451
|
Varela-Fernández R, García-Otero X, Díaz-Tomé V, Regueiro U, López-López M, González-Barcia M, Lema MI, Otero-Espinar FJ. Design, Optimization, and Characterization of Lactoferrin-Loaded Chitosan/TPP and Chitosan/Sulfobutylether-β-cyclodextrin Nanoparticles as a Pharmacological Alternative for Keratoconus Treatment. ACS APPLIED MATERIALS & INTERFACES 2021; 13:3559-3575. [PMID: 33428398 DOI: 10.1021/acsami.0c18926] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This research study describes the design, optimization, and characterization of two different types of chitosan-based nanoparticles as novel drug delivery systems of a protein drug, lactoferrin. A preclinical consistent base was obtained for both nanosystems, being considered as the first pharmacological treatment for keratoconus as an alternative to current invasive clinical methods. Both types of nanoparticles were obtained via the ionotropic gelation technique. The size and morphology of the nanoparticles were studied as a function of the preparation conditions. A mean size of 180.73 ± 40.67 nm, a size distribution [polydispersity index (PDI)] of 0.170 ± 0.067, and positive ζ-potential values, ranging from 17.13 to 19.89 mV, were achieved. Lactoferrin was successfully incorporated into both types of nanocarriers. In vitro release profiles showed a lactoferrin enhanced, prolonged, and controlled delivery from the polymeric matrix. These formulations also demonstrated no stability or cytotoxicity problems, as well as appropriate mucoadhesive properties, with a high permanence time in the ocular surface. Thus, both types of nanoparticles may be considered as nanocarriers for the controlled release of lactoferrin as novel topical ophthalmic drug delivery systems.
Collapse
Affiliation(s)
- Rubén Varela-Fernández
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela (USC), Campus vida, Santiago de Compostela 15782, Spain
- Clinical Neurosciences Group, University Clinical Hospital, Health Research Institute of Santiago de Compostela (IDIS), Travesía da Choupana s/n, Santiago de Compostela 15706, Spain
| | - Xurxo García-Otero
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela (USC), Campus vida, Santiago de Compostela 15782, Spain
- Molecular Imaging Group, University Clinical Hospital, Health Research Institute of Santiago de Compostela (IDIS), Travesía da Choupana s/n, Santiago de Compostela 15706, Spain
| | - Victoria Díaz-Tomé
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela (USC), Campus vida, Santiago de Compostela 15782, Spain
| | - Uxía Regueiro
- Clinical Neurosciences Group, University Clinical Hospital, Health Research Institute of Santiago de Compostela (IDIS), Travesía da Choupana s/n, Santiago de Compostela 15706, Spain
| | - Maite López-López
- Clinical Neurosciences Group, University Clinical Hospital, Health Research Institute of Santiago de Compostela (IDIS), Travesía da Choupana s/n, Santiago de Compostela 15706, Spain
| | - Miguel González-Barcia
- Clinical Pharmacology Group, University Clinical Hospital, Health Research Institute of Santiago de Compostela (IDIS), Travesía da Choupana s/n, Santiago de Compostela 15706, Spain
| | - María Isabel Lema
- Department of Surgery and Medical-Surgical Specialties. Ophthalmology Area, University of Santiago de Compostela (USC), Campus Vida, Santiago de Compostela 15706, Spain
| | - Francisco Javier Otero-Espinar
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela (USC), Campus vida, Santiago de Compostela 15782, Spain
- Paraquasil Group, University Clinical Hospital, Health Research Institute of Santiago de Compostela (IDIS), Travesía da Choupana s/n, Santiago de Compostela 15706, Spain
| |
Collapse
|
452
|
Thakur RRS, Adwan S, Tekko I, Soliman K, Donnelly RF. Laser irradiation of ocular tissues to enhance drug delivery. Int J Pharm 2021; 596:120282. [PMID: 33508342 DOI: 10.1016/j.ijpharm.2021.120282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 01/01/2023]
Abstract
Scleral and corneal membranes represent substantial barriers against drug delivery to the eye. Conventional hypodermic needles-based intraocular injections are clinically employed to overcome these barriers. This study, for the first time, investigated a non-invasive alternative to intraocular injections by laser irradiation of ocular tissues. The P.L.E.A.S.E.® laser device was applied on excised porcine scleral and corneal tissues, which showed linear relationships between depths of laser-created micropores and laser fluences at range 8.9-444.4 J/cm2. Deeper and wider micropores were observed in scleral relative to corneal tissues. The permeation of rhodamine B and fluorescein isothiocyanate (FITC)-dextran were investigated through ocular tissues at different laser parameters (laser fluences 0-44.4 J/cm2 and micropore densities 7.5 and 15%). Both molecules showed enhanced permeation through ocular tissues on laser irradiation. Maximum transscleral permeation of the molecules was attained at laser fluence 8.9 J/cm2 and micropore density 15%. Transcorneal permeation of rhodamine B increased with increasing either laser fluence or micropore density, while that of FITC-dextran was not affected by either parameter. The transscleral water loss increased significantly after laser irradiation then returned to the baseline values within 24 h, indicating healing of the laser-created micropores. Laser irradiation is a promising technique to enhance intraocular delivery of both small and large molecule drugs.
Collapse
Affiliation(s)
- Raghu Raj Singh Thakur
- School of Pharmacy, Queens University Belfast, 97 Lisburn Road, Belfast, Northern Ireland BT9 7BL, United Kingdom.
| | - Samer Adwan
- Faculty of Pharmacy, Zarqa University, Zarqa 132222, Jordan
| | - Ismaiel Tekko
- School of Pharmacy, Queens University Belfast, 97 Lisburn Road, Belfast, Northern Ireland BT9 7BL, United Kingdom
| | - Karim Soliman
- School of Pharmacy, Queens University Belfast, 97 Lisburn Road, Belfast, Northern Ireland BT9 7BL, United Kingdom
| | - Ryan F Donnelly
- School of Pharmacy, Queens University Belfast, 97 Lisburn Road, Belfast, Northern Ireland BT9 7BL, United Kingdom
| |
Collapse
|
453
|
Carbapenemases as factors of Resistance to Antibacterial Drugs. ACTA BIOMEDICA SCIENTIFICA 2021. [DOI: 10.29413/abs.2020-5.6.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
454
|
Auxtero MD, Chalante S, Abade MR, Jorge R, Fernandes AI. Potential Herb-Drug Interactions in the Management of Age-Related Cognitive Dysfunction. Pharmaceutics 2021; 13:124. [PMID: 33478035 PMCID: PMC7835864 DOI: 10.3390/pharmaceutics13010124] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 12/25/2022] Open
Abstract
Late-life mild cognitive impairment and dementia represent a significant burden on healthcare systems and a unique challenge to medicine due to the currently limited treatment options. Plant phytochemicals have been considered in alternative, or complementary, prevention and treatment strategies. Herbals are consumed as such, or as food supplements, whose consumption has recently increased. However, these products are not exempt from adverse effects and pharmacological interactions, presenting a special risk in aged, polymedicated individuals. Understanding pharmacokinetic and pharmacodynamic interactions is warranted to avoid undesirable adverse drug reactions, which may result in unwanted side-effects or therapeutic failure. The present study reviews the potential interactions between selected bioactive compounds (170) used by seniors for cognitive enhancement and representative drugs of 10 pharmacotherapeutic classes commonly prescribed to the middle-aged adults, often multimorbid and polymedicated, to anticipate and prevent risks arising from their co-administration. A literature review was conducted to identify mutual targets affected (inhibition/induction/substrate), the frequency of which was taken as a measure of potential interaction. Although a limited number of drugs were studied, from this work, interaction with other drugs affecting the same targets may be anticipated and prevented, constituting a valuable tool for healthcare professionals in clinical practice.
Collapse
Affiliation(s)
- Maria D. Auxtero
- CiiEM, Interdisciplinary Research Centre Egas Moniz, Instituto Universitário Egas Moniz, Quinta da Granja, Monte de Caparica, 2829-511 Caparica, Portugal; (M.D.A.); (S.C.); (M.R.A.); (R.J.)
| | - Susana Chalante
- CiiEM, Interdisciplinary Research Centre Egas Moniz, Instituto Universitário Egas Moniz, Quinta da Granja, Monte de Caparica, 2829-511 Caparica, Portugal; (M.D.A.); (S.C.); (M.R.A.); (R.J.)
| | - Mário R. Abade
- CiiEM, Interdisciplinary Research Centre Egas Moniz, Instituto Universitário Egas Moniz, Quinta da Granja, Monte de Caparica, 2829-511 Caparica, Portugal; (M.D.A.); (S.C.); (M.R.A.); (R.J.)
| | - Rui Jorge
- CiiEM, Interdisciplinary Research Centre Egas Moniz, Instituto Universitário Egas Moniz, Quinta da Granja, Monte de Caparica, 2829-511 Caparica, Portugal; (M.D.A.); (S.C.); (M.R.A.); (R.J.)
- Polytechnic Institute of Santarém, School of Agriculture, Quinta do Galinheiro, 2001-904 Santarém, Portugal
- CIEQV, Life Quality Research Centre, IPSantarém/IPLeiria, Avenida Dr. Mário Soares, 110, 2040-413 Rio Maior, Portugal
| | - Ana I. Fernandes
- CiiEM, Interdisciplinary Research Centre Egas Moniz, Instituto Universitário Egas Moniz, Quinta da Granja, Monte de Caparica, 2829-511 Caparica, Portugal; (M.D.A.); (S.C.); (M.R.A.); (R.J.)
| |
Collapse
|
455
|
Ocular Drug Delivery to the Retina: Current Innovations and Future Perspectives. Pharmaceutics 2021; 13:pharmaceutics13010108. [PMID: 33467779 PMCID: PMC7830424 DOI: 10.3390/pharmaceutics13010108] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 01/13/2021] [Accepted: 01/13/2021] [Indexed: 12/12/2022] Open
Abstract
Treatment options for retinal diseases, such as neovascular age-related macular degeneration, diabetic retinopathy, and retinal vascular disorders, have markedly expanded following the development of anti-vascular endothelial growth factor intravitreal injection methods. However, because intravitreal treatment requires monthly or bimonthly repeat injections to achieve optimal efficacy, recent investigations have focused on extended drug delivery systems to lengthen the treatment intervals in the long term. Dose escalation and increasing molecular weight of drugs, intravitreal implants and nanoparticles, hydrogels, combined systems, and port delivery systems are presently under preclinical and clinical investigations. In addition, less invasive techniques rather than intravitreal administration routes, such as topical, subconjunctival, suprachoroidal, subretinal, and trans-scleral, have been evaluated to reduce the treatment burden. Despite the latest advancements in the field of ophthalmic pharmacology, enhancing drug efficacy with high ocular bioavailability while avoiding systemic and local adverse effects is quite challenging. Consequently, despite the performance of numerous in vitro studies, only a few techniques have translated to clinical trials. This review discusses the recent developments in ocular drug delivery to the retina, the pharmacokinetics of intravitreal drugs, efforts to extend drug efficacy in the intraocular space, minimally invasive techniques for drug delivery to the retina, and future perspectives in this field.
Collapse
|
456
|
Abootorabi S, Tripathi A, Yu HW, Dávila LP. Computational modeling of intraocular drug delivery supplied by porous implants. Drug Deliv Transl Res 2021; 11:2134-2143. [PMID: 33432523 DOI: 10.1007/s13346-020-00878-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2020] [Indexed: 11/27/2022]
Abstract
New and efficient drug delivery to the posterior part of the eye is a growing health necessity worldwide. Current treatment of eye diseases, such as age-related macular degeneration (AMD), relies on repeated intravitreal injections of drug-containing solutions. Such a drug delivery has major drawbacks including short drug life, significant medical service, and high medical cost. In this study, we explored a new approach to controlled drug delivery by introducing unique porous implants. Our computational modeling contained key physiological and anatomical traits. Incompressible flow in a porous media field, including the sclera, choroid, and retina layers, is governed by Darcy law and the time evolution of the drug concentration was solved via three convection-diffusion equations in the three layers, respectively. The computational model was validated by established results from independent studies and experimental data. Simulations of the IgG1 Fab drug delivery to the posterior eye were performed to evaluate the effectiveness of the porous implants for controlled delivery. Overall, our results indicate that drug therapeutic levels in the posterior eye sustain for eight weeks similarly to those using intravitreal injection. We first evaluated the effects of the porous implants on the drug delivery in the posterior layers. Subsequent simulations were carried out with varying porosity values in a porous episcleral implant. We found that the time evolution of drug concentration is distinctively correlated to drug source location and pore size. A correlation between porosity and fluid properties for selected porous implants was revealed for the first time in this study.
Collapse
Affiliation(s)
- Seyedalireza Abootorabi
- Department of Mechanical and Energy Engineering, Purdue School of Engineering and Technology, Indiana University-Purdue University, 723 West Michigan Street, Indianapolis, IN, 46202, USA
| | - Abhimanyu Tripathi
- Department of Materials Science and Engineering, School of Engineering, University of California Merced, 5200 N. Lake Road, Merced, CA, 95343, USA
| | - Huidan Whitney Yu
- Department of Mechanical and Energy Engineering, Purdue School of Engineering and Technology, Indiana University-Purdue University, 723 West Michigan Street, Indianapolis, IN, 46202, USA
| | - Lilian P Dávila
- Department of Materials Science and Engineering, School of Engineering, University of California Merced, 5200 N. Lake Road, Merced, CA, 95343, USA.
| |
Collapse
|
457
|
In vivo fate of liposomes after subconjunctival ocular delivery. J Control Release 2021; 329:162-174. [PMID: 33271203 DOI: 10.1016/j.jconrel.2020.11.053] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/09/2020] [Accepted: 11/25/2020] [Indexed: 01/17/2023]
Abstract
Subconjunctival administration of nanocarriers presents an alternative drug delivery strategy to overcome blood-ocular barriers to enhance drug bioavailability to specific parts of the eye. Using fiberoptic Confocal Laser Microendoscopy (CLM) and radiotracing, we describe the effects of charge, size, cholesterol content and lipid saturation on the ocular and corporal distribution of liposome nanocarriers in live mouse models. Positively charged or large (>250 nm) liposomes exhibit sustained ocular residence times in and around the injection site; cholesterol loading slows down this clearance, whereas lipid saturation accelerates clearance. Neutral, negatively charged, or smaller sized liposomes distribute to the limbus, rich in stem cells and blood capillaries. Differential lymphatic and systemic clearance from the eye to corporeal tissues was also observed across formulations. These results demonstrate the need to optimize liposome design for control over temporal and spatial nanocarrier bioavailability and clearance from the eye for improved efficacy and safety of ocular therapeutics.
Collapse
|
458
|
Yan T, Ma Z, Liu J, Yin N, Lei S, Zhang X, Li X, Zhang Y, Kong J. Thermoresponsive GenisteinNLC-dexamethasone-moxifloxacin multi drug delivery system in lens capsule bag to prevent complications after cataract surgery. Sci Rep 2021; 11:181. [PMID: 33420301 PMCID: PMC7794611 DOI: 10.1038/s41598-020-80476-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 12/11/2020] [Indexed: 01/29/2023] Open
Abstract
Cataract surgery is the most common intraocular procedure. To decrease postsurgical inflammation, prevent infection and reduce the incidence of secondary cataract, we built a temperature-sensitive drug delivery system carrying dexamethasone, moxifloxacin and genistein nanostructured lipid carrier (GenNLC) modified by mPEG-PLA based on F127/F68 as hydrogel. Characterizations and release profiles of the drug delivery system were studied. In vitro functions were detected by CCK-8 test, immunofluorescence, wound-healing assay, real time-PCR and western blotting. The size of GenNLCs was 39.47 ± 0.69 nm in average with surface charges of - 4.32 ± 0.84 mV. The hydrogel gelation temperature and time were 32 °C, 20 s with a viscosity, hardness, adhesiveness and stringiness of 6.135 Pa.s, 54.0 g, 22.0 g, and 3.24 mm, respectively. Transmittance of the gel-release medium was above 90% (93.44 ± 0.33% to 100%) at range of 430 nm to 800 nm. Moxifloxacin released completely within 10 days. Fifty percent of dexamethasone released at a constant rate in the first week, and then released sustainably with a tapering down rate until day 30. Genistein released slowly but persistently with a cumulative release of 63% at day 40. The thermoresponsive hydrogel inhibited the proliferation, migration and epithelial-mesenchymal transition of SRA 01/04 cells, which were confirmed by testing CCK-8, wound-healing assay, western blot, real time-PCR (RT-PCR) and immunofluorescence. These results support this intracameral thermoresponsive in situ multi-drug delivery system with programmed release amounts and release profiles to cut down the need of eye drops for preventing inflammation or infection and to reduce posterior capsular opacification following cataract surgery.
Collapse
Affiliation(s)
- Tingyu Yan
- grid.412644.1Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, No.11 Xinhua Road, Heping District, Shenyang, 110005 Liaoning Province China
| | - Zhongxu Ma
- grid.265021.20000 0000 9792 1228Tianjin Eye Hospital, Tianjin Key Laboratory of Ophthalmology and Vision Science, Clinical College of Ophthalmology, Tianjin Medical University, No. 4 Gansu Rd, Heping District, Tianjin, 300020 China
| | - Jingjing Liu
- grid.412644.1Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, No.11 Xinhua Road, Heping District, Shenyang, 110005 Liaoning Province China
| | - Na Yin
- grid.412561.50000 0000 8645 4345Department of Pharmaceutics, Shenyang Pharmaceutical University, No.103 Wen Hua Road, Shenyang, 110016 China
| | - Shizhen Lei
- grid.412644.1Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, No.11 Xinhua Road, Heping District, Shenyang, 110005 Liaoning Province China
| | - Xinxin Zhang
- grid.412644.1Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, No.11 Xinhua Road, Heping District, Shenyang, 110005 Liaoning Province China
| | - Xuedong Li
- grid.412644.1Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, No.11 Xinhua Road, Heping District, Shenyang, 110005 Liaoning Province China
| | - Yu Zhang
- grid.412561.50000 0000 8645 4345Department of Pharmaceutics, Shenyang Pharmaceutical University, No.103 Wen Hua Road, Shenyang, 110016 China
| | - Jun Kong
- grid.412644.1Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, No.11 Xinhua Road, Heping District, Shenyang, 110005 Liaoning Province China
| |
Collapse
|
459
|
Behzadi P, Baráth Z, Gajdács M. It's Not Easy Being Green: A Narrative Review on the Microbiology, Virulence and Therapeutic Prospects of Multidrug-Resistant Pseudomonas aeruginosa. Antibiotics (Basel) 2021; 10:42. [PMID: 33406652 PMCID: PMC7823828 DOI: 10.3390/antibiotics10010042] [Citation(s) in RCA: 130] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/29/2020] [Accepted: 12/31/2020] [Indexed: 12/11/2022] Open
Abstract
Pseudomonas aeruginosa is the most frequent cause of infection among non-fermenting Gram-negative bacteria, predominantly affecting immunocompromised patients, but its pathogenic role should not be disregarded in immunocompetent patients. These pathogens present a concerning therapeutic challenge to clinicians, both in community and in hospital settings, due to their increasing prevalence of resistance, and this may lead to prolonged therapy, sequelae, and excess mortality in the affected patient population. The resistance mechanisms of P. aeruginosa may be classified into intrinsic and acquired resistance mechanisms. These mechanisms lead to occurrence of resistant strains against important antibiotics-relevant in the treatment of P. aeruginosa infections-such as β-lactams, quinolones, aminoglycosides, and colistin. The occurrence of a specific resistotype of P. aeruginosa, namely the emergence of carbapenem-resistant but cephalosporin-susceptible (Car-R/Ceph-S) strains, has received substantial attention from clinical microbiologists and infection control specialists; nevertheless, the available literature on this topic is still scarce. The aim of this present review paper is to provide a concise summary on the adaptability, virulence, and antibiotic resistance of P. aeruginosa to a readership of basic scientists and clinicians.
Collapse
Affiliation(s)
- Payam Behzadi
- Department of Microbiology, College of Basic Sciences, Shahr-e-Qods Branch, Islamic Azad University, Tehran 37541-374, Iran;
| | - Zoltán Baráth
- Department of Prosthodontics, Faculty of Dentistry, University of Szeged, Tisza Lajos körút 62-64, 6720 Szeged, Hungary;
| | - Márió Gajdács
- Institute of Medical Microbiology, Faculty of Medicine, Semmelweis University, 1089 Budapest, Hungary
- Department of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, 6720 Szeged, Hungary
| |
Collapse
|
460
|
|
461
|
Mehrandish S, Mirzaeei S. A Review on Ocular Novel Drug Delivery Systems of Antifungal Drugs: Functional Evaluation and Comparison of Conventional and Novel Dosage Forms. Adv Pharm Bull 2021; 11:28-38. [PMID: 33747850 PMCID: PMC7961232 DOI: 10.34172/apb.2021.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 03/30/2020] [Accepted: 04/19/2020] [Indexed: 12/16/2022] Open
Abstract
Ocular fungal infections affect more than one million people annually worldwide. They can lead to impaired vision or even complete blindness, so they should be treated immediately to prevent such consequences. Although topical administration has always been the most common route of ocular drug delivery owing to high patient acceptance, reduced side effects, and the possibility of self-administration, its limited ocular bioavailability poses a major challenge. As a result, attention has recently been drawn to the design and development of novel drug delivery systems (NDDS) that can overcome the challenges of conventional dosage forms. This research is the first to review and classify the studies which have designed and developed topical ocular NDDS with the aim to compare the performance and antifungal activity of these novel systems with conventional forms. According to the results, all studies seemed to confirm the superiority of NDDS over conventional forms in cases of released and permeated drug and antifungal activity. The NDDS were used specifically to improve ocular delivery by slowing down the release rate, increasing drug permeation, and subsequently increasing the antifungal effects of the active pharmaceutical ingredients. Hence, further studies on NDDS may aid the optimization of ocular drug delivery of antifungal drugs.
Collapse
Affiliation(s)
- Saba Mehrandish
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Shahla Mirzaeei
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
462
|
Verma A, Tiwari A, Saraf S, Panda PK, Jain A, Jain SK. Emerging potential of niosomes in ocular delivery. Expert Opin Drug Deliv 2021; 18:55-71. [PMID: 32903034 DOI: 10.1080/17425247.2020.1822322] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 09/08/2020] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Niosomes have recently grabbed attention as one of the best tools for various site-specific drug delivery systems, including ophthalmic drug delivery. Surfactants (nonionic; tweens and spans) of different HLB values and cholesterol are the fundamental components for these formulations. It is an alternative controlled ocular drug delivery system to liposomes to overcome the problems associated with sterilization, large-scale production, and stability. It also enhances the adhesion or retention ability of drug at the ocular site. Hydrophilic or lipophilic or amphoteric drugs can be easily encapsulated in niosomes. Besides, niosomes are a leading vesicular system compatible with most of the drugs for site-specific delivery. AREAS COVERED This article reveals challenges and barriers for ocular drug delivery, various transporters and receptors present in the ocular region for the transportation of therapeutics as well as nutrients, and various method of preparations, loading methods and application potential of niosomes in ocular drug delivery. EXPERT OPINION Niosomes, a vesicular system offers numerous advantages and applicability because of its good stability, non-immunogenicity, permeation potential, and controlled release ability etc. This drug delivery system has been efficiently used in the treatment of many ocular diseases.
Collapse
Affiliation(s)
- Amit Verma
- Pharmaceutics Research Projects Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya , Sagar, India
| | - Ankita Tiwari
- Pharmaceutics Research Projects Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya , Sagar, India
| | - Shivani Saraf
- Pharmaceutics Research Projects Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya , Sagar, India
| | - Pritish Kumar Panda
- Pharmaceutics Research Projects Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya , Sagar, India
| | - Ankit Jain
- Pharmaceutics Research Projects Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya , Sagar, India
- Department of Materials Engineering, Indian Institute of Science , Bangalore, India
| | - Sanjay K Jain
- Pharmaceutics Research Projects Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya , Sagar, India
| |
Collapse
|
463
|
Rahić O, Tucak A, Omerović N, Sirbubalo M, Hindija L, Hadžiabdić J, Vranić E. Novel Drug Delivery Systems Fighting Glaucoma: Formulation Obstacles and Solutions. Pharmaceutics 2020; 13:E28. [PMID: 33375224 PMCID: PMC7824381 DOI: 10.3390/pharmaceutics13010028] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/19/2020] [Accepted: 12/22/2020] [Indexed: 02/06/2023] Open
Abstract
Glaucoma is considered to be one of the biggest health problems in the world. It is the main cause of preventable blindness due to its asymptomatic nature in the early stages on the one hand and patients' non-adherence on the other. There are several approaches in glaucoma treatment, whereby this has to be individually designed for each patient. The first-line treatment is medication therapy. However, taking into account numerous disadvantages of conventional ophthalmic dosage forms, intensive work has been carried out on the development of novel drug delivery systems for glaucoma. This review aims to provide an overview of formulation solutions and strategies in the development of in situ gel systems, nanosystems, ocular inserts, contact lenses, collagen corneal shields, ocular implants, microneedles, and iontophoretic devices. The results of studies confirming the effectiveness of the aforementioned drug delivery systems were also briefly presented.
Collapse
Affiliation(s)
- Ognjenka Rahić
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Sarajevo, Zmaja od Bosne 8, 71000 Sarajevo, Bosnia and Herzegovina; (A.T.); (M.S.); (L.H.); (J.H.)
| | - Amina Tucak
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Sarajevo, Zmaja od Bosne 8, 71000 Sarajevo, Bosnia and Herzegovina; (A.T.); (M.S.); (L.H.); (J.H.)
| | - Naida Omerović
- Department of Clinical Pharmacy, Faculty of Pharmacy, University of Sarajevo, Zmaja od Bosne 8, 71000 Sarajevo, Bosnia and Herzegovina;
| | - Merima Sirbubalo
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Sarajevo, Zmaja od Bosne 8, 71000 Sarajevo, Bosnia and Herzegovina; (A.T.); (M.S.); (L.H.); (J.H.)
| | - Lamija Hindija
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Sarajevo, Zmaja od Bosne 8, 71000 Sarajevo, Bosnia and Herzegovina; (A.T.); (M.S.); (L.H.); (J.H.)
| | - Jasmina Hadžiabdić
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Sarajevo, Zmaja od Bosne 8, 71000 Sarajevo, Bosnia and Herzegovina; (A.T.); (M.S.); (L.H.); (J.H.)
| | - Edina Vranić
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Sarajevo, Zmaja od Bosne 8, 71000 Sarajevo, Bosnia and Herzegovina; (A.T.); (M.S.); (L.H.); (J.H.)
| |
Collapse
|
464
|
Formulation and Stability of Ataluren Eye Drop Oily Solution for Aniridia. Pharmaceutics 2020; 13:pharmaceutics13010007. [PMID: 33375041 PMCID: PMC7822034 DOI: 10.3390/pharmaceutics13010007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/17/2020] [Accepted: 12/17/2020] [Indexed: 12/15/2022] Open
Abstract
Congenital aniridia is a rare and severe panocular disease characterized by a complete or partial iris defect clinically detectable at birth. The most common form of aniridia occurring in around 90% of cases is caused by PAX6 haploinsufficiency. The phenotype includes ptosis, nystagmus, corneal limbal insufficiency, glaucoma, cataract, optic nerve, and foveal hypoplasia. Ataluren eye drops aim to restore ocular surface PAX6 haploinsufficiency in aniridia-related keratopathy (ARK). However, there are currently no available forms of the ophthalmic solution. The objective of this study was to assess the physicochemical and microbiological stability of ataluren 1% eye drop in preservative-free low-density polyethylene (LDPE) bottle with an innovative insert that maintains sterility after opening. Because ataluren is a strongly lipophilic compound, the formulation is complex and involves a strategy based on co-solvents in an aqueous phase or an oily formulation capable of totally dissolving the active ingredient. The visual aspect, ataluren quantification by a stability-indicating chromatographic method, and microbiological sterility were analyzed. The oily formulation in castor oil and DMSO (10%) better protects ataluren hydrolysis and oxidative degradation and permits its complete solubilization. Throughout the 60 days period, the oily solution in the LDPE bottle remained clear without any precipitation or color modification, and no drug loss and no microbial development were detected. The demonstrated physical and microbiological stability of ataluren 1% eye drop formulation at 22–25 °C might facilitate clinical research in aniridia.
Collapse
|
465
|
Nose-to-Brain Delivery of Antioxidants as a Potential Tool for the Therapy of Neurological Diseases. Pharmaceutics 2020; 12:pharmaceutics12121246. [PMID: 33371285 PMCID: PMC7766211 DOI: 10.3390/pharmaceutics12121246] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 12/13/2020] [Accepted: 12/18/2020] [Indexed: 12/31/2022] Open
Abstract
Oxidative stress has a key role in the pathogenesis of neurodegenerative disorders such as Alzheimer's, Parkinson's, and Huntington's diseases and can be an important cause of the damages in cerebral ischemia. Oxidative stress arises from high levels of reactive oxygen species (ROS). Consequently, on this rational base, antioxidants (many of natural origin) are proposed as potential drugs to prevent ROS noxious actions because they can protect the target tissues from the oxidative stress. However, the potential of antioxidants is limited, owing to the presence of the blood-brain barrier (BBB), which is difficult to cross with a consequent low bioavailability of the drug into the brain after systemic (intravenous, intraperitoneal, oral) administrations. One strategy to improve the delivery of antioxidants to the brain involves the use of the so-called nose-to-brain route, with the administration of the antioxidant in specific nasal formulations and its passage to the central nervous system (CNS) mainly through the olfactory nerve way. In the current literature, many examples show encouraging results in studies carried out in cell cultures and in animal models about the potential neuroprotective effects of antioxidants when administered through the nose. This review concerns the nose-to-brain route for the brain targeting of antioxidants as a potential tool for the therapy of neurological diseases.
Collapse
|
466
|
Abdullah SN, Mohmad Sabere AS. Public Knowledge, Attitude, and Perception Toward Conventional and Novel Ocular Treatment in Malaysia. J Pharm Bioallied Sci 2020; 13:143-147. [PMID: 34084061 PMCID: PMC8142917 DOI: 10.4103/jpbs.jpbs_463_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/15/2020] [Accepted: 08/31/2020] [Indexed: 11/27/2022] Open
Abstract
One of the major concerns in any pharmacological treatment is the patients’ adherence to medication. However, different types of ocular dosage forms might result in different response and compliance from the patients. This study investigated and compared public willingness on different types of dosage forms available for ocular treatment. The study also evaluated their willingness on new approach for the treatment based on their knowledge, attitude, and perception. This study was conducted between October and December 2017 through a set of questionnaires applied to 90 respondents between the age of 18 and 60 years who lived in Muar and Kuantan, Malaysia. The results were analyzed using SPSS software version 22.0 including inferential and descriptive statistics. There was no significant difference in the knowledge level between all age groups towards different types of dosage forms available; eye drops (P = 0.09), eye ointment (P = 0.252), medicated contact lens (P = 0.05), ocular mini-tablets (P = 0.06), and ocular inserts (P = 0.075). There is a variation of results among the public towards different types of dosage forms with their willingness to try conventional and novel approach. Eye drops show the highest willingness followed by eye ointment (less willingness). However, most of them showed no willingness towards medicated contact lens, ocular mini-tablets, and ocular insert. This research hopes to provide an overview on the development process of new formulation and dosage forms based on the patients’ willingness level in an attempt to increase patient compliance.
Collapse
Affiliation(s)
- Siti Nabilah Abdullah
- Kulliyyah of Pharmacy, International Islamic University Malaysia, Bandar Indera Mahkota, Kuantan, Pahang, Malaysia
| | - Awis Sukarni Mohmad Sabere
- Kulliyyah of Pharmacy, International Islamic University Malaysia, Bandar Indera Mahkota, Kuantan, Pahang, Malaysia
| |
Collapse
|
467
|
Mobaraki M, Soltani M, Zare Harofte S, L. Zoudani E, Daliri R, Aghamirsalim M, Raahemifar K. Biodegradable Nanoparticle for Cornea Drug Delivery: Focus Review. Pharmaceutics 2020; 12:E1232. [PMID: 33353013 PMCID: PMC7765989 DOI: 10.3390/pharmaceutics12121232] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 11/25/2020] [Accepted: 12/04/2020] [Indexed: 12/15/2022] Open
Abstract
During recent decades, researchers all around the world have focused on the characteristic pros and cons of the different drug delivery systems for cornea tissue change for sense organs. The delivery of various drugs for cornea tissue is one of the most attractive and challenging activities for researchers in biomaterials, pharmacology, and ophthalmology. This method is so important for cornea wound healing because of the controllable release rate and enhancement in drug bioavailability. It should be noted that the delivery of various kinds of drugs into the different parts of the eye, especially the cornea, is so difficult because of the unique anatomy and various barriers in the eye. Nanoparticles are investigated to improve drug delivery systems for corneal disease. Biodegradable nanocarriers for repeated corneal drug delivery is one of the most attractive and challenging methods for corneal drug delivery because they have shown acceptable ability for this purpose. On the other hand, by using these kinds of nanoparticles, a drug could reside in various part of the cornea for longer. In this review, we summarized all approaches for corneal drug delivery with emphasis on the biodegradable nanoparticles, such as liposomes, dendrimers, polymeric nanoparticles, niosomes, microemulsions, nanosuspensions, and hydrogels. Moreover, we discuss the anatomy of the cornea at first and gene therapy at the end.
Collapse
Affiliation(s)
- Mohammadmahdi Mobaraki
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran 15875‐4413, Iran;
- Translational Ophthalmology Research Center, Tehran University of Medical Science, Tehran 1417614411, Iran;
| | - Madjid Soltani
- Department of Electrical and Computer Engineering, Faculty of Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
- Faculty of Science, School of Optometry and Vision Science, University of Waterloo, Waterloo, ON N2L 3G1, Canada;
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran 19967-15433, Iran; (S.Z.H.); (E.L.Z.); (R.D.)
- Centre for Biotechnology and Bioengineering (CBB), University of Waterloo, Waterloo, ON N2L 3G1, Canada
- Advanced Bioengineering Initiative Center, K. N. Toosi University of Technology, Tehran 1417614411, Iran
- Computational Medicine Center, K. N. Toosi University of Technology, Tehran 1417614411, Iran
| | - Samaneh Zare Harofte
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran 19967-15433, Iran; (S.Z.H.); (E.L.Z.); (R.D.)
| | - Elham L. Zoudani
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran 19967-15433, Iran; (S.Z.H.); (E.L.Z.); (R.D.)
| | - Roshanak Daliri
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran 19967-15433, Iran; (S.Z.H.); (E.L.Z.); (R.D.)
| | - Mohamadreza Aghamirsalim
- Translational Ophthalmology Research Center, Tehran University of Medical Science, Tehran 1417614411, Iran;
| | - Kaamran Raahemifar
- Faculty of Science, School of Optometry and Vision Science, University of Waterloo, Waterloo, ON N2L 3G1, Canada;
- Data Science and Artificial Intelligence Program, College of Information Sciences and Technology (IST), Penn State University, State College, Pennsylvania, PA 16801, USA
- Department of Chemical Engineering, Faculty of Engineering, University of Waterloo, 200 University Ave W, Waterloo, ON N2L 3G1, Canada
- Electrical and Computer Engineering Department, Sultan Qaboos University, Al-Khoud, Muscat 123, Oman
| |
Collapse
|
468
|
Padhy SK, Takkar B, Narayanan R, Venkatesh P, Jalali S. Voretigene Neparvovec and Gene Therapy for Leber's Congenital Amaurosis: Review of Evidence to Date. APPLICATION OF CLINICAL GENETICS 2020; 13:179-208. [PMID: 33268999 PMCID: PMC7701157 DOI: 10.2147/tacg.s230720] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 11/06/2020] [Indexed: 12/13/2022]
Abstract
Gene therapy has now evolved as the upcoming modality for management of many disorders, both inheritable and non-inheritable. Knowledge of genetics pertaining to a disease has therefore become paramount for physicians across most specialities. Inheritable retinal dystrophies (IRDs) are notorious for progressive and relentless vision loss, frequently culminating in complete blindness in both eyes. Leber’s congenital amaurosis (LCA) is a typical example of an IRD that manifests very early in childhood. Research in gene therapy has led to the development and approval of voretigene neparvovec (VN) for use in patients of LCA with a deficient biallelic RPE65 gene. The procedure involves delivery of a recombinant virus vector that carries the RPE65 gene in the subretinal space. This comprehensive review reports the evidence thus far in support of gene therapy for LCA. We explore and compare the various gene targets including but not limited to RPE65, and discuss the choice of vector and method for ocular delivery. The review details the evolution of gene therapy with VN in a phased manner, concluding with the challenges that lie ahead for its translation for use in communities that differ much both genetically and economically.
Collapse
Affiliation(s)
- Srikanta Kumar Padhy
- Vitreoretina and Uveitis Services, L V Prasad Eye Institute, Mithu Tulsi Chanrai Campus, Bhubaneswar, India
| | - Brijesh Takkar
- Srimati Kanuri Santhamma Center for Vitreoretinal Diseases, Kallam Anji Reddy Campus, L.V. Prasad Eye Institute, Hyderabad, India.,Center of Excellence for Rare Eye Diseases, Kallam Anji Reddy Campus, L V Prasad Eye Institute, Hyderabad, India
| | - Raja Narayanan
- Srimati Kanuri Santhamma Center for Vitreoretinal Diseases, Kallam Anji Reddy Campus, L.V. Prasad Eye Institute, Hyderabad, India
| | - Pradeep Venkatesh
- Dr RP Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Subhadra Jalali
- Srimati Kanuri Santhamma Center for Vitreoretinal Diseases, Kallam Anji Reddy Campus, L.V. Prasad Eye Institute, Hyderabad, India.,Jasti V. Ramanamma Childrens' Eye Care Centre, Kallam Anji Reddy Campus, L V Prasad Eye Institute, Hyderabad, India
| |
Collapse
|
469
|
A bacteriocin-based antimicrobial formulation to effectively disrupt the cell viability of methicillin-resistant Staphylococcus aureus (MRSA) biofilms. NPJ Biofilms Microbiomes 2020; 6:58. [PMID: 33268776 PMCID: PMC7710749 DOI: 10.1038/s41522-020-00166-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 10/20/2020] [Indexed: 12/15/2022] Open
Abstract
Antibiotic-resistant and biofilm-associated infections brought about by methicillin-resistant Staphylococcus aureus (MRSA) strains is a pressing issue both inside as well as outside nosocomial environments worldwide. Here, we show that a combination of two bacteriocins with distinct structural and functional characteristics, garvicin KS, and micrococcin P1, showed a synergetic antibacterial activity against biofilms produced in vitro by S. aureus, including several MRSA strains. In addition, this bacteriocin-based antimicrobial combination showed the ability to restore the sensitivity of the highly resilient MRSA strain ATCC 33591 to the β-lactam antibiotic penicillin G. By using a combination of bacterial cell metabolic assays, confocal and scanning electron microscopy, we show that the combination between garvicin KS, micrococcin P1, and penicillin G potently inhibit cell viability within S. aureus biofilms by causing severe cell damage. Together these data indicate that bacteriocins can be valuable therapeutic tools in the fight against biofilm-associated MRSA infections.
Collapse
|
470
|
Nicklisch SC, Hamdoun A. Disruption of small molecule transporter systems by Transporter-Interfering Chemicals (TICs). FEBS Lett 2020; 594:4158-4185. [PMID: 33222203 PMCID: PMC8112642 DOI: 10.1002/1873-3468.14005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 11/17/2020] [Accepted: 11/17/2020] [Indexed: 12/25/2022]
Abstract
Small molecule transporters (SMTs) in the ABC and SLC families are important players in disposition of diverse endo- and xenobiotics. Interactions of environmental chemicals with these transporters were first postulated in the 1990s, and since validated in numerous in vitro and in vivo scenarios. Recent results on the co-crystal structure of ABCB1 with the flame-retardant BDE-100 demonstrate that a diverse range of man-made and natural toxic molecules, hereafter termed transporter-interfering chemicals (TICs), can directly bind to SMTs and interfere with their function. TIC-binding modes mimic those of substrates, inhibitors, modulators, inducers, and possibly stimulants through direct and allosteric mechanisms. Similarly, the effects could directly or indirectly agonize, antagonize or perhaps even prime the SMT system to alter transport function. Importantly, TICs are distinguished from drugs and pharmaceuticals that interact with transporters in that exposure is unintended and inherently variant. Here, we review the molecular mechanisms of environmental chemical interaction with SMTs, the methodological considerations for their evaluation, and the future directions for TIC discovery.
Collapse
Affiliation(s)
- Sascha C.T. Nicklisch
- Department of Environmental Toxicology, University of California, Davis, Davis, CA 95616
| | - Amro Hamdoun
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093-0202
| |
Collapse
|
471
|
Krasnopolsky YМ. "QUALITY BY DESIGN" IN LIPOSOMAL DRUGS CREATION. BIOTECHNOLOGIA ACTA 2020. [DOI: 10.15407/biotech13.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Nanobiotechnological preparations creation is one of the promising areas of modern pharmacy, since it allows creating products of a qualitatively new level. The procedure development, based on an understanding of the product characteristics and the technological process, confirmed by reliable scientific data. The article is devoted to the pharmaceutical development of liposomal drugs. On the basis of our own experience in the development of liposomal medicinal forms, as well as on the basis of literature data, the main components in their composition were detected and these components impact on the quality indicators of liposomes were studied. Individual lipids function in nanoparticle membrane and their interaction, which determines the stability both in the technological process and upon storage of the product, were considered. The advantages and disadvantages of cholesterol incorporation into liposomes with hydrophilic and hydrophobic active pharmaceutical ingredients were described. Cryoprotectors and buffer systems role in ensuring nanopreparation stability is discussed.
Collapse
|
472
|
Gajdács M, Ábrók M, Lázár A, Jánvári L, Tóth Á, Terhes G, Burián K. Detection of VIM, NDM and OXA-48 producing carbapenem resistant Enterobacterales among clinical isolates in Southern Hungary. Acta Microbiol Immunol Hung 2020; 67:209-215. [PMID: 33258795 DOI: 10.1556/030.2020.01181] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 04/04/2020] [Indexed: 02/06/2023]
Abstract
Infections caused by carbapenem-resistant Enterobacterales (CRE) present an important therapeutic problem, as there are limited number of effective therapeutic alternatives available. In this study, phenotypic and genotypic methods were used to characterize carbapenemase-production and other resistance-determinants (AmpC and ESBL-production, efflux pump-overexpression) in 50 isolates (Klebsiella spp. n = 35, Escherichia coli n = 12 and Enterobacter cloacae complex n = 3) collected at the Albert Szent-Györgyi Clinical Center (University of Szeged) between 2014 and 2017. Minimum inhibitory concentrations of meropenem, sulfamethoxazole/trimethoprim, tigecycline, amikacin, moxifloxacin, colistin and fosfomycin were also determined. 24% of isolates were AmpC-producers, while 30% carried blaCTX-M ESBL-genes. Carbapenemase-genes were detected in 18 (36%) of the tested isolates: in 2 isolates blaNDM, in 6 isolates blaOXA-48-like and in 12 isolates, blaVIM was detected by PCR. The species-distribution for isolates positive for carbapenemase-genes was the following: Klebsiella pneumoniae n = 11, Klebsiella oxytoca n = 1, E. coli n = 5, E. cloacae complex n = 1. Efflux pump-overexpression based on the PAβN-screening agar was shown in n = 3 of the tested strains. In nine isolates (18%), carbapenemase and ESBL-genes were detected simultaneously. Highest levels of resistance were noted for fosfomycin (74%) and moxifloxacin (70%), while all isolates were susceptible to colistin. Among applied phenotypic tests in this study the modified carbapenem inactivation method (mCIM) proved to be the most accurate one compared to that of PCR results.
Collapse
Affiliation(s)
- Márió Gajdács
- 1Department of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, Eötvös utca 6., 6720 Szeged, Hungary
| | - Marianna Ábrók
- 2Institute of Clinical Microbiology, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis utca 6., 6725 Szeged, Hungary
| | - Andrea Lázár
- 2Institute of Clinical Microbiology, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis utca 6., 6725 Szeged, Hungary
| | - Laura Jánvári
- 3Department of Bacteriology, Mycology and Parasitology, National Public Health Centre, Albert Flórián út 2-6., 1097 Budapest, Hungary
| | - Ákos Tóth
- 3Department of Bacteriology, Mycology and Parasitology, National Public Health Centre, Albert Flórián út 2-6., 1097 Budapest, Hungary
| | - Gabriella Terhes
- 3Department of Bacteriology, Mycology and Parasitology, National Public Health Centre, Albert Flórián út 2-6., 1097 Budapest, Hungary
| | - Katalin Burián
- 2Institute of Clinical Microbiology, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis utca 6., 6725 Szeged, Hungary
- 4Department of Medical Microbiology and Immunobiology, Faculty of Medicine, University of Szeged, Dóm tér 10., 6720 Szeged, Hungary
| |
Collapse
|
473
|
Wei Y, Hu Y, Shen X, Zhang X, Guan J, Mao S. Design of circular-ring film embedded contact lens for improved compatibility and sustained ocular drug delivery. Eur J Pharm Biopharm 2020; 157:28-37. [DOI: 10.1016/j.ejpb.2020.09.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 09/17/2020] [Accepted: 09/21/2020] [Indexed: 12/14/2022]
|
474
|
Traditional application and modern pharmacological research of Artemisia annua L. Pharmacol Ther 2020; 216:107650. [DOI: 10.1016/j.pharmthera.2020.107650] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 12/30/2022]
|
475
|
Xiong Y, Zhang P, Warner RD, Shen S, Fang Z. Cereal grain-based functional beverages: from cereal grain bioactive phytochemicals to beverage processing technologies, health benefits and product features. Crit Rev Food Sci Nutr 2020; 62:2404-2431. [PMID: 33938780 DOI: 10.1080/10408398.2020.1853037] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Increased consumer awareness of health and wellness has promoted a high demand for foods and beverages with functional and therapeutic properties. Cereals, apart from being important staple crops and primary sources of energy and nutrition, are replete with bioactive phytochemicals with health properties. Cereal grains contain a diverse range of bioactive phytochemicals including phenolic compounds, dietary fibers, carotenoids, tocols, phytosterols, γ-oryzanol, and phytic acid and therefore have great potential for processing into functional beverages. Although there are a variety of cereal grain-based beverages produced world-wide, very little scientific and technological attention has been paid to them. In this review, we have discussed cereal grain-based functional beverages based on 3 main categories: cereal grain-based milk alternatives, roasted cereal grain teas, fermented nonalcoholic cereal grain beverages. The processing techniques, health properties and product features of these beverages are elaborated, and the challenges and future perspectives are proposed. As the food market becomes increasingly diverse, cereal grain-based beverages could be a promising new category of health functional beverages in our daily life.
Collapse
Affiliation(s)
- Yun Xiong
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Pangzhen Zhang
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Robyn Dorothy Warner
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Shuibao Shen
- College of Animal Science and Technology, Guangxi University, Nanning, China.,Taiyuan Brand Will Firm Biotechnology Development Co, Ltd, Taiyuan, China
| | - Zhongxiang Fang
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
476
|
Villa-Rivera MG, Ochoa-Alejo N. Chili Pepper Carotenoids: Nutraceutical Properties and Mechanisms of Action. Molecules 2020; 25:E5573. [PMID: 33260997 PMCID: PMC7729576 DOI: 10.3390/molecules25235573] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/16/2020] [Accepted: 11/21/2020] [Indexed: 12/18/2022] Open
Abstract
Chili pepper is a prominent cultivated horticultural crop that is traditionally used for food seasoning and is applied for the treatment and prevention of multiple diseases. Its beneficial health properties are due to its abundance and variety of bioactive components, such as carotenoids, capsaicinoids, and vitamins. In particular, carotenoids have important nutraceutical properties, and several studies have focused on their potential in the prevention and treatment of human diseases. In this article, we reviewed the state of knowledge of general aspects of chili pepper carotenoids (biosynthesis pathway, types and content in Capsicum spp., and the effects of processing on carotenoid content) and recent findings on the effects of carotenoid nutraceuticals, such as antioxidant, cancer preventive, anti-inflammatory, cardiovascular disorder preventive, and anti-obesity effects.
Collapse
Affiliation(s)
| | - Neftalí Ochoa-Alejo
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Irapuato, Guanajuato 36824, Mexico;
| |
Collapse
|
477
|
Xia S, Ding Z, Luo L, Chen B, Schneider J, Yang J, Eberhart CG, Stark WJ, Xu Q. Shear-Thinning Viscous Materials for Subconjunctival Injection of Microparticles. AAPS PharmSciTech 2020; 22:8. [PMID: 33241486 DOI: 10.1208/s12249-020-01877-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 11/13/2020] [Indexed: 02/07/2023] Open
Abstract
While drug-loaded microparticles (MPs) can serve as drug reservoirs for sustained drug release and therapeutic effects, needle clogging by MPs poses a challenge for ocular drug delivery via injection. Two polymers commonly used in ophthalmic procedures-hyaluronic acid (HA) and methylcellulose (MC)-have been tested for their applicability for ocular injections. HA and MC were physically blended with sunitinib malate (SUN)-loaded PLGA MPs for subconjunctival (SCT) injection into rat eyes. The HA and MC viscous solutions facilitated injection through fine-gauged needles due to their shear-thinning properties as shown by rheological characterizations. The diffusion barrier presented by HA and MC reduced burst drug release and extended overall release from MPs. The significant level of MP retention in the conjunctiva tissue post-operation confirmed the minimal leakage of MPs following injection. The safety of HA and MC for ocular applications was demonstrated histologically.
Collapse
|
478
|
Bunton CM, Bassampour ZM, Boothby JM, Smith AN, Rose JV, Nguyen DM, Ware TH, Csaky KG, Lippert AR, Tsarevsky NV, Son DY. Degradable Silyl Ether–Containing Networks from Trifunctional Thiols and Acrylates. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01967] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Caleb M. Bunton
- Department of Chemistry, Center for Drug Discovery, Design and Delivery (CD4), Southern Methodist University, Dallas, Texas 75205, United States
| | - Zahra M. Bassampour
- Department of Chemistry, Center for Drug Discovery, Design and Delivery (CD4), Southern Methodist University, Dallas, Texas 75205, United States
| | - Jennifer M. Boothby
- Department of Bioengineering, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Ashanti N. Smith
- Department of Chemistry, Center for Drug Discovery, Design and Delivery (CD4), Southern Methodist University, Dallas, Texas 75205, United States
| | - Joseph V. Rose
- Department of Chemistry, Center for Drug Discovery, Design and Delivery (CD4), Southern Methodist University, Dallas, Texas 75205, United States
| | - Daphne M. Nguyen
- Department of Chemistry, Center for Drug Discovery, Design and Delivery (CD4), Southern Methodist University, Dallas, Texas 75205, United States
| | - Taylor H. Ware
- Department of Bioengineering, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Karl G. Csaky
- Retina Foundation of the Southwest, Dallas, Texas 75231, United States
| | - Alexander R. Lippert
- Department of Chemistry, Center for Drug Discovery, Design and Delivery (CD4), Southern Methodist University, Dallas, Texas 75205, United States
| | - Nicolay V. Tsarevsky
- Department of Chemistry, Center for Drug Discovery, Design and Delivery (CD4), Southern Methodist University, Dallas, Texas 75205, United States
| | - David Y. Son
- Department of Chemistry, Center for Drug Discovery, Design and Delivery (CD4), Southern Methodist University, Dallas, Texas 75205, United States
| |
Collapse
|
479
|
Jemni-Damer N, Guedan-Duran A, Fuentes-Andion M, Serrano-Bengoechea N, Alfageme-Lopez N, Armada-Maresca F, Guinea GV, Pérez-Rigueiro J, Rojo F, Gonzalez-Nieto D, Kaplan DL, Panetsos F. Biotechnology and Biomaterial-Based Therapeutic Strategies for Age-Related Macular Degeneration. Part I: Biomaterials-Based Drug Delivery Devices. Front Bioeng Biotechnol 2020; 8:549089. [PMID: 33224926 PMCID: PMC7670958 DOI: 10.3389/fbioe.2020.549089] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 10/06/2020] [Indexed: 12/22/2022] Open
Abstract
Age-related Macular Degeneration (AMD) is an up-to-date untreatable chronic neurodegenerative eye disease of multifactorial origin, and the main causes of blindness in over 65 years old people. It is characterized by a slow progression and the presence of a multitude of factors, highlighting those related to diet, genetic heritage and environmental conditions, present throughout each of the stages of the illness. Current therapeutic approaches, mainly consisting of intraocular drug delivery, are only used for symptoms relief and/or to decelerate the progression of the disease. Furthermore, they are overly simplistic and ignore the complexity of the disease and the enormous differences in the symptomatology between patients. Due to the wide impact of the AMD and the up-to-date absence of clinical solutions, the development of biomaterials-based approaches for a personalized and controlled delivery of therapeutic drugs and biomolecules represents the main challenge for the defeat of this neurodegenerative disease. Here we present a critical review of the available and under development AMD therapeutic approaches, from a biomaterials and biotechnological point of view. We highlight benefits and limitations and we forecast forthcoming alternatives based on novel biomaterials and biotechnology methods. In the first part we expose the physiological and clinical aspects of the disease, focusing on the multiple factors that give origin to the disorder and highlighting the contribution of these factors to the triggering of each step of the disease. Then we analyze available and under development biomaterials-based drug-delivery devices (DDD), taking into account the anatomical and functional characteristics of the healthy and ill retinal tissue.
Collapse
Affiliation(s)
- Nahla Jemni-Damer
- Neuro-Computing and Neuro-Robotics Research Group, Complutense University of Madrid, Madrid, Spain.,Innovation Group, Institute for Health Research San Carlos Clinical Hospital (IdISSC), Madrid, Spain
| | - Atocha Guedan-Duran
- Neuro-Computing and Neuro-Robotics Research Group, Complutense University of Madrid, Madrid, Spain.,Innovation Group, Institute for Health Research San Carlos Clinical Hospital (IdISSC), Madrid, Spain.,Department of Biomedical Engineering, Tufts University, Medford, MA, United States
| | - María Fuentes-Andion
- Neuro-Computing and Neuro-Robotics Research Group, Complutense University of Madrid, Madrid, Spain.,Innovation Group, Institute for Health Research San Carlos Clinical Hospital (IdISSC), Madrid, Spain
| | - Nora Serrano-Bengoechea
- Neuro-Computing and Neuro-Robotics Research Group, Complutense University of Madrid, Madrid, Spain.,Innovation Group, Institute for Health Research San Carlos Clinical Hospital (IdISSC), Madrid, Spain.,Silk Biomed SL, Madrid, Spain
| | - Nuria Alfageme-Lopez
- Neuro-Computing and Neuro-Robotics Research Group, Complutense University of Madrid, Madrid, Spain.,Innovation Group, Institute for Health Research San Carlos Clinical Hospital (IdISSC), Madrid, Spain.,Silk Biomed SL, Madrid, Spain
| | | | - Gustavo V Guinea
- Silk Biomed SL, Madrid, Spain.,Center for Biomedical Technology, Universidad Politécnica de Madrid, Madrid, Spain.,Department of Material Science, Civil Engineering Superior School, Universidad Politécnica de Madrid, Madrid, Spain.,Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - José Pérez-Rigueiro
- Silk Biomed SL, Madrid, Spain.,Center for Biomedical Technology, Universidad Politécnica de Madrid, Madrid, Spain.,Department of Material Science, Civil Engineering Superior School, Universidad Politécnica de Madrid, Madrid, Spain.,Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Francisco Rojo
- Silk Biomed SL, Madrid, Spain.,Center for Biomedical Technology, Universidad Politécnica de Madrid, Madrid, Spain.,Department of Material Science, Civil Engineering Superior School, Universidad Politécnica de Madrid, Madrid, Spain.,Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Daniel Gonzalez-Nieto
- Silk Biomed SL, Madrid, Spain.,Center for Biomedical Technology, Universidad Politécnica de Madrid, Madrid, Spain.,Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
| | - Fivos Panetsos
- Neuro-Computing and Neuro-Robotics Research Group, Complutense University of Madrid, Madrid, Spain.,Innovation Group, Institute for Health Research San Carlos Clinical Hospital (IdISSC), Madrid, Spain.,Silk Biomed SL, Madrid, Spain
| |
Collapse
|
480
|
Prieto E, Cardiel MJ, Vispe E, Idoipe M, Garcia-Martin E, Fraile JM, Polo V, Mayoral JA, Pablo LE, Rodrigo MJ. Dexamethasone delivery to the ocular posterior segment by sustained-release Laponite formulation. ACTA ACUST UNITED AC 2020; 15:065021. [PMID: 32647098 DOI: 10.1088/1748-605x/aba445] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This paper presents a novel nanoformulation for sustained-release delivery of dexamethasone (DEX) to the ocular posterior segment using a Laponite (LAP) carrier-DEX/LAP 1:10 w w-1 formulation; 10 mg ml-1. In vivo ocular feasibility and pharmacokinetics after intravitreal (IV) and suprachoroidal (SC) administration in rabbit eyes are compared against IV administration of a DEX solution (1 mg ml-1). Thirty rabbit eyes were injected with the DEX/LAP formulation (15 suprachoroid/15 intravitreous). Ophthalmological signs were monitored at day 1 and at weeks 1-4-12-24 post-administration. Three eyes per sample time point were used to quantify DEX concentration using high-performance liquid chromatography-mass spectrometry. The ocular tissues' pharmacokinetic parameters (lens, vitreous humour, choroid-retina unit and sclera) were studied. DEX/LAP was well tolerated under both administration methods. Peak intraocular DEX levels from the DEX/LAP were detected in the vitreous humour after both deliveries soon after administration. The vitreous area under the curve was significantly greater after both DEX/LAP deliveries (IV: 205 968.47; SC: 11 442.22 ng g-1 d-1) than after IV administration of the DEX solution (317.17 ng g-1 d-1). Intravitreal DEX/LAP delivery extended higher vitreous DEX levels up to week 24 (466.32 ± 311.15 ng g-1). With SC delivery, DEX levels were detectable in the choroid-retina unit (12.04 ± 20.85 ng g-1) and sclera (25.46 ± 44.09 ng g-1) up to week 24. This study demonstrated the intraocular feasibility of both SC and IV administration of the DEX/LAP formulation. The LAP increased the intraocular retention time of DEX when compared with conventional solutions. DEX/LAP could be considered a biocompatible and useful sustained-release formulation for treating posterior-pole eye diseases.
Collapse
Affiliation(s)
- Esther Prieto
- Ophthalmology Department, Miguel Servet University Hospital, Paseo Isabel la Católica 1-3, E-50009, Zaragoza, Spain. Aragon Institute for Health Research (IIS Aragon), GIMSO research group, University of Zaragoza (Spain), Avda. San Juan Bosco 13, Zaragoza E-50009, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
481
|
El-Adl K, Ibrahim MK, Khedr F, Abulkhair HS, Eissa IH. N-Substituted-4-phenylphthalazin-1-amine-derived VEGFR-2 inhibitors: Design, synthesis, molecular docking, and anticancer evaluation studies. Arch Pharm (Weinheim) 2020; 354:e2000219. [PMID: 33197080 DOI: 10.1002/ardp.202000219] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/04/2020] [Accepted: 10/24/2020] [Indexed: 12/25/2022]
Abstract
In accordance with the significant impetus of the discovery of potent vascular endothelial growth factor receptor 2 (VEGFR-2) inhibitors, herein, we report the design, synthesis, and anticancer evaluation of 12 new N-substituted-4-phenylphthalazin-1-amine derivatives against HepG2, HCT-116, and MCF-7 cells as VEGFR-2 inhibitors. The results of the cytotoxicity investigation indicated that HCT-116 and MCF-7 were the most sensitive cell lines to the influence of the newly synthesized derivatives. In particular, compound 7a was found to be the most potent derivative among all the tested compounds against the three cancer cell lines, HepG2, HCT116, and MCF-7, with IC50 = 13.67 ± 1.2, 5.48 ± 0.4, and 7.34 ± 0.6 µM, respectively, which is nearly equipotent to that of sorafenib (IC50 = 9.18 ± 0.6, 5.47 ± 0.3, and 7.26 ± 0.3 µM, respectively). All synthesized derivatives, 4a,b-8a-c, were evaluated for their inhibitory activities against VEGFR-2. The tested compounds displayed high to low inhibitory activity, with IC50 values ranging from 0.14 ± 0.02 to 9.54 ± 0.85 µM. Among them, compound 7a was found to be the most potent derivative that inhibited VEGFR-2 at an IC50 value of 0.14 ± 0.02 µM, which is nearly 72% of that of the sorafenib IC50 value (0.10 ± 0.02 µM). Compounds 7b, 8c, 8b, and 8a exhibited very good activity with IC50 values of 0.18 ± 0.02, 0.21 ± 0.03, 0.24 ± 0.02, and 0.35 ± 0.04 µM, respectively. Molecular modeling studies were carried out for all compounds against the VEGFR-2 active site. The data obtained from biological testing highly correlated with that obtained from molecular modeling studies. However, these modifications led to new phthalazine derivatives with higher VEGFR-2 inhibitory activities than vatalanib and which are nearly equipotent to sorafenib.
Collapse
Affiliation(s)
- Khaled El-Adl
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt.,Pharmaceutical Chemistry Department, Faculty of Pharmacy, Heliopolis University for Sustainable Development, Cairo, Egypt
| | - Mohamed-Kamal Ibrahim
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Fathalla Khedr
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Hamada S Abulkhair
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt.,Pharmaceutical Chemistry Department, Faculty of Pharmacy, Horus University, New Damietta, Egypt
| | - Ibrahim H Eissa
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
482
|
Moradi S, Mokhtari-Dizaji M, Ghassemi F, Sheibani S, Asadi Amoli F. Increasing the efficiency of the retinoblastoma brachytherapy protocol with ultrasonic hyperthermia and gold nanoparticles: a rabbit model. Int J Radiat Biol 2020; 96:1614-1627. [PMID: 33074061 DOI: 10.1080/09553002.2020.1838657] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE This study purposed to evaluate the efficacy of brachytherapy with the modality of ultrasonic hyperthermia in the presence of gold nanoparticles (GNPs) on an ocular retinoblastoma tumor in an animal model of the rabbit. MATERIALS AND METHODS A retinoblastoma tumor was induced by the injection of the human cell line of Y79 in rabbit eyes (n = 41). After two weeks, tumor size reached a diameter of about 5-7 mm. Seven groups were involved: control, GNPs injection, hyperthermia, hyperthermia with GNPs injection, brachytherapy with I-125, a combination of hyperthermia and brachytherapy, and a combination of brachytherapy, hyperthermia and, GNPs. The tumor area was measured using B-mode ultrasound images on the zero-day and at the end of the third week. The groups were evaluated for a histopathological study of tumor necrosis. RESULTS There was a significant difference between the relative area changes of tumor in the combination group with the other study groups (p < .05). The results of histopathologic studies confirmed the necrosis of living retinoblastoma cells. CONCLUSION Combination therapy of brachytherapy and hyperthermia with GNPs reduces the relative size of the tumor. This method increases the necrosis percentage of retinoblastoma and significantly reduces the retinoblastoma mass in the rabbit eyes.
Collapse
Affiliation(s)
- Somayeh Moradi
- Faculty of Medical Sciences, Department of Medical Physics, Tarbiat Modares University, Tehran, Iran
| | - Manijhe Mokhtari-Dizaji
- Faculty of Medical Sciences, Department of Medical Physics, Tarbiat Modares University, Tehran, Iran
| | - Fariba Ghassemi
- Eye Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahab Sheibani
- Radiation Application Research School, Nuclear Science and Technology Research Institute, Tehran, Iran
| | - Fahimeh Asadi Amoli
- Department of Pathology, Eye Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
483
|
Effect of surfactant concentration and sterilization process on intraocular pressure-lowering activity of Δ 9-tetrahydrocannabinol-valine-hemisuccinate (NB1111) nanoemulsions. Drug Deliv Transl Res 2020; 11:2096-2107. [PMID: 33169348 DOI: 10.1007/s13346-020-00871-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2020] [Indexed: 12/16/2022]
Abstract
The use of Δ9-tetrahydrocannabinol (THC) and Δ9-tetrahydrocannabinol-valine-hemisuccinate (THC-VHS; NB1111) has recently been investigated in the management of intraocular pressure (IOP). The current study was undertaken to develop an optimized THC-VHS-loaded nanoemulsion formulation (NE; THC-VHS-NE) that could improve the drug load and duration of activity. THC-VHS-NE formulation was prepared by homogenization followed by ultrasonication. Sesame oil, Tween®80, and Poloxamer®188 were used as the oil, surfactant, and cosurfactant, respectively. Stability of the optimized THC-VHS-NE formulation was observed at 4 °C. The IOP lowering effect of the lead formulations, commercial timolol, and latanoprost ophthalmic solutions, as well as an emulsion in Tocrisolve™ (THC-VHS-TOC), was studied in New Zealand White rabbits following topical administration. The effect of surfactant concentration and sterilization process on IOP-lowering activity was also studied. THC-VHS-NE formulations (0.5, 1.0, and 2.0% w/v) showed dose dependent duration of action. The 1.0%w/v THC-VHS-NE formulation was selected for further evaluation because of its desirable physical and chemical characteristics. THC-VHS-NE formulation prepared with 2% w/v Tween®80 exhibited a higher drop in IOP than the 0.75 and 4.0% w/v of Tween®80 containing formulations. The IOP-lowering duration was, however, similar for the formulations with 0.75 and 2.0% Tween®80, while that with 4.0% Tween®80 was shorter. THC-VHS-NE formulation produced a greater drop in IOP (p < 0.05) and a longer duration of activity compared to THC-VHS-TOC, latanoprost, and timolol. The formulation could be sterilized by filtration without impacting product attributes. Overall, the optimized THC-VHS-NE formulation demonstrated a significantly better IOP reduction profile in the test model compared to the commercial ophthalmic solutions evaluated.
Collapse
|
484
|
Carbapenemase-Producing Non-Glucose-Fermenting Gram-Negative Bacilli in Africa, Pseudomonas aeruginosa and Acinetobacter baumannii: A Systematic Review and Meta-Analysis. Int J Microbiol 2020; 2020:9461901. [PMID: 33204275 PMCID: PMC7658691 DOI: 10.1155/2020/9461901] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 10/20/2020] [Indexed: 11/24/2022] Open
Abstract
Background Studies have reported that the existence of CP bacteria in Africa, but, in general, comprehensive data about the molecular epidemiology of CP organisms are limited. Therefore, this systematic review and meta-analysis expound the pooled prevalence of CP P. aeruginosa and CP A. baumannii clinical isolates in Africa. It also identified the diversity of carbapenemases or their encoding genes among the isolates in Africa. Lastly, the review observed the trends of these CP isolates in Africa. Methods A comprehensive search was performed between July 2019 and October 2019 in the following databases: PubMed, Google Scholar, and African Journal online. The included articles were published only in English. The screening was done by two authors independently. The data extracted on Excel spreadsheet were transferred to STATA 11 software for analysis. Results From a total of 1,454 articles searched, 42 articles were eligible. Most of the studies were conducted in the North Africa region. But there was no report from Central Africa. The pooled prevalence of CP P. aeruginosa and CP A. baumannii among the clinical specimens in Africa was 21.36% and 56.97%, respectively. OXA-23 and VIM were the most prevailing carbapenemase among P. aeruginosa and A. baumannii, respectively. The cumulative meta-analysis revealed a relative increment of the prevalence of CP P. aeruginosa over time in Africa but it showed a higher prevalence of CP A. baumannii isolates across years. Conclusion The review revealed a high pooled prevalence of CP A. baumannii clinical isolates in Africa which needs urgent action. Moreover, the emergence of concomitant carbapenemases, especially OXA-23 + NDM among CP A. baumannii, was also an alarming problem.
Collapse
|
485
|
Torres-Luna C, Fan X, Domszy R, Hu N, Wang NS, Yang A. Hydrogel-based ocular drug delivery systems for hydrophobic drugs. Eur J Pharm Sci 2020; 154:105503. [DOI: 10.1016/j.ejps.2020.105503] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/18/2020] [Accepted: 07/31/2020] [Indexed: 01/07/2023]
|
486
|
Methaneethorn J, Leelakanok N. Sources of lamotrigine pharmacokinetic variability: A systematic review of population pharmacokinetic analyses. Seizure 2020; 82:133-147. [PMID: 33060011 DOI: 10.1016/j.seizure.2020.07.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/10/2020] [Accepted: 07/19/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Lamotrigine (LTG) is a new generation antiepileptic drug. However, relatively high interindividual pharmacokinetic variability of this drug has been documented. Therefore, several population pharmacokinetic studies of lamotrigine were conducted to identify factors influencing its pharmacokinetics. OBJECTIVE This systematic review aimed to summarize significant factors influencing LTG pharmacokinetics and their relationships with pharmacokinetic parameters as well as the magnitude of pharmacokinetic variability. METHODS Four databases i.e. PubMed, Scopus, CINAHL Complete, and Science Direct were systematically searched from their inception to March 2020. Population pharmacokinetic studies of LTG conducted in humans using a nonlinear-mixed effect approach were eligible for a systematic review. RESULTS Nineteen studies were included in this systematic review. Most studies characterized LTG pharmacokinetics as a one-compartment model structure. The three most frequently identified significant covariates influencing LTG clearance included concomitant antiepileptic drugs, body weight, and genetic polymorphisms. Approximately 58% of the studies did not externally validate the models. CONCLUSIONS For clinical application, LTG maintenance dose could be optimized using population pharmacokinetic models employing covariates such as concomitant antiepileptic drugs, body weight, and genetic polymorphisms. However, these models should be assessed for their predictability in the target population before utilizing such models in clinical settings.
Collapse
Affiliation(s)
- Janthima Methaneethorn
- Pharmacokinetic Research Unit, Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, Thailand; Center of Excellence for Environmental Health and Toxicology, Naresuan University, Phitsanulok, Thailand.
| | - Nattawut Leelakanok
- Department of Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Burapha University, Chonburi, Thailand
| |
Collapse
|
487
|
Taghe S, Mirzaeei S, Alany RG, Nokhodchi A. Polymeric Inserts Containing Eudragit ® L100 Nanoparticle for Improved Ocular Delivery of Azithromycin. Biomedicines 2020; 8:E466. [PMID: 33142768 PMCID: PMC7692161 DOI: 10.3390/biomedicines8110466] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/23/2020] [Accepted: 10/27/2020] [Indexed: 12/18/2022] Open
Abstract
Polymeric inserts containing azithromycin-loaded Eudragit® L100 nanoparticles were developed to sustain the drug release and enhance its ocular performance. The solvent diffusion technique was employed to prepare nanoparticles. The developed nanoparticles (NPs) were fully characterized and investigated. The solvent casting method was used to prepare azithromycin ocular inserts (azithromycin, AZM film) by adding hydroxypropyl methylcellulose (HPMC) or hydroxyethyl cellulose (HEC) solutions after the incorporation of AZM-loaded Eudragit® L100 nanoparticles into plasticized PVA (polyvinyl alcohol) solutions. The optimized nanoparticles had a particle size of 78.06 ± 2.3 nm, zeta potential around -2.45 ± 0.69 mV, polydispersity index around 0.179 ± 0.007, and entrapment efficiency 62.167 ± 0.07%. The prepared inserts exhibited an antibacterial effect on Staphylococcus aureus and Escherichia coli cultures. The inserts containing AZM-loaded nanoparticles showed a burst release during the initial hours, followed by a sustained drug release pattern. Higher cumulative corneal permeations from AZM films were observed for the optimized formulation compared to the drug solution in the ex-vivo trans-corneal study. In comparison to the AZM solution, the inserts significantly prolonged the release of AZM in rabbit eyes (121 h). The mucoadhesive inserts containing azithromycin-loaded Eudragit® L100 nanoparticles offer a promising approach for the ocular delivery of azithromycin (antibacterial and anti-inflammatory) to treat ocular infections that require a prolonged drug delivery.
Collapse
Affiliation(s)
- Shiva Taghe
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6714415153, Iran;
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6714415153, Iran
| | - Shahla Mirzaeei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6714415153, Iran;
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6714415153, Iran
| | - Raid G. Alany
- Drug Discovery, Delivery and Patient Care (DDDPC), School of Life Sciences, Pharmacy and Chemistry, Kingston University, London KT1 2EE, UK;
- School of Pharmacy, The University of Auckland, Auckland 1023, New Zealand
| | - Ali Nokhodchi
- Pharmaceutics Research Laboratory, School of Life Sciences, University of Sussex, Brighton BN1 9QJ, UK
| |
Collapse
|
488
|
Li JW, Li YJ, Hu XS, Gong Y, Xu BB, Xu HW, Yin ZQ. Biosafety of a 3D-printed intraocular lens made of a poly(acrylamide-co-sodium acrylate) hydrogel in vitro and in vivo. Int J Ophthalmol 2020; 13:1521-1530. [PMID: 33078100 DOI: 10.18240/ijo.2020.10.03] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 07/10/2020] [Indexed: 12/26/2022] Open
Abstract
AIM To assess the biosafety of a poly(acrylamide-co-sodium acrylate) hydrogel (PAH) as a 3D-printed intraocular lens (IOL) material. METHODS The biosafety of PAH was first evaluated in vitro using human lens epithelial cells (LECs) and the ARPE19 cell line, and a cell counting kit-8 (CCK-8) assay was performed to investigate alterations in cell proliferation. A thin film of PAH and a conventional IOL were intraocularly implanted into the eyes of New Zealand white rabbits respectively, and a sham surgery served as control group. The anterior segment photographs, intraocular pressure (IOP), blood parameters and electroretinograms (ERG) were recorded. Inflammatory cytokines in the aqueous humor, such as TNFα and IL-8, were examined by ELISA. Cell apoptosis of the retina was investigated by TUNEL assay, and macroPAHge activation was detected by immunostaining. RESULTS PAH did not slow cell proliferation when cocultured with human LECs or ARPE19 cells. The implantation of a thin film of a 3D-printed IOL composed of PAH did not affect the IOP, blood parameters, ERG or optical structure in any of the three experimental groups (n=3 for each). Both TNFα and IL-8 in the aqueous humor of PAH group were transiently elevated 1wk post-operation and recovered to normal levels at 1 and 3mo post-operation. Iba1+ macroPAHges in the anterior chamber angle in PAH group were increased markedly compared to those of the control group; however, there was no significant difference compared to those in the IOL group. CONCLUSION PAH is a safe material for 3D printing of personal IOLs that hold great potential for future clinical applications.
Collapse
Affiliation(s)
- Jia-Wen Li
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| | - Yi-Jian Li
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| | - Xi-Su Hu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| | - Yu Gong
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| | - Ben-Bin Xu
- Smart Materials and Surfaces Lab, Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne NE1 8ST, UK
| | - Hai-Wei Xu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| | - Zheng-Qin Yin
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| |
Collapse
|
489
|
Won JY, Kim J, Gao G, Kim J, Jang J, Park YH, Cho DW. 3D printing of drug-loaded multi-shell rods for local delivery of bevacizumab and dexamethasone: A synergetic therapy for retinal vascular diseases. Acta Biomater 2020; 116:174-185. [PMID: 32927088 DOI: 10.1016/j.actbio.2020.09.015] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/21/2020] [Accepted: 09/03/2020] [Indexed: 12/16/2022]
Abstract
The clinical therapy for retinal vascular diseases requires repeated intravitreal injections of drugs owing to their short half-life, which imposes health and economic burdens on patients. Therefore, it is necessary to develop an advanced drug delivery system that can prolong the drug activity and minimize secondary complications. In this study, we developed a core/shell drug-loaded rod (drug rod) to deliver two types of drugs (bevacizumab (BEV) and dexamethasone (DEX)) from a single implant. The coaxial printing technique allowed BEV and DEX to be released with different kinetics at the same site by using a polymeric shell and a hydrogel core, respectively. The suggested printing technique facilitates the production of drug rods with various dimensions and drug concentrations, and the multi-layered design allows to adjust the release profile of dual drug-delivery system. The rod was injected in rat vitreous less invasively using a small-gauge needle. Further, we validated the efficacy of the implanted drug rods in inhibiting inflammatory responses and long-term suppression of neovascularization compared to the conventional intravitreal injection of BEV in animal model, indicating that the drug rods can be an alternative therapeutic approach for the treatment of various types of retinal vascular diseases.
Collapse
Affiliation(s)
- Jae Yon Won
- Department of Ophthalmology and Visual Science, Eunpyeong St. Mary's Hospital, The Catholic University of Korea, South Korea; Catholic Institute for Visual Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Jisoo Kim
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, South Korea
| | - Ge Gao
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, South Korea
| | - Jongmin Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, South Korea
| | - Jinah Jang
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, South Korea; Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, South Korea; Department of Creative IT Engineering, Pohang University of Science and Technology (POSTECH), Pohang, South Korea
| | - Young-Hoon Park
- Catholic Institute for Visual Science, College of Medicine, The Catholic University of Korea, Seoul, South Korea; Department of Ophthalmology and Visual Science, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea.
| | - Dong-Woo Cho
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, South Korea; Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, South Korea.
| |
Collapse
|
490
|
Zielińska A, Soles BB, Lopes AR, Vaz BF, Rodrigues CM, Alves TFR, Klensporf-Pawlik D, Durazzo A, Lucarini M, Severino P, Santini A, Chaud MV, Souto EB. Nanopharmaceuticals for Eye Administration: Sterilization, Depyrogenation and Clinical Applications. BIOLOGY 2020; 9:biology9100336. [PMID: 33066555 PMCID: PMC7602230 DOI: 10.3390/biology9100336] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/23/2020] [Accepted: 10/13/2020] [Indexed: 12/11/2022]
Abstract
Simple Summary Nanopharmaceuticals have revolutionized the way ophthalmic drugs are administered to overcome ocular delivery barriers and improve drug bioavailability. The design and production of an efficient ocular drug delivery system still remain a challenge. In this review, we discuss the sterilization and depyrogenation methods, commonly used for ophthalmic nanopharmaceuticals, and their clinical applications. Abstract As an immune-privileged target organ, the eyes have important superficial and internal barriers, protecting them from physical and chemical damage from exogenous and/or endogenous origins that would cause injury to visual acuity or even vision loss. These anatomic, physiological and histologic barriers are thus a challenge for drug access and entry into the eye. Novel therapeutic concepts are highly desirable for eye treatment. The design of an efficient ocular drug delivery system still remains a challenge. Although nanotechnology may offer the ability to detect and treat eye diseases, successful treatment approaches are still in demand. The growing interest in nanopharmaceuticals offers the opportunity to improve ophthalmic treatments. Besides their size, which needs to be critically monitored, nanopharmaceuticals for ophthalmic applications have to be produced under sterilized conditions. In this work, we have revised the different sterilization and depyrogenation methods for ophthalmic nanopharmaceuticals with their merits and drawbacks. The paper also describes clinical sterilization of drugs and the outcomes of inappropriate practices, while recent applications of nanopharmaceuticals for ocular drug delivery are also addressed.
Collapse
Affiliation(s)
- Aleksandra Zielińska
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; (A.Z.); (B.B.S.); (A.R.L.); (B.F.V.); (C.M.R.)
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32, 60-479 Poznań, Poland
| | - Beatriz B. Soles
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; (A.Z.); (B.B.S.); (A.R.L.); (B.F.V.); (C.M.R.)
| | - Ana R. Lopes
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; (A.Z.); (B.B.S.); (A.R.L.); (B.F.V.); (C.M.R.)
| | - Beatriz F. Vaz
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; (A.Z.); (B.B.S.); (A.R.L.); (B.F.V.); (C.M.R.)
| | - Camila M. Rodrigues
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; (A.Z.); (B.B.S.); (A.R.L.); (B.F.V.); (C.M.R.)
| | - Thais F. R. Alves
- Laboratory of Biomaterial and Nanotechnology (LaBNUS). University of Sorocaba, Raposo Tavares 92.5, Sorocaba, 18078-005 São Paulo, Brazil;
| | - Dorota Klensporf-Pawlik
- Institute of Quality Science, Poznań University of Economics and Business, al. Niepodległości 10, 61-875 Poznań, Poland;
| | - Alessandra Durazzo
- CREA-Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy; (A.D.); (M.L.)
| | - Massimo Lucarini
- CREA-Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy; (A.D.); (M.L.)
| | - Patricia Severino
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women& Hospital, Harvard Medical School, 65 Landsdowne Street, Cambridge, MA 02139, USA;
- Biotechnological Postgraduate Program, University of Tiradentes (Unit), Av. Murilo Dantas, 300, 49010-390 Aracaju, Brazil
- Institute of Technology and Research (ITP), Nanomedicine and Nanotechnology Laboratory (LNMed), Av. Murilo Dantas, 300, 49010-390 Aracaju, Brazil
- Tiradentes Institute, 150 Mt Vernon St, Dorchester, MA 02125, USA
| | - Antonello Santini
- Department of Pharmacy, University of Napoli Federico II, 80131 Napoli, Italy
- Correspondence: (A.S.); (M.V.C.); (E.B.S.); Tel.: +39-81-253-9317 (A.S.); +55-15-98172-4431 (M.V.C.); +351-239-488-400 (E.B.S.)
| | - Marco V. Chaud
- Laboratory of Biomaterial and Nanotechnology (LaBNUS). University of Sorocaba, Raposo Tavares 92.5, Sorocaba, 18078-005 São Paulo, Brazil;
- Correspondence: (A.S.); (M.V.C.); (E.B.S.); Tel.: +39-81-253-9317 (A.S.); +55-15-98172-4431 (M.V.C.); +351-239-488-400 (E.B.S.)
| | - Eliana B. Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; (A.Z.); (B.B.S.); (A.R.L.); (B.F.V.); (C.M.R.)
- CEB—Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- Correspondence: (A.S.); (M.V.C.); (E.B.S.); Tel.: +39-81-253-9317 (A.S.); +55-15-98172-4431 (M.V.C.); +351-239-488-400 (E.B.S.)
| |
Collapse
|
491
|
Amadio P, Zarà M, Sandrini L, Ieraci A, Barbieri SS. Depression and Cardiovascular Disease: The Viewpoint of Platelets. Int J Mol Sci 2020; 21:E7560. [PMID: 33066277 PMCID: PMC7589256 DOI: 10.3390/ijms21207560] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 02/06/2023] Open
Abstract
Depression is a major cause of morbidity and low quality of life among patients with cardiovascular disease (CVD), and it is now considered as an independent risk factor for major adverse cardiovascular events. Increasing evidence indicates not only that depression worsens the prognosis of cardiac events, but also that a cross-vulnerability between the two conditions occurs. Among the several mechanisms proposed to explain this interplay, platelet activation is the more attractive, seeing platelets as potential mirror of the brain function. In this review, we dissected the mechanisms linking depression and CVD highlighting the critical role of platelet behavior during depression as trigger of cardiovascular complication. In particular, we will discuss the relationship between depression and molecules involved in the CVD (e.g., catecholamines, adipokines, lipids, reactive oxygen species, and chemokines), emphasizing their impact on platelet activation and related mechanisms.
Collapse
Affiliation(s)
- Patrizia Amadio
- Unit of Brain-Heart Axis: Cellular and Molecular Mechanism, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (M.Z.); (L.S.)
| | - Marta Zarà
- Unit of Brain-Heart Axis: Cellular and Molecular Mechanism, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (M.Z.); (L.S.)
| | - Leonardo Sandrini
- Unit of Brain-Heart Axis: Cellular and Molecular Mechanism, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (M.Z.); (L.S.)
| | - Alessandro Ieraci
- Laboratory of Neuropsychopharmacology and Functional Neurogenomics, Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy;
| | - Silvia Stella Barbieri
- Unit of Brain-Heart Axis: Cellular and Molecular Mechanism, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (M.Z.); (L.S.)
| |
Collapse
|
492
|
El-Emam GA, Girgis GNS, El-Sokkary MMA, El-Azeem Soliman OA, Abd El Gawad AEGH. Ocular Inserts of Voriconazole-Loaded Proniosomal Gels: Formulation, Evaluation and Microbiological Studies. Int J Nanomedicine 2020; 15:7825-7840. [PMID: 33116503 PMCID: PMC7567543 DOI: 10.2147/ijn.s268208] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 09/08/2020] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Voriconazole (VRC) is a triazole broad spectrum antifungal drug, used in the management of versatile fungal infections, particularly fungal keratitis. The obligatory use of niosomal delivery of VRC may reduce the frequency of dosing intervals resulting from its short biological half time and consequently improve patient compliance. METHODS VRC loaded proniosomes (VRC-PNs) were set by the coacervation technique and completely characterized. The developed formula was comprehensively assessed concerning in- vitro release behavior, kinetic investigation, and its conflict against refrigerated and room temperature conditions. A selected noisomal formula was incorporated into ocusert (VRC-PNs Ocu) formulated by 1% w/w hydroxypropyl methyl cellulose HPMC and 0.1% w/w carbopol 940. Eventually, in vitro antifungal activity against Candida albicans and Aspergillus nidulans was assessed by the cup diffusion method. RESULTS The optimized VRC-PNs (Pluronic F127: cholesterol weight ratio 1:1 w/w) exhibited the highest entrapment efficiency (87.4±2.55%) with a spherical shape, proper size in nano range and a suitable Zeta potential of 209.7±8.13 nm and -33.5±1.85 mV, respectively. Assurance of drug encapsulation in nanovesicles was accomplished by several means such as attenuated total reflection Fourier-transform infrared spectroscopy, differential scanning calorimetry in addition to powder X-ray diffraction investigations. It displayed a biphasic in vitro release pattern and after 6 months of storage at a refrigerated temperature, the optimized formula preserved its stability. VRC-PNs Ocu proved a very highly significant antifungal activity matched with the free drug or nanosuspension which was extra assured by comparing its mean inhibition zone with that of 5% natamycin market eye drops. CONCLUSION In conclusion, VRC-PNs Ocu could be considered as a promising stable sustained release topical ocular nanoparticulate system for the management of fungal infections.
Collapse
Affiliation(s)
- Ghada Ahmed El-Emam
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Germeen N S Girgis
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | | | | | | |
Collapse
|
493
|
Xeroudaki M, Thangavelu M, Lennikov A, Ratnayake A, Bisevac J, Petrovski G, Fagerholm P, Rafat M, Lagali N. A porous collagen-based hydrogel and implantation method for corneal stromal regeneration and sustained local drug delivery. Sci Rep 2020; 10:16936. [PMID: 33037282 PMCID: PMC7547117 DOI: 10.1038/s41598-020-73730-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 09/07/2020] [Indexed: 12/24/2022] Open
Abstract
Biomaterials designed to replace the diseased cornea could be used to treat corneal blindness where human donor tissue is in short supply, but challenges are the integration of biomaterials with host tissue and cells, avoiding a rapid material degradation and maintaining corneal transparency. Additionally, implantation surgery often triggers an aggressive wound healing response that can lead to corneal thinning and opacity. Here, we report a collagen-based hydrogel with transparency and mechanical properties suitable for replacing a substantial portion of a damaged or diseased corneal stroma. The porous hydrogel permitted migration and population by host cells while maintaining transparency and thickness six months after surgical implantation in an in vivo model of human corneal surgery. With a novel hybrid surgical implantation technique inspired by LASIK refractive surgery, rapid wound healing occurred around implants to maintain biomaterial integrity, transparency and function. Host stromal cell repopulation and regeneration of host epithelium and nerves were observed, as necessary steps towards corneal regeneration. Finally, as a proof-of-principle, the hydrogel loaded with a neuroregenerative drug achieved sustained slow-release drug delivery in vitro. The proposed hydrogel and novel implantation technique together represent a therapeutic approach with translational potential for replacing and regenerating diseased corneal stromal tissue.
Collapse
Affiliation(s)
- Maria Xeroudaki
- Department of Ophthalmology, Institute for Biomedical and Clinical Sciences, Linköping University, 58183, Linköping, Sweden
| | - Muthukumar Thangavelu
- Department of Ophthalmology, Institute for Biomedical and Clinical Sciences, Linköping University, 58183, Linköping, Sweden
- Department of Biomedical Engineering, Linköping University, 58185, Linköping, Sweden
- LinkoCare Life Sciences AB, 58330, Linköping, Sweden
| | - Anton Lennikov
- Department of Ophthalmology, Institute for Biomedical and Clinical Sciences, Linköping University, 58183, Linköping, Sweden
| | | | - Jovana Bisevac
- Department of Ophthalmology, Centre for Eye Research, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Goran Petrovski
- Department of Ophthalmology, Centre for Eye Research, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Per Fagerholm
- Department of Ophthalmology, Institute for Biomedical and Clinical Sciences, Linköping University, 58183, Linköping, Sweden
| | - Mehrdad Rafat
- Department of Biomedical Engineering, Linköping University, 58185, Linköping, Sweden.
- LinkoCare Life Sciences AB, 58330, Linköping, Sweden.
| | - Neil Lagali
- Department of Ophthalmology, Institute for Biomedical and Clinical Sciences, Linköping University, 58183, Linköping, Sweden.
- Department of Ophthalmology, Sørlandet Hospital Arendal, Arendal, Norway.
| |
Collapse
|
494
|
El-Far YM, Elsherbiny NM, El-Shafey M, Said E. The interplay of the inhibitory effect of nifuroxazide on NF-κB/STAT3 signaling attenuates acetic acid-induced ulcerative colitis in rats. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2020; 79:103433. [PMID: 32526270 DOI: 10.1016/j.etap.2020.103433] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/31/2020] [Accepted: 06/01/2020] [Indexed: 06/11/2023]
Abstract
Ulcerative colitis (UC) is a disease of increased worldwide prevalence. UC progression is associated with serious complications that leave the patient with considerable health burdens. Nifuroxazide is an oral nitrofuran antibiotic used as antidiarrheal medication. The current study places an emphasis on investigating the potential therapeutic effectiveness of nifuroxazide (10 mg/kg) and (20 mg/kg) against acetic acid (AA)-induced UC. Intra-rectal AA induced a significant colonic injury and impairment of colonic biochemical and functional incidences. Nifuroxazide in a dose-dependent manner significantly corrected UC associated injury. Macroscopic scoring of UC, serum lactate dehydrogenase (LDH) activity, C-reactive protein (CRP) titer, colon malondialdehyde (MDA) and total nitric oxide (NOx) contents significantly declined. Meanwhile, serum total antioxidant capacity (TAC) and colon catalase, superoxide dismutase (SOD) and glutathione transferase (GST) activities and reduced glutathione (GSH) concentration significantly increased in a dose-dependent way. Ultimately, histopathological, immunohistochemical and ultramicroscopic analysis of colon specimen revealed significant improvement. To pinpoint the mechanistic pathway underlying the curative effect of nifuroxazide, colon expression of NF-κB, caspase-3 was evaluated along with STAT-3 activation. Nifuroxazide induced a dose-dependent significant suppression of NF-κB and caspase-3 signaling together with STAT3 signaling. In conclusion; nifuroxazide can be proposed as a therapeutic candidate to attenuate UC and its associated symptoms. The potential underlying mechanism involves suppression of NF-κB/STAT-3/caspase- signaling.
Collapse
Affiliation(s)
- Yousra M El-Far
- Dep. of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Nehal M Elsherbiny
- Dep. of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt; Dep. of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Mohamed El-Shafey
- Anatomy and Embryology Department, Faculty of Medicine, Mansoura University, Mansoura, Dakhalia Governorate, Egypt; Physiological Sciences Department, Fakeeh College for Medical Sciences, Jeddah, Saudi Arabia
| | - Eman Said
- Dep. of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt.
| |
Collapse
|
495
|
Matsumoto Y, Fujino Y, Furue H. Anti-nociceptive and anxiolytic effects of systemic flupirtine and its direct inhibitory actions on in vivo neuronal mechanical sensory responses in the adult rat anterior cingulate cortex. Biochem Biophys Res Commun 2020; 531:528-534. [DOI: 10.1016/j.bbrc.2020.07.129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 07/28/2020] [Indexed: 11/26/2022]
|
496
|
Ocular prodrugs: Attributes and challenges. Asian J Pharm Sci 2020; 16:175-191. [PMID: 33995612 PMCID: PMC8105420 DOI: 10.1016/j.ajps.2020.08.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 08/17/2020] [Accepted: 08/26/2020] [Indexed: 11/23/2022] Open
Abstract
Ocular drug delivery is one of the most attention-grabbing and challenging endeavors among the numerous existing drug delivery systems. From a drug delivery point of view, eye is an intricate organ to investigate and explore. In spite of many limitations, advancements have been made with the intention of improving the residence time or permeation of the drug in the ocular region. Poor bioavailability of topically administered drugs is the major issue pertaining to ocular drug delivery. Several efforts have been made towards improving precorneal residence time and corneal penetration, e.g. iontophoresis, prodrugs and ion-pairing, etc. Prodrug approach (chemical approach) has been explored by the formulation scientists to optimize the physicochemical and biochemical properties of drug molecules for improving ocular bioavailability. Formulation of ocular prodrugs is a challenging task as they should exhibit optimum chemical stability as well as enzymatic liability so that they are converted into parent drug after administration at the desired pace. This review will encompass the concept of derivatization and recent academic and industrial advancements in the field of ocular prodrugs. The progression in prodrug designing holds a potential future for ophthalmic drug delivery.
Collapse
|
497
|
Preparation and Evaluation of Cubosomes/Cubosomal Gels for Ocular Delivery of Beclomethasone Dipropionate for Management of Uveitis. Pharm Res 2020; 37:198. [PMID: 32968868 DOI: 10.1007/s11095-020-02857-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 06/10/2020] [Indexed: 02/07/2023]
Abstract
PURPOSE Topical corticosteroids administration is commonly used for management of various ocular conditions especially those affecting the anterior segment of the eye. Poor solubility and limited pre-corneal residence time result in insufficient drug penetration to the outer (cornea and conjunctival-scleral) coats of the eye. This study aimed to prepare and evaluate cubosomes for prolonging residence time and enhancing ocular bioavailability of BDP. METHODS GMO-cubosomes were prepared using the top-down technique. Two stabilizers were investigated: poloxamer 407 and solulan C24. Particle size, EE %, polarized-light microscopy, TEM, in vitro release, transcorneal permeation, BCOP, histopathology and in vivo evaluation for treatment of uveitis in a rabbits' model were studied. RESULTS The prepared cubosomes were of nano-sizes (100 nm - 278 nm); EE% was around 94%. The cubosomes were confirmed by visualizing the "Maltese crosses" textures. Transcorneal permeation was significantly (p < 0.05) improved, compared to BDP-suspension (the control formulation). The optimized cubosomes F1P was incorporated in CMC gel (Cubo-gel). The prepared Cubo-gel formulations showed better rheological characteristics and high ocular tolerability. Superior anti-inflammatory properties were recorded for the Cubo-gel for treatment of endotoxin-induced uveitis in the rabbit model when compared to the control BDP-suspension. CONCLUSIONS Transcorneal permeation parameters Papp and flux and AUC0-10h markedly enhanced by up to 4-, 5.8-and 5.5-fold respectively, compared to the control BDP-suspension formulation. This study suggested that cubosomes/Cubo-gel could be an auspicious ocular delivery system for BDP that was able to effectively treat uveitis (a disease of the posterior segment of the eye).
Collapse
|
498
|
Protein phosphatase 1 in tumorigenesis: is it worth a closer look? Biochim Biophys Acta Rev Cancer 2020; 1874:188433. [PMID: 32956763 DOI: 10.1016/j.bbcan.2020.188433] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/26/2020] [Accepted: 09/12/2020] [Indexed: 02/06/2023]
Abstract
Cancer cells take advantage of signaling cascades to meet their requirements for sustained growth and survival. Cell signaling is tightly controlled by reversible protein phosphorylation mechanisms, which require the counterbalanced action of protein kinases and protein phosphatases. Imbalances on this system are associated with cancer development and progression. Protein phosphatase 1 (PP1) is one of the most relevant protein phosphatases in eukaryotic cells. Despite the widely recognized involvement of PP1 in key biological processes, both in health and disease, its relevance in cancer has been largely neglected. Here, we provide compelling evidence that support major roles for PP1 in tumorigenesis.
Collapse
|
499
|
Dogra A, Kaur K, Ali J, Baboota S, Narang RS, Narang JK. Nanoformulations for Ocular Delivery of Drugs - A Patent Perspective. ACTA ACUST UNITED AC 2020; 13:255-272. [PMID: 31985387 DOI: 10.2174/1872211314666200127101149] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 11/05/2019] [Accepted: 12/09/2019] [Indexed: 01/29/2023]
Abstract
Efficient delivery of ocular therapeutics with improved efficacy, enhanced bioavailability, and acceptable patient compliance presents unique challenges. This can be attributed to the presence of protective mechanisms, physicobiological barriers, and structural obstacles in the eye. Nanotherapeutic interventions have been explored extensively over the past few years to overcome these limitations. The present review focusses on the nanoformulations developed for the diagnosis and treatment of various ocular diseases besides providing an in-depth insight into the patents reported for the same.
Collapse
Affiliation(s)
- Anmol Dogra
- Department of Pharmaceutics, Khalsa College of Pharmacy, Amritsar, Punjab-143001, India
| | - Kuljeet Kaur
- Department of Pharmaceutics, Khalsa College of Pharmacy, Amritsar, Punjab-143001, India
| | - Javed Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| | - Sanjula Baboota
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| | - Ramandeep Singh Narang
- Department of Oral & Maxillofacial Pathology and Microbiology, Sri Guru Ram Das Institute of Dental Sciences and Research, Amritsar, Punjab-143001, India
| | - Jasjeet Kaur Narang
- Department of Pharmaceutics, Khalsa College of Pharmacy, Amritsar, Punjab-143001, India
| |
Collapse
|
500
|
Gelling hypotonic polymer solution for extended topical drug delivery to the eye. Nat Biomed Eng 2020; 4:1053-1062. [PMID: 32895514 PMCID: PMC7655548 DOI: 10.1038/s41551-020-00606-8] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 07/28/2020] [Indexed: 01/19/2023]
Abstract
Eye-drop formulations should hold as high a concentration of soluble drug in contact with ocular epithelium for as long as possible. However, eye tears and frequent blinking limit drug retention on the ocular surface, and gelling drops typically form clumps that blur vision. Here, we describe a gelling hypotonic solution containing a low concentration of a thermosensitive triblock copolymer, for extended ocular drug delivery. On topical application, the hypotonic formulation forms a highly uniform and clear thin layer that conforms to the ocular surface and resists clearance from blinking, significantly increasing the intraocular absorption of hydrophilic and hydrophobic drugs and extending the drug–ocular-epithelium contact time with respect to conventional thermosensitive gelling formulations and commercial eye drops. We also show that the conformal gel layer allows for therapeutically relevant drug delivery to the eyeball’s posterior segment in pigs. Our findings highlight the importance of formulations that conform to the ocular surface prior to viscosity enhancement, for increased and prolonged ocular-surface contact and drug absorption.
Collapse
|