451
|
Duffy LC, Raiten DJ, Hubbard VS, Starke-Reed P. Progress and challenges in developing metabolic footprints from diet in human gut microbial cometabolism. J Nutr 2015; 145:1123S-1130S. [PMID: 25833886 PMCID: PMC4410496 DOI: 10.3945/jn.114.194936] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Accepted: 08/07/2014] [Indexed: 12/13/2022] Open
Abstract
Homo sapiens harbor trillions of microbes, whose microbial metagenome (collective genome of a microbial community) using omic validation interrogation tools is estimated to be at least 100-fold that of human cells, which comprise 23,000 genes. This article highlights some of the current progress and open questions in nutrition-related areas of microbiome research. It also underscores the metabolic capabilities of microbial fermentation on nutritional substrates that require further mechanistic understanding and systems biology approaches of studying functional interactions between diet composition, gut microbiota, and host metabolism. Questions surrounding bacterial fermentation and degradation of dietary constituents (particularly by Firmicutes and Bacteroidetes) and deciphering how microbial encoding of enzymes and derived metabolites affect recovery of dietary energy by the host are more complex than previously thought. Moreover, it is essential to understand to what extent the intestinal microbiota is subject to dietary control and to integrate these data with functional metabolic signatures and biomarkers. Many lines of research have demonstrated the significant role of the gut microbiota in human physiology and disease. Probiotic and prebiotic products are proliferating in the market in response to consumer demand, and the science and technology around these products are progressing rapidly. With high-throughput molecular technologies driving the science, studying the bidirectional interactions of host-microbial cometabolism, epithelial cell maturation, shaping of innate immune development, normal vs. dysfunctional nutrient absorption and processing, and the complex signaling pathways involved is now possible. Substantiating the safety and mechanisms of action of probiotic/prebiotic formulations is critical. Beneficial modulation of the human microbiota by using these nutritional and biotherapeutic strategies holds considerable promise as next-generation drugs, vaccinomics, and metabolic agents and in novel food discovery.
Collapse
Affiliation(s)
- Linda C Duffy
- National Center for Complementary and Integrative Health,
| | - Daniel J Raiten
- The Eunice Kennedy Shriver National Institute of Child Health and Human Development
| | - Van S Hubbard
- Division of Nutrition Research Coordination, NIH, US Department of Health and Human Services, Bethesda, MD; and
| | | |
Collapse
|
452
|
Colombo BM, Scalvenzi T, Benlamara S, Pollet N. Microbiota and mucosal immunity in amphibians. Front Immunol 2015; 6:111. [PMID: 25821449 PMCID: PMC4358222 DOI: 10.3389/fimmu.2015.00111] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 02/26/2015] [Indexed: 12/11/2022] Open
Abstract
We know that animals live in a world dominated by bacteria. In the last 20 years, we have learned that microbes are essential regulators of mucosal immunity. Bacteria, archeas, and viruses influence different aspects of mucosal development and function. Yet, the literature mainly covers findings obtained in mammals. In this review, we focus on two major themes that emerge from the comparative analysis of mammals and amphibians. These themes concern: (i) the structure and functions of lymphoid organs and immune cells in amphibians, with a focus on the gut mucosal immune system; and (ii) the characteristics of the amphibian microbiota and its influence on mucosal immunity. Lastly, we propose to use Xenopus tadpoles as an alternative small-animal model to improve the fundamental knowledge on immunological functions of gut microbiota.
Collapse
Affiliation(s)
- Bruno M Colombo
- Institute of Systems and Synthetic Biology, Université d'Evry Val d'Essonne , Evry , France
| | - Thibault Scalvenzi
- Institute of Systems and Synthetic Biology, Université d'Evry Val d'Essonne , Evry , France
| | - Sarah Benlamara
- Institute of Systems and Synthetic Biology, Université d'Evry Val d'Essonne , Evry , France
| | - Nicolas Pollet
- Institute of Systems and Synthetic Biology, CNRS , Evry , France ; Evolution, Genome, Comportement et Ecologie, CNRS, Université Paris-Sud, IRD , Gif-sur-Yvette , France
| |
Collapse
|
453
|
Neuman H, Debelius JW, Knight R, Koren O. Microbial endocrinology: the interplay between the microbiota and the endocrine system. FEMS Microbiol Rev 2015; 39:509-21. [PMID: 25701044 DOI: 10.1093/femsre/fuu010] [Citation(s) in RCA: 361] [Impact Index Per Article: 40.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2014] [Indexed: 12/27/2022] Open
Abstract
The new field of microbiome research studies the microbes within multicellular hosts and the many effects of these microbes on the host's health and well-being. We now know that microbes influence metabolism, immunity and even behavior. Essential questions, which are just starting to be answered, are what are the mechanisms by which these bacteria affect specific host characteristics. One important but understudied mechanism appears to involve hormones. Although the precise pathways of microbiota-hormonal signaling have not yet been deciphered, specific changes in hormone levels correlate with the presence of the gut microbiota. The microbiota produces and secretes hormones, responds to host hormones and regulates expression levels of host hormones. Here, we summarize the links between the endocrine system and the gut microbiota. We categorize these interactions by the different functions of the hormones, including those affecting behavior, sexual attraction, appetite and metabolism, gender and immunity. Future research in this area will reveal additional connections, and elucidate the pathways and consequences of bacterial interactions with the host endocrine system.
Collapse
Affiliation(s)
- Hadar Neuman
- Faculty of medicine, Bar-Ilan University, 1311502 Safed, Israel
| | - Justine W Debelius
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado at Boulder, Boulder, CO 80309, USA
| | - Rob Knight
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado at Boulder, Boulder, CO 80309, USA
| | - Omry Koren
- Faculty of medicine, Bar-Ilan University, 1311502 Safed, Israel
| |
Collapse
|
454
|
Dobson AJ, Chaston JM, Newell PD, Donahue L, Hermann SL, Sannino DR, Westmiller S, Wong ACN, Clark AG, Lazzaro BP, Douglas AE. Host genetic determinants of microbiota-dependent nutrition revealed by genome-wide analysis of Drosophila melanogaster. Nat Commun 2015; 6:6312. [PMID: 25692519 PMCID: PMC4333721 DOI: 10.1038/ncomms7312] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 01/16/2015] [Indexed: 01/03/2023] Open
Abstract
Animals bear communities of gut microorganisms with substantial effects on animal nutrition, but the host genetic basis of these effects is unknown. Here, we use Drosophila to demonstrate substantial among-genotype variation in the effects of eliminating the gut microbiota on five host nutritional indices (weight, and protein, lipid, glucose and glycogen contents); this includes variation in both the magnitude and direction of microbiota-dependent effects. Genome-wide associations to identify the genetic basis of the microbiota-dependent variation reveal polymorphisms in largely non-overlapping sets of genes associated with variation in the nutritional traits, including strong representation of conserved genes functioning in signaling. Key genes identified by the GWA study are validated by loss-of-function mutations that altered microbiota-dependent nutritional effects. We conclude that the microbiota interacts with the animal at multiple points in the signaling and regulatory networks that determine animal nutrition. These interactions with the microbiota are likely conserved across animals, including humans.
Collapse
Affiliation(s)
- Adam J Dobson
- Department of Entomology, Cornell University, Ithaca, New York 14853, USA
| | - John M Chaston
- Department of Entomology, Cornell University, Ithaca, New York 14853, USA
| | - Peter D Newell
- Department of Entomology, Cornell University, Ithaca, New York 14853, USA
| | - Leanne Donahue
- Department of Entomology, Cornell University, Ithaca, New York 14853, USA
| | - Sara L Hermann
- Department of Entomology, Cornell University, Ithaca, New York 14853, USA
| | - David R Sannino
- Department of Microbiology, Cornell University, Ithaca, New York 14853, USA
| | | | - Adam C-N Wong
- Department of Entomology, Cornell University, Ithaca, New York 14853, USA
| | - Andrew G Clark
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| | - Brian P Lazzaro
- Department of Entomology, Cornell University, Ithaca, New York 14853, USA
| | - Angela E Douglas
- 1] Department of Entomology, Cornell University, Ithaca, New York 14853, USA [2] Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
455
|
Yamada R, Deshpande SA, Bruce KD, Mak EM, Ja WW. Microbes Promote Amino Acid Harvest to Rescue Undernutrition in Drosophila. Cell Rep 2015; 10:865-872. [PMID: 25683709 DOI: 10.1016/j.celrep.2015.01.018] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 11/23/2014] [Accepted: 12/23/2014] [Indexed: 01/08/2023] Open
Abstract
Microbes play an important role in the pathogenesis of nutritional disorders such as protein-specific malnutrition. However, the precise contribution of microbes to host energy balance during undernutrition is unclear. Here, we show that Issatchenkia orientalis, a fungal microbe isolated from field-caught Drosophila melanogaster, promotes amino acid harvest to rescue the lifespan of undernourished flies. Using radioisotope-labeled dietary components (amino acids, nucleotides, and sucrose) to quantify nutrient transfer from food to microbe to fly, we demonstrate that I. orientalis extracts amino acids directly from nutrient-poor diets and increases protein flux to the fly. This microbial association restores body mass, protein, glycerol, and ATP levels and phenocopies the metabolic profile of adequately fed flies. Our study uncovers amino acid harvest as a fundamental mechanism linking microbial and host metabolism, and highlights Drosophila as a platform for quantitative studies of host-microbe relationships.
Collapse
Affiliation(s)
- Ryuichi Yamada
- Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Sonali A Deshpande
- Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Kimberley D Bruce
- Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Elizabeth M Mak
- Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - William W Ja
- Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, FL 33458, USA.
| |
Collapse
|
456
|
Bacterial uracil modulates Drosophila DUOX-dependent gut immunity via Hedgehog-induced signaling endosomes. Cell Host Microbe 2015; 17:191-204. [PMID: 25639794 DOI: 10.1016/j.chom.2014.12.012] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 10/27/2014] [Accepted: 12/10/2014] [Indexed: 12/27/2022]
Abstract
Genetic studies in Drosophila have demonstrated that generation of microbicidal reactive oxygen species (ROS) through the NADPH dual oxidase (DUOX) is a first line of defense in the gut epithelia. Bacterial uracil acts as DUOX-activating ligand through poorly understood mechanisms. Here, we show that the Hedgehog (Hh) signaling pathway modulates uracil-induced DUOX activation. Uracil-induced Hh signaling is required for intestinal expression of the calcium-dependent cell adhesion molecule Cadherin 99C (Cad99C) and subsequent Cad99C-dependent formation of endosomes. These endosomes play essential roles in uracil-induced ROS production by acting as signaling platforms for PLCβ/PKC/Ca2+-dependent DUOX activation. Animals with impaired Hh signaling exhibit abolished Cad99C-dependent endosome formation and reduced DUOX activity, resulting in high mortality during enteric infection. Importantly, endosome formation, DUOX activation, and normal host survival are restored by genetic reintroduction of Cad99C into enterocytes, demonstrating the important role for Hh signaling in host resistance to enteric infection.
Collapse
|
457
|
Venu I, Durisko Z, Xu J, Dukas R. Social attraction mediated by fruit flies' microbiome. ACTA ACUST UNITED AC 2015; 217:1346-52. [PMID: 24744425 DOI: 10.1242/jeb.099648] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Larval and adult fruit flies are attracted to volatiles emanating from food substrates that have been occupied by larvae. We tested whether such volatiles are emitted by the larval gut bacteria by conducting tests under bacteria-free (axenic) conditions. We also tested attraction to two bacteria species, Lactobacillus brevis, which we cultured from larvae in our lab, and L. plantarum, a common constituent of fruit flies' microbiome in other laboratory populations and in wild fruit flies. Neither larvae nor adults showed attraction to axenic food that had been occupied by axenic larvae, but both showed the previously reported attraction to standard food that had been occupied by larvae with an intact microbiome. Larvae also showed significant attraction to volatiles from axenic food and larvae to which we added only either L. brevis or L. plantarum, and volatiles from L. brevis reared on its optimal growth medium. Controlled learning experiments indicated that larvae experienced with both standard and axenic used food do not perceive either as superior, while focal larvae experienced with simulated used food, which contains burrows, perceive it as superior to unused food. Our results suggest that flies rely on microbiome-derived volatiles for long-distance attraction to suitable food patches. Under natural settings, fruits often contain harmful fungi and bacteria, and both L. brevis and L. plantarum produce compounds that suppress the growth of some antagonistic fungi and bacteria. The larval microbiome volatiles may therefore lead prospective fruit flies towards substrates with a hospitable microbial environment.
Collapse
Affiliation(s)
- Isvarya Venu
- Animal Behaviour Group, Department of Psychology, Neuroscience and Behaviour, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada
| | | | | | | |
Collapse
|
458
|
Jašarević E, Rodgers AB, Bale TL. A novel role for maternal stress and microbial transmission in early life programming and neurodevelopment. Neurobiol Stress 2015; 1:81-88. [PMID: 25530984 PMCID: PMC4267059 DOI: 10.1016/j.ynstr.2014.10.005] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Revised: 10/18/2014] [Accepted: 10/20/2014] [Indexed: 12/13/2022] Open
Abstract
Perturbations in the prenatal and early life environment can contribute to the development of offspring stress dysregulation, a pervasive symptom in neuropsychiatric disease. Interestingly, the vertical transmission of maternal microbes to offspring and the subsequent bacterial colonization of the neonatal gut overlap with a critical period of brain development. Therefore, environmental factors such as maternal stress that are able to alter microbial populations and their transmission can thereby shape offspring neurodevelopment. As the neonatal gastrointestinal tract is primarily inoculated at parturition through the ingestion of maternal vaginal microflora, disruption in the vaginal ecosystem may have important implications for offspring neurodevelopment and disease risk. Here, we discuss alterations that occur in the vaginal microbiome following maternal insult and the subsequent effects on bacterial assembly of the neonate gut, the production of neuromodulatory metabolites, and the developmental course of stress regulation.
Collapse
Affiliation(s)
| | | | - Tracy L. Bale
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
459
|
|
460
|
Meyer SN, Amoyel M, Bergantiños C, de la Cova C, Schertel C, Basler K, Johnston LA. An ancient defense system eliminates unfit cells from developing tissues during cell competition. Science 2014; 346:1258236. [PMID: 25477468 DOI: 10.1126/science.1258236] [Citation(s) in RCA: 157] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Developing tissues that contain mutant or compromised cells present risks to animal health. Accordingly, the appearance of a population of suboptimal cells in a tissue elicits cellular interactions that prevent their contribution to the adult. Here we report that this quality control process, cell competition, uses specific components of the evolutionarily ancient and conserved innate immune system to eliminate Drosophila cells perceived as unfit. We find that Toll-related receptors (TRRs) and the cytokine Spätzle (Spz) lead to NFκB-dependent apoptosis. Diverse "loser" cells require different TRRs and NFκB factors and activate distinct pro-death genes, implying that the particular response is stipulated by the competitive context. Our findings demonstrate a functional repurposing of components of TRRs and NFκB signaling modules in the surveillance of cell fitness during development.
Collapse
Affiliation(s)
- S N Meyer
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - M Amoyel
- Department of Genetics and Development, Columbia University, New York, NY 10032, USA
| | - C Bergantiños
- Department of Genetics and Development, Columbia University, New York, NY 10032, USA
| | - C de la Cova
- Department of Genetics and Development, Columbia University, New York, NY 10032, USA
| | - C Schertel
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - K Basler
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland.
| | - L A Johnston
- Department of Genetics and Development, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
461
|
Jasper H. Exploring the physiology and pathology of aging in the intestine of Drosophila melanogaster. INVERTEBR REPROD DEV 2014; 59:51-58. [PMID: 26136621 PMCID: PMC4463993 DOI: 10.1080/07924259.2014.963713] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 07/10/2014] [Indexed: 12/14/2022]
Abstract
The gastrointestinal tract, due to its role as a digestive organ and as a barrier between the exterior and interior milieus, is critically impacted by dietary, environmental, and inflammatory conditions that influence health and lifespan. Work in flies is now uncovering the multifaceted molecular mechanisms that control homeostasis in this tissue, and establishing its central role in health and lifespan of metazoans. The Drosophila intestine has thus emerged as a productive, genetically accessible model to study various aspects of the pathophysiology of aging. Studies in flies have characterized the maintenance of regenerative homeostasis, the development of immune senescence, the loss of epithelial barrier function, the decline in metabolic homeostasis, as well as the maintenance of epithelial diversity in this tissue. Due to its fundamental similarity to vertebrate intestines, it can be anticipated that findings obtained in this system will have important implications for our understanding of age-related changes in the human intestine. Here, I review recent studies exploring age-related changes in the fly intestine, and their insight into the regulation of health and lifespan of the animal.
Collapse
Affiliation(s)
- Heinrich Jasper
- Buck Institute for Research on Aging , 8001 Redwood Boulevard, Novato , CA 94945-1400 , USA
| |
Collapse
|
462
|
Buchon N, Silverman N, Cherry S. Immunity in Drosophila melanogaster--from microbial recognition to whole-organism physiology. Nat Rev Immunol 2014; 14:796-810. [PMID: 25421701 PMCID: PMC6190593 DOI: 10.1038/nri3763] [Citation(s) in RCA: 541] [Impact Index Per Article: 54.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Since the discovery of antimicrobial peptide responses 40 years ago, the fruit fly Drosophila melanogaster has proven to be a powerful model for the study of innate immunity. Early work focused on innate immune mechanisms of microbial recognition and subsequent nuclear factor-κB signal transduction. More recently, D. melanogaster has been used to understand how the immune response is regulated and coordinated at the level of the whole organism. For example, researchers have used this model in studies investigating interactions between the microbiota and the immune system at barrier epithelial surfaces that ensure proper nutritional and immune homeostasis both locally and systemically. In addition, studies in D. melanogaster have been pivotal in uncovering how the immune response is regulated by both endocrine and metabolic signalling systems, and how the immune response modifies these systems as part of a homeostatic circuit. In this Review, we briefly summarize microbial recognition and antiviral immunity in D. melanogaster, and we highlight recent studies that have explored the effects of organism-wide regulation of the immune response and, conversely, the effects of the immune response on organism physiology.
Collapse
Affiliation(s)
- Nicolas Buchon
- Department of Entomology, Cornell University, Ithaca, New York 14853, USA
| | - Neal Silverman
- Division of Infectious Diseases and Immunology, University of Massachusetts School of Medicine, Worcester, Massachusetts 01605, USA
| | - Sara Cherry
- Department of Microbiology, Penn Genome Frontiers Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
463
|
Newell PD, Chaston JM, Wang Y, Winans NJ, Sannino DR, Wong ACN, Dobson AJ, Kagle J, Douglas AE. In vivo function and comparative genomic analyses of the Drosophila gut microbiota identify candidate symbiosis factors. Front Microbiol 2014; 5:576. [PMID: 25408687 PMCID: PMC4219406 DOI: 10.3389/fmicb.2014.00576] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 10/13/2014] [Indexed: 01/21/2023] Open
Abstract
Symbiosis is often characterized by co-evolutionary changes in the genomes of the partners involved. An understanding of these changes can provide insight into the nature of the relationship, including the mechanisms that initiate and maintain an association between organisms. In this study we examined the genome sequences of bacteria isolated from the Drosophila melanogaster gut with the objective of identifying genes that are important for function in the host. We compared microbiota isolates with con-specific or closely related bacterial species isolated from non-fly environments. First the phenotype of germ-free Drosophila (axenic flies) was compared to that of flies colonized with specific bacteria (gnotobiotic flies) as a measure of symbiotic function. Non-fly isolates were functionally distinct from bacteria isolated from flies, conferring slower development and an altered nutrient profile in the host, traits known to be microbiota-dependent. Comparative genomic methods were next employed to identify putative symbiosis factors: genes found in bacteria that restore microbiota-dependent traits to gnotobiotic flies, but absent from those that do not. Factors identified include riboflavin synthesis and stress resistance. We also used a phylogenomic approach to identify protein coding genes for which fly-isolate sequences were more similar to each other than to other sequences, reasoning that these genes may have a shared function unique to the fly environment. This method identified genes in Acetobacter species that cluster in two distinct genomic loci: one predicted to be involved in oxidative stress detoxification and another encoding an efflux pump. In summary, we leveraged genomic and in vivo functional comparisons to identify candidate traits that distinguish symbiotic bacteria. These candidates can serve as the basis for further work investigating the genetic requirements of bacteria for function and persistence in the Drosophila gut.
Collapse
Affiliation(s)
- Peter D Newell
- Department of Entomology, Cornell University Ithaca, NY, USA
| | - John M Chaston
- Department of Entomology, Cornell University Ithaca, NY, USA
| | - Yiping Wang
- Department of Nutritional Science, Cornell University Ithaca, NY, USA
| | - Nathan J Winans
- Department of Microbiology, Cornell University Ithaca, NY, USA
| | - David R Sannino
- Department of Microbiology, Cornell University Ithaca, NY, USA
| | - Adam C N Wong
- Department of Entomology, Cornell University Ithaca, NY, USA
| | - Adam J Dobson
- Department of Entomology, Cornell University Ithaca, NY, USA
| | - Jeanne Kagle
- Department of Biology, Mansfield University Mansfield, PA, USA
| | - Angela E Douglas
- Department of Entomology, Cornell University Ithaca, NY, USA ; Department of Molecular Biology and Genetics, Cornell University Ithaca, NY, USA
| |
Collapse
|
464
|
Dishaw LJ, Cannon JP, Litman GW, Parker W. Immune-directed support of rich microbial communities in the gut has ancient roots. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 47:36-51. [PMID: 24984114 PMCID: PMC4146740 DOI: 10.1016/j.dci.2014.06.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 05/30/2014] [Accepted: 06/21/2014] [Indexed: 05/12/2023]
Abstract
The animal gut serves as a primary location for the complex host-microbe interplay that is essential for homeostasis and may also reflect the types of ancient selective pressures that spawned the emergence of immunity in metazoans. In this review, we present a phylogenetic survey of gut host-microbe interactions and suggest that host defense systems arose not only to protect tissue directly from pathogenic attack but also to actively support growth of specific communities of mutualists. This functional dichotomy resulted in the evolution of immune systems much more tuned for harmonious existence with microbes than previously thought, existing as dynamic but primarily cooperative entities in the present day. We further present the protochordate Ciona intestinalis as a promising model for studying gut host-bacterial dialogue. The taxonomic position, gut physiology and experimental tractability of Ciona offer unique advantages in dissecting host-microbe interplay and can complement studies in other model systems.
Collapse
Affiliation(s)
- Larry J Dishaw
- Department of Pediatrics, University of South Florida Morsani College of Medicine, USF/ACH Children's Research Institute, 140 7th Avenue South, St. Petersburg, FL 33701, USA.
| | - John P Cannon
- Department of Pediatrics, University of South Florida Morsani College of Medicine, USF/ACH Children's Research Institute, 140 7th Avenue South, St. Petersburg, FL 33701, USA
| | - Gary W Litman
- Department of Pediatrics, University of South Florida Morsani College of Medicine, USF/ACH Children's Research Institute, 140 7th Avenue South, St. Petersburg, FL 33701, USA; Department of Molecular Genetics, All Children's Hospital-Johns Hopkins Medicine, 501 6th Avenue South, St. Petersburg, FL 33701, USA
| | - William Parker
- Department of Surgery, Duke University Medical Center, Box 2605, Durham, NC 27710, USA
| |
Collapse
|
465
|
Draft Genome of Chilean Honeybee (Apis mellifera) Gut Strain Lactobacillus kunkeei MP2. GENOME ANNOUNCEMENTS 2014; 2:2/5/e01013-14. [PMID: 25301653 PMCID: PMC4192385 DOI: 10.1128/genomea.01013-14] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Here, we report the first draft genome sequence of Lactobacillus kunkeei strain MP2, isolated from a Chilean honeybee gut. The sequenced genome has a total size of 1.58 Mb distributed into 44 contigs and 1,356 protein-coding sequences.
Collapse
|
466
|
Pernice M, Simpson SJ, Ponton F. Towards an integrated understanding of gut microbiota using insects as model systems. JOURNAL OF INSECT PHYSIOLOGY 2014; 69:12-8. [PMID: 24862156 DOI: 10.1016/j.jinsphys.2014.05.016] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Revised: 05/01/2014] [Accepted: 05/12/2014] [Indexed: 05/26/2023]
Abstract
Metazoans form symbioses with microorganisms that synthesize essential nutritional compounds and increase their efficiency to digest and absorb nutrients. Despite the growing awareness that microbes within the gut play key roles in metabolism, health and development of metazoans, symbiotic relationships within the gut are far from fully understood. Insects, which generally harbor a lower microbial diversity than vertebrates, have recently emerged as potential model systems to study these interactions. In this review, we give a brief overview of the characteristics of the gut microbiota in insects in terms of low diversity but high variability at intra- and interspecific levels and we investigate some of the ecological and methodological factors that might explain such variability. We then emphasize how studies integrating an array of techniques and disciplines have the potential to provide new understanding of the biology of this micro eco-system.
Collapse
Affiliation(s)
- Mathieu Pernice
- School of Biological Sciences, The University of Sydney, NSW 2006, Australia; Plant Functional Biology and Climate Change Cluster, University of Technology Sydney, NSW 2007, Australia
| | - Stephen J Simpson
- School of Biological Sciences, The University of Sydney, NSW 2006, Australia; The Charles Perkins Centre, The University of Sydney, NSW 2006, Australia
| | - Fleur Ponton
- School of Biological Sciences, The University of Sydney, NSW 2006, Australia; The Charles Perkins Centre, The University of Sydney, NSW 2006, Australia.
| |
Collapse
|
467
|
Abstract
Animal-associated bacteria (microbiota) affect host behaviors and physiological traits. To identify bacterial genetic determinants of microbiota-responsive host traits, we employed a metagenome-wide association (MGWA) approach in two steps. First, we measured two microbiota-responsive host traits, development time and triglyceride (TAG) content, in Drosophila melanogaster flies monoassociated with each of 41 bacterial strains. The effects of monoassociation on host traits were not confined to particular taxonomic groups. Second, we clustered protein-coding sequences of the bacteria by sequence similarity de novo and statistically associated the magnitude of the host trait with the bacterial gene contents. The animals had been monoassociated with genome-sequenced bacteria, so the metagenome content was unambiguous. This analysis showed significant effects of pyrroloquinoline quinone biosynthesis genes on development time, confirming the results of a published transposon mutagenesis screen, thereby validating the MGWA; it also identified multiple genes predicted to affect host TAG content, including extracellular glucose oxidation pathway components. To test the validity of the statistical associations, we expressed candidate genes in a strain that lacks them. Monoassociation with bacteria that ectopically expressed a predicted oxidoreductase or gluconate dehydrogenase conferred reduced Drosophila TAG contents relative to the TAG contents in empty vector controls. Consistent with the prediction that glucose oxidation pathway gene expression increased bacterial glucose utilization, the glucose content of the host diet was reduced when flies were exposed to these strains. Our findings indicate that microbiota affect host nutritional status through modulation of nutrient acquisition. Together, these findings demonstrate the utility of MGWA for identifying bacterial determinants of host traits and provide mechanistic insight into how gut microbiota modulate the nutritional status of a model host. To understand how certain gut bacteria promote the health of their animal hosts, we need to identify the bacterial genes that drive these beneficial relationships. This task is challenging because the bacterial communities can vary widely among different host individuals. To overcome this difficulty, we quantified how well each of 41 bacterial species protected Drosophila fruit flies from high fat content. The genomes of the chosen bacterial strains were previously sequenced, so we could statistically associate specific bacterial genes with bacterially mediated reduction in host fat content. Bacterial genes that promote glucose utilization were strongly represented in the association, and introducing these genes into the gut bacteria was sufficient to lower the animal’s fat content. Our method is applicable to the study of many other host-microbe interactions as a way to uncover microbial genes important for host health.
Collapse
|
468
|
Abstract
Metazoans establish with microorganisms complex interactions for their mutual benefits. Drosophila, which has already proven useful host model to study several aspects of innate immunity and host-bacteria pathogenic associations has become a powerful model to dissect the mechanisms behind mutualistic host-microbe interactions. Drosophila microbiota is composed of simple and aerotolerant bacterial communities mostly composed of Lactobacillaceae and Acetobactereaceae. Drosophila mono- or poly-associated with lactobacilli strains constitutes a powerful model to dissect the complex interplay between lactobacilli and host biologic traits. Thanks to the genetic tractability of both Drosophila and lactobacilli this association model offers a great opportunity to reveal the underlying molecular mechanisms. Here, we review our current knowledge about how the Drosophila model is helping our understanding of how lactobacilli shapes host biology.
Collapse
|
469
|
Gut microbiota-generated metabolites in animal health and disease. Nat Chem Biol 2014; 10:416-24. [PMID: 24838170 DOI: 10.1038/nchembio.1535] [Citation(s) in RCA: 469] [Impact Index Per Article: 46.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 04/22/2014] [Indexed: 12/27/2022]
Abstract
Gut microbiota is found in virtually any metazoan, from invertebrates to vertebrates. It has long been believed that gut microbiota, more specifically, the activity of the microbiome and its metabolic products, directly influence a variety of aspects in metazoan physiology. However, the exact molecular relationship among microbe-derived gut metabolites, host signaling pathways, and host physiology remains to be elucidated. Here we review recent discoveries regarding the molecular links between gut metabolites and host physiology in different invertebrate and vertebrate animal models. We describe the different roles of gut microbiome activity and their metabolites in regulating distinct host physiology and the molecular mechanisms by which gut metabolites cause physiological homeostasis via regulating specific host signaling pathways. Future studies in this direction using different animal models will provide the key concepts to understanding the evolutionarily conserved chemical dialogues between gut microbiota and metazoan cells and also human diseases associated with gut microbiota and metabolites.
Collapse
|
470
|
Han X, Geller B, Moniz K, Das P, Chippindale AK, Walker VK. Monitoring the developmental impact of copper and silver nanoparticle exposure in Drosophila and their microbiomes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 487:822-9. [PMID: 24462134 DOI: 10.1016/j.scitotenv.2013.12.129] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 12/04/2013] [Accepted: 12/30/2013] [Indexed: 05/28/2023]
Abstract
There is concern that waste waters containing manufactured metal nanoparticles (NPs) originating from consumer goods, will find their way into streams and larger water bodies. Aquatic invertebrates could be vulnerable to such pollution, and here we have used fruit flies, Drosophila melanogaster, as a model invertebrate, to test for the effect of NPs on fitness. Both copper NP and microparticle (MP)-containing medium slowed development, reduced adult longevity and decreased sperm competition. In contrast, ingestion of silver resulted in a significant reduction in developmental success only if the metal particles were nanosized. Ag NP-treatments resulted in reduced developmental success as assessed by larval and pupal survival as well as larval climbing ability, but there was no impact of silver on adult longevity and little effect on reproductive success. However, Cu NPs generally appeared to be no more toxic to this invertebrate model than the bulk counterpart. The impact of silver ingestion in larvae was further investigated by 454 pyrosequencing of the 16S rRNA genes of the midgut flora. There was a striking reduction in the diversity of the gut microbiota of Ag NP-treated larvae with a rise in the predominance of Lactobacillus brevis and a decrease in Acetobacter compared to control or Ag MP-treatment groups. Importantly, these experiments show that perturbation of the microbial assemblage within a metazoan model may contribute to Ag NP-mediated toxicity. These observations have implications for impact assessments of nanoparticles as emerging contaminants.
Collapse
Affiliation(s)
- Xu Han
- Department of Biology, Queen's University, Kingston, Ontario K7L 3N6, Canada.
| | - Brennen Geller
- Department of Biology, Queen's University, Kingston, Ontario K7L 3N6, Canada.
| | - Kristy Moniz
- Department of Biology, Queen's University, Kingston, Ontario K7L 3N6, Canada.
| | - Pranab Das
- Department of Biology, Queen's University, Kingston, Ontario K7L 3N6, Canada.
| | - Adam K Chippindale
- Department of Biology, Queen's University, Kingston, Ontario K7L 3N6, Canada.
| | - Virginia K Walker
- Department of Biology, Queen's University, Kingston, Ontario K7L 3N6, Canada; School of Environmental Studies, Queen's University, Kingston, Ontario K7L 3N6, Canada.
| |
Collapse
|
471
|
Erkosar B, Leulier F. Transient adult microbiota, gut homeostasis and longevity: Novel insights from the Drosophila
model. FEBS Lett 2014; 588:4250-7. [DOI: 10.1016/j.febslet.2014.06.041] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 06/11/2014] [Accepted: 06/16/2014] [Indexed: 11/26/2022]
|
472
|
Soen Y. Environmental disruption of host-microbe co-adaptation as a potential driving force in evolution. Front Genet 2014; 5:168. [PMID: 24999350 PMCID: PMC4064665 DOI: 10.3389/fgene.2014.00168] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 05/20/2014] [Indexed: 01/08/2023] Open
Abstract
The microbiome is known to have a profound effect on the development, physiology and health of its host. Whether and how it also contributes to evolutionary diversification of the host is, however, unclear. Here we hypothesize that disruption of the microbiome by new stressful environments interferes with host-microbe co-adaptation, contributes to host destabilization, and can drive irreversible changes in the host prior to its genetic adaptation. This hypothesis is based on three presumptions: (1) the microbiome consists of heritable partners which contribute to the stability (canalization) of host development and physiology in frequently encountered environments, (2) upon encountering a stressful new environment, the microbiome adapts much faster than the host, and (3) this differential response disrupts cooperation, contributes to host destabilization and promotes reciprocal changes in the host and its microbiome. This dynamic imbalance relaxes as the host and its microbiome establish a new equilibrium state in which they are adapted to one another and to the altered environment. Over long time in this new environment, the changes in the microbiome contribute to the canalization of the altered state. This scenario supports stability of the adapted patterns, while promoting variability which may be beneficial in new stressful conditions, thus allowing the organism to balance stability and flexibility based on contextual demand. Additionally, interaction between heritable microbial and epigenetic/physiological changes can promote new outcomes which persist over a wide range of timescales. A sufficiently persistent stress can further induce irreversible changes in the microbiome which may permanently alter the organism prior to genetic changes in the host. Epigenetic and microbial changes therefore provide a potential infrastructure for causal links between immediate responses to new environments and longer-term establishment of evolutionary adaptations.
Collapse
Affiliation(s)
- Yoav Soen
- Department of Biological Chemistry, Weizmann Institute of ScienceRehovot, Israel
| |
Collapse
|
473
|
Abstract
UNLABELLED To elucidate mechanisms underlying the complex relationships between a host and its microbiota, we used the genetically tractable model Drosophila melanogaster. Consistent with previous studies, the microbiota was simple in composition and diversity. However, analysis of single flies revealed high interfly variability that correlated with differences in feeding. To understand the effects of this simple and variable consortium, we compared the transcriptome of guts from conventionally reared flies to that for their axenically reared counterparts. Our analysis of two wild-type fly lines identified 121 up- and 31 downregulated genes. The majority of these genes were associated with immune responses, tissue homeostasis, gut physiology, and metabolism. By comparing the transcriptomes of young and old flies, we identified temporally responsive genes and showed that the overall impact of microbiota was greater in older flies. In addition, comparison of wild-type gene expression with that of an immune-deficient line revealed that 53% of upregulated genes exerted their effects through the immune deficiency (Imd) pathway. The genes included not only classic immune response genes but also those involved in signaling, gene expression, and metabolism, unveiling new and unexpected connections between immunity and other systems. Given these findings, we further characterized the effects of gut-associated microbes on gut morphology and epithelial architecture. The results showed that the microbiota affected gut morphology through their impacts on epithelial renewal rate, cellular spacing, and the composition of different cell types in the epithelium. Thus, while bacteria in the gut are highly variable, the influence of the microbiota at large has far-reaching effects on host physiology. IMPORTANCE The guts of animals are in constant association with microbes, and these interactions are understood to have important roles in animal development and physiology. Yet we know little about the mechanisms underlying the establishment and function of these associations. Here, we used the fruit fly to understand how the microbiota affects host function. Importantly, we found that the microbiota has far-reaching effects on host physiology, ranging from immunity to gut structure. Our results validate the notion that important insights on complex host-microbe relationships can be obtained from the use of a well-established and genetically tractable invertebrate model.
Collapse
|
474
|
Coon KL, Vogel KJ, Brown MR, Strand MR. Mosquitoes rely on their gut microbiota for development. Mol Ecol 2014; 23:2727-39. [PMID: 24766707 DOI: 10.1111/mec.12771] [Citation(s) in RCA: 336] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Revised: 04/20/2014] [Accepted: 04/23/2014] [Indexed: 02/01/2023]
Abstract
Field studies indicate adult mosquitoes (Culicidae) host low diversity communities of bacteria that vary greatly among individuals and species. In contrast, it remains unclear how adult mosquitoes acquire their microbiome, what influences community structure, and whether the microbiome is important for survival. Here, we used pyrosequencing of 16S rRNA to characterize the bacterial communities of three mosquito species reared under identical conditions. Two of these species, Aedes aegypti and Anopheles gambiae, are anautogenous and must blood-feed to produce eggs, while one, Georgecraigius atropalpus, is autogenous and produces eggs without blood feeding. Each mosquito species contained a low diversity community comprised primarily of aerobic bacteria acquired from the aquatic habitat in which larvae developed. Our results suggested that the communities in Ae. aegypti and An. gambiae larvae share more similarities with one another than with G. atropalpus. Studies with Ae. aegypti also strongly suggested that adults transstadially acquired several members of the larval bacterial community, but only four genera of bacteria present in blood fed females were detected on eggs. Functional assays showed that axenic larvae of each species failed to develop beyond the first instar. Experiments with Ae. aegypti indicated several members of the microbial community and Escherichia coli successfully colonized axenic larvae and rescued development. Overall, our results provide new insights about the acquisition and structure of bacterial communities in mosquitoes. They also indicate that three mosquito species spanning the breadth of the Culicidae depend on their gut microbiome for development.
Collapse
Affiliation(s)
- Kerri L Coon
- Department of Entomology, The University of Georgia, 120 Cedar Street, 420 Biological Sciences, Athens, GA, 30602, USA
| | | | | | | |
Collapse
|
475
|
Heintz C, Mair W. You are what you host: microbiome modulation of the aging process. Cell 2014; 156:408-11. [PMID: 24485451 DOI: 10.1016/j.cell.2014.01.025] [Citation(s) in RCA: 155] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 01/06/2014] [Accepted: 01/13/2014] [Indexed: 01/23/2023]
Abstract
The critical impact that microbiota have on health and disease makes the interaction between host and microbiome increasingly important as we evaluate therapeutics. Here, we highlight growing evidence that, beyond disease, microbes also affect the most fundamental of host physiological phenotypes, the rate of aging itself.
Collapse
Affiliation(s)
| | - William Mair
- Harvard School of Public Health, Boston, MA 02115, USA.
| |
Collapse
|
476
|
Combe BE, Defaye A, Bozonnet N, Puthier D, Royet J, Leulier F. Drosophila microbiota modulates host metabolic gene expression via IMD/NF-κB signaling. PLoS One 2014; 9:e94729. [PMID: 24733183 PMCID: PMC3986221 DOI: 10.1371/journal.pone.0094729] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 03/18/2014] [Indexed: 11/23/2022] Open
Abstract
Most metazoans engage in mutualistic interactions with their intestinal microbiota. Despite recent progress the molecular mechanisms through which microbiota exerts its beneficial influences on host physiology are still largely uncharacterized. Here we use axenic Drosophila melanogaster adults associated with a standardized microbiota composed of a defined set of commensal bacterial strains to study the impact of microbiota association on its host transcriptome. Our results demonstrate that Drosophila microbiota has a marked impact on the midgut transcriptome and promotes the expression of genes involved in host digestive functions and primary metabolism. We identify the IMD/Relish signaling pathway as a central regulator of this microbiota-mediated transcriptional response and we reveal a marked transcriptional trade-off between the midgut response to its beneficial microbiota and to bacterial pathogens. Taken together our results indicate that microbiota association potentiates host nutrition and host metabolic state, two key physiological parameters influencing host fitness. Our work paves the way to subsequent mechanistic studies to reveal how these microbiota-dependent transcriptional signatures translate into host physiological benefits.
Collapse
Affiliation(s)
- Berra Erkosar Combe
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique, Université Claude Bernard Lyon-1, Lyon, France
- Aix-Marseille Université, Centre National de la Recherche Scientifique, Institut de Biologie du Développement de Marseille-Luminy, Marseille, France
| | - Arnaud Defaye
- Aix-Marseille Université, Centre National de la Recherche Scientifique, Institut de Biologie du Développement de Marseille-Luminy, Marseille, France
| | - Noémie Bozonnet
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique, Université Claude Bernard Lyon-1, Lyon, France
| | - Denis Puthier
- Technological Advances for Genomics and Clinics, Institut National de la Santé et de la Recherche Médicale, Aix-Marseille Université, Marseille, France
| | - Julien Royet
- Aix-Marseille Université, Centre National de la Recherche Scientifique, Institut de Biologie du Développement de Marseille-Luminy, Marseille, France
| | - François Leulier
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique, Université Claude Bernard Lyon-1, Lyon, France
- Aix-Marseille Université, Centre National de la Recherche Scientifique, Institut de Biologie du Développement de Marseille-Luminy, Marseille, France
- * E-mail:
| |
Collapse
|
477
|
Abstract
The digestive tract plays a central role in the digestion and absorption of nutrients. Far from being a passive tube, it provides the first line of defense against pathogens and maintains energy homeostasis by exchanging neuronal and endocrine signals with other organs. Historically neglected, the gut of the fruit fly Drosophila melanogaster has recently come to the forefront of Drosophila research. Areas as diverse as stem cell biology, neurobiology, metabolism, and immunity are benefitting from the ability to study the genetics of development, growth regulation, and physiology in the same organ. In this review, we summarize our knowledge of the Drosophila digestive tract, with an emphasis on the adult midgut and its functional underpinnings.
Collapse
Affiliation(s)
- Bruno Lemaitre
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale Lausanne (EPFL), CH-1015 Lausanne, Switzerland;
| | | |
Collapse
|
478
|
The molecular basis of bacterial-insect symbiosis. J Mol Biol 2014; 426:3830-7. [PMID: 24735869 DOI: 10.1016/j.jmb.2014.04.005] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 04/02/2014] [Accepted: 04/08/2014] [Indexed: 12/12/2022]
Abstract
Insects provide experimentally tractable and cost-effective model systems to investigate the molecular basis of animal-bacterial interactions. Recent research is revealing the central role of the insect innate immune system, especially anti-microbial peptides and reactive oxygen species, in regulating the abundance and composition of the microbiota in various insects, including Drosophila and the mosquitoes Aedes and Anopheles. Interactions between the immune system and microbiota are, however, bidirectional with evidence that members of the resident microbiota can promote immune function, conferring resistance to pathogens and parasites by both activation of immune effectors and production of toxins. Antagonistic and mutualistic interactions among bacteria have also been implicated as determinants of the microbiota composition, including exclusion of pathogens, but the molecular mechanisms are largely unknown. Some bacteria are crucial for insect nutrition, through provisioning of specific nutrients (e.g., B vitamins, essential amino acids) and modulation of the insect nutritional sensing and signaling pathways (e.g., insulin signaling) that regulate nutrient allocation, especially to lipid and other energy reserves. A key challenge for future research is to identify the molecular interaction between specific bacterial effectors and animal receptors, as well as to determine how these interactions translate into microbiota-dependent signaling, metabolism, and immune function in the host.
Collapse
|
479
|
Guo L, Karpac J, Tran SL, Jasper H. PGRP-SC2 promotes gut immune homeostasis to limit commensal dysbiosis and extend lifespan. Cell 2014; 156:109-22. [PMID: 24439372 DOI: 10.1016/j.cell.2013.12.018] [Citation(s) in RCA: 319] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 10/10/2013] [Accepted: 12/18/2013] [Indexed: 02/07/2023]
Abstract
Interactions between commensals and the host impact the metabolic and immune status of metazoans. Their deregulation is associated with age-related pathologies like chronic inflammation and cancer, especially in barrier epithelia. Maintaining a healthy commensal population by preserving innate immune homeostasis in such epithelia thus promises to promote health and longevity. Here, we show that, in the aging intestine of Drosophila, chronic activation of the transcription factor Foxo reduces expression of peptidoglycan recognition protein SC2 (PGRP-SC2), a negative regulator of IMD/Relish innate immune signaling, and homolog of the anti-inflammatory molecules PGLYRP1-4. This repression causes deregulation of Rel/NFkB activity, resulting in commensal dysbiosis, stem cell hyperproliferation, and epithelial dysplasia. Restoring PGRP-SC2 expression in enterocytes of the intestinal epithelium, in turn, prevents dysbiosis, promotes tissue homeostasis, and extends lifespan. Our results highlight the importance of commensal control for lifespan of metazoans and identify SC-class PGRPs as longevity-promoting factors.
Collapse
Affiliation(s)
- Linlin Guo
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA; Department of Biomedical Genetics, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Jason Karpac
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA
| | - Susan L Tran
- Department of Biology, University of Rochester, River Campus Box 270211, Rochester, NY 14627, USA
| | - Heinrich Jasper
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA; Department of Biology, University of Rochester, River Campus Box 270211, Rochester, NY 14627, USA.
| |
Collapse
|
480
|
Wong ACN, Dobson AJ, Douglas AE. Gut microbiota dictates the metabolic response of Drosophila to diet. ACTA ACUST UNITED AC 2014; 217:1894-901. [PMID: 24577449 DOI: 10.1242/jeb.101725] [Citation(s) in RCA: 186] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Animal nutrition is profoundly influenced by the gut microbiota, but knowledge of the scope and core mechanisms of the underlying animal-microbiota interactions is fragmentary. To investigate the nutritional traits shaped by the gut microbiota of Drosophila, we determined the microbiota-dependent response of multiple metabolic and performance indices to systematically varied diet composition. Diet-dependent differences between Drosophila bearing its unmanipulated microbiota (conventional flies) and experimentally deprived of its microbiota (axenic flies) revealed evidence for: microbial sparing of dietary B vitamins, especially riboflavin, on low-yeast diets; microbial promotion of protein nutrition, particularly in females; and microbiota-mediated suppression of lipid/carbohydrate storage, especially on high sugar diets. The microbiota also sets the relationship between energy storage and body mass, indicative of microbial modulation of the host signaling networks that coordinate metabolism with body size. This analysis identifies the multiple impacts of the microbiota on the metabolism of Drosophila, and demonstrates that the significance of these different interactions varies with diet composition and host sex.
Collapse
Affiliation(s)
- Adam C-N Wong
- Department of Entomology, Cornell University, Ithaca, NY14853, USA
| | - Adam J Dobson
- Department of Entomology, Cornell University, Ithaca, NY14853, USA
| | - Angela E Douglas
- Department of Entomology, Cornell University, Ithaca, NY14853, USA Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY14853, USA
| |
Collapse
|
481
|
Fridmann-Sirkis Y, Stern S, Elgart M, Galili M, Zeisel A, Shental N, Soen Y. Delayed development induced by toxicity to the host can be inherited by a bacterial-dependent, transgenerational effect. Front Genet 2014; 5:27. [PMID: 24611070 PMCID: PMC3933808 DOI: 10.3389/fgene.2014.00027] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 01/25/2014] [Indexed: 11/20/2022] Open
Abstract
Commensal gut bacteria in many species including flies are integral part of their host, and are known to influence its development and homeostasis within generation. Here we report an unexpected impact of host–microbe interactions, which mediates multi-generational, non-Mendelian inheritance of a stress-induced phenotype. We have previously shown that exposure of fly larvae to G418 antibiotic induces transgenerationally heritable phenotypes, including a delay in larval development, gene induction in the gut and morphological changes. We now show that G418 selectively depletes commensal Acetobacter species and that this depletion explains the heritable delay, but not the inheritance of the other phenotypes. Notably, the inheritance of the delay was mediated by a surprising trans-generational effect. Specifically, bacterial removal from F1 embryos did not induce significant delay in F1 larvae, but nonetheless led to a considerable delay in F2. This effect maintains a delay induced by bacterial-independent G418 toxicity to the host. In line with these findings, reintroduction of isolated Acetobacter species prevented the inheritance of the delay. We further show that this prevention is partly mediated by vitamin B2 (Riboflavin) produced by these bacteria; exogenous Riboflavin led to partial prevention and inhibition of Riboflavin synthesis compromised the ability of the bacteria to prevent the inheritance. These results identify host–microbe interactions as a hitherto unrecognized factor capable of mediating non-Mendelian inheritance of a stress-induced phenotype.
Collapse
Affiliation(s)
- Yael Fridmann-Sirkis
- Department of Biological Chemistry, Weizmann Institute of Science Rehovot, Israel
| | - Shay Stern
- Department of Biological Chemistry, Weizmann Institute of Science Rehovot, Israel
| | - Michael Elgart
- Department of Biological Chemistry, Weizmann Institute of Science Rehovot, Israel
| | - Matana Galili
- Department of Biological Chemistry, Weizmann Institute of Science Rehovot, Israel
| | - Amit Zeisel
- Department of Physics of Complex Systems, Weizmann Institute of Science Rehovot, Israel
| | - Noam Shental
- Department of Computer Science, The Open University Raanana, Israel
| | - Yoav Soen
- Department of Biological Chemistry, Weizmann Institute of Science Rehovot, Israel
| |
Collapse
|
482
|
Kim SH, Lee WJ. Role of DUOX in gut inflammation: lessons from Drosophila model of gut-microbiota interactions. Front Cell Infect Microbiol 2014; 3:116. [PMID: 24455491 PMCID: PMC3887270 DOI: 10.3389/fcimb.2013.00116] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 12/23/2013] [Indexed: 02/06/2023] Open
Abstract
It is well-known that certain bacterial species can colonize the gut epithelium and induce inflammation in the mucosa, whereas other species are either benign or beneficial to the host. Deregulation of the gut-microbe interactions may lead to a pathogenic condition in the host, such as chronic inflammation, tissue injuries, and even cancer. However, our current understanding of the molecular mechanisms that underlie gut-microbe homeostasis and pathogenesis remains limited. Recent studies have used Drosophila as a genetic model to provide novel insights into the causes and consequences of bacterial-induced colitis in the intestinal mucosa. The present review discusses the interactions that occur between gut-associated bacteria and host gut immunity, particularly the bacterial-induced intestinal dual oxidase (DUOX) system. Several lines of evidence showed that the bacterial-modulated DUOX system is involved in microbial clearance, intestinal epithelial cell renewal (ECR), redox-dependent modulation of signaling pathways, cross-linking of biomolecules, and discrimination between symbionts and pathogens. Further genetic studies on the Drosophila DUOX system and on gut-associated bacteria with a distinct ability to activate DUOX may provide critical information related to the homeostatic inflammation as well as etiology of chronic inflammatory diseases, which will enhance our understanding on the mucosal inflammatory diseases frequently observed in the microbe-contacting epithelia of humans.
Collapse
Affiliation(s)
- Sung-Hee Kim
- School of Biological Science and Institute of Molecular Biology and Genetics, Seoul National University Seoul, South Korea ; National Creative Research Initiative Center for Symbiosystem, Seoul National University Seoul, South Korea
| | - Won-Jae Lee
- School of Biological Science and Institute of Molecular Biology and Genetics, Seoul National University Seoul, South Korea ; National Creative Research Initiative Center for Symbiosystem, Seoul National University Seoul, South Korea
| |
Collapse
|
483
|
Panayidou S, Ioannidou E, Apidianakis Y. Human pathogenic bacteria, fungi, and viruses in Drosophila: disease modeling, lessons, and shortcomings. Virulence 2014; 5:253-69. [PMID: 24398387 DOI: 10.4161/viru.27524] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Drosophila has been the invertebrate model organism of choice for the study of innate immune responses during the past few decades. Many Drosophila-microbe interaction studies have helped to define innate immunity pathways, and significant effort has been made lately to decipher mechanisms of microbial pathogenesis. Here we catalog 68 bacterial, fungal, and viral species studied in flies, 43 of which are relevant to human health. We discuss studies of human pathogens in flies revealing not only the elicitation and avoidance of immune response but also mechanisms of tolerance, host tissue homeostasis, regeneration, and predisposition to cancer. Prominent among those is the emerging pattern of intestinal regeneration as a defense response induced by pathogenic and innocuous bacteria. Immunopathology mechanisms and many microbial virulence factors have been elucidated, but their relevance to human health conventionally necessitates validation in mammalian models of infection.
Collapse
Affiliation(s)
- Stavria Panayidou
- Department of Biological Sciences; University of Cyprus; Nicosia, Cyprus
| | - Eleni Ioannidou
- Department of Biological Sciences; University of Cyprus; Nicosia, Cyprus
| | | |
Collapse
|
484
|
Abstract
Drosophila melanogaster is a powerful model to study infections thanks to the power of its genetics and knowledge on its biology accumulated for over a century. While the systemic humoral immune response against invading microbes has been intensively studied in the past two decades, the study of intestinal infections is more recent. Here, we present the methods that are currently in use to probe various aspects of the host-pathogen interactions between Drosophila and ingested microbes, with an emphasis on the study of the midgut epithelium, which constitutes the major interface between the organism and the microbe-rich ingested food.
Collapse
Affiliation(s)
- Matthieu Lestradet
- UPR9022 du CNRS, Université de Strasbourg, 15, rue René Descartes, 67084, Strasbourg Cedex, France
| | | | | |
Collapse
|
485
|
Nijhout HF, Riddiford LM, Mirth C, Shingleton AW, Suzuki Y, Callier V. The developmental control of size in insects. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2014; 3:113-34. [PMID: 24902837 PMCID: PMC4048863 DOI: 10.1002/wdev.124] [Citation(s) in RCA: 192] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The mechanisms that control the sizes of a body and its many parts remain among the great puzzles in developmental biology. Why do animals grow to a species-specific body size, and how is the relative growth of their body parts controlled to so they grow to the right size, and in the correct proportion with body size, giving an animal its species-characteristic shape? Control of size must involve mechanisms that somehow assess some aspect of size and are upstream of mechanisms that regulate growth. These mechanisms are now beginning to be understood in the insects, in particular in Manduca sexta and Drosophila melanogaster. The control of size requires control of the rate of growth and control of the cessation of growth. Growth is controlled by genetic and environmental factors. Insulin and ecdysone, their receptors, and intracellular signaling pathways are the principal genetic regulators of growth. The secretion of these growth hormones, in turn, is controlled by complex interactions of other endocrine and molecular mechanisms, by environmental factors such as nutrition, and by the physiological mechanisms that sense body size. Although the general mechanisms of growth regulation appear to be widely shared, the mechanisms that regulate final size can be quite diverse.
Collapse
|
486
|
Imler JL. Overview of Drosophila immunity: a historical perspective. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 42:3-15. [PMID: 24012863 DOI: 10.1016/j.dci.2013.08.018] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 05/01/2013] [Accepted: 05/01/2013] [Indexed: 05/24/2023]
Abstract
The functional analysis of genes from the model organism Drosophila melanogaster has provided invaluable information for many cellular and developmental or physiological processes, including immunity. The best-understood aspect of Drosophila immunity is the inducible humoral response, first recognized in 1972. This pioneering work led to a remarkable series of findings over the next 30 years, ranging from the identification and characterization of the antimicrobial peptides produced, to the deciphering of the signalling pathways activating the genes that encode them and, ultimately, to the discovery of the receptors sensing infection. These studies on an insect model coincided with a revival of the field of innate immunity, and had an unanticipated impact on the biomedical field.
Collapse
Affiliation(s)
- Jean-Luc Imler
- Faculté des Sciences de la Vie, Université de Strasbourg, Strasbourg, France; UPR9022 du CNRS, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France.
| |
Collapse
|
487
|
Lee KA, Lee WJ. Drosophila as a model for intestinal dysbiosis and chronic inflammatory diseases. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 42:102-10. [PMID: 23685204 DOI: 10.1016/j.dci.2013.05.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Revised: 05/07/2013] [Accepted: 05/07/2013] [Indexed: 05/14/2023]
Abstract
The association between deregulated intestinal microbial consortia and host diseases has been recognized since the birth of microbiology over a century ago. Intestinal dysbiosis refers to a state where living metazoans harbor harmful intestinal microflora. However, there is still an issue of whether causality arises from the host or the microbe because it is unclear whether deregulation of the gut microbiota community is the consequence or cause of the host disease. Recent studies using Drosophila and its simple microbiota have provided a valuable model system for dissecting the molecular mechanisms of intestinal dysbiosis. In this review, we examine recent exciting observations in Drosophila gut-microbiota interactions, particularly the links among the host immune genotype, the microbial community structure, and the host inflammatory phenotype. Future genetic analyses using Drosophila model system will provide a valuable outcome for understanding the evolutionarily conserved mechanisms that underlie intestinal dysbiosis and chronic inflammatory diseases.
Collapse
Affiliation(s)
- Kyung-Ah Lee
- School of Biological Science, Seoul National University and National Creative Research Initiative Center for Symbiosystem, Seoul 151-742, South Korea
| | | |
Collapse
|
488
|
Kuraishi T, Hori A, Kurata S. Host-microbe interactions in the gut of Drosophila melanogaster. Front Physiol 2013; 4:375. [PMID: 24381562 PMCID: PMC3865371 DOI: 10.3389/fphys.2013.00375] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Accepted: 12/02/2013] [Indexed: 12/02/2022] Open
Abstract
Many insect species subsist on decaying and contaminated matter and are thus exposed to large quantities of microorganisms. To control beneficial commensals and combat infectious pathogens, insects must be armed with efficient systems for microbial recognition, signaling pathways, and effector molecules. The molecular mechanisms regulating these host-microbe interactions in insects have been largely clarified in Drosophila melanogaster with its powerful genetic and genomic tools. Here we review recent advances in this field, focusing mainly on the relationships between microbes and epithelial cells in the intestinal tract where the host exposure to the external environment is most frequent.
Collapse
Affiliation(s)
- Takayuki Kuraishi
- Department of Molrcular Biopharmacy and Genetics, Graduate School of Pharmaceutical Sciences, Tohoku University Sendai, Japan ; PRESTO, Japan Science and Technology Agency Tokyo, Japan
| | - Aki Hori
- Department of Molrcular Biopharmacy and Genetics, Graduate School of Pharmaceutical Sciences, Tohoku University Sendai, Japan
| | - Shoichiro Kurata
- Department of Molrcular Biopharmacy and Genetics, Graduate School of Pharmaceutical Sciences, Tohoku University Sendai, Japan
| |
Collapse
|
489
|
Ayyaz A, Jasper H. Intestinal inflammation and stem cell homeostasis in aging Drosophila melanogaster. Front Cell Infect Microbiol 2013; 3:98. [PMID: 24380076 PMCID: PMC3863754 DOI: 10.3389/fcimb.2013.00098] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 11/27/2013] [Indexed: 12/19/2022] Open
Abstract
As a barrier epithelium, the intestinal epithelium has to coordinate physiological functions like digestion and nutrient resorption with the control of commensal bacteria and the prevention of pathogenic infections. It can therefore mount powerful innate immune and inflammatory responses, while, at the same time, maintaining tissue homeostasis through regenerative processes. How these different functions are coordinated remains unclear, and further insight is required to understand the age-related loss of homeostasis in this system, as well as the etiology of inflammatory and proliferative diseases of the gut. Recent work in Drosophila melanogaster has provided important new insight into the regulation of regenerative activity, innate immune homeostasis, commensal control, as well as age-related dysfunction in the intestine. Interestingly, many of the identified processes and mechanisms mirror similar homeostatic processes in the vertebrate intestine. This review summarized the current understanding of how innate immune responses, changes in commensal bacteria, and other challenges influence regenerative activity in the aging intestinal epithelium of flies and draws parallels to similar processes in mammals.
Collapse
Affiliation(s)
- Arshad Ayyaz
- Buck Institute for Research on Aging Novato, CA, USA
| | | |
Collapse
|
490
|
Draft Genome Sequence of Lactobacillus plantarum Strain WJL, a Drosophila Gut Symbiont. GENOME ANNOUNCEMENTS 2013; 1:1/6/e00937-13. [PMID: 24265491 PMCID: PMC3837172 DOI: 10.1128/genomea.00937-13] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Lactobacillus plantarum strain WJL, a member of the symbiotic gut bacteria, was isolated from the intestine of the fruit fly, Drosophila melanogaster. Here, we report the draft genome sequence of L. plantarum WJL.
Collapse
|
491
|
Piper MDW, Blanc E, Leitão-Gonçalves R, Yang M, He X, Linford NJ, Hoddinott MP, Hopfen C, Soultoukis GA, Niemeyer C, Kerr F, Pletcher SD, Ribeiro C, Partridge L. A holidic medium for Drosophila melanogaster. Nat Methods 2013; 11:100-5. [PMID: 24240321 PMCID: PMC3877687 DOI: 10.1038/nmeth.2731] [Citation(s) in RCA: 235] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2013] [Accepted: 10/10/2013] [Indexed: 11/09/2022]
Abstract
A critical requirement for research using model organisms is an appropriate, well-defined and consistent diet. There is currently no complete chemically defined (holidic) diet available for Drosophila melanogaster. We describe a holidic medium that is equal in performance to an oligidic diet optimized for adult fecundity and lifespan. It is also sufficient to support development over multiple generations, but at a reduced rate. During seven years of experiments, the holidic diet yielded more consistent experimental outcomes than oligidic food for adult fitness traits. Furthermore, nutrients and drugs are more accessible to flies in holidic medium and, similar to dietary restriction on oligidic food, amino acid dilution increases fly lifespan. We also report amino acid specific effects on food choice behavior and that folic acid from the microbiota is sufficient for development. These insights could not be gained using oligidic or meridic diets.
Collapse
Affiliation(s)
- Matthew D W Piper
- Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Eric Blanc
- Medical Research Council (MRC) Centre for Developmental Neurobiology, King's College London, London, UK
| | - Ricardo Leitão-Gonçalves
- Behavior and Metabolism Laboratory, Champalimaud Neuroscience Program, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Mingyao Yang
- 1] Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, London, UK. [2]
| | - Xiaoli He
- Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Nancy J Linford
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Matthew P Hoddinott
- 1] Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, London, UK. [2] Max Planck Institute for Biology of Ageing, Köln, Germany
| | - Corinna Hopfen
- Max Planck Institute for Biology of Ageing, Köln, Germany
| | | | - Christine Niemeyer
- Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Fiona Kerr
- Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Scott D Pletcher
- 1] Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA. [2] Geriatrics Center and Nathan Shock Center of Excellence in the Basic Biology of Aging, University of Michigan, Ann Arbor, Michigan, USA
| | - Carlos Ribeiro
- Behavior and Metabolism Laboratory, Champalimaud Neuroscience Program, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Linda Partridge
- 1] Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, London, UK. [2] Max Planck Institute for Biology of Ageing, Köln, Germany
| |
Collapse
|
492
|
Interspecies interactions determine the impact of the gut microbiota on nutrient allocation in Drosophila melanogaster. Appl Environ Microbiol 2013; 80:788-96. [PMID: 24242251 DOI: 10.1128/aem.02742-13] [Citation(s) in RCA: 166] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The animal gut is perpetually exposed to microorganisms, and this microbiota affects development, nutrient allocation, and immune homeostasis. A major challenge is to understand the contribution of individual microbial species and interactions among species in shaping these microbe-dependent traits. Using the Drosophila melanogaster gut microbiota, we tested whether microbe-dependent performance and nutritional traits of Drosophila are functionally modular, i.e., whether the impact of each microbial taxon on host traits is independent of the presence of other microbial taxa. Gnotobiotic flies were constructed with one or a set of five of the Acetobacter and Lactobacillus species which dominate the gut microbiota of conventional flies (Drosophila with untreated microbiota). Axenic (microbiota-free) flies exhibited prolonged development time and elevated glucose and triglyceride contents. The low glucose content of conventional flies was recapitulated in gnotobiotic Drosophila flies colonized with any of the 5 bacterial taxa tested. In contrast, the development rates and triglyceride levels in monocolonized flies varied depending on the taxon present: Acetobacter species supported the largest reductions, while most Lactobacillus species had no effect. Only flies with both Acetobacter and Lactobacillus had triglyceride contents restored to the level in conventional flies. This could be attributed to two processes: Lactobacillus-mediated promotion of Acetobacter abundance in the fly and a significant negative correlation between fly triglyceride content and Acetobacter abundance. We conclude that the microbial basis of host traits varies in both specificity and modularity; microbe-mediated reduction in glucose is relatively nonspecific and modular, while triglyceride content is influenced by interactions among microbes.
Collapse
|
493
|
Abstract
We report that establishment and maintenance of the Drosophila melanogaster microbiome depend on ingestion of bacteria. Frequent transfer of flies to sterile food prevented establishment of the microbiome in newly emerged flies and reduced the predominant members, Acetobacter and Lactobacillus spp., by 10- to 1,000-fold in older flies. Flies with a normal microbiome were less susceptible than germfree flies to infection by Serratia marcescens and Pseudomonas aeruginosa. Augmentation of the normal microbiome with higher populations of Lactobacillus plantarum, a Drosophila commensal and probiotic used in humans, further protected the fly from infection. Replenishment represents an unexplored strategy by which animals can sustain a gut microbial community. Moreover, the population behavior and health benefits of L. plantarum resemble features of certain probiotic bacteria administered to humans. As such, L. plantarum in the fly gut may serve as a simple model for dissecting the population dynamics and mode of action of probiotics in animal hosts. Previous studies have defined the composition of the Drosophila melanogaster microbiome in laboratory and wild-caught flies. Our study advances current knowledge in this field by demonstrating that Drosophila must consume bacteria to establish and maintain its microbiome. This finding suggests that the dominant Drosophila symbionts remain associated with their host because of repeated reintroduction rather than internal growth. Furthermore, our study shows that one member of the microbiome, Lactobacillus plantarum, protects the fly from intestinal pathogens. These results suggest that, although not always present, the microbiota can promote salubrious effects for the host. In sum, our work provides a previously unexplored mechanism of microbiome maintenance and an in vivo model system for investigating the mechanisms of action of probiotic bacteria.
Collapse
|
494
|
Regan JC, Brandão AS, Leitão AB, Mantas Dias ÂR, Sucena É, Jacinto A, Zaidman-Rémy A. Steroid hormone signaling is essential to regulate innate immune cells and fight bacterial infection in Drosophila. PLoS Pathog 2013; 9:e1003720. [PMID: 24204269 PMCID: PMC3812043 DOI: 10.1371/journal.ppat.1003720] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 09/06/2013] [Indexed: 01/28/2023] Open
Abstract
Coupling immunity and development is essential to ensure survival despite changing internal conditions in the organism. Drosophila metamorphosis represents a striking example of drastic and systemic physiological changes that need to be integrated with the innate immune system. However, nothing is known about the mechanisms that coordinate development and immune cell activity in the transition from larva to adult. Here, we reveal that regulation of macrophage-like cells (hemocytes) by the steroid hormone ecdysone is essential for an effective innate immune response over metamorphosis. Although it is generally accepted that steroid hormones impact immunity in mammals, their action on monocytes (e.g. macrophages and neutrophils) is still not well understood. Here in a simpler model system, we used an approach that allows in vivo, cell autonomous analysis of hormonal regulation of innate immune cells, by combining genetic manipulation with flow cytometry, high-resolution time-lapse imaging and tissue-specific transcriptomic analysis. We show that in response to ecdysone, hemocytes rapidly upregulate actin dynamics, motility and phagocytosis of apoptotic corpses, and acquire the ability to chemotax to damaged epithelia. Most importantly, individuals lacking ecdysone-activated hemocytes are defective in bacterial phagocytosis and are fatally susceptible to infection by bacteria ingested at larval stages, despite the normal systemic and local production of antimicrobial peptides. This decrease in survival is comparable to the one observed in pupae lacking immune cells altogether, indicating that ecdysone-regulation is essential for hemocyte immune functions and survival after infection. Microarray analysis of hemocytes revealed a large set of genes regulated at metamorphosis by EcR signaling, among which many are known to function in cell motility, cell shape or phagocytosis. This study demonstrates an important role for steroid hormone regulation of immunity in vivo in Drosophila, and paves the way for genetic dissection of the mechanisms at work behind steroid regulation of innate immune cells.
Collapse
Affiliation(s)
- Jennifer C. Regan
- Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Lisboa, Portugal
| | - Ana S. Brandão
- Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Lisboa, Portugal
- Centro de Estudos de Doenças Crónicas, Faculdade de Ciências Médicas, FCM, Universidade Nova de Lisboa, Lisboa, Portugal
| | | | - Ângela Raquel Mantas Dias
- Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Lisboa, Portugal
- Centro de Estudos de Doenças Crónicas, Faculdade de Ciências Médicas, FCM, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Élio Sucena
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- Universidade de Lisboa, Faculdade de Ciências, Departamento de Biologia Animal, Edifício C2, Lisboa, Portugal
| | - António Jacinto
- Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Lisboa, Portugal
- Centro de Estudos de Doenças Crónicas, Faculdade de Ciências Médicas, FCM, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Anna Zaidman-Rémy
- Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Lisboa, Portugal
- Centro de Estudos de Doenças Crónicas, Faculdade de Ciências Médicas, FCM, Universidade Nova de Lisboa, Lisboa, Portugal
- * E-mail:
| |
Collapse
|
495
|
Symbiotic lactobacilli stimulate gut epithelial proliferation via Nox-mediated generation of reactive oxygen species. EMBO J 2013; 32:3017-28. [PMID: 24141879 DOI: 10.1038/emboj.2013.224] [Citation(s) in RCA: 276] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 09/18/2013] [Indexed: 01/01/2023] Open
Abstract
The resident prokaryotic microbiota of the metazoan gut elicits profound effects on the growth and development of the intestine. However, the molecular mechanisms of symbiotic prokaryotic-eukaryotic cross-talk in the gut are largely unknown. It is increasingly recognized that physiologically generated reactive oxygen species (ROS) function as signalling secondary messengers that influence cellular proliferation and differentiation in a variety of biological systems. Here, we report that commensal bacteria, particularly members of the genus Lactobacillus, can stimulate NADPH oxidase 1 (Nox1)-dependent ROS generation and consequent cellular proliferation in intestinal stem cells upon initial ingestion into the murine or Drosophila intestine. Our data identify and highlight a highly conserved mechanism that symbiotic microorganisms utilize in eukaryotic growth and development. Additionally, the work suggests that specific redox-mediated functions may be assigned to specific bacterial taxa and may contribute to the identification of microbes with probiotic potential.
Collapse
|
496
|
Akhouayri IG, Habtewold T, Christophides GK. Melanotic pathology and vertical transmission of the gut commensal Elizabethkingia meningoseptica in the major malaria vector Anopheles gambiae. PLoS One 2013; 8:e77619. [PMID: 24098592 PMCID: PMC3788111 DOI: 10.1371/journal.pone.0077619] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 09/11/2013] [Indexed: 11/27/2022] Open
Abstract
Background The resident gut flora is known to have significant impacts on the life history of the host organism. Endosymbiotic bacterial species in the Anopheles mosquito gut are potent modulators of sexual development of the malaria parasite, Plasmodium, and thus proposed as potential control agents of malaria transmission. Results Here we report a melanotic pathology in the major African malaria vector Anopheles gambiae, caused by the dominant mosquito endosymbiont Elizabethkingiameningoseptica. Transfer of melanised tissues into the haemolymph of healthy adult mosquitoes or direct haemolymph inoculation with isolated E. meningoseptica bacteria were the only means for transmission and denovo formation of melanotic lesions, specifically in the fat body tissues of recipient individuals. We show that E. meningoseptica can be vertically transmitted from eggs to larvae and that E. meningoseptica-mono-associated mosquitoes display significant mortality, which is further enhanced upon Plasmodium infection, suggesting a synergistic impact of E. meningoseptica and Plasmodium on mosquito survival. Conclusion The high pathogenicity and permanent association of E. meningoseptica with An. Gambiae through vertical transmission constitute attractive characteristics towards the potential design of novel mosquito/malaria biocontrol strategies.
Collapse
Affiliation(s)
- Idir G. Akhouayri
- Division of Cell and Molecular Biology, Department of Life Sciences, Imperial College London, London, United Kingdom
- * E-mail:
| | - Tibebu Habtewold
- Division of Cell and Molecular Biology, Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Georges K. Christophides
- Division of Cell and Molecular Biology, Department of Life Sciences, Imperial College London, London, United Kingdom
| |
Collapse
|
497
|
Noninvasive analysis of microbiome dynamics in the fruit fly Drosophila melanogaster. Appl Environ Microbiol 2013; 79:6984-8. [PMID: 24014528 DOI: 10.1128/aem.01903-13] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The diversity and structure of the intestinal microbial community has a strong influence on life history. To understand how hosts and microbes interact, model organisms with comparatively simple microbial communities, such as the fruit fly (Drosophila melanogaster), offer key advantages. However, studies of the Drosophila microbiome are limited to a single point in time, because flies are typically sacrificed for DNA extraction. In order to test whether noninvasive approaches, such as sampling of fly feces, could be a means to assess fly-associated communities over time on the same cohort of flies, we compared the microbial communities of fly feces, dissected fly intestines, and whole flies across three different Drosophila strains. Bacterial species identified in either whole flies or isolated intestines were reproducibly found in feces samples. Although the bacterial communities of feces and intestinal samples were not identical, they shared similarities and obviously the same origin. In contrast to material from whole flies and intestines, feces samples were not compromised by Wolbachia spp. infections, which are widespread in laboratory and wild strains. In a proof-of-principle experiment, we showed that simple nutritional interventions, such as a high-fat diet or short-term starvation, had drastic and long-lasting effects on the micobiome. Thus, the analysis of feces can supplement the toolbox for microbiome studies in Drosophila, unleashing the full potential of such studies in time course experiments where multiple samples from single populations are obtained during aging, development, or experimental manipulations.
Collapse
|
498
|
Engel P, Moran NA. The gut microbiota of insects – diversity in structure and function. FEMS Microbiol Rev 2013; 37:699-735. [DOI: 10.1111/1574-6976.12025] [Citation(s) in RCA: 1300] [Impact Index Per Article: 118.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2013] [Revised: 05/06/2013] [Accepted: 05/13/2013] [Indexed: 02/07/2023] Open
|
499
|
Vojvodic S, Rehan SM, Anderson KE. Microbial gut diversity of Africanized and European honey bee larval instars. PLoS One 2013; 8:e72106. [PMID: 23991051 PMCID: PMC3749107 DOI: 10.1371/journal.pone.0072106] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 07/05/2013] [Indexed: 11/18/2022] Open
Abstract
The first step in understanding gut microbial ecology is determining the presence and potential niche breadth of associated microbes. While the core gut bacteria of adult honey bees is becoming increasingly apparent, there is very little and inconsistent information concerning symbiotic bacterial communities in honey bee larvae. The larval gut is the target of highly pathogenic bacteria and fungi, highlighting the need to understand interactions between typical larval gut flora, nutrition and disease progression. Here we show that the larval gut is colonized by a handful of bacterial groups previously described from guts of adult honey bees or other pollinators. First and second larval instars contained almost exclusively Alpha 2.2, a core Acetobacteraceae, while later instars were dominated by one of two very different Lactobacillus spp., depending on the sampled site. Royal jelly inhibition assays revealed that of seven bacteria occurring in larvae, only one Neisseriaceae and one Lactobacillus sp. were inhibited. We found both core and environmentally vectored bacteria with putatively beneficial functions. Our results suggest that early inoculation by Acetobacteraceae may be important for microbial succession in larvae. This assay is a starting point for more sophisticated in vitro models of nutrition and disease resistance in honey bee larvae.
Collapse
Affiliation(s)
- Svjetlana Vojvodic
- Center for Insect Science, Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona, United States of America
| | - Sandra M. Rehan
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Kirk E. Anderson
- Center for Insect Science, Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona, United States of America
- United States Department of Agriculture, Tucson, Arizona, United States of America
| |
Collapse
|
500
|
Staubach F, Baines JF, Künzel S, Bik EM, Petrov DA. Host species and environmental effects on bacterial communities associated with Drosophila in the laboratory and in the natural environment. PLoS One 2013; 8:e70749. [PMID: 23967097 PMCID: PMC3742674 DOI: 10.1371/journal.pone.0070749] [Citation(s) in RCA: 152] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 06/28/2013] [Indexed: 01/10/2023] Open
Abstract
The fruit fly Drosophila is a classic model organism to study adaptation as well as the relationship between genetic variation and phenotypes. Although associated bacterial communities might be important for many aspects of Drosophila biology, knowledge about their diversity, composition, and factors shaping them is limited. We used 454-based sequencing of a variable region of the bacterial 16S ribosomal RNA gene to characterize the bacterial communities associated with wild and laboratory Drosophila isolates. In order to specifically investigate effects of food source and host species on bacterial communities, we analyzed samples from wild Drosophila melanogaster and D. simulans collected from a variety of natural substrates, as well as from adults and larvae of nine laboratory-reared Drosophila species. We find no evidence for host species effects in lab-reared flies; instead, lab of origin and stochastic effects, which could influence studies of Drosophila phenotypes, are pronounced. In contrast, the natural Drosophila-associated microbiota appears to be predominantly shaped by food substrate with an additional but smaller effect of host species identity. We identify a core member of this natural microbiota that belongs to the genus Gluconobacter and is common to all wild-caught flies in this study, but absent from the laboratory. This makes it a strong candidate for being part of what could be a natural D. melanogaster and D. simulans core microbiome. Furthermore, we were able to identify candidate pathogens in natural fly isolates.
Collapse
Affiliation(s)
- Fabian Staubach
- Department of Biology, Stanford University, Stanford, California, USA.
| | | | | | | | | |
Collapse
|