451
|
Murine endogenous retrovirus MuERV-L is the progenitor of the "orphan" epsilon viruslike particles of the early mouse embryo. J Virol 2007; 82:1622-5. [PMID: 18045933 DOI: 10.1128/jvi.02097-07] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Viruslike particles which displayed a peculiar wheellike appearance that distinguished them from A-, B- or C-type particles had previously been described in the early mouse embryo. The maximum expression of these so-called epsilon particles was observed in two-cell-stage embryos, followed by their rapid decline at later stages of development and no particles detected at the zygote one-cell stage. Here, we show that these particles are in fact produced by a newly discovered murine endogenous retrovirus (ERV) belonging to the widespread family of mammalian ERV-L elements and named MuERV-L. Using antibodies that we raised against the Gag protein of these elements, Western blot analysis and in toto immunofluorescence studies of the embryos at various stages disclosed the same developmental expression profile as that observed for epsilon particles. Using expression vectors for cloned, full-length, entirely coding MuERV-L copies and cell transfection, direct identification of the epsilon particles was finally achieved by high-resolution electron microscopy.
Collapse
|
452
|
RNA sequence analysis defines Dicer's role in mouse embryonic stem cells. Proc Natl Acad Sci U S A 2007; 104:18097-102. [PMID: 17989215 DOI: 10.1073/pnas.0709193104] [Citation(s) in RCA: 252] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Short RNA expression was analyzed from Dicer-positive and Dicer-knockout mouse embryonic [corrected] stem (ES) cells, using high-throughput pyrosequencing. A correlation of miRNA quantification with sequencing frequency estimates that there are 110,000 miRNAs per ES cell, the majority of which can be accounted for by six distinct miRNA loci. Four of these miRNA loci or their human homologues have demonstrated roles in cell cycle regulation or oncogenesis, suggesting that a major function of the miRNA pathway in ES cells may be to shape their distinct cell cycle. Forty-six previously uncharacterized miRNAs were identified, most of which are expressed at low levels and are less conserved than the set of known miRNAs. Low-abundance short RNAs matching all classes of repetitive elements were present in cells lacking Dicer, although the production of some SINE- and simple repeat-associated short RNAs appeared to be Dicer-dependent. These and other Dicer-dependent sequences resembled miRNAs. At a depth of sequencing that approaches the total number of 5' phosphorylated short RNAs per cell, miRNAs appeared to be Dicer's only substrate. The results presented suggest a model in which repeat-associated miRNAs serve as host defenses against repetitive elements, a function canonically ascribed to other classes of short RNA.
Collapse
|
453
|
Ohtsu K, Smith MB, Emrich SJ, Borsuk LA, Zhou R, Chen T, Zhang X, Timmermans MCP, Beck J, Buckner B, Janick-Buckner D, Nettleton D, Scanlon MJ, Schnable PS. Global gene expression analysis of the shoot apical meristem of maize (Zea mays L.). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 52:391-404. [PMID: 17764504 PMCID: PMC2156186 DOI: 10.1111/j.1365-313x.2007.03244.x] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
All above-ground plant organs are derived from shoot apical meristems (SAMs). Global analyses of gene expression were conducted on maize (Zea mays L.) SAMs to identify genes preferentially expressed in the SAM. The SAMs were collected from 14-day-old B73 seedlings via laser capture microdissection (LCM). The RNA samples extracted from LCM-collected SAMs and from seedlings were hybridized to microarrays spotted with 37 660 maize cDNAs. Approximately 30% (10 816) of these cDNAs were prepared as part of this study from manually dissected B73 maize apices. Over 5000 expressed sequence tags (ESTs) (about 13% of the total) were differentially expressed (P < 0.0001) between SAMs and seedlings. Of these, 2783 and 2248 ESTs were up- and down-regulated in the SAM, respectively. The expression in the SAM of several of the differentially expressed ESTs was validated via quantitative RT-PCR and/or in situ hybridization. The up-regulated ESTs included many regulatory genes including transcription factors, chromatin remodeling factors and components of the gene-silencing machinery, as well as about 900 genes with unknown functions. Surprisingly, transcripts that hybridized to 62 retrotransposon-related cDNAs were also substantially up-regulated in the SAM. Complementary DNAs derived from the LCM-collected SAMs were sequenced to identify additional genes that are expressed in the SAM. This generated around 550 000 ESTs (454-SAM ESTs) from two genotypes. Consistent with the microarray results, approximately 14% of the 454-SAM ESTs from B73 were retrotransposon-related. Possible roles of genes that are preferentially expressed in the SAM are discussed.
Collapse
Affiliation(s)
- Kazuhiro Ohtsu
- Department of Agronomy, Iowa State UniversityAmes, IA 50011, USA
| | - Marianne B Smith
- Department of Agronomy, Iowa State UniversityAmes, IA 50011, USA
| | - Scott J Emrich
- Bioinformatics and Computational Biology Graduate Program, Iowa State UniversityAmes, IA 50011, USA
| | - Lisa A Borsuk
- Bioinformatics and Computational Biology Graduate Program, Iowa State UniversityAmes, IA 50011, USA
| | - Ruilian Zhou
- Department of Agronomy, Iowa State UniversityAmes, IA 50011, USA
| | - Tianle Chen
- Plant Biology Department, University of GeorgiaAthens, GA 30602, USA
| | - Xiaolan Zhang
- Plant Biology Department, University of GeorgiaAthens, GA 30602, USA
| | | | - Jon Beck
- Division of Mathematics and Computer Science, Truman State UniversityKirksville, MO 63501, USA
| | - Brent Buckner
- Division of Science, Truman State UniversityKirksville, MO 63501, USA
| | | | - Dan Nettleton
- Bioinformatics and Computational Biology Graduate Program, Iowa State UniversityAmes, IA 50011, USA
- Department of Statistics, Iowa State UniversityAmes, IA 50011, USA
- Center for Plant Genomics, Iowa State UniversityAmes, IA 50011, USA
| | - Michael J Scanlon
- Plant Biology Department, University of GeorgiaAthens, GA 30602, USA
- Department of Plant Biology, Cornell UniversityIthaca, NY 14853, USA
| | - Patrick S Schnable
- Department of Agronomy, Iowa State UniversityAmes, IA 50011, USA
- Bioinformatics and Computational Biology Graduate Program, Iowa State UniversityAmes, IA 50011, USA
- Center for Plant Genomics, Iowa State UniversityAmes, IA 50011, USA
- (fax +1 515 294 5256; e-mail )
| |
Collapse
|
454
|
Scherbik SV, Kluetzman K, Perelygin AA, Brinton MA. Knock-in of the Oas1br allele into a flavivirus-induced disease susceptible mouse generates the resistant phenotype. Virology 2007; 368:232-7. [PMID: 17904183 DOI: 10.1016/j.virol.2007.08.017] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2007] [Revised: 08/03/2007] [Accepted: 08/16/2007] [Indexed: 11/19/2022]
Abstract
Inheritance patterns in mice suggested that resistance to flavivirus-induced disease was conferred by a single autosomal dominant allele (Flv(r)). A positional cloning strategy followed by comparison of Flv interval gene sequences from congenic resistant C3H.PRI-Flv(r) and susceptible C3H/He mouse strains identified the 2'-5'-oligoadenylate synthetase 1b (Oas1b) gene as Flv. However, since these mouse strains differ by a 31 cM region, the possible involvement of differences in other linked genes in the resistant phenotype could not be absolutely ruled out. Knock-in of the Oas1b resistance allele into a susceptible mouse strain produced mice with the flavivirus resistance phenotype, confirming that this phenotype is mediated by a single gene.
Collapse
Affiliation(s)
- Svetlana V Scherbik
- Department of Biology, Georgia State University, P.O. Box 4010, Atlanta, GA 30302-4010, USA
| | | | | | | |
Collapse
|
455
|
Bringaud F, Müller M, Cerqueira GC, Smith M, Rochette A, El-Sayed NMA, Papadopoulou B, Ghedin E. Members of a large retroposon family are determinants of post-transcriptional gene expression in Leishmania. PLoS Pathog 2007; 3:1291-307. [PMID: 17907803 PMCID: PMC2323293 DOI: 10.1371/journal.ppat.0030136] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2007] [Accepted: 07/27/2007] [Indexed: 01/29/2023] Open
Abstract
Trypanosomatids are unicellular protists that include the human pathogens Leishmania spp. (leishmaniasis), Trypanosoma brucei (sleeping sickness), and Trypanosoma cruzi (Chagas disease). Analysis of their recently completed genomes confirmed the presence of non-long-terminal repeat retrotransposons, also called retroposons. Using the 79-bp signature sequence common to all trypanosomatid retroposons as bait, we identified in the Leishmania major genome two new large families of small elements--LmSIDER1 (785 copies) and LmSIDER2 (1,073 copies)--that fulfill all the characteristics of extinct trypanosomatid retroposons. LmSIDERs are approximately 70 times more abundant in L. major compared to T. brucei and are found almost exclusively within the 3'-untranslated regions (3'UTRs) of L. major mRNAs. We provide experimental evidence that LmSIDER2 act as mRNA instability elements and that LmSIDER2-containing mRNAs are generally expressed at lower levels compared to the non-LmSIDER2 mRNAs. The considerable expansion of LmSIDERs within 3'UTRs in an organism lacking transcriptional control and their role in regulating mRNA stability indicate that Leishmania have probably recycled these short retroposons to globally modulate the expression of a number of genes. To our knowledge, this is the first example in eukaryotes of the domestication and expansion of a family of mobile elements that have evolved to fulfill a critical cellular function.
Collapse
Affiliation(s)
- Frédéric Bringaud
- Laboratoire de Génomique Fonctionnelle des Trypanosomatides, Université Victor Segalen Bordeaux 2, Bordeaux, France
- UMR-5234 CNRS, Bordeaux, France
| | - Michaela Müller
- Infectious Diseases Research Center, Centre Hospitalier de l'Université Laval Research Center, Quebec, Canada
- Department of Medical Biology, Faculty of Medicine, Laval University, Quebec, Canada
| | - Gustavo Coutinho Cerqueira
- The Institute for Genomic Research, Rockville, Maryland, United States of America
- Departamento de Bioquimica e Imunologica, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | - Martin Smith
- Infectious Diseases Research Center, Centre Hospitalier de l'Université Laval Research Center, Quebec, Canada
- Department of Medical Biology, Faculty of Medicine, Laval University, Quebec, Canada
| | - Annie Rochette
- Infectious Diseases Research Center, Centre Hospitalier de l'Université Laval Research Center, Quebec, Canada
- Department of Medical Biology, Faculty of Medicine, Laval University, Quebec, Canada
| | - Najib M. A El-Sayed
- The Institute for Genomic Research, Rockville, Maryland, United States of America
- Department of Cell Biology and Molecular Genetics, The University of Maryland, College Park, Maryland, United States of America
- Center for Bioinformatics and Computational Biology, The University of Maryland, College Park, Maryland, United States of America
| | - Barbara Papadopoulou
- Infectious Diseases Research Center, Centre Hospitalier de l'Université Laval Research Center, Quebec, Canada
- Department of Medical Biology, Faculty of Medicine, Laval University, Quebec, Canada
| | - Elodie Ghedin
- The Institute for Genomic Research, Rockville, Maryland, United States of America
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
456
|
Abstract
While less than 1.5% of the mammalian genome encodes proteins, it is now evident that the vast majority is transcribed, mainly into non-protein-coding RNAs. This raises the question of what fraction of the genome is functional, i.e., composed of sequences that yield functional products, are required for the expression (regulation or processing) of these products, or are required for chromosome replication and maintenance. Many of the observed noncoding transcripts are differentially expressed, and, while most have not yet been studied, increasing numbers are being shown to be functional and/or trafficked to specific subcellular locations, as well as exhibit subtle evidence of selection. On the other hand, analyses of conservation patterns indicate that only approximately 5% (3%-8%) of the human genome is under purifying selection for functions common to mammals. However, these estimates rely on the assumption that reference sequences (usually ancient transposon-derived sequences) have evolved neutrally, which may not be the case, and if so would lead to an underestimate of the fraction of the genome under evolutionary constraint. These analyses also do not detect functional sequences that are evolving rapidly and/or have acquired lineage-specific functions. Indeed, many regulatory sequences and known functional noncoding RNAs, including many microRNAs, are not conserved over significant evolutionary distances, and recent evidence from the ENCODE project suggests that many functional elements show no detectable level of sequence constraint. Thus, it is likely that much more than 5% of the genome encodes functional information, and although the upper bound is unknown, it may be considerably higher than currently thought.
Collapse
Affiliation(s)
- Michael Pheasant
- ARC Special Research Centre for Functional and Applied Genomics, Institute for Molecular Bioscience, University of Queensland, St Lucia, Queensland 4072, Australia
| | | |
Collapse
|
457
|
Lerat E, Birot AM, Samarut J, Mey A. Maintenance in the Chicken Genome of the Retroviral-like cENS Gene Family Specifically Expressed in Early Embryos. J Mol Evol 2007; 65:215-27. [PMID: 17671751 DOI: 10.1007/s00239-007-9001-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2006] [Accepted: 05/18/2007] [Indexed: 02/05/2023]
Abstract
Embryonic stem (ES) cells are important developmental cells that appear very early during development and subsequently give rise to all the cell lineages of the future adult organism. In these cells a limited subset of transcription factors is expressed that are well conserved among species and essential for the fate of the stem cell. The transcriptome analysis of ES cells from chicken has revealed a gene family, cENS, that is specifically expressed in ES cells and in early embryos and is repressed during the differentiation process. This family is characterized by displaying retroviral structures and shares no homology with other species' genes. These characteristics are probably not restricted to the chicken genome and raise the question of whether similar genes are present and have been maintained in other species. We have examined the different copies of this gene in the sequenced chicken genome to investigate its dynamics and its evolution. We have distinguished two groups of cENS-related copies. The first group, resulting from recent transposition events, contains the transcribed ENS-1 and ENS-3 plus copies subjected to negative selection pressures. The second group contains degenerate copies that were integrated into the genome earlier. Comparison with copies previously isolated from three Galliformes showed that they are also subjected to selection pressures. We also detected numerous solo-LTRs containing the ENS-1 promoter that may control the expression of host genes. Taken together, these findings suggest a function sustained by a neogene of retroviral origin during the early stages of chicken development.
Collapse
Affiliation(s)
- Emmanuelle Lerat
- Laboratoire de Biométrie et Biologie Evolutive, Université de Lyon, Université Lyon 1, CNRS, UMR 5558, Villeurbanne, France.
| | | | | | | |
Collapse
|
458
|
Ramos KS, He Q, Kalbfleisch T, Montoya-Durango DE, Teneng I, Stribinskis V, Brun M. Computational and biological inference of gene regulatory networks of the LINE-1 retrotransposon. Genomics 2007; 90:176-85. [PMID: 17521869 PMCID: PMC2065750 DOI: 10.1016/j.ygeno.2007.04.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2007] [Accepted: 04/05/2007] [Indexed: 01/21/2023]
Abstract
Computational approaches were used to define structural and functional determinants of a putative genetic regulatory network of murine LINE-1 (long interspersed nuclear element-1), an active mammalian retrotransposon that uses RNA intermediates to populate new sites throughout the genome. Polymerase (RNA) II polypeptide E AI845735 and mouse DNA homologous to Drosophila per fragment M12039 were identified as primary attractors. siRNA knockdown of the aryl hydrocarbon receptor NM_013464 modulated gene expression within the network, including LINE-1, Sgpl1, Sdcbp, and Mgst1. Genes within the network did not exhibit physical proximity and instead were dispersed throughout the genome. The potential impact of individual members of the network on the global dynamical behavior of LINE-1 was examined from a theoretical and empirical framework.
Collapse
Affiliation(s)
- Kenneth S Ramos
- Department of Biochemistry and Molecular Biology and Center for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, KY 40292, USA.
| | | | | | | | | | | | | |
Collapse
|
459
|
Peaston AE, Knowles BB, Hutchison KW. Genome plasticity in the mouse oocyte and early embryo. Biochem Soc Trans 2007; 35:618-22. [PMID: 17511664 DOI: 10.1042/bst0350618] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In dissecting the molecules and molecular mechanisms that control mammalian oocyte-to-embryo transition, we found abundant transcripts representing developmentally regulated ERVs (endogenous retroviruses) in mouse oocyte and two-cell stage embryo cDNA libraries. These retrotransposons can act as alternative promoters and first exons for diverse genes, synchronizing their expression. Heritable genetic change due to replication of these retrotransposons probably occurs specifically in oocytes and early embryos. ERVs are usually epigenetically silenced, through DNA methylation and chromatin-based mechanisms. Their activation and silencing indicates a change in the epigenetic state of the genome. The thousands of endogenous retro-elements in the mouse genome provides potential scope for large-scale co-ordinated epigenetic fluctuations and leads to the hypothesis that differential transposable element expression triggers sequential reprogramming of the embryonic genome during the oocyte-to-embryo transition.
Collapse
Affiliation(s)
- A E Peaston
- The Jackson Laboratory, Bar Harbor, ME 04609, USA.
| | | | | |
Collapse
|
460
|
Oakes CC, La Salle S, Smiraglia DJ, Robaire B, Trasler JM. Developmental acquisition of genome-wide DNA methylation occurs prior to meiosis in male germ cells. Dev Biol 2007; 307:368-79. [PMID: 17559830 DOI: 10.1016/j.ydbio.2007.05.002] [Citation(s) in RCA: 159] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2006] [Revised: 04/01/2007] [Accepted: 05/01/2007] [Indexed: 02/05/2023]
Abstract
The development of germ cells is a highly ordered process that begins during fetal growth and is completed in the adult. Epigenetic modifications that occur in germ cells are important for germ cell function and for post-fertilization embryonic development. We have previously shown that male germ cells in the adult mouse have a highly distinct epigenetic state, as revealed by a unique genome-wide pattern of DNA methylation. Although it is known that these patterns begin to be established during fetal life, it is not known to what extent DNA methylation is modified during spermatogenesis. We have used restriction landmark genomic scanning (RLGS) and other techniques to examine DNA methylation at multiple sites across the genome during postnatal germ cell development in the mouse. Although a significant proportion of the distinct germ cell pattern is acquired prior to the type A spermatogonial stage, we find that both de novo methylation and demethylation occur during spermatogenesis, mainly in spermatogonia and spermatocytes in early meiotic prophase I. Alterations include predominantly non-CpG island sequences from both unique loci and repetitive elements. These modifications are progressive and are almost exclusively completed by the end of the pachytene spermatocyte stage. These studies better define the developmental timing of genome-wide DNA methylation pattern acquisition during male germ cell development.
Collapse
Affiliation(s)
- C C Oakes
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | | | | | | | | |
Collapse
|
461
|
Abstract
SUMMARY
It is usually thought that the development of complex organisms is controlled by protein regulatory factors and morphogenetic signals exchanged between cells and differentiating tissues during ontogeny. However, it is now evident that the majority of all animal genomes is transcribed, apparently in a developmentally regulated manner, suggesting that these genomes largely encode RNA machines and that there may be a vast hidden layer of RNA regulatory transactions in the background. I propose that the epigenetic trajectories of differentiation and development are primarily programmed by feed-forward RNA regulatory networks and that most of the information required for multicellular development is embedded in these networks, with cell–cell signalling required to provide important positional information and to correct stochastic errors in the endogenous RNA-directed program.
Collapse
Affiliation(s)
- John S Mattick
- ARC Centre for Functional and Applied Genomics, Institute for Molecular Bioscience, University of Queensland, St Lucia QLD 4072, Australia.
| |
Collapse
|
462
|
Fernández-Gonzalez R, Ramirez MA, Bilbao A, De Fonseca FR, Gutiérrez-Adán A. Suboptimal in vitro culture conditions: an epigenetic origin of long-term health effects. Mol Reprod Dev 2007; 74:1149-56. [PMID: 17474101 DOI: 10.1002/mrd.20746] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The foetal origins of adult diseases or Barker hypothesis suggests that there can be adverse in uterus effects on the foetus that can lead to certain diseases in adults. Extending this hypothesis to the early stages of embryo development, in particular, to preimplantation stages, it was recently demonstrated that, long-term programming of postnatal development, growth and physiology can be irreversibly affected during this period of embryo development by suboptimal in vitro culture (IVC). As an example, it was found in two recent studies that, mice derived from embryos cultured in suboptimal conditions can suffer from obesity, increased anxiety, and deficiencies on their implicit memory system. In addition, it was observed that suboptimal IVC can cause disease in mature animals by promoting alterations in their genetic imprinting during preimplantation development. Imprinting and other epigenetic mechanisms control the establishment and maintenance of gene expression patterns in the embryo, placenta and foetus. The previously described observations, suggest that the loss of epigenetic regulation during preimplantation development may lead to severe long-term effects. Although mostly tested in rodents, the hypothesis that underlies these studies can also fit assisted reproductive technology (ART) procedures in other species, including humans. The lack of information on how epigenetic controls are lost during IVC, and on the long-term consequences of ART, underscore the necessity for sustained epigenetic analysis of embryos produced in vitro and long-term tracking of the health of the human beings conceived using these procedures.
Collapse
|
463
|
Maisonhaute C, Ogereau D, Hua-Van A, Capy P. Amplification of the 1731 LTR retrotransposon in Drosophila melanogaster cultured cells: Origin of neocopies and impact on the genome. Gene 2007; 393:116-26. [PMID: 17382490 DOI: 10.1016/j.gene.2007.02.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2006] [Revised: 01/31/2007] [Accepted: 02/01/2007] [Indexed: 10/23/2022]
Abstract
Transposable elements (TEs), represent a large fraction of the eukaryotic genome. In Drosophila melanogaster, about 20% of the genome corresponds to such middle repetitive DNA dispersed sequences. A fraction of TEs is composed of elements showing a retrovirus-like structure, the LTR-retrotransposons, the first TEs to be described in the Drosophila genome. Interestingly, in D. melanogaster embryonic immortal cell culture genomes the copy number of these LTR-retrotransposons was revealed to be higher than the copy number in the Drosophila genome, presumably as the result of transposition of some copies to new genomic locations [Potter, S.S., Brorein Jr., W.J., Dunsmuir, P., Rubin, G.M., 1979. Transposition of elements of the 412, copia and 297 dispersed repeated gene families in Drosophila. Cell 17, 415-427; Junakovic, N., Di Franco, C., Best-Belpomme, M., Echalier, G., 1988. On the transposition of copia-like nomadic elements in cultured Drosophila cells. Chromosoma 97, 212-218]. This suggests that so many transpositions modified the genome organisation and consequently the expression of targeted genes. To understand what has directed the transposition of TEs in Drosophila cell culture genomes, a search to identify the newly transposed copies was undertaken using 1731, a LTR-retrotransposon. A comparison between 1731 full-length elements found in the fly sequenced genome (y(1); cn(1)bw(1), sp(1) stock) and 1731 full-length elements amplified by PCR in the two cell line was done. The resulting data provide evidence that all 1731 neocopies were derived from a single copy slightly active in the Drosophila genome and subsequently strongly activated in cultured cells; and that this active copy is related to a newly evolved genomic variant (Kalmykova, A.I., et al., 2004. Selective expansion of the newly evolved genomic variants of retrotransposon 1731 in the Drosophila genomes. Mol. Biol. Evol. 21, 2281-2289). Moreover, neocopies are shown to be inserted in different sets of genes in the two cell lines suggesting they might be involved in the biological and physiological differences observed between Kc and S2 cell lines.
Collapse
Affiliation(s)
- Claude Maisonhaute
- Laboratoire Evolution Génomes et Spéciation, CNRS Bat.13, 1 avenue de la Terrasse, 91198 Gif-sur-Yvette, France.
| | | | | | | |
Collapse
|
464
|
Murchison EP, Stein P, Xuan Z, Pan H, Zhang MQ, Schultz RM, Hannon GJ. Critical roles for Dicer in the female germline. Genes Dev 2007; 21:682-93. [PMID: 17369401 PMCID: PMC1820942 DOI: 10.1101/gad.1521307] [Citation(s) in RCA: 380] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Dicer is an essential component of RNA interference (RNAi) pathways, which have broad functions in gene regulation and genome organization. Probing the consequences of tissue-restricted Dicer loss in mice indicates a critical role for Dicer during meiosis in the female germline. Mouse oocytes lacking Dicer arrest in meiosis I with multiple disorganized spindles and severe chromosome congression defects. Oogenesis and early development are times of significant post-transcriptional regulation, with controlled mRNA storage, translation, and degradation. Our results suggest that Dicer is essential for turnover of a substantial subset of maternal transcripts that are normally lost during oocyte maturation. Furthermore, we find evidence that transposon-derived sequence elements may contribute to the metabolism of maternal transcripts through a Dicer-dependent pathway. Our studies identify Dicer as central to a regulatory network that controls oocyte gene expression programs and that promotes genomic integrity in a cell type notoriously susceptible to aneuploidy.
Collapse
Affiliation(s)
- Elizabeth P. Murchison
- Cold Spring Harbor Laboratory, Watson School of Biological Sciences and Howard Hughes Medical Institute, Cold Spring Harbor, New York 11724, USA
| | - Paula Stein
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Zhenyu Xuan
- Cold Spring Harbor Laboratory, Watson School of Biological Sciences and Howard Hughes Medical Institute, Cold Spring Harbor, New York 11724, USA
| | - Hua Pan
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Michael Q. Zhang
- Cold Spring Harbor Laboratory, Watson School of Biological Sciences and Howard Hughes Medical Institute, Cold Spring Harbor, New York 11724, USA
| | - Richard M. Schultz
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- E-MAIL ; FAX (215) 898-8780
| | - Gregory J. Hannon
- Cold Spring Harbor Laboratory, Watson School of Biological Sciences and Howard Hughes Medical Institute, Cold Spring Harbor, New York 11724, USA
- Corresponding authors.E-MAIL ; FAX (516) 367-8874
| |
Collapse
|
465
|
Horie K, Saito ES, Keng VW, Ikeda R, Ishihara H, Takeda J. Retrotransposons influence the mouse transcriptome: implication for the divergence of genetic traits. Genetics 2007; 176:815-27. [PMID: 17435252 PMCID: PMC1894610 DOI: 10.1534/genetics.107.071647] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Massive accumulation of retrotransposons, comprising >40% of human and mouse genomes, is one of the major events in the evolution of the genome. However, most retrotransposons have lost retrotransposition competency, which makes studying their role in genome evolution elusive. Intracisternal A-particle (IAP) elements are long terminal repeat (LTR)-type mouse retrotransposons consisting of full-length and internally deleted types. Some are retrotransposition competent and their upregulated activity has been reported in mutant mice deficient in genome defense systems, suggesting that IAP elements provide a unique platform for studying the interaction between retrotransposons and mammalian genomes. Using the IAP element as a model case, here we show that mobilization of retrotransposons alters the mouse transcriptome. Retrotransposition assay in cultured cells demonstrated that a subset of internally deleted IAP elements, called IDelta1 type, retrotranspose efficiently when supplied with functional IAP proteins. Furthermore, the IDelta1 type IAP element exhibited substantial transcription-inducing activity in the flanking region. Genomewide transcript analysis of embryonic stem (ES) cells identified IAP-induced transcripts, including fusion transcripts between IAP sequence and endogenous genes. Unexpectedly, nearly half of these IAP elements obtained from ES cells derived from 129 mouse strain were absent in the C57BL/6 genome, suggesting that IAP-driven transcription contributes to the unique trait of the individual mouse strain. On the basis of these data, we propose that retrotransposons are one of the drivers that shape the mammalian transcriptome.
Collapse
Affiliation(s)
- Kyoji Horie
- Research Center for Radiation Emergency Medicine, National Institute of Radiological Sciences, Inage-ku, Chiba 263-8555, Japan.
| | | | | | | | | | | |
Collapse
|
466
|
Lerat E, Sémon M. Influence of the transposable element neighborhood on human gene expression in normal and tumor tissues. Gene 2007; 396:303-11. [PMID: 17490832 DOI: 10.1016/j.gene.2007.04.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2006] [Revised: 03/16/2007] [Accepted: 04/02/2007] [Indexed: 11/16/2022]
Abstract
Transposable elements (TEs) are genomic sequences able to replicate themselves, and to move from one chromosomal position to another within the genome. Many TEs contain their own regulatory regions, which means that they may influence the expression of neighboring genes. TEs may also be activated and transcribed in various cancers. We therefore tested whether gene expression in normal and tumor tissues is influenced by the neighboring TEs. To do this, we associated all human genes to the nearest TEs. We analyzed the expression of these genes in normal and tumor tissues using SAGE and EST data, and related this to the presence and type of TEs in their vicinity. We confirmed that TEs tend to be located in antisense orientation relative to their hosting genes. We found that the average number of tissues where a gene is expressed varies depending on the type of TEs located near the gene, and that the difference in expression level between normal and tumor tissues is greatest for genes that host SINE elements. This deregulation increases with the number of SINE copies in the gene vicinity. This suggests that SINE elements might contribute to the cascade of gene deregulation in cancer cells.
Collapse
Affiliation(s)
- Emmanuelle Lerat
- Université de Lyon, Université Lyon 1, CNRS, UMR 5558, Laboratoire de Biométrie et Biologie Evolutive, 43 boulevard du 11 novembre 1918, Villeurbanne F-69622, France.
| | | |
Collapse
|
467
|
Abstract
Overlapping epigenetic mechanisms have evolved in eukaryotic cells to silence the expression and mobility of transposable elements (TEs). Owing to their ability to recruit the silencing machinery, TEs have served as building blocks for epigenetic phenomena, both at the level of single genes and across larger chromosomal regions. Important progress has been made recently in understanding these silencing mechanisms. In addition, new insights have been gained into how this silencing has been co-opted to serve essential functions in 'host' cells, highlighting the importance of TEs in the epigenetic regulation of the genome.
Collapse
Affiliation(s)
- R Keith Slotkin
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York 11724, USA
| | | |
Collapse
|
468
|
Vandepoele K, van Roy F. Insertion of an HERV(K) LTR in the intron of NBPF3 is not required for its transcriptional activity. Virology 2007; 362:1-5. [PMID: 17391723 DOI: 10.1016/j.virol.2007.01.044] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2006] [Revised: 01/08/2007] [Accepted: 01/21/2007] [Indexed: 11/25/2022]
Abstract
The NBPF genes are members of a recently described gene family that has an intricate genomic organization. These genes can be subdivided into two subfamilies based on the presence of an intronic HERV(K) LTR insertion in the 5' region. A recent report describes a functional implication for this insertion, claiming that only NBPF genes with this insertion are transcriptionally active [Illarionova, A.E., Vinogradova, T.V., Sverdlov, E.D., 2007. Only those genes of the KIAA1245 gene subfamily that contain HERV(K) LTRs in their introns are transcriptionally active. Virology, 358 (1): 39-47]. Here, we show that an NBPF gene lacking this insertion, NBPF3, is expressed in a variety of tissues. Thus the effect of HERV(K) LTR insertion on NBPF gene expression remains unknown.
Collapse
Affiliation(s)
- Karl Vandepoele
- Department for Molecular Biomedical Research, VIB, B-9052 Ghent, Belgium
| | | |
Collapse
|
469
|
Volff JN. Turning junk into gold: domestication of transposable elements and the creation of new genes in eukaryotes. Bioessays 2007; 28:913-22. [PMID: 16937363 DOI: 10.1002/bies.20452] [Citation(s) in RCA: 269] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Autonomous transposable elements, generally considered as junk and selfish, encode transposition proteins that can bind, copy, break, join or degrade nucleic acids as well as process or interact with other proteins. Such a repertoire of activities might be of interest for the host cell. There is indeed substantial evidence that mobile DNA can serve as a dynamic reservoir for new cellular functions. Transposable element genes encoding transposase, integrase, reverse transcriptase as well as structural and envelope proteins have been repeatedly recruited by their host during evolution in most eukaryotic lineages. Such domesticated sequences protect us against infections, are necessary for our reproduction, allow the replication of our chromosomes and control cell proliferation and death; others are essential for plant development. Many new candidates for domesticated sequences have been revealed by sequencing projects. Their functional analysis will uncover new aspects of evolutionary alchemy, the turning of junk into gold within genomes.
Collapse
Affiliation(s)
- Jean-Nicolas Volff
- Biofuture Research Group, Physiologische Chemie I, Biozentrum, University of Würzburg, am Hubland, D-97074 Würzburg, Germany.
| |
Collapse
|
470
|
Carninci P, Hayashizaki Y. Noncoding RNA transcription beyond annotated genes. Curr Opin Genet Dev 2007; 17:139-44. [PMID: 17317145 DOI: 10.1016/j.gde.2007.02.008] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2006] [Accepted: 02/12/2007] [Indexed: 11/20/2022]
Abstract
Recent analyses based on high-throughput transcriptome data have revealed that the fraction of the genome that is transcribed largely exceeds the fraction encoding protein. Transcription of unconventional genes into noncoding RNAs is widespread and, in mammals, these RNAs comprise at least half the total number of RNAs transcribed by RNA polymerase II. Although the function of the majority of noncoding RNAs has yet to be discovered, many of them are transcribed from both strands of the genome, and evidence points towards a regulatory function for many noncoding RNAs in mammalian cells.
Collapse
Affiliation(s)
- Piero Carninci
- Genome Exploration Research Group, RIKEN Genomic Sciences Center, RIKEN Yokohama Institute, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan.
| | | |
Collapse
|
471
|
Cohen DE, Davidow LS, Erwin JA, Xu N, Warshawsky D, Lee JT. The DXPas34 repeat regulates random and imprinted X inactivation. Dev Cell 2007; 12:57-71. [PMID: 17199041 DOI: 10.1016/j.devcel.2006.11.014] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2006] [Revised: 10/19/2006] [Accepted: 11/15/2006] [Indexed: 10/23/2022]
Abstract
X chromosome inactivation (XCI) is initiated by expression of the noncoding Xist RNA in the female embryo. Tsix, the antisense noncoding partner of Xist, serves as its regulator during both imprinted and random XCI. Here, we show that Tsix in part acts through a 34mer repeat, DXPas34. DXPas34 contains bidirectional promoter activity, producing overlapping forward and reverse transcripts. We generate three new Tsix alleles in mouse embryonic stem cells and show that, while the Tsix promoter is unexpectedly dispensable, DXPas34 plays dual positive-negative functions. At the onset of XCI, DXPas34 stimulates Tsix expression through its enhancer activity. Once XCI is established, DXPas34 becomes repressive and stably silences Tsix. Germline transmission of the DXPas34 mutation demonstrates its necessity for both random and imprinted XCI in mice. Intriguingly, sequence analysis suggests that DXPas34 could potentially have descended from an ancient retrotransposon. We hypothesize that DXPas34 was acquired by Tsix to regulate antisense function.
Collapse
MESH Headings
- Animals
- Base Sequence
- Consensus Sequence
- Down-Regulation
- Embryo, Mammalian/cytology
- Embryo, Mammalian/embryology
- Embryo, Mammalian/metabolism
- Embryonic Stem Cells/metabolism
- Female
- Gene Expression Regulation, Developmental
- Gene Targeting
- Genomic Imprinting
- In Situ Hybridization, Fluorescence
- Mice
- Models, Genetic
- Molecular Sequence Data
- Phylogeny
- Promoter Regions, Genetic/genetics
- RNA, Long Noncoding
- RNA, Untranslated/genetics
- Repetitive Sequences, Nucleic Acid/genetics
- Sequence Deletion
- Up-Regulation
- X Chromosome/genetics
- X Chromosome Inactivation/genetics
Collapse
Affiliation(s)
- Dena E Cohen
- Howard Hughes Medical Institute, Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | | | | | | | | | | |
Collapse
|
472
|
Latham KE, Gao S, Han Z. Somatic cell nuclei in cloning: strangers traveling in a foreign land. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 591:14-29. [PMID: 17176552 DOI: 10.1007/978-0-387-37754-4_2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The recent successes in producing cloned offspring by somatic cell nuclear transfer are nothing short of remarkable. This process requires the somatic cell chromatin to substitute functionally for both the egg and the sperm genomes, and indeed the processing of the transferred nuclei shares aspects in common with processing of both parental genomes in normal fertilized embryos. Recent studies have yielded new information about the degree to which this substitution is accomplished. Overall, it has become evident that multiple aspects of genome processing and function are aberrant, indicating that the somatic cell chromatin only infrequently manages the successful transition to a competent surrogate for gamete genomes. This review focuses on recent results revealing these limitations and how they might be overcome.
Collapse
Affiliation(s)
- Keith E Latham
- The Fels Institute for Cancer Research and Molecular Biology, Department of Biochemistry, 3307 North Broad Street, Philadelphia, Pennsylvania 19140, USA.
| | | | | |
Collapse
|
473
|
Taft RJ, Pheasant M, Mattick JS. The relationship between non-protein-coding DNA and eukaryotic complexity. Bioessays 2007; 29:288-99. [PMID: 17295292 DOI: 10.1002/bies.20544] [Citation(s) in RCA: 417] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
There are two intriguing paradoxes in molecular biology--the inconsistent relationship between organismal complexity and (1) cellular DNA content and (2) the number of protein-coding genes--referred to as the C-value and G-value paradoxes, respectively. The C-value paradox may be largely explained by varying ploidy. The G-value paradox is more problematic, as the extent of protein coding sequence remains relatively static over a wide range of developmental complexity. We show by analysis of sequenced genomes that the relative amount of non-protein-coding sequence increases consistently with complexity. We also show that the distribution of introns in complex organisms is non-random. Genes composed of large amounts of intronic sequence are significantly overrepresented amongst genes that are highly expressed in the nervous system, and amongst genes downregulated in embryonic stem cells and cancers. We suggest that the informational paradox in complex organisms may be explained by the expansion of cis-acting regulatory elements and genes specifying trans-acting non-protein-coding RNAs.
Collapse
Affiliation(s)
- Ryan J Taft
- ARC Special Research Centre for Functional and Applied Genomics, Institute for Molecular Bioscience, University of Queensland, St Lucia, Australia
| | | | | |
Collapse
|
474
|
Oakes CC, La Salle S, Smiraglia DJ, Robaire B, Trasler JM. A unique configuration of genome-wide DNA methylation patterns in the testis. Proc Natl Acad Sci U S A 2006; 104:228-33. [PMID: 17190809 PMCID: PMC1765440 DOI: 10.1073/pnas.0607521104] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In the mammalian lifecycle, the two periods of genome-wide epigenetic reprogramming are in the early embryo, when somatic patterns are set, and during germ cell development. Although some differences between the reprogrammed states of somatic and germ cells have been reported, overall patterns of genomic methylation are considered to be similar. Using restriction landmark genomic scanning to examine approximately 2,600 loci distributed randomly throughout the genome, we find that the methylation status of testicular DNA is highly distinct, displaying eightfold the number of hypomethylated loci relative to somatic tissues. Identification and analysis of >300 loci show that these regions are generally located within nonrepetitive sequences that are away from CpG islands and 5' regions of genes. We show that a contributing factor for these differences is that the methylation state of non-CpG-island DNA is correlated with the regional level of GC content within chromosomes and that this relationship is inverted between the testis and somatic tissues. We also show that in Dnmt3L-deficient mice, which exhibit infertility associated with abnormal chromosomal structures in germ cells, this unique testicular DNA methylation pattern is not established. These special properties of testicular DNA point to a broad, distinct epigenetic state that may be involved in maintaining a unique chromosomal structure in male germ cells.
Collapse
Affiliation(s)
- C. C. Oakes
- Departments of *Pharmacology and Therapeutics
- Montreal Children's Hospital Research Institute, Montreal, QC, Canada H3H 1P3; and
| | - S. La Salle
- Departments of *Pharmacology and Therapeutics
- Montreal Children's Hospital Research Institute, Montreal, QC, Canada H3H 1P3; and
| | - D. J. Smiraglia
- Cancer Genetics, Roswell Park Cancer Institute, Buffalo, NY 14250
| | - B. Robaire
- Departments of *Pharmacology and Therapeutics
- Obstetrics and Gynecology
| | - J. M. Trasler
- Departments of *Pharmacology and Therapeutics
- Pediatrics, and
- Human Genetics, McGill University, Montreal, QC, Canada H3A 1B1
- Montreal Children's Hospital Research Institute, Montreal, QC, Canada H3H 1P3; and
- **To whom correspondence should be addressed at:
McGill University–Montreal Children's Hospital Research Institute, 2300 Tupper Street, Montreal, QC, Canada H3H 1P3. E-mail:
| |
Collapse
|
475
|
Romanish MT, Lock WM, van de Lagemaat LN, Dunn CA, Mager DL. Repeated recruitment of LTR retrotransposons as promoters by the anti-apoptotic locus NAIP during mammalian evolution. PLoS Genet 2006; 3:e10. [PMID: 17222062 PMCID: PMC1781489 DOI: 10.1371/journal.pgen.0030010] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2006] [Accepted: 12/05/2006] [Indexed: 12/19/2022] Open
Abstract
Neuronal apoptosis inhibitory protein (NAIP, also known as BIRC1) is a member of the conserved inhibitor of apoptosis protein (IAP) family. Lineage-specific rearrangements and expansions of this locus have yielded different copy numbers among primates and rodents, with human retaining a single functional copy and mouse possessing several copies, depending on the strain. Roles for this gene in disease have been documented, but little is known about transcriptional regulation of NAIP. We show here that NAIP has multiple promoters sharing no similarity between human and rodents. Moreover, we demonstrate that multiple, domesticated long terminal repeats (LTRs) of endogenous retroviral elements provide NAIP promoter function in human, mouse, and rat. In human, an LTR serves as a tissue-specific promoter, active primarily in testis. However, in rodents, our evidence indicates that an ancestral LTR common to all rodent genes is the major, constitutive promoter for these genes, and that a second LTR found in two of the mouse genes is a minor promoter. Thus, independently acquired LTRs have assumed regulatory roles for orthologous genes, a remarkable evolutionary scenario. We also demonstrate that 5′ flanking regions of IAP family genes as a group, in both human and mouse are enriched for LTR insertions compared to average genes. We propose several potential explanations for these findings, including a hypothesis that recruitment of LTRs near NAIP or other IAP genes may represent a host-cell adaptation to modulate apoptotic responses. When retroviruses infect cells, the viral DNA inserts into the cellular genome. If this happens in gametes (egg or sperm), the viral DNA will be transmitted from parent to offspring, like all chromosomal DNA. Through evolutionary time, such infections of gametes have been so prevalent that 8%–10% of the normal human and mouse genomes are now composed of ancient viral DNA, termed endogenous retroviruses (ERVs). In human, these ERVs are mutated or “dead” but it has been shown that ERV regulatory regions can be employed by the host to help control expression of cellular genes. Here, we report on a remarkable example of this phenomenon. We demonstrate that both the human and rodent neuronal apoptosis inhibitory protein (NAIP) genes, involved in preventing cell death, use different ERV sequences to drive gene expression. Moreover, in each of the primate and rodent lineages, two separate ERVs contribute to NAIP gene expression. This repeated ERV recruitment by NAIP genes throughout evolution is very unlikely to have occurred by chance. We offer a number of potential explanations, including the intriguing possibility that it may be advantageous for anti-cell death genes like NAIP to use ERVs to control their expression. These results support the view that not all retroviral remnants in our genome are simply junk DNA.
Collapse
Affiliation(s)
- Mark T Romanish
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Wynne M Lock
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Louie N. van de Lagemaat
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Catherine A Dunn
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Dixie L Mager
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
476
|
Jehan Z, Vallinayagam S, Tiwari S, Pradhan S, Singh L, Suresh A, Reddy HM, Ahuja Y, Jesudasan RA. Novel noncoding RNA from human Y distal heterochromatic block (Yq12) generates testis-specific chimeric CDC2L2. Genome Res 2006; 17:433-40. [PMID: 17095710 PMCID: PMC1832090 DOI: 10.1101/gr.5155706] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The human Y chromosome, because it is enriched in repetitive DNA, has been very intractable to genetic and molecular analyses. There is no previous evidence for developmental stage- and testis-specific transcription from the male-specific region of the Y (MSY). Here, we present evidence for the first time for a developmental stage- and testis-specific transcription from MSY distal heterochromatic block. We isolated two novel RNAs, which localize to Yq12 in multiple copies, show testis-specific expression, and lack active X-homologs. Experimental evidence shows that one of the above Yq12 noncoding RNAs (ncRNAs) trans-splices with CDC2L2 mRNA from chromosome 1p36.3 locus to generate a testis-specific chimeric beta sv13 isoform. This 67-nt 5'UTR provided by the Yq12 transcript contains within it a Y box protein-binding CCAAT motif, indicating translational regulation of the beta sv13 isoform in testis. This is also the first report of trans-splicing between a Y chromosomal and an autosomal transcript.
Collapse
Affiliation(s)
- Zeenath Jehan
- Centre for Cellular and Molecular Biology, Uppal Road Hyderabad–500 007, AP, India
| | | | - Shrish Tiwari
- Centre for Cellular and Molecular Biology, Uppal Road Hyderabad–500 007, AP, India
| | - Suman Pradhan
- Centre for Cellular and Molecular Biology, Uppal Road Hyderabad–500 007, AP, India
| | - Lalji Singh
- Centre for Cellular and Molecular Biology, Uppal Road Hyderabad–500 007, AP, India
| | - Amritha Suresh
- Centre for Cellular and Molecular Biology, Uppal Road Hyderabad–500 007, AP, India
| | - Hemakumar M. Reddy
- Centre for Cellular and Molecular Biology, Uppal Road Hyderabad–500 007, AP, India
| | - Y.R. Ahuja
- Genetics Unit, Vasavi Medical and Research Centre, Hyderabad, India, AP, India
| | - Rachel A. Jesudasan
- Centre for Cellular and Molecular Biology, Uppal Road Hyderabad–500 007, AP, India
- Corresponding author.E-mail ; fax 91-40-27160311
| |
Collapse
|
477
|
Ramírez MA, Pericuesta E, Fernandez-Gonzalez R, Moreira P, Pintado B, Gutierrez-Adan A. Transcriptional and post-transcriptional regulation of retrotransposons IAP and MuERV-L affect pluripotency of mice ES cells. Reprod Biol Endocrinol 2006; 4:55. [PMID: 17090336 PMCID: PMC1636644 DOI: 10.1186/1477-7827-4-55] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2006] [Accepted: 11/08/2006] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND In the mouse, culture of embryonic stem (ES) cells may decrease their pluripotency and give rise to foetal abnormalities in recipient embryos. These abnormalities are frequently associated with both, chromosome abnormalities or epigenetic alteration of imprinting genes; however, little is known about the epigenetic stability of endogenous retrotransposable elements (REs). In our laboratory, we came across a R1 ES cell line, which at passage 27, lost the ability of germline transmission and started inducing the kinky tail phenotype in all chimeric animals produced with it. METHODS In order to investigate whether this phenotype was associated with chromosome alteration, inadvertent differentiation, or epigenetic modification, we characterized and compared this R1 ES cell line at passage 27 with an early passage and with a second ES cell line C57/CBAF1 generated in our laboratory. We assessed: i) karyotype; ii) expression of pluripotent and differentiation markers, iii) mRNA transcription by qRT-PCR of two REs, intracisternal-A particle (IAP) and murine endogenous-retrovirus-L (MuERV-L), and iv) methylation of IAP and MuERV-L. RESULTS The R1 ES cell at passage 27, presented normal morphology, karyotype, and expression of genetic markers characteristic of pluripotent; however, it was detected an altered mRNA transcription of sense and antisense RNA strands of both REs, concomitantly with an altered methylation pattern for the IAP element but not for MuERV-L. These results indicate that besides methylation, other post-transcriptional processes are involved in gene silencing of some REs; and that culture of ES cells may decrease their pluripotency by producing inadvertent alterations in the expression of REs without significantly affecting the morphology, chromosome structure, and expression of pluripotent or differentiation markers. CONCLUSION Inadvertent REs instability may have important consequences for the use of ES cells in transgenesis (chimera formation) or in cell therapy.
Collapse
Affiliation(s)
- Miguel A Ramírez
- Departamento de Reproducción Animal, INIA, Ctra. De La Coruña Km 5,9, Madrid 28040, España
| | - Eva Pericuesta
- Departamento de Reproducción Animal, INIA, Ctra. De La Coruña Km 5,9, Madrid 28040, España
| | | | - Pedro Moreira
- Departamento de Reproducción Animal, INIA, Ctra. De La Coruña Km 5,9, Madrid 28040, España
| | - Belen Pintado
- Departamento de Reproducción Animal, INIA, Ctra. De La Coruña Km 5,9, Madrid 28040, España
| | - Alfonso Gutierrez-Adan
- Departamento de Reproducción Animal, INIA, Ctra. De La Coruña Km 5,9, Madrid 28040, España
| |
Collapse
|
478
|
Kim M, Li D, Cui Y, Mueller K, Chears WC, DeJong J. Regulatory Factor Interactions and Somatic Silencing of the Germ Cell-specific ALF Gene. J Biol Chem 2006; 281:34288-98. [PMID: 16966320 DOI: 10.1074/jbc.m607168200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Germ cell-specific genes are active in oocytes and spermatocytes but are silent in all other cell types. To understand the basis for this seemingly simple pattern of regulation, we characterized factors that recognize the promoter-proximal region of the germ cell-specific TFIIA alpha/beta-like factor (ALF) gene. Two of the protein-DNA complexes formed with liver extracts (C4 and C5) are due to the zinc finger proteins Sp1 and Sp3, respectively, whereas another complex (C6) is due to the transcription factor RFX1. Two additional complexes (C1 and C3) are due to the multivalent zinc finger protein CTCF, a factor that plays a role in gene silencing and chromatin insulation. An investigation of CTCF binding revealed a recognition site of only 17 bp that overlaps with the Sp1/Sp3 site. This site is predictive of other genomic CTCF sites and can be aligned to create a functional consensus. Studies on the activity of the ALF promoter in somatic 293 cells revealed mutations that result in increased reporter activity. In addition, RNAi-mediated down-regulation of CTCF is associated with activation of the endogenous ALF gene, and both CTCF and Sp3 repress the promoter in transient transfection assays. Overall, the results suggest a role for several factors, including the multivalent zinc finger chromatin insulator protein CTCF, in mediating somatic repression of the ALF gene. Release of such repression, perhaps in conjunction with other members of the CTCF, RFX, and Sp1 families of transcription factors, could be an important aspect of germ cell gene activation.
Collapse
Affiliation(s)
- MinJung Kim
- Department of Molecular and Cell Biology, University of Texas at Dallas, Richardson, Texas 75080, USA
| | | | | | | | | | | |
Collapse
|
479
|
|
480
|
Sin HS, Huh JW, Kim DS, Kang DW, Min DS, Kim TH, Ha HS, Kim HH, Lee SY, Kim HS. Transcriptional control of the HERV-H LTR element of the GSDML gene in human tissues and cancer cells. Arch Virol 2006; 151:1985-1994. [PMID: 16625320 DOI: 10.1007/s00705-006-0764-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2005] [Accepted: 03/10/2006] [Indexed: 01/25/2023]
Abstract
Long terminal repeats (LTRs) of human endogenous retroviruses (HERVs) have been reported to serve as alternative promoters in functional genes. The GSDML (gasdermin-like protein) gene located on human chromosome 17q21 has been found to be an oncogenomic recombination hotspot. Here, we identified the LTR element of HERV-H with reverse orientation as an alternative promoter of the GSDML gene and analyzed its expression pattern in human tissues and cancer cells. A reporter gene assay of the promoter activity of the LTR on the GSDML gene in human cancer cell lines (HCT-116 and HeLa) and a kidney cell line (Cos7) of African green monkey indicated that the LTR promoter with reverse orientation had stronger promoter activity than forward one. The transcripts of this LTR-derived promoter were widely distributed in various human tissues and cancer cells, whereas the transcripts of the cellular promoter were found only in stomach tissues and some cancer cells (HCT116, MCF7, U937, C-33A, and PC3). These findings suggest that the LTR element on the GSDML gene was integrated into the hominoid lineage and acquired the role of transcriptional regulation of human tissues and cancer cells.
Collapse
Affiliation(s)
- H-S Sin
- Division of Biological Sciences, College of Natural Sciences, Pusan National University, Busan, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
481
|
Evsikov AV, Graber JH, Brockman JM, Hampl A, Holbrook AE, Singh P, Eppig JJ, Solter D, Knowles BB. Cracking the egg: molecular dynamics and evolutionary aspects of the transition from the fully grown oocyte to embryo. Genes Dev 2006; 20:2713-27. [PMID: 17015433 PMCID: PMC1578697 DOI: 10.1101/gad.1471006] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2006] [Accepted: 08/07/2006] [Indexed: 01/22/2023]
Abstract
Fully grown oocytes (FGOs) contain all the necessary transcripts to activate molecular pathways underlying the oocyte-to-embryo transition (OET). To elucidate this critical period of development, an extensive survey of the FGO transcriptome was performed by analyzing 19,000 expressed sequence tags of the Mus musculus FGO cDNA library. Expression of 5400 genes and transposable elements is reported. For a majority of genes expressed in mouse FGOs, homologs transcribed in eggs of Xenopus laevis or Ciona intestinalis were found, pinpointing evolutionary conservation of most regulatory cascades underlying the OET in chordates. A large proportion of identified genes belongs to several gene families with oocyte-restricted expression, a likely result of lineage-specific genomic duplications. Gene loss by mutation and expression in female germline of retrotransposed genes specific to M. musculus is documented. These findings indicate rapid diversification of genes involved in female reproduction. Comparison of the FGO and two-cell embryo transcriptomes demarcated the processes important for oogenesis from those involved in OET and identified novel motifs in maternal mRNAs associated with transcript stability. Discovery of oocyte-specific eukaryotic translation initiation factor 4E distinguishes a novel system of translational regulation. These results implicate conserved pathways underlying transition from oogenesis to initiation of development and illustrate how genes acquire and lose reproductive functions during evolution, a potential mechanism for reproductive isolation.
Collapse
|
482
|
Abstract
The laboratory mouse model plays important roles in our understanding of early mammalian development and provides an invaluable model for human early embryos, which are difficult to study for ethical and technical reasons. A comprehensive collection of cDNA clones, their sequences, and complete genome sequence information, which have been accumulated over the past two decades, reveal even further the value of the mouse models. Here, the progress in global gene expression profiling in early mouse embryos and, to some extent, stem cells is reviewed and future directions and challenges are discussed. The discussions include the restatement of global gene expression profiles as a snapshot of cellular status, and subsequent distinction between the differentiation state and physiological state of the cells. The discussions then extend to the biological problems that can be addressed only through global expression profiling, including a bird's-eye view of global gene expression changes, molecular index for developmental potency, cell lineage trajectory, microarray-guided cell manipulation, and the possibility of delineating gene regulatory cascades and networks.
Collapse
Affiliation(s)
- Minoru S H Ko
- Developmental Genomics and Aging Section, Laboratory of Genetics, National Institute on Aging, NIH, Baltimore, Maryland 21224-6820, USA.
| |
Collapse
|
483
|
Puschendorf M, Stein P, Oakeley EJ, Schultz RM, Peters AHFM, Svoboda P. Abundant transcripts from retrotransposons are unstable in fully grown mouse oocytes. Biochem Biophys Res Commun 2006; 347:36-43. [PMID: 16815300 DOI: 10.1016/j.bbrc.2006.06.106] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2006] [Accepted: 06/04/2006] [Indexed: 11/28/2022]
Abstract
One physiological function proposed for RNA interference (RNAi) is to constrain expression of repetitive elements and thereby reduce the incidence of retrotransposition. Consistent with this model is that inhibiting the RNAi pathway results in an increase in expression of repetitive elements in preimplantation mouse embryos. Mouse oocytes are essentially transcriptionally quiescent providing a unique opportunity to assess the stability of repetitive element-derived transcripts in these cells. We compared the transcriptome of freshly isolated fully grown germinal vesicle (GV)-intact oocytes to that of oocytes in which meiotic maturation in vitro was inhibited for 48 h by milrinone. Consistent with the aforementioned function for RNAi is that the abundance of only a relatively small number of transcripts decreased in the cultured oocytes, when compared to changes that occur during maturation or following fertilization, and of those, several belonged to mobile elements.
Collapse
|
484
|
Maksakova IA, Romanish MT, Gagnier L, Dunn CA, van de Lagemaat LN, Mager DL. Retroviral elements and their hosts: insertional mutagenesis in the mouse germ line. PLoS Genet 2006; 2:e2. [PMID: 16440055 PMCID: PMC1331978 DOI: 10.1371/journal.pgen.0020002] [Citation(s) in RCA: 271] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The inbred mouse is an invaluable model for human biology and disease. Nevertheless, when considering genetic mechanisms of variation and disease, it is important to appreciate the significant differences in the spectra of spontaneous mutations that distinguish these species. While insertions of transposable elements are responsible for only approximately 0.1% of de novo mutations in humans, the figure is 100-fold higher in the laboratory mouse. This striking difference is largely due to the ongoing activity of mouse endogenous retroviral elements. Here we briefly review mouse endogenous retroviruses (ERVs) and their influence on gene expression, analyze mechanisms of interaction between ERVs and the host cell, and summarize the variety of mutations caused by ERV insertions. The prevalence of mouse ERV activity indicates that the genome of the laboratory mouse is presently behind in the "arms race" against invasion.
Collapse
Affiliation(s)
| | | | | | | | | | - Dixie L Mager
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
485
|
Carninci P. Tagging mammalian transcription complexity. Trends Genet 2006; 22:501-10. [PMID: 16859803 DOI: 10.1016/j.tig.2006.07.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2006] [Revised: 05/24/2006] [Accepted: 07/04/2006] [Indexed: 11/18/2022]
Abstract
The nature of the 'transcriptome' is more complex than first realized. Although CAGE, various tagging technologies and tiling arrays show that most of the mammalian genome is transcribed, a large proportion of transcripts do not encode proteins and are either poorly polyadenylated, involved in sense-antisense pairs or never leave the nucleus. In this article, I review the various techniques and data sets that are currently used to measure gene transcription and the evidence that reveals the true extent of transcription in mammalian genomes. The next few years will see efforts to identify novel transcripts systematically and decipher their function. A deeper understanding of transcriptional complexity might even lead us to redefine what we mean by the term 'gene'.
Collapse
Affiliation(s)
- Piero Carninci
- Genome Science Laboratory, Discovery and Research Institute, RIKEN Wako Institute, 2-1 Hirosawa, Wako, Saitama 351-0198 Japan.
| |
Collapse
|
486
|
Watanabe T, Takeda A, Tsukiyama T, Mise K, Okuno T, Sasaki H, Minami N, Imai H. Identification and characterization of two novel classes of small RNAs in the mouse germline: retrotransposon-derived siRNAs in oocytes and germline small RNAs in testes. Genes Dev 2006; 20:1732-43. [PMID: 16766679 PMCID: PMC1522070 DOI: 10.1101/gad.1425706] [Citation(s) in RCA: 427] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2006] [Accepted: 05/11/2006] [Indexed: 01/24/2023]
Abstract
Small RNAs ranging in size between 18 and 30 nucleotides (nt) are found in many organisms including yeasts, plants, and animals. Small RNAs are involved in the regulation of gene expression through translational repression, mRNA degradation, and chromatin modification. In mammals, microRNAs (miRNAs) are the only small RNAs that have been well characterized. Here, we have identified two novel classes of small RNAs in the mouse germline. One class consists of approximately 20- to 24-nt small interfering RNAs (siRNAs) from mouse oocytes, which are derived from retroelements including LINE, SINE, and LTR retrotransposons. Addition of retrotransposon-derived sequences to the 3' untranslated region (UTR) of a reporter mRNA destabilizes the mRNA significantly when injected into full-grown oocytes. These results suggest that retrotransposons are suppressed through the RNAi pathway in mouse oocytes. The other novel class of small RNAs is 26- to 30-nt germline small RNAs (gsRNAs) from testes. gsRNAs are expressed during spermatogenesis in a developmentally regulated manner, are mapped to the genome in clusters, and have strong strand bias. These features are reminiscent of Tetrahymena approximately 23- to 24-nt small RNAs and Caenorhabditis elegans X-cluster small RNAs. A conserved novel small RNA pathway may be present in diverse animals.
Collapse
Affiliation(s)
- Toshiaki Watanabe
- Laboratory of Reproductive Biology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
487
|
Beraldi R, Pittoggi C, Sciamanna I, Mattei E, Spadafora C. Expression of LINE-1 retroposons is essential for murine preimplantation development. Mol Reprod Dev 2006; 73:279-87. [PMID: 16365895 DOI: 10.1002/mrd.20423] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In higher eukaryotes, reverse transcriptase (RT) activities are encoded by a variety of endogenous retroviruses and retrotransposable elements. We previously found that mouse preimplantation embryos are endowed with an endogenous RT activity. Inhibition of that activity by the non nucleosidic inhibitor nevirapine or by microinjection of anti-RT antibody caused early embryonic developmental arrest. Those experiments indicated that RT is required for early development, but did not identify the responsible coding elements. We now show that microinjection of morpholino-modified antisense oligonucleotides targeting the 5' end region of active LINE-1 retrotransposons in murine zygotes irreversibly arrests preimplantation development at the two- and four-cell stages; the overall level of functional RT is concomitantly downregulated in arrested embryos. Furthermore, we show that the induction of embryo developmental arrest is associated with a substantial reprogramming of gene expression. Together, these results support the conclusion that expression of LINE-1 retrotransposons is required for early embryo preimplantation development.
Collapse
|
488
|
Nishihara H, Smit AF, Okada N. Functional noncoding sequences derived from SINEs in the mammalian genome. Genome Res 2006; 16:864-74. [PMID: 16717141 PMCID: PMC1484453 DOI: 10.1101/gr.5255506] [Citation(s) in RCA: 179] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Recent comparative analyses of mammalian sequences have revealed that a large number of nonprotein-coding genomic regions are under strong selective constraint. Here, we report that some of these loci have been derived from a newly defined family of ancient SINEs (short interspersed repetitive elements). This is a surprising result, as SINEs and other transposable elements are commonly thought to be genomic parasites. We named the ancient SINE family AmnSINE1, for Amniota SINE1, because we found it to be present in mammals as well as in birds, and some copies predate the mammalian-bird split 310 million years ago (Mya). AmnSINE1 has a chimeric structure of a 5S rRNA and a tRNA-derived SINE, and is related to five tRNA-derived SINE families that we characterized here in the coelacanth, dogfish shark, hagfish, and amphioxus genomes. All of the newly described SINE families have a common central domain that is also shared by zebrafish SINE3, and we collectively name them the DeuSINE (Deuterostomia SINE) superfamily. Notably, of the approximately 1000 still identifiable copies of AmnSINE1 in the human genome, 105 correspond to loci phylogenetically highly conserved among mammalian orthologs. The conservation is strongest over the central domain. Thus, AmnSINE1 appears to be the best example of a transposable element of which a significant fraction of the copies have acquired genomic functionality.
Collapse
Affiliation(s)
- Hidenori Nishihara
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, Japan
| | - Arian F.A. Smit
- Institute for Systems Biology, Seattle, Washington 98103, USA
| | - Norihiro Okada
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, Japan
- Corresponding author.E-mail ; fax 81-45-924-5835
| |
Collapse
|
489
|
Meshorer E, Misteli T. Chromatin in pluripotent embryonic stem cells and differentiation. Nat Rev Mol Cell Biol 2006; 7:540-6. [PMID: 16723974 DOI: 10.1038/nrm1938] [Citation(s) in RCA: 516] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Embryonic stem (ES) cells are unique in that they are pluripotent and have the ability to self-renew. The molecular mechanisms that underlie these two fundamental properties are largely unknown. We discuss how unique properties of chromatin in ES cells contribute to the maintenance of pluripotency and the determination of differentiation properties.
Collapse
Affiliation(s)
- Eran Meshorer
- National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | | |
Collapse
|
490
|
Sgaramella V, Salamini F. Gene paucity, genome instability, clonal development: has an individual genome the potential to encode for more than one brain? DNA Repair (Amst) 2006; 5:531-3. [PMID: 16621729 DOI: 10.1016/j.dnarep.2006.03.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2006] [Accepted: 03/07/2006] [Indexed: 11/26/2022]
|
491
|
Abstract
The term non-coding RNA (ncRNA) is commonly employed for RNA that does not encode a protein, but this does not mean that such RNAs do not contain information nor have function. Although it has been generally assumed that most genetic information is transacted by proteins, recent evidence suggests that the majority of the genomes of mammals and other complex organisms is in fact transcribed into ncRNAs, many of which are alternatively spliced and/or processed into smaller products. These ncRNAs include microRNAs and snoRNAs (many if not most of which remain to be identified), as well as likely other classes of yet-to-be-discovered small regulatory RNAs, and tens of thousands of longer transcripts (including complex patterns of interlacing and overlapping sense and antisense transcripts), most of whose functions are unknown. These RNAs (including those derived from introns) appear to comprise a hidden layer of internal signals that control various levels of gene expression in physiology and development, including chromatin architecture/epigenetic memory, transcription, RNA splicing, editing, translation and turnover. RNA regulatory networks may determine most of our complex characteristics, play a significant role in disease and constitute an unexplored world of genetic variation both within and between species.
Collapse
Affiliation(s)
- John S Mattick
- Australian Research Council Centre for Functional and Applied Genomics, Institute for Molecular Bioscience, University of Queensland, St Lucia, QLD 4072, Australia.
| | | |
Collapse
|
492
|
de Diego JG, David Rodríguez F, Rodríguez Lorenzo JL, Grappin P, Cervantes E. cDNA-AFLP analysis of seed germination in Arabidopsis thaliana identifies transposons and new genomic sequences. JOURNAL OF PLANT PHYSIOLOGY 2006; 163:452-62. [PMID: 16455359 DOI: 10.1016/j.jplph.2005.04.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2004] [Accepted: 04/26/2005] [Indexed: 05/06/2023]
Abstract
A cDNA-AFLP experiment was designed to identify and clone nucleotide sequences induced during seed germination in Arabidopsis thaliana. Sequences corresponding to known genes involved in processes important for germination, such as mitochondrial biogenesis, protein synthesis and cell cycle progression, were isolated. Other sequences correspond to Arabidopsis BAC clones in regions where genes have not been annotated. Notably, a number of the sequences cloned did not correspond to available sequences in the databases from the Arabidopsis genome, but instead present significant similarity with DNA from other organisms, for example fish species; among them, some may encode transposons. A number of the sequences isolated showed no significant similarity with any sequences in the public databases. Oligonucleotides derived from these new sequences were used to amplify genomic DNA of Arabidopsis. Expression analysis of representative sequences is presented. This work suggests that, during germination, there may be a massive transposon mobilization that may be useful in the annotation of new genome sequences and identification of regulatory mechanisms.
Collapse
Affiliation(s)
- Juana G de Diego
- Departamento de Bioquímica y Biología Molecular, Edificio Departamental, Campus Miguel de Unamuno, Universidad de Salamanca, 37007, Salamanca, Spain
| | | | | | | | | |
Collapse
|
493
|
Holt JE, Roman SD, Aitken RJ, McLaughlin EA. Identification and characterization of a novel Mt-retrotransposon highly represented in the female mouse germline. Genomics 2006; 87:490-9. [PMID: 16459056 DOI: 10.1016/j.ygeno.2005.08.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2005] [Revised: 06/27/2005] [Accepted: 08/26/2005] [Indexed: 11/22/2022]
Abstract
The control of primordial follicle recruitment into the growing follicle population is a major limiting process in female reproduction. In order to gain insight into the molecular processes occurring at the time of primordial follicle activation, a subtractive hybridization analysis was performed between cDNAs prepared from temporally distinct mouse neonatal ovarian tissues that differed according to the state of primordial follicle activation. One highly represented clone associated with activation was an Mt retrotransposon-like sequence designated Mtfull, which was subsequently cloned and determined to be novel and restricted in expression to the ovary. The polyadenylated 1684-bp sequence has long terminal repeats, is predicted to be noncoding, and is the predominant Mti-related sequence present in the mouse ovary. In situ hybridization further localized Mtfull expression to the oocyte and confirmed that expression is concomitant with follicle activation. Together with in silico data, we predict Mtfull plays an essential role in folliculogenesis through regulation of gene expression.
Collapse
Affiliation(s)
- Janet E Holt
- Reproductive Science Group, Discipline of Biological Science, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia.
| | | | | | | |
Collapse
|
494
|
DeJong J. Basic mechanisms for the control of germ cell gene expression. Gene 2006; 366:39-50. [PMID: 16326034 DOI: 10.1016/j.gene.2005.10.012] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2005] [Revised: 09/23/2005] [Accepted: 10/10/2005] [Indexed: 11/17/2022]
Abstract
The patterns of gene expression in spermatocytes and oocytes are quite different from those in somatic cells. The messenger RNAs produced by these cells are not only required to support germ cell development but, in the case of oocytes, they are also used for maturation, fertilization, and early embryogenesis. Recent studies have begun to provide an explanation for how germ-cell-specific programs of gene expression are generated. Part of the answer comes from the observation that germ cells express core promoter-associated regulatory factors that are different from those expressed in somatic cells. These factors supplement or replace their somatic counterparts to direct expression during meiosis and gametogenesis. In addition, germ cell transcription involves the recognition and use of specialized core promoter sequences. Finally, transcription must occur on chromosomal DNA templates that are reorganized into new chromatin-packaging configurations using alternate histone subunits. This article will review recent advances in our understanding of the factors and mechanisms that control transcription in ovary and testis and will discuss models for germ cell gene expression.
Collapse
Affiliation(s)
- Jeff DeJong
- Department of Molecular and Cell Biology, University of Texas at Dallas, 2601 N. Floyd Road, Richardson, TX 75080, United States.
| |
Collapse
|
495
|
Abstract
As is the case with mammals in general, primate genomes are inundated with repetitive sequence. Although much of this repetitive content consists of "molecular fossils" inherited from early mammalian ancestors, a significant portion of this material comprises active mobile element lineages. Despite indications that these elements played a major role in shaping the architecture of the genome, there remain many unanswered questions surrounding the nature of the host-element relationship. Here we review advances in our understanding of the host-mobile element dynamic and its overall impact on primate evolution.
Collapse
Affiliation(s)
- Dale J Hedges
- Department of Biological Sciences, Biological Computation and Visualization Center, Louisiana State University, LA 70803, USA
| | | |
Collapse
|
496
|
Zeng F, Schultz RM. RNA transcript profiling during zygotic gene activation in the preimplantation mouse embryo. Dev Biol 2005; 283:40-57. [PMID: 15975430 DOI: 10.1016/j.ydbio.2005.03.038] [Citation(s) in RCA: 210] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2005] [Revised: 03/28/2005] [Accepted: 03/29/2005] [Indexed: 12/30/2022]
Abstract
Zygotic gene activation is essential for development beyond the 2-cell stage in the preimplantation mouse embryo. Based on alpha-amanitin-sensitive BrUTP incorporation, transcription initiates in the 1-cell embryo and a major reprogramming of gene expression driven by newly expressed genes is prominently observed during the 2-cell stage. Superimposed on genome activation is the development of a transcriptionally repressive state that is mediated at the level of chromatin structure. The identity of the genes that are expressed during the 1- and 2-cell stages, however, is poorly described, as are those genes involved in mediating the transcriptionally repressive state. Using the Affymetrix MOE430 mouse GeneChip set, we characterized the set of alpha-amanitin-sensitive genes expressed during the 1- and 2-cell stages, and we used Expression Analysis Systematic Explorer (EASE) and Ingenuity Pathway Analysis (IPA) to identify biological and molecular processes represented by these genes, as well as interactions among them. We find that although the 1-cell embryo is transcriptionally active, we did not detect any transcripts present on the MOE430 GeneChip set to be alpha-amanitin-sensitive. Thus, what the BrUTP incorporation represents remains elusive. About 17% of genes expressed in the 2-cell embryo are alpha-amanitin-sensitive. EASE analysis reveals that genes involved in ribosome biogenesis and assembly, protein synthesis, RNA metabolism and transcription are over-represented, suggesting that genome activation during 2-cell stage may not be as global and promiscuous as previously proposed. IPA implicated Myc and Hdac1 as candidate genes involved in genome activation and the development of the transcriptionally repressive state, respectively.
Collapse
Affiliation(s)
- Fanyi Zeng
- Department of Biology, University of Pennsylvania, 415 South University Avenue, Philadelphia, PA 19104-6018, USA
| | | |
Collapse
|
497
|
Dunn CA, van de Lagemaat LN, Baillie GJ, Mager DL. Endogenous retrovirus long terminal repeats as ready-to-use mobile promoters: the case of primate beta3GAL-T5. Gene 2005; 364:2-12. [PMID: 16112824 DOI: 10.1016/j.gene.2005.05.045] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2005] [Revised: 02/18/2005] [Accepted: 05/30/2005] [Indexed: 11/23/2022]
Abstract
Throughout the course of vertebrate evolution, germline retroviral infections have resulted in heritable provirus insertions into host DNA. These endogenous retroviruses (ERVs) contain long terminal repeat (LTR) promoters that can be adopted for use by nearby host genes. It is not known whether the transcription factor (TF) binding sites and tissue-specificities of modern LTR gene promoters have been retained since the time of ERV insertion, or if these features evolved later as the LTR became involved in host gene regulation. To address this issue, we have conducted a case study of the ERV-L LTR promoter of human beta1,3-galactosyltransferase 5 (beta3GAL-T5). We have previously shown that the human beta3GAL-T5 LTR promoter is responsible for the majority of gene transcripts in the colon. The murine beta3gal-t5 gene is also expressed primarily in the colon, despite the absence of an orthologous ERV-L LTR in the mouse genome. We therefore hypothesized that both the ERV-L LTR and the non-retroviral ancestral beta3GAL-T5 promoter were active in the colon at the time of ERV insertion. In support of this hypothesis, we have shown that the orthologous LTRs of four non-human primates are also active in a human colorectal cell line, and that the baboon LTR is active in primary baboon colon tissue. We also present evidence that the functional TF binding sites of the human beta3GAL-T5 LTR promoter were present in the original consensus sequence for this class of LTRs. Upon similar analysis of other ERV sequences, we have concluded that this evolutionary history is shared by certain other LTR gene promoters, and may be a general phenomenon.
Collapse
Affiliation(s)
- Catherine A Dunn
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, British Columbia, Canada V5Z 1L3
| | | | | | | |
Collapse
|
498
|
Del Arco A. Novel variants of human SCaMC-3, an isoform of the ATP-Mg/P(i) mitochondrial carrier, generated by alternative splicing from 3'-flanking transposable elements. Biochem J 2005; 389:647-55. [PMID: 15801905 PMCID: PMC1180714 DOI: 10.1042/bj20050283] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2005] [Revised: 03/22/2005] [Accepted: 03/31/2005] [Indexed: 11/17/2022]
Abstract
CaMCs (calcium-dependent mitochondrial carriers) represent a novel subfamily of metabolite carriers of mitochondria. The ATP-Mg/P(i) co-transporter, functionally characterized more than 20 years ago, has been identified to be a CaMC member. There are three isoforms of the ATP-Mg/P(i) carrier in mammals, SCaMC-1 (short CaMC-1), -2 and -3 (or APC-1, -3 and -2 respectively), corresponding to the genes SLC25A24, SLC25A25 and SLC25A23 respectively, as well as six N-terminal variants generated by alternative splicing for SCaMC-1 and -2 isoforms. In the present study, we describe four new variants of human SCaMC-3 generated by alternative splicing. The new mRNAs use the exon 9 3'-donor site and distinct 5'-acceptor sites from repetitive elements, in regions downstream of exon 10, the last exon in all SCaMCs. Transcripts lacking exon 10 (SCaMC-3b, -3b', -3c and -3d) code for shortened proteins lacking the last transmembrane domain of 422, 456 and 435 amino acids, and were found in human tissues and HEK-293T cells. Mitochondrial targeting of overexpressed SCaMC-3 variants is incomplete. Surprisingly, the import impairment is overcome by removing the N-terminal extension of these proteins, suggesting that the hydrophilic N-terminal domain also participates in the mitochondrial import process, as shown for the CaMC members aralar and citrin [Roesch, Hynds, Varga, Tranebjaerg and Koehler (2004) Hum. Mol. Genet. 13, 2101-2111].
Collapse
Key Words
- alu repeat
- atp-mg/pi carrier
- calcium-dependent mitochondrial carrier (camc)
- mitochondrial import
- spliced variant
- transposable element
- agc, aspartate/glutamate carrier
- camc, calcium-dependent mitochondrial carrier
- scamc, short camc
- est, expressed sequence tag
- hek-293t cell, human embryonic kidney 293t cell
- ltr, long terminal repeat
- malr, mammalian apparent ltr-retrotransposon
- mc, mitochondrial carrier
- mcf, mc family
- nt, n-terminal
- rt, reverse transcriptase
Collapse
Affiliation(s)
- Araceli Del Arco
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa UAM-CSIC, Facultad de Ciencias, Universidad Autónoma, 28049 Madrid, Spain.
| |
Collapse
|
499
|
Cooper GM, Stone EA, Asimenos G, Green ED, Batzoglou S, Sidow A. Distribution and intensity of constraint in mammalian genomic sequence. Genome Res 2005; 15:901-13. [PMID: 15965027 PMCID: PMC1172034 DOI: 10.1101/gr.3577405] [Citation(s) in RCA: 1061] [Impact Index Per Article: 53.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Comparisons of orthologous genomic DNA sequences can be used to characterize regions that have been subject to purifying selection and are enriched for functional elements. We here present the results of such an analysis on an alignment of sequences from 29 mammalian species. The alignment captures approximately 3.9 neutral substitutions per site and spans approximately 1.9 Mbp of the human genome. We identify constrained elements from 3 bp to over 1 kbp in length, covering approximately 5.5% of the human locus. Our estimate for the total amount of nonexonic constraint experienced by this locus is roughly twice that for exonic constraint. Constrained elements tend to cluster, and we identify large constrained regions that correspond well with known functional elements. While constraint density inversely correlates with mobile element density, we also show the presence of unambiguously constrained elements overlapping mammalian ancestral repeats. In addition, we describe a number of elements in this region that have undergone intense purifying selection throughout mammalian evolution, and we show that these important elements are more numerous than previously thought. These results were obtained with Genomic Evolutionary Rate Profiling (GERP), a statistically rigorous and biologically transparent framework for constrained element identification. GERP identifies regions at high resolution that exhibit nucleotide substitution deficits, and measures these deficits as "rejected substitutions". Rejected substitutions reflect the intensity of past purifying selection and are used to rank and characterize constrained elements. We anticipate that GERP and the types of analyses it facilitates will provide further insights and improved annotation for the human genome as mammalian genome sequence data become richer.
Collapse
Affiliation(s)
- Gregory M Cooper
- Department of Genetics, Stanford University, Stanford, California 94305, USA
| | | | | | | | | | | |
Collapse
|
500
|
Alonso CR. Nonsense-mediated RNA decay: a molecular system micromanaging individual gene activities and suppressing genomic noise. Bioessays 2005; 27:463-6. [PMID: 15832387 DOI: 10.1002/bies.20227] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Nonsense-mediated RNA decay (NMD) is an evolutionary conserved system of RNA surveillance that detects and degrades RNA transcripts containing nonsense mutations. Given that these mutations arise at a relatively low frequency, are there any as yet unknown substrates of NMD in a wild-type cell? With this question in mind, Mendell et al. have used a microarray assay to identify those human genes under NMD regulation. Their results show that, in human cells, NMD regulates hundreds of physiologic transcripts and not just those containing nonsense mutations. Among the NMD targets are a number of non-functional RNAs expressed from vestigial sequences derived from retroviral and transposable elements. These findings support the notion that NMD is a high profile post-transcriptional mechanism micromanaging the activity of multiple gene batteries and suppressing the expression of genetic remnants.
Collapse
Affiliation(s)
- Claudio R Alonso
- Laboratory for Development and Evolution, Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK.
| |
Collapse
|