451
|
Fu X, Shi Y, Qi T, Qiu S, Huang Y, Zhao X, Sun Q, Lin G. Precise design strategies of nanomedicine for improving cancer therapeutic efficacy using subcellular targeting. Signal Transduct Target Ther 2020; 5:262. [PMID: 33154350 PMCID: PMC7644763 DOI: 10.1038/s41392-020-00342-0] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/26/2020] [Accepted: 09/14/2020] [Indexed: 01/10/2023] Open
Abstract
Therapeutic efficacy against cancer relies heavily on the ability of the therapeutic agents to reach their final targets. The optimal targets of most cancer therapeutic agents are usually biological macromolecules at the subcellular level, which play a key role in carcinogenesis. Therefore, to improve the therapeutic efficiency of drugs, researchers need to focus on delivering not only the therapeutic agents to the target tissues and cells but also the drugs to the relevant subcellular structures. In this review, we discuss the most recent construction strategies and release patterns of various cancer cell subcellular-targeting nanoformulations, aiming at providing guidance in the overall design of precise nanomedicine. Additionally, future challenges and potential perspectives are illustrated in the hope of enhancing anticancer efficacy and accelerating the translational progress of precise nanomedicine.
Collapse
Affiliation(s)
- Xianglei Fu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Yanbin Shi
- School of Mechanical and Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong, China
| | - Tongtong Qi
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Shengnan Qiu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Yi Huang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Xiaogang Zhao
- The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, Shandong, China
| | - Qifeng Sun
- The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, Shandong, China
| | - Guimei Lin
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.
| |
Collapse
|
452
|
Ji ML, Jiang H, Wu F, Geng R, Ya LK, Lin YC, Xu JH, Wu XT, Lu J. Precise targeting of miR-141/200c cluster in chondrocytes attenuates osteoarthritis development. Ann Rheum Dis 2020; 80:356-366. [PMID: 33109602 DOI: 10.1136/annrheumdis-2020-218469] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/24/2020] [Accepted: 10/06/2020] [Indexed: 02/05/2023]
Abstract
OBJECTIVES Despite preclinical studies involving miRNA therapeutics conducted in osteoarthritis (OA) over the years, none of these miRNAs have yet translated to clinical applications, owing largely to the lack of efficient intra-articular (IA) delivery systems. Here, we investigated therapeutic efficacy of the chondrocyte-specific aptamer-decorated PEGylated polyamidoamine nanoparticles (NPs)-based miRNAs delivery for OA. METHODS The role of miR-141/200c cluster during skeletal and OA development was examined by miR-141/200cflox/flox mice and Col2a1-CreERT2; miR-141/200cflox/flox mice. Histological analysis was performed in mouse joints and human cartilage specimens. Chondrocyte-specific aptamer-decorated NPs was designed, and its penetration, stability and safety were evaluated. OA progression was assessed by micro-CT analysis, X-ray and Osteoarthritis Research Society International scores after destabilising the medial meniscus surgery with miR-141/200c manipulation by NPs IA injection. Mass spectrometry analysis, molecular docking and molecular dynamics simulations were performed to investigate the interaction between aptamer and receptor. RESULTS Increased retention of NPs inside joint space is observed. The NPs are freely and deeply penetrant to mice and human cartilage, and unexpectedly persist in chondrocytes for at least 5 weeks. OA chondrocytes microenviroment improves endo/lysosomal escape of microRNAs (miRNAs). Therapeutically, IA injection of miR-141/200c inhibitors provides strong chondroprotection, whereas ectopic expression of miR-141/200c exacerbates OA. Mechanistically, miR-141/200c promotes OA by targeting SIRT1, which acetylates histone in the promoters of interleukin 6 (IL-6), thereby activating IL-6/STAT3 pathway. CONCLUSIONS Our findings indicate that this nanocarrier can optimise the transport kinetics of miR-141/200c into chondrocytes, fostering miRNA-specific disease-modifying OA drugs development.
Collapse
Affiliation(s)
- Ming-Liang Ji
- The department of Orthopaedic Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Hua Jiang
- Department of Spine Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Fei Wu
- The department of Orthopaedic Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Rui Geng
- The department of Orthopaedic Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Li Kun Ya
- The department of Orthopaedic Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Yu Cheng Lin
- The department of Orthopaedic Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Ji Hao Xu
- The department of Orthopaedic Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Xiao Tao Wu
- The department of Orthopaedic Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Jun Lu
- Department of Orthopaedic Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| |
Collapse
|
453
|
Omar MH, Scott JD. AKAP Signaling Islands: Venues for Precision Pharmacology. Trends Pharmacol Sci 2020; 41:933-946. [PMID: 33082006 DOI: 10.1016/j.tips.2020.09.007] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 09/21/2020] [Accepted: 09/24/2020] [Indexed: 12/19/2022]
Abstract
Regulatory enzymes often have different roles in distinct subcellular compartments. Yet, most drugs indiscriminately saturate the cell. Thus, subcellular drug-delivery holds promise as a means to reduce off-target pharmacological effects. A-kinase anchoring proteins (AKAPs) sequester combinations of signaling enzymes within subcellular microdomains. Targeting drugs to these 'signaling islands' offers an opportunity for more precise delivery of therapeutics. Here, we review mechanisms that bestow protein kinase A (PKA) versatility inside the cell, appraise recent advances in exploiting AKAPs as platforms for precision pharmacology, and explore the impact of methodological innovations on AKAP research.
Collapse
Affiliation(s)
- Mitchell H Omar
- Department of Pharmacology, University of Washington, Seattle, WA, 98195, USA
| | - John D Scott
- Department of Pharmacology, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
454
|
Nanomedicine for Ischemic Stroke. Int J Mol Sci 2020; 21:ijms21207600. [PMID: 33066616 PMCID: PMC7590220 DOI: 10.3390/ijms21207600] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/11/2020] [Accepted: 10/12/2020] [Indexed: 02/07/2023] Open
Abstract
Stroke is a severe brain disease leading to disability and death. Ischemic stroke dominates in stroke cases, and there are no effective therapies in clinic, partly due to the challenges in delivering therapeutics to ischemic sites in the brain. This review is focused on the current knowledge of pathogenesis in ischemic stroke, and its potential therapies and diagnosis. Furthermore, we present recent advances in developments of nanoparticle-based therapeutics for improved treatment of ischemic stroke using polymeric NPs, liposomes and cell-derived nanovesicles. We also address several critical questions in ischemic stroke, such as understanding how nanoparticles cross the blood brain barrier and developing in vivo imaging technologies to address this critical question. Finally, we discuss new opportunities in developing novel therapeutics by targeting activated brain endothelium and inflammatory neutrophils to improve the current therapies for ischemic stroke.
Collapse
|
455
|
Chakraborty A, Lasola JJM, Truong N, Pearson RM. Serum-Independent Nonviral Gene Delivery to Innate and Adaptive Immune Cells Using Immunoplexes. ACS APPLIED BIO MATERIALS 2020; 3:6263-6272. [PMID: 34604713 PMCID: PMC8486289 DOI: 10.1021/acsabm.0c00761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Genetic engineering of innate and adaptive immune cells represents a potential solution to treat numerous immune-mediated pathologies. Current immune engineering methods to introduce nucleic acids into cells with high efficiency rely on physical mechanisms such as electroporation, viral vectors, or other chemical methods. Gene delivery using non-viral nanoparticles offers significant flexibility in biomaterial design to tune critical parameters such as nano-bio interactions, transfection efficiency, and toxicity profiles. However, their clinical utility has been limited due to complex synthetic procedures, high toxicity at increased polymer (nitrogen, N) to DNA ratios (phosphate, P) (N/P ratios), poor transfection efficiency and nanoparticle stability in the presence of serum, and short-term gene expression. Here, we describe the development of a simple, polymer-based non-viral gene delivery platform based on simple modifications of polyethylenimine (PEI) that displays potent and serum-independent transfection of innate and adaptive immune cells. Cationic acetylated PEI (Ac-PEI) was synthesized and complexed with plasmid DNA (pDNA) followed by enveloping with an anionic polyelectrolyte layer of poly(ethylene-alt-maleic acid) (PEMA) to form immunoplexes (IPs). Cellular interactions and gene expression could be precisely controlled in murine RAW 264.7 macrophages, murine DC2.4 dendritic cells, and human Jurkat T cells by altering the levels of PEMA envelopment, thus providing a strategy to engineer specific cell targeting into the IP platform. Optimally formulated IPs for immune cell transfection in the presence of serum utilized high N/P ratios to enable high stability, displayed reduced toxicity, high gene expression, and a lengthened duration of gene expression (>3 days) compared to non-enveloped controls. These results demonstrate the potential of engineered IPs to serve as simple, modular, targetable, and efficient non-viral gene delivery platform to efficiently alter gene expression within cells of the immune system.
Collapse
Affiliation(s)
- Atanu Chakraborty
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N. Pine Street, Baltimore, MD 21201
| | - Jackline Joy Martín Lasola
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 W. Baltimore Street, Baltimore, MD 21201
| | - Nhu Truong
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N. Pine Street, Baltimore, MD 21201
| | - Ryan M. Pearson
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N. Pine Street, Baltimore, MD 21201
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 W. Baltimore Street, Baltimore, MD 21201
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, 22 S. Greene Street, Baltimore, MD 21201
| |
Collapse
|
456
|
Thomsen T, Ayoub AB, Psaltis D, Klok HA. Fluorescence-Based and Fluorescent Label-Free Characterization of Polymer Nanoparticle Decorated T Cells. Biomacromolecules 2020; 22:190-200. [PMID: 32869972 DOI: 10.1021/acs.biomac.0c00969] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cells are attractive carriers for the transport and delivery of nanoparticulate cargo. The use of cell-based carriers allows one to enhance control over the biodistribution of drug-loaded polymers and polymer nanoparticles. One key element in the development of cell-based delivery systems is the loading of the cell-based carrier with the nanoparticle cargo, which can be achieved either by internalization of the payload or by immobilization on the cell surface. The surface modification of cells with nanoparticles or the internalization of nanoparticles by cells is usually monitored with fluorescence-based techniques, such as flow cytometry and confocal microscopy. In spite of the widespread use of these techniques, the use of fluorescent labels also poses some risks and has several drawbacks. Fluorescent dyes may bleach, or leach from, the nanoparticles or alter the physicochemical properties of nanoparticles and their interactions with and uptake by cells. Using poly(d,l-lactic acid) nanoparticles that are loaded with Coumarin 6, BODIPY 493/503, or DiO dyes as a model system, this paper demonstrates that the use of physically entrapped fluorescent labels can lead to false negative or erroneous results. The use of nanoparticles that contain covalently tethered fluorescent dyes instead was found to provide a robust approach to monitor cell surface conjugation reactions and to quantitatively analyze nanoparticle-decorated cells. Finally, it is shown that optical diffraction tomography is an attractive, alternative technique for the characterization of nanoparticle-decorated cells, which obviates the need for fluorescent labels.
Collapse
Affiliation(s)
- Tanja Thomsen
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères, École Polytechnique Fédérale de Lausanne (EPFL), Bâtiment MXD, Station 12, CH-1015 Lausanne, Switzerland
| | - Ahmed B Ayoub
- Institute of Microengineering, Optics Laboratory, École Polytechnique Fédérale de Lausanne (EPFL), Bâtiment BM, Station 17, CH-1015 Lausanne, Switzerland
| | - Demetri Psaltis
- Institute of Microengineering, Optics Laboratory, École Polytechnique Fédérale de Lausanne (EPFL), Bâtiment BM, Station 17, CH-1015 Lausanne, Switzerland
| | - Harm-Anton Klok
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères, École Polytechnique Fédérale de Lausanne (EPFL), Bâtiment MXD, Station 12, CH-1015 Lausanne, Switzerland
| |
Collapse
|
457
|
Zhuang J, Zhou L, Tang W, Ma T, Li H, Wang X, Chen C, Wang P. Tumor targeting antibody-conjugated nanocarrier with pH/thermo dual-responsive macromolecular film layer for enhanced cancer chemotherapy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 118:111361. [PMID: 33254980 DOI: 10.1016/j.msec.2020.111361] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 07/19/2020] [Accepted: 08/05/2020] [Indexed: 12/24/2022]
Abstract
In response to changeful tumor environment, self-targeting antibody-mediated drug nanocarrier with functionalization have been broadly developed to realize specific antitumor efficacy. In this work, an antibody-conjugated drug delivery system with pH/temperature dual-responsive property was devised and fabricated based on mesoporous silica nanoparticle (MSN). Briefly, MSN was first modified with the pH/temperature dual-responsive macromolecular copolymer P(NIPAm-co-MAA) via a precipitation polymerization method, and then grafted with the anti-human epidermal growth factor receptor 2 (HER2) single chain antibody fragment (scFv) to specifically target HER2 positive breast cancer cells. With this structure, such targeting nanoparticles eventually exhibited high drug loading capacity and good biocompatibility. Meanwhile, the cumulative in vitro drug release profile displayed a low-level early leakage at neutral pH values/low temperature while remarkably enhanced release at an acidic pH value/high temperature, indicating an apparent pH/temperature-triggered drug release pattern. Moreover, tumor-targeting assay revealed that the anti-HER2 scFv-surface decoration greatly enhanced the cellular uptake of as-prepared nanoparticle through HER2-antibody-mediated endocytosis, as well as improved the uptake selectivity between normal and cancer cells. More importantly, both the in vitro and in vivo anticancer experiments indicated that such targeting dual-responsive nanoplatform could efficiently inhibit the growth of HER2 positive breast cancer with minimal side effects. Collectively, all these results promised such specific-targeted and dual-responsive nanoparticle a smart drug delivery system, and it provided a promising perspective in efficient and controllable cancer therapeutic application.
Collapse
Affiliation(s)
- Jiafeng Zhuang
- State Key Laboratory of Bioreactor Engineering, Biomedical Nanotechnology Center, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Lina Zhou
- State Key Laboratory of Bioreactor Engineering, Biomedical Nanotechnology Center, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Wen Tang
- State Key Laboratory of Bioreactor Engineering, Biomedical Nanotechnology Center, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Tonghao Ma
- State Key Laboratory of Bioreactor Engineering, Biomedical Nanotechnology Center, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Hui Li
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, People's Republic of China.
| | - Xiaoli Wang
- State Key Laboratory of Bioreactor Engineering, Biomedical Nanotechnology Center, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Chao Chen
- State Key Laboratory of Bioreactor Engineering, Biomedical Nanotechnology Center, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, People's Republic of China.
| | - Ping Wang
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, St Paul, MN 55108, USA
| |
Collapse
|
458
|
Tang TT, Wang B, Lv LL, Liu BC. Extracellular vesicle-based Nanotherapeutics: Emerging frontiers in anti-inflammatory therapy. Theranostics 2020; 10:8111-8129. [PMID: 32724461 PMCID: PMC7381724 DOI: 10.7150/thno.47865] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 06/19/2020] [Indexed: 12/19/2022] Open
Abstract
Dysregulated inflammation is a complicated pathological process involved in various diseases, and the treatment of inflammation-linked disorders currently represents an enormous global burden. Extracellular vesicles (EVs) are nanosized, lipid membrane-enclosed vesicles secreted by virtually all types of cells, which act as an important intercellular communicative medium. Considering their capacity to transfer bioactive substances, both unmodified and engineered EVs are increasingly being explored as potential therapeutic agents or therapeutic vehicles. Moreover, as the nature's own delivery tool, EVs possess many desirable advantages, such as stability, biocompatibility, low immunogenicity, low toxicity, and biological barrier permeability. The application of EV-based therapy to combat inflammation, though still in an early stage of development, has profound transformative potential. In this review, we highlight the recent progress in EV engineering for inflammation targeting and modulation, summarize their preclinical applications in the treatment of inflammatory disorders, and present our views on the anti-inflammatory applications of EV-based nanotherapeutics.
Collapse
|
459
|
Ko YC, Lai TY, Hsu SC, Wang FH, Su SY, Chen YL, Tsai ML, Wu CC, Hsiao JR, Chang JY, Wu YM, Robinson DR, Lin CY, Lin SF. Index of Cancer-Associated Fibroblasts Is Superior to the Epithelial-Mesenchymal Transition Score in Prognosis Prediction. Cancers (Basel) 2020; 12:cancers12071718. [PMID: 32605311 PMCID: PMC7408083 DOI: 10.3390/cancers12071718] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 06/23/2020] [Accepted: 06/25/2020] [Indexed: 02/06/2023] Open
Abstract
In many solid tumors, tissue of the mesenchymal subtype is frequently associated with epithelial–mesenchymal transition (EMT), strong stromal infiltration, and poor prognosis. Emerging evidence from tumor ecosystem studies has revealed that the two main components of tumor stroma, namely, infiltrated immune cells and cancer-associated fibroblasts (CAFs), also express certain typical EMT genes and are not distinguishable from intrinsic tumor EMT, where bulk tissue is concerned. Transcriptomic analysis of xenograft tissues provides a unique advantage in dissecting genes of tumor (human) or stroma (murine) origins. By transcriptomic analysis of xenograft tissues, we found that oral squamous cell carcinoma (OSCC) tumor cells with a high EMT score, the computed mesenchymal likelihood based on the expression signature of canonical EMT markers, are associated with elevated stromal contents featured with fibronectin 1 (Fn1) and transforming growth factor-β (Tgfβ) axis gene expression. In conjugation with meta-analysis of these genes in clinical OSCC datasets, we further extracted a four-gene index, comprising FN1, TGFB2, TGFBR2, and TGFBI, as an indicator of CAF abundance. The CAF index is more powerful than the EMT score in predicting survival outcomes, not only for oral cancer but also for the cancer genome atlas (TCGA) pan-cancer cohort comprising 9356 patients from 32 cancer subtypes. Collectively, our results suggest that a further distinction and integration of the EMT score with the CAF index will enhance prognosis prediction, thus paving the way for curative medicine in clinical oncology.
Collapse
Affiliation(s)
- Ying-Chieh Ko
- National Institute of Cancer Research, National Health Research Institutes, Miaoli County 35053, Taiwan; (Y.-C.K.); (Y.-L.C.); (M.-L.T.); (C.-C.W.); (J.-Y.C.)
| | - Ting-Yu Lai
- Institute of Bioinformatics and Structural Biology, National Tsing-Hua University, Hsinchu 30013, Taiwan;
| | - Shu-Ching Hsu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli County 35053, Taiwan; (S.-C.H.); (F.-H.W.)
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung City 80708, Taiwan
- PhD Program in Tissue Engineering and Regenerative Medicine, National Chung Hsing University, Taichung City 40227, Taiwan
| | - Fu-Hui Wang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli County 35053, Taiwan; (S.-C.H.); (F.-H.W.)
| | - Sheng-Yao Su
- Institute of Information Science, Academia Sinica, Taipei 11529, Taiwan; (S.-Y.S.); (C.-Y.L.)
| | - Yu-Lian Chen
- National Institute of Cancer Research, National Health Research Institutes, Miaoli County 35053, Taiwan; (Y.-C.K.); (Y.-L.C.); (M.-L.T.); (C.-C.W.); (J.-Y.C.)
| | - Min-Lung Tsai
- National Institute of Cancer Research, National Health Research Institutes, Miaoli County 35053, Taiwan; (Y.-C.K.); (Y.-L.C.); (M.-L.T.); (C.-C.W.); (J.-Y.C.)
| | - Chung-Chun Wu
- National Institute of Cancer Research, National Health Research Institutes, Miaoli County 35053, Taiwan; (Y.-C.K.); (Y.-L.C.); (M.-L.T.); (C.-C.W.); (J.-Y.C.)
- Translational Cell Therapy Center, Department of Medical Research, China Medical University Hospital, Taichung City 40447, Taiwan
| | - Jenn-Ren Hsiao
- Department of Otolaryngology, Head and Neck Collaborative Oncology Group, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan;
| | - Jang-Yang Chang
- National Institute of Cancer Research, National Health Research Institutes, Miaoli County 35053, Taiwan; (Y.-C.K.); (Y.-L.C.); (M.-L.T.); (C.-C.W.); (J.-Y.C.)
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan
| | - Yi-Mi Wu
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA; (Y.-M.W.); (D.R.R.)
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Dan R. Robinson
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA; (Y.-M.W.); (D.R.R.)
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Chung-Yen Lin
- Institute of Information Science, Academia Sinica, Taipei 11529, Taiwan; (S.-Y.S.); (C.-Y.L.)
| | - Su-Fang Lin
- National Institute of Cancer Research, National Health Research Institutes, Miaoli County 35053, Taiwan; (Y.-C.K.); (Y.-L.C.); (M.-L.T.); (C.-C.W.); (J.-Y.C.)
- Correspondence: ; Tel.: +886-37-206166 (ext. 35107)
| |
Collapse
|
460
|
Glassman PM, Villa CH, Ukidve A, Zhao Z, Smith P, Mitragotri S, Russell AJ, Brenner JS, Muzykantov VR. Vascular Drug Delivery Using Carrier Red Blood Cells: Focus on RBC Surface Loading and Pharmacokinetics. Pharmaceutics 2020; 12:E440. [PMID: 32397513 PMCID: PMC7284780 DOI: 10.3390/pharmaceutics12050440] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 04/30/2020] [Accepted: 05/08/2020] [Indexed: 01/26/2023] Open
Abstract
Red blood cells (RBC) have great potential as drug delivery systems, capable of producing unprecedented changes in pharmacokinetics, pharmacodynamics, and immunogenicity. Despite this great potential and nearly 50 years of research, it is only recently that RBC-mediated drug delivery has begun to move out of the academic lab and into industrial drug development. RBC loading with drugs can be performed in several ways-either via encapsulation within the RBC or surface coupling, and either ex vivo or in vivo-depending on the intended application. In this review, we briefly summarize currently used technologies for RBC loading/coupling with an eye on how pharmacokinetics is impacted. Additionally, we provide a detailed description of key ADME (absorption, distribution, metabolism, elimination) changes that would be expected for RBC-associated drugs and address unique features of RBC pharmacokinetics. As thorough understanding of pharmacokinetics is critical in successful translation to the clinic, we expect that this review will provide a jumping off point for further investigations into this area.
Collapse
Affiliation(s)
- Patrick M. Glassman
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA 19104, USA; (C.H.V.); (J.S.B.)
| | - Carlos H. Villa
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA 19104, USA; (C.H.V.); (J.S.B.)
| | - Anvay Ukidve
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; (A.U.); (Z.Z.); (S.M.)
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138, USA
| | - Zongmin Zhao
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; (A.U.); (Z.Z.); (S.M.)
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138, USA
| | - Paige Smith
- Disruptive Health Technology Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA; (P.S.); (A.J.R.)
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Samir Mitragotri
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; (A.U.); (Z.Z.); (S.M.)
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138, USA
| | - Alan J. Russell
- Disruptive Health Technology Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA; (P.S.); (A.J.R.)
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Jacob S. Brenner
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA 19104, USA; (C.H.V.); (J.S.B.)
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Vladimir R. Muzykantov
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA 19104, USA; (C.H.V.); (J.S.B.)
| |
Collapse
|
461
|
Yin L, Peng C, Tang Y, Yuan Y, Liu J, Xiang T, Liu F, Zhou X, Li X. Biomimetic oral targeted delivery of bindarit for immunotherapy of atherosclerosis. Biomater Sci 2020; 8:3640-3648. [DOI: 10.1039/d0bm00418a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Yeast microcapsule based biomimetic delivery of bindarit at a low dose exerts a good oral targeted therapeutic effect on atherosclerosis.
Collapse
Affiliation(s)
- Luqi Yin
- Department of Pharmaceutics
- College of Pharmacy
- Third Military Medical University
- Chongqing 400038
- China
| | - Cuiping Peng
- Department of Pharmaceutics
- College of Pharmacy
- Third Military Medical University
- Chongqing 400038
- China
| | - Yue Tang
- School of Pharmacy and Bioengineering
- Chongqing University of Technology
- Chongqing 400054
- China
| | - Yuchuan Yuan
- Department of Pharmaceutics
- College of Pharmacy
- Third Military Medical University
- Chongqing 400038
- China
| | - Jiaxing Liu
- Department of Pharmaceutics
- College of Pharmacy
- Third Military Medical University
- Chongqing 400038
- China
| | - Tingting Xiang
- School of Pharmacy and Bioengineering
- Chongqing University of Technology
- Chongqing 400054
- China
| | - Feila Liu
- School of Pharmacy and Bioengineering
- Chongqing University of Technology
- Chongqing 400054
- China
| | - Xing Zhou
- Department of Pharmaceutics
- College of Pharmacy
- Third Military Medical University
- Chongqing 400038
- China
| | - Xiaohui Li
- Department of Pharmaceutics
- College of Pharmacy
- Third Military Medical University
- Chongqing 400038
- China
| |
Collapse
|