital of Tianjin, Tianjin, Binhai, China,Department of Heart Center, Nankai University Affiliated Third Center Hospital, Tianjin, Binhai, China,Artificial Cell Engineering Technology Research Center, Tianjin, Binhai, China,Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, Binhai, China
| | - Tong Li
- School of Medicine, Nankai University, Tianjin, Binhai, China,Department of Heart Center, the Third Central Hospital of Tianjin, Tianjin, Binhai, China,Department of Heart Center, Nankai University Affiliated Third Center Hospital, Tianjin, Binhai, China,Artificial Cell Engineering Technology Research Center, Tianjin, Binhai, China,Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, Binhai, China,CONTACT Tong Li School of Medicine, Nankai University, Tianjin300170, China
| |
Collapse
|
16
|
|
Tang Y. Plant nuclear envelope as a hub connecting genome organization with regulation of gene expression. Nucleus 2023; 14:2178201. [PMID: 36794966 DOI: 10.1080/19491034.2023.2178201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
Abstract
Eukaryotic cells organize their genome within the nucleus with a double-layered membrane structure termed the nuclear envelope (NE) as the physical barrier. The NE not only shields the nuclear genome but also spatially separates transcription from translation. Proteins of the NE including nucleoskeleton proteins, inner nuclear membrane proteins, and nuclear pore complexes have been implicated in interacting with underlying genome and chromatin regulators to establish a higher-order chromatin architecture. Here, I summarize recent advances in the knowledge of NE proteins that are involved in chromatin organization, gene regulation, and coordination of transcription and mRNA export. These studies support an emerging view of plant NE as a central hub that contributes to chromatin organization and gene expression in response to various cellular and environmental cues.
Collapse
Affiliation(s)
- Yu Tang
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, Shandong, China,CONTACT Yu Tang Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, China
| |
Collapse
|
17
|
|
Barral A, Déjardin J. The chromatin signatures of enhancers and their dynamic regulation. Nucleus 2023; 14:2160551. [PMID: 36602897 DOI: 10.1080/19491034.2022.2160551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Enhancers are cis-regulatory elements that can stimulate gene expression from distance, and drive precise spatiotemporal gene expression profiles during development. Functional enhancers display specific features including an open chromatin conformation, Histone H3 lysine 27 acetylation, Histone H3 lysine 4 mono-methylation enrichment, and enhancer RNAs production. These features are modified upon developmental cues which impacts their activity. In this review, we describe the current state of knowledge about enhancer functions and the diverse chromatin signatures found on enhancers. We also discuss the dynamic changes of enhancer chromatin signatures, and their impact on lineage specific gene expression profiles, during development or cellular differentiation.
Collapse
Affiliation(s)
- Amandine Barral
- Institute for Regenerative Medicine, Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA,CONTACT Amandine Barral Institute for Regenerative Medicine, Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania. 3400 Civic Blvd, Philadelphia, Pennsylvania19104, USA
| | - Jérôme Déjardin
- Biology of repetitive sequences, Institute of Human Genetics CNRS-Université de Montpellier UMR 9002, Montpellier, France,Jérôme Déjardin Biology of repetitive sequences, Institute of Human Genetics CNRS-Université de Montpellier UMR 9002, 141 rue de la Cardonille, Montpellier34000, France
| |
Collapse
|
18
|
|
Mann R, Notani D. Transcription factor condensates and signaling driven transcription. Nucleus 2023; 14:2205758. [PMID: 37129580 DOI: 10.1080/19491034.2023.2205758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023] Open
Abstract
Transcription Factor (TF) condensates are a heterogenous mix of RNA, DNA, and multiple co-factor proteins capable of modulating the transcriptional response of the cell. The dynamic nature and the spatial location of TF-condensates in the 3D nuclear space is believed to provide a fast response, which is on the same pace as the signaling cascade and yet ever-so-specific in the crowded environment of the nucleus. However, the current understanding of how TF-condensates can achieve these feet so quickly and efficiently is still unclear. In this review, we draw parallels with other protein condensates and share our speculations on how the nucleus uses these TF-condensates to achieve high transcriptional specificity and fidelity. We discuss the various constituents of TF-condensates, their properties, and the known and unknown functions of TF-condensates with a particular focus on steroid signaling-induced transcriptional programs.
Collapse
Affiliation(s)
- Rajat Mann
- National Centre for Biological Sciences, TIFR, Bangalore, India
| | - Dimple Notani
- National Centre for Biological Sciences, TIFR, Bangalore, India
| |
Collapse
|
19
|
|
Jefferson TB, Wang T, Jefferson WN, Li Y, Hamilton KJ, Wade PA, Williams CJ, Korach KS. Multiple tissue-specific epigenetic alterations regulate persistent gene expression changes following developmental DES exposure in mouse reproductive tissues. Epigenetics 2023; 18:2139986. [PMID: 36328762 DOI: 10.1080/15592294.2022.2139986] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Clinically, developmental exposure to the endocrine disrupting chemical, diethylstilboestrol (DES), results in long-term male and female infertility. Experimentally, developmental exposure to DES results in abnormal reproductive tract phenotypes in male and female mice. Previously, we reported that neonatal DES exposure causes ERα-mediated aberrations in the transcriptome and in DNA methylation in seminal vesicles (SVs) of adult mice. However, only a subset of DES-altered genes could be explained by changes in DNA methylation. We hypothesized that alterations in histone modification may also contribute to the altered transcriptome during SV development. To test this idea, we performed a series of genome-wide analyses of mouse SVs at pubertal and adult developmental stages in control and DES-exposed wild-type and ERα knockout mice. Neonatal DES exposure altered ERα-mediated mRNA and lncRNA expression in adult SV, including genes encoding chromatin-modifying proteins that can impact histone H3K27ac modification. H3K27ac patterns, particularly at enhancers, and DNA methylation were reprogrammed over time during normal SV development and after DES exposure. Some of these reprogramming changes were ERα-dependent, but others were ERα-independent. A substantial number of DES-altered genes had differential H3K27ac peaks at nearby enhancers. Comparison of gene expression changes, H3K27ac marks and DNA methylation marks between adult SV and adult uterine tissue from ovariectomized mice neonatally exposed to DES revealed that most of the epigenetic changes and altered genes were distinct in the two tissues. These findings indicate that the effects of developmental DES exposure cause reprogramming of reproductive tract tissue differentiation through multiple epigenetic mechanisms.
Collapse
Affiliation(s)
- Tanner B Jefferson
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, 27709, USA
| | - Tianyuan Wang
- Integrative Bioinformatics, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, 27709, USA
| | - Wendy N Jefferson
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, 27709, USA
| | - Yin Li
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, 27709, USA
| | - Katherine J Hamilton
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, 27709, USA
| | - Paul A Wade
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, 27709, USA
| | - Carmen J Williams
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, 27709, USA
| | - Kenneth S Korach
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, 27709, USA
| |
Collapse
|
20
|
|
Wackers P, Dollé MET, van Oostrom CTM, van Kerkhof LWM. Exploration of genome-wide DNA methylation profiles in night shift workers. Epigenetics 2023; 18:2152637. [PMID: 36457290 DOI: 10.1080/15592294.2022.2152637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
The past decades, studies indicated that night shift work is associated with adverse health effects, however, molecular mechanisms underlying these effects are poorly understood. A few previous studies have hypothesized a role for DNA-methylation (DNAm) in this relationship. We performed a cross-sectional epigenome-wide association study, to investigate if night shift work is associated with genome-wide DNAm changes and DNAm-based biological age acceleration, based on previously developed so-called 'epigenetic clocks.' Short term (2-6 years) and intermediate term (10-16 years) night shift workers, along with age and sex matched dayworkers (non-shift workers) were selected from the Lifelines Cohort Study. For genome-wide methylation analysis the Infinium Methylation EPIC array (Ilumina) was used. Linear regression analyses were used to detect differences in methylation at individual CpG-sites associated with night shift work. Pathway analysis was performed based on KEGG pathways and predictions of age acceleration in night shift workers were performed based on four previously developed epigenetic age calculators. Only in women, differences in methylation at individual CpG-sites were observed between night shift workers and non-shift workers. Most of these differentially methylated positions (DMPs) were observed in intermediate term night shift workers. Pathway analysis shows involvement of pathways related to circadian rhythm and cellular senescence. Increased age acceleration was observed only in short-term night shift workers (men and women). This might be indicative of adaptation to night shift work or a so-called healthy worker effect. In conclusion, these results show that DNA methylation changes are associated with night shift work, specifically in women.
Collapse
Affiliation(s)
- Paul Wackers
- Center for Health Protection, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Martijn E. T. Dollé
- Center for Health Protection, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Conny T.M. van Oostrom
- Center for Health Protection, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Linda W.M. van Kerkhof
- Center for Health Protection, National Institute for Public Health and the Environment, Bilthoven, The Netherlands,CONTACT Linda W.M. van Kerkhof Centre for Health Protection; National Institute for Public Health and the Environment, P.O. Box 1, 3720 BA; Bilthoven, The Netherlands
| |
Collapse
|
21
|
|
Yu Y, Lu S, Jin H, Zhu H, Wei X, Zhou T, Zhao M. RNA N6-methyladenosine methylation and skin diseases. Autoimmunity 2023; 56:2167983. [PMID: 36708146 DOI: 10.1080/08916934.2023.2167983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Skin diseases are global health issues caused by multiple pathogenic factors, in which epigenetics plays an invaluable role. Post-transcriptional RNA modifications are important epigenetic mechanism that regulate gene expression at the genome-wide level. N6-methyladenosine (m6A) is the most prevalent modification that occurs in the messenger RNAs (mRNA) of most eukaryotes, which is installed by methyltransferases called "writers", removed by demethylases called "erasers", and recognised by RNA-binding proteins called "readers". To date, m6A is emerging to play essential part in both physiological processes and pathological progression, including skin diseases. However, a systematic summary of m6A in skin disease has not yet been reported. This review starts by illustrating each m6A-related modifier specifically and their roles in RNA processing, and then focus on the existing research advances of m6A in immune homeostasis and skin diseases.
Collapse
Affiliation(s)
- Yaqin Yu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, China.,Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences, Changsha, China.,Clinical Medical Research Center of Major Skin Diseases and Skin Health of Hunan Province, Changsha, China
| | - Shuang Lu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, China.,Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences, Changsha, China.,Clinical Medical Research Center of Major Skin Diseases and Skin Health of Hunan Province, Changsha, China
| | - Hui Jin
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, China.,Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences, Changsha, China.,Clinical Medical Research Center of Major Skin Diseases and Skin Health of Hunan Province, Changsha, China
| | - Huan Zhu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, China.,Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences, Changsha, China.,Clinical Medical Research Center of Major Skin Diseases and Skin Health of Hunan Province, Changsha, China
| | - Xingyu Wei
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomi
|
|