451
|
Martinez-Marin D, Jarvis C, Nelius T, Filleur S. Assessment of phagocytic activity in live macrophages-tumor cells co-cultures by Confocal and Nomarski Microscopy. Biol Methods Protoc 2017; 2:bpx002. [PMID: 32161785 PMCID: PMC6994062 DOI: 10.1093/biomethods/bpx002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 01/14/2017] [Accepted: 02/01/2017] [Indexed: 12/11/2022] Open
Abstract
Macrophages have been recognized as the main inflammatory component of the tumor microenvironment. Although often considered as beneficial for tumor growth and disease progression, tumor-associated macrophages have also been shown to be detrimental to the tumor depending on the tumor microenvironment. Therefore, understanding the molecular interactions between macrophages and tumor cells in relation to macrophages functional activities such as phagocytosis is critical for a better comprehension of their tumor-modulating action. Still, the characterization of these molecular mechanisms in vivo remains complicated due to the extraordinary complexity of the tumor microenvironment and the broad range of tumor-associated macrophage functions. Thus, there is an increasing demand for in vitro methodologies to study the role of cell-cell interactions in the tumor microenvironment. In the present study, we have developed live co-cultures of macrophages and human prostate tumor cells to assess the phagocytic activity of macrophages using a combination of Confocal and Nomarski Microscopy. Using this model, we have emphasized that this is a sensitive, measurable, and highly reproducible functional assay. We have also highlighted that this assay can be applied to multiple cancer cell types and used as a selection tool for a variety of different types of phagocytosis agonists. Finally, combining with other studies such as gain/loss of function or signaling studies remains possible. A better understanding of the interactions between tumor cells and macrophages may lead to the identification of new therapeutic targets against cancer.
Collapse
Affiliation(s)
- Dalia Martinez-Marin
- Department of Urology, Texas Tech University-Health Sciences Center, Lubbock, Texas 79430, USA
| | - Courtney Jarvis
- Department of Urology, Texas Tech University-Health Sciences Center, Lubbock, Texas 79430, USA.,Department of Immunology and Molecular Microbiology, Texas Tech University-Health Sciences Center, Lubbock, Texas 79430, USA
| | - Thomas Nelius
- Department of Urology, Texas Tech University-Health Sciences Center, Lubbock, Texas 79430, USA
| | - Stéphanie Filleur
- Department of Urology, Texas Tech University-Health Sciences Center, Lubbock, Texas 79430, USA.,Department of Immunology and Molecular Microbiology, Texas Tech University-Health Sciences Center, Lubbock, Texas 79430, USA
| |
Collapse
|
452
|
Yoshino H, Kumai Y, Kashiwakura I. Effects of endoplasmic reticulum stress on apoptosis induction in radioresistant macrophages. Mol Med Rep 2017; 15:2867-2872. [PMID: 28447729 DOI: 10.3892/mmr.2017.6298] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 01/19/2017] [Indexed: 11/06/2022] Open
Abstract
Macrophages are important in the host's immune defense against pathogens. However, recent evidence has demonstrated that macrophages are also involved in the development of disease, including cancer. Therefore, it is important to regulate apoptosis in tumor‑related macrophages for effective cancer treatment. In the present study, the effect of endoplasmic reticulum (ER) stress on apoptosis induction was examined in human monocytic cell‑derived macrophages. Radiation therapy in cancer results in irradiating macrophages as well as cancer cells in the tumor microenvironment. Since ER stress has been demonstrated to sensitize cancer cells to radiation, it was hypothesized that ER stress may induce a similar effect in macrophages. Therefore, the effect of combination treatment with ER stress inducers and ionizing radiation on macrophage apoptosis was examined. Treatment of macrophages with ER stress inducers thapsigargin and tunicamycin, enhanced unfolded protein responses, including phosphorylation of eukaryotic initiation factor 2‑α and increased expression of binding immunoglobulin protein. Furthermore, treatment with thapsigargin and tunicamycin induced apoptosis in macrophages compared with untreated cells, although ionizing radiation did not. The thapsigargin-induced apoptosis in macrophages was demonstrated to be caspase‑3‑dependent. Finally, combination treatment with thapsigargin and ionizing radiation, did not result in any significant change in macrophage apoptosis. The present study demonstrated that ER stress regulated apoptosis in radioresistant macrophages and that ionizing radiation had no added effect on ER stress‑induced apoptosis in macrophages.
Collapse
Affiliation(s)
- Hironori Yoshino
- Department of Radiation Science, Hirosaki University Graduate School of Health Sciences, Hirosaki, Aomori 036‑8564, Japan
| | - Yu Kumai
- Department of Radiological Technology, Hirosaki University School of Health Sciences, Hirosaki, Aomori 036‑8564, Japan
| | - Ikuo Kashiwakura
- Department of Radiation Science, Hirosaki University Graduate School of Health Sciences, Hirosaki, Aomori 036‑8564, Japan
| |
Collapse
|
453
|
Brennan K, Koenig JL, Gentles AJ, Sunwoo JB, Gevaert O. Identification of an atypical etiological head and neck squamous carcinoma subtype featuring the CpG island methylator phenotype. EBioMedicine 2017; 17:223-236. [PMID: 28314692 PMCID: PMC5360591 DOI: 10.1016/j.ebiom.2017.02.025] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 02/23/2017] [Accepted: 02/24/2017] [Indexed: 02/06/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is broadly classified into HNSCC associated with human papilloma virus (HPV) infection, and HPV negative HNSCC, which is typically smoking-related. A subset of HPV negative HNSCCs occur in patients without smoking history, however, and these etiologically 'atypical' HNSCCs disproportionately occur in the oral cavity, and in female patients, suggesting a distinct etiology. To investigate the determinants of clinical and molecular heterogeneity, we performed unsupervised clustering to classify 528 HNSCC patients from The Cancer Genome Atlas (TCGA) into putative intrinsic subtypes based on their profiles of epigenetically (DNA methylation) deregulated genes. HNSCCs clustered into five subtypes, including one HPV positive subtype, two smoking-related subtypes, and two atypical subtypes. One atypical subtype was particularly genomically stable, but featured widespread gene silencing associated with the 'CpG island methylator phenotype' (CIMP). Further distinguishing features of this 'CIMP-Atypical' subtype include an antiviral gene expression profile associated with pro-inflammatory M1 macrophages and CD8+ T cell infiltration, CASP8 mutations, and a well-differentiated state corresponding to normal SOX2 copy number and SOX2OT hypermethylation. We developed a gene expression classifier for the CIMP-Atypical subtype that could classify atypical disease features in two independent patient cohorts, demonstrating the reproducibility of this subtype. Taken together, these findings provide unprecedented evidence that atypical HNSCC is molecularly distinct, and postulates the CIMP-Atypical subtype as a distinct clinical entity that may be caused by chronic inflammation.
Collapse
Affiliation(s)
- K Brennan
- Department of Medicine, Stanford University, United States
| | - J L Koenig
- Department of Medicine, Stanford University, United States
| | - A J Gentles
- Department of Medicine, Stanford University, United States
| | - J B Sunwoo
- Department of Otolaryngology-Head and Neck Surgery, Stanford University, United States
| | - O Gevaert
- Department of Medicine, Stanford University, United States.
| |
Collapse
|
454
|
Li JQ, Yu XJ, Wang YC, Huang LY, Liu CQ, Zheng L, Fang YJ, Xu J. Distinct patterns and prognostic values of tumor-infiltrating macrophages in hepatocellular carcinoma and gastric cancer. J Transl Med 2017; 15:37. [PMID: 28202073 PMCID: PMC5312581 DOI: 10.1186/s12967-017-1139-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 02/03/2017] [Indexed: 12/21/2022] Open
Abstract
Background Macrophages (Mφs) constitute a major component of the leukocyte infiltrate and perform distinct roles in different tumor microenvironments. This study aimed to characterize the distribution, composition and prognostic value of Mφs in hepatocellular carcinoma (HCC) and gastric cancer (GC). Methods Immunohistochemistry and immunofluorescence were used to identify Mφ subsets in HCC and GC tissues. Kaplan–Meier analysis and Cox regression models were applied to estimate the overall survival (OS) for HCC and GC patients. Results The results showed that the density of Mφs decreased in the intra-tumor region (IT) of HCC, but remarkably increased in the IT of GC, as compared with their non-tumor regions (NT). In HCC, most CD68+ Mφs were CD204+ and CD169+ cells in the NT region; however, there was a significant decrease in the percentage of CD169+ Mφ in the IT region. In contrast, CD68+ Mφs comprised a smaller percentage of CD204+ than the CD169+ subpopulation in the NT region, while more CD204+ but fewer CD169+ cells were present in the IT region of GC. The density of CD204+ Mφs correlated with poor prognosis in HCC, and CD169+ Mφs were associated with good survival in both HCC and GC. Moreover, the combination of low numbers of CD204+ and high numbers of CD169+ Mφs was associated with improved OS in both GC and HCC. Conclusions Mφs display tissue-specific distributions and distinct composition patterns in HCC and GC tissues. Our results suggested that different types of tumors might use diverse strategies to reconstitute Mφ patterns to promote tumor progression. Electronic supplementary material The online version of this article (doi:10.1186/s12967-017-1139-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jin-Qing Li
- Collaborative Innovation Center of Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Xing-Juan Yu
- Collaborative Innovation Center of Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Yong-Chun Wang
- Collaborative Innovation Center of Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Li-Yun Huang
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Chao-Qun Liu
- Collaborative Innovation Center of Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Limin Zheng
- Collaborative Innovation Center of Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China.,School of Life Sciences, Sun Yat-sen University, Guangzhou, 510060, People's Republic of China
| | - Yu-Jing Fang
- Collaborative Innovation Center of Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China.
| | - Jing Xu
- Collaborative Innovation Center of Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China.
| |
Collapse
|
455
|
Park HR, Lee EJ, Moon SC, Chung TW, Kim KJ, Yoo HS, Cho CK, Ha KT. Inhibition of lung cancer growth by HangAmDan-B is mediated by macrophage activation to M1 subtype. Oncol Lett 2017; 13:2330-2336. [PMID: 28454399 PMCID: PMC5403442 DOI: 10.3892/ol.2017.5730] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 12/16/2016] [Indexed: 12/20/2022] Open
Abstract
Re-education of tumor-associated macrophages (TAMs) toward antitumor effectors may be a promising therapeutic strategy for the successful treatment of cancer. HangAmDan-B (HAD-B), a herbal formula, has been used for stimulating immune function and activation of vital energy to cancer patients in traditional Korean Medicine. Previous studies have reported the anti-angiogenic and anti-metastatic effects of HAD-B; however, evidence on the immunomodulatory action of HAD-B was not demonstrated. In the present study, immunocompetent mice were used to demonstrate the suppression of the in vivo growth of allograft Lewis lung carcinoma (LLC) cells, by HAD-B. In addition, HAD-B inhibited the in vitro growth of LLC cells by driving macrophages toward M1 polarization, but not through direct inhibition of tumor cell growth. Furthermore, culture media transfer of HAD-B-treated macrophages induced apoptosis of LLC cells. Results of the present study suggest that the antitumor effect of HAD-B may be explained by stimulating the antitumor function of macrophages. Considering the importance of re-educating TAMs in the regulation of the tumor microenvironment, the present study may confer another option for anti-cancer therapeutic strategy, using herbal medicines such as HAD-B.
Collapse
Affiliation(s)
- Hye-Rin Park
- School of Korean Medicine and Korean Medical Research Center for Healthy Aging, Pusan National University, Yangsan, Gyeongsangnam 50612, Republic of Korea
| | - Eun-Ji Lee
- School of Korean Medicine and Korean Medical Research Center for Healthy Aging, Pusan National University, Yangsan, Gyeongsangnam 50612, Republic of Korea
| | - Seong-Cheol Moon
- School of Korean Medicine and Korean Medical Research Center for Healthy Aging, Pusan National University, Yangsan, Gyeongsangnam 50612, Republic of Korea
| | - Tae-Wook Chung
- School of Korean Medicine and Korean Medical Research Center for Healthy Aging, Pusan National University, Yangsan, Gyeongsangnam 50612, Republic of Korea
| | - Keuk-Jun Kim
- Department of Clinical Pathology, TaeKyeung University, Gyeongsan, Gyeongsangbuk 38547, Republic of Korea
| | - Hwa-Seung Yoo
- East-West Cancer Center, Dunsan Oriental Medical Hospital of Daejeon University, Daejeon 32100, Republic of Korea
| | - Chong-Kwan Cho
- East-West Cancer Center, Dunsan Oriental Medical Hospital of Daejeon University, Daejeon 32100, Republic of Korea
| | - Ki-Tae Ha
- School of Korean Medicine and Korean Medical Research Center for Healthy Aging, Pusan National University, Yangsan, Gyeongsangnam 50612, Republic of Korea
| |
Collapse
|
456
|
Cancer-immune therapy: restoration of immune response in cancer by immune cell modulation. THE NUCLEUS 2017. [DOI: 10.1007/s13237-017-0194-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
457
|
Jiang S, Yan W. Succinate in the cancer-immune cycle. Cancer Lett 2017; 390:45-47. [PMID: 28109906 DOI: 10.1016/j.canlet.2017.01.019] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 01/10/2017] [Accepted: 01/11/2017] [Indexed: 01/16/2023]
Abstract
Succinate is an important intermediate of the tricarboxylic acid (TCA) cycle. In mitochondria, it plays a crucial role in generating adenosine triphosphate. Succinate metabolism is also intertwined with the metabolism of other metabolites and with the "GABA shunt" of the glutamine pathway. Recently, it has become increasingly apparent that the roles of succinate extend into the realms of immunity and cancer. Succinate is a key modulator of the hypoxic response, an important player in tumorigenesis; succinate is also involved in protein succinylation, a novel posttranslational modification pathway. This expanding repertoire of succinate functions suggests that it has broad roles in cellular contexts. Mutations in enzymes such as succinate dehydrogenase (SDH) that participate in succinate-related pathways lead to various pathologies, including tumor formation and innate inflammatory processes. Succinate can have both pro- or anti-tumor effectiveness. Therefore, investigation of succinate as an inflammatory signal may increase our understanding of the cancer-immunity cycle involved in both inflammatory diseases and cancer. Here, we briefly review the emerging roles of succinate, extending beyond metabolism, into anti-cancer immunity. This expansion of succinate roles suggests that it may represent a novel class of regulators in inflammation, which act as key signals in human cancers.
Collapse
Affiliation(s)
- Shuai Jiang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| | - Wei Yan
- Department of Pathology, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
458
|
Sakeer K, Scorza T, Romero H, Ispas-Szabo P, Mateescu MA. Starch materials as biocompatible supports and procedure for fast separation of macrophages. Carbohydr Polym 2017; 163:108-117. [PMID: 28267487 DOI: 10.1016/j.carbpol.2017.01.053] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 01/12/2017] [Accepted: 01/15/2017] [Indexed: 01/25/2023]
Abstract
Different starch derivatives were evaluated as supports for attachment and recovery of macrophages (RAW 264.7 line). Gelatinized starch (G-St), acetate starch (Ac-St), carboxymethyl starch and aminoethyl starch were synthesized and characterized by FTIR, 1H NMR, SEM and static water contact angle. These polymers are filmogenic and may coat well the holder devices used for macrophage adhesion. They also present a susceptibility to mild hydrolysis with alpha-amylase, liberating the adhered macrophages. Cell counts, percentage of dead cells and level of tumor necrosis factor (TNF-α) were used to evaluate the possible interaction between macrophages and starch films. The high percentage of cell adhesion (90-95% on G-St and on Ac-St) associated with enzymatic detachment of macrophages from film-coated inserts, resulted in higher viabilities compared with those obtained with cells detached by current methods scrapping or vortex. This novel method allows a fast macrophage separation, with excellent yields and high viability of recovered cells.
Collapse
Affiliation(s)
- Khalil Sakeer
- Department of Chemistry and Biomed Center, Université du Québec à Montréal, C.P. 8888, Branch A, Montréal, Québec, H3C 3P8, Canada
| | - Tatiana Scorza
- Department of Biological Sciences and Biomed Center, Université du Québec à Montréal, C.P. 8888, Branch A, Montréal, Québec H3C 3P8, Canada
| | - Hugo Romero
- Department of Biological Sciences and Biomed Center, Université du Québec à Montréal, C.P. 8888, Branch A, Montréal, Québec H3C 3P8, Canada
| | - Pompilia Ispas-Szabo
- Department of Chemistry and Biomed Center, Université du Québec à Montréal, C.P. 8888, Branch A, Montréal, Québec, H3C 3P8, Canada
| | - Mircea Alexandru Mateescu
- Department of Chemistry and Biomed Center, Université du Québec à Montréal, C.P. 8888, Branch A, Montréal, Québec, H3C 3P8, Canada.
| |
Collapse
|
459
|
Ornithine decarboxylase regulates M1 macrophage activation and mucosal inflammation via histone modifications. Proc Natl Acad Sci U S A 2017; 114:E751-E760. [PMID: 28096401 DOI: 10.1073/pnas.1614958114] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Macrophage activation is a critical step in host responses during bacterial infections. Ornithine decarboxylase (ODC), the rate-limiting enzyme in polyamine metabolism, has been well studied in epithelial cells and is known to have essential roles in many different cellular functions. However, its role in regulating macrophage function during bacterial infections is not well characterized. We demonstrate that macrophage-derived ODC is a critical regulator of M1 macrophage activation during both Helicobacter pylori and Citrobacter rodentium infection. Myeloid-specific Odc deletion significantly increased gastric and colonic inflammation, respectively, and enhanced M1 activation. Add-back of putrescine, the product of ODC, reversed the increased macrophage activation, indicating that ODC and putrescine are regulators of macrophage function. Odc-deficient macrophages had increased histone 3, lysine 4 (H3K4) monomethylation, and H3K9 acetylation, accompanied by decreased H3K9 di/trimethylation both in vivo and ex vivo in primary macrophages. These alterations in chromatin structure directly resulted in up-regulated gene transcription, especially M1 gene expression. Thus, ODC in macrophages tempers antimicrobial, M1 macrophage responses during bacterial infections through histone modifications and altered euchromatin formation, leading to the persistence and pathogenesis of these organisms.
Collapse
|
460
|
Beatty GL. Overcoming Therapeutic Resistance by Targeting Cancer Inflammation. Am Soc Clin Oncol Educ Book 2017; 35:e168-73. [PMID: 27249720 DOI: 10.1200/edbk_158948] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Tumor-infiltrating myeloid cells are a prominent feature of most solid malignancies. This inflammatory immune response, driven by tumor-intrinsic signaling pathways, is a major checkpoint to therapeutic efficacy achieved with immunotherapy and standard cytotoxic therapies. To overcome therapeutic resistance mediated by cancer inflammation, ongoing clinical trials are evaluating strategies that (1) deplete myeloid cells from tumors, (2) inhibit tumor-promoting properties of myeloid cells, and (3) redirect myeloid cells with tumor-inhibitory activity.
Collapse
Affiliation(s)
- Gregory L Beatty
- From the Abramson Cancer Center of the University of Pennsylvania, Philadelphia, PA; Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
461
|
Zhu C, Kros JM, van der Weiden M, Zheng P, Cheng C, Mustafa DAM. Expression site of P2RY12 in residential microglial cells in astrocytomas correlates with M1 and M2 marker expression and tumor grade. Acta Neuropathol Commun 2017; 5:4. [PMID: 28073370 PMCID: PMC5223388 DOI: 10.1186/s40478-016-0405-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 12/15/2016] [Indexed: 12/12/2022] Open
Abstract
The role of resident microglial cells in the pathogenesis and progression of glial tumors is still obscure mainly due to a lack of specific markers. Recently P2RY12, a P2 purinergic receptor, was introduced as a specific marker for microglial cells under normal and pathologic conditions. Here we analyzed the expression of P2RY12 in astrocytomas of various malignancy grades in relation to markers for M1 and M2 macrophage activation profiles by using two web-based glioma datasets and confocal immunohistochemistry to 28 astrocytoma samples grades II-IV. In the gliomas, P2RY12 immunoreactivity delineated CD68 negative cells with otherwise microglial features from CD68 positive tumor associated macrophages (TAMs). The presence of P2RY12 positive cells correlated positively with overall survival. P2RY12 mRNA levels and membrane-bound localization of P2RY12 were inversely correlated with increasing malignancy grade, and the expression site of P2RY12 shifted from cytoplasmic in low-grade gliomas, to nuclear in high-grade tumors. The cytoplasmic expression of P2RY12 was associated with the expression of M1 markers, characteristic of the pro-inflammatory macrophage response. In contrast, the nuclear localization of P2RY12 was predominant in the higher graded tumors and associated with the expression of the M2 marker CD163. We conclude that P2RY12 is a specific marker for resident microglia in glioma and its expression and localization correspond to tumor grade and predominant stage of M1/M2 immune response.
Collapse
|
462
|
Lehmann B, Biburger M, Brückner C, Ipsen-Escobedo A, Gordan S, Lehmann C, Voehringer D, Winkler T, Schaft N, Dudziak D, Sirbu H, Weber GF, Nimmerjahn F. Tumor location determines tissue-specific recruitment of tumor-associated macrophages and antibody-dependent immunotherapy response. Sci Immunol 2017; 2:2/7/eaah6413. [PMID: 28783667 DOI: 10.1126/sciimmunol.aah6413] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 12/08/2016] [Indexed: 12/14/2022]
Abstract
Despite recent advances in activating immune cells to target tumors, the presence of some immune cells, such as tumor-associated macrophages (TAMs) or tumor-associated neutrophils (TANs), may promote rather than inhibit tumor growth. However, it remains unclear how antibody-dependent tumor immunotherapies, such as cytotoxic or checkpoint control antibodies, affect different TAM or TAN populations, which abundantly express activating Fcγ receptors. In this study, we show that the tissue environment determines which cellular effector pathways are responsible for antibody-dependent tumor immunotherapy. Although TAMs derived from Ly6Chigh monocytes recruited by the CCL2-CCR2 axis were critical for tumor immunotherapy of skin tumors, the destruction of lung tumors was CCL2-independent and required the presence of colony-stimulating factor 2-dependent tissue-resident macrophages. Our findings suggest that TAMs may have a dual role not only in promoting tumor growth in certain tissue environments on the one hand but also in contributing to tumor cell destruction during antibody-mediated immunotherapy on the other hand.
Collapse
Affiliation(s)
- Birgit Lehmann
- Chair of Genetics, Department of Biology, University of Erlangen-Nuremberg, Erwin-Rommel-Str. 3, 91058 Erlangen, Germany
| | - Markus Biburger
- Chair of Genetics, Department of Biology, University of Erlangen-Nuremberg, Erwin-Rommel-Str. 3, 91058 Erlangen, Germany
| | - Christin Brückner
- Chair of Genetics, Department of Biology, University of Erlangen-Nuremberg, Erwin-Rommel-Str. 3, 91058 Erlangen, Germany
| | - Andrea Ipsen-Escobedo
- Chair of Genetics, Department of Biology, University of Erlangen-Nuremberg, Erwin-Rommel-Str. 3, 91058 Erlangen, Germany
| | - Sina Gordan
- Chair of Genetics, Department of Biology, University of Erlangen-Nuremberg, Erwin-Rommel-Str. 3, 91058 Erlangen, Germany
| | - Christian Lehmann
- Department of Dermatology, University Hospital Erlangen, 91054 Erlangen, Germany
| | - David Voehringer
- Department of Infection Biology, University Hospital Erlangen, Wasserturmstr. 3/5, 91054 Erlangen, Germany
| | - Thomas Winkler
- Chair of Genetics, Department of Biology, University of Erlangen-Nuremberg, Erwin-Rommel-Str. 3, 91058 Erlangen, Germany
| | - Niels Schaft
- Department of Dermatology, University Hospital Erlangen, 91054 Erlangen, Germany
| | - Diana Dudziak
- Department of Dermatology, University Hospital Erlangen, 91054 Erlangen, Germany
| | - Horia Sirbu
- Department of Surgery, University Hospital Erlangen, Krankenhausstr. 12, 91054 Erlangen, Germany
| | - Georg F Weber
- Department of Surgery, University Hospital Erlangen, Krankenhausstr. 12, 91054 Erlangen, Germany
| | - Falk Nimmerjahn
- Chair of Genetics, Department of Biology, University of Erlangen-Nuremberg, Erwin-Rommel-Str. 3, 91058 Erlangen, Germany.
| |
Collapse
|
463
|
Tumor Associated Macrophages as Therapeutic Targets for Breast Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1026:331-370. [PMID: 29282692 DOI: 10.1007/978-981-10-6020-5_16] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Tumor-associated macrophages (TAMs) are the most abundant inflammatory infiltrates in the tumor stroma. TAMs promote tumor growth by suppressing immunocompetent cells, including neovascularization and supporting cancer stem cells. In the chapter, we discuss recent efforts in reprogramming or inhibiting tumor-protecting properties of TAMs, and developing potential strategies to increase the efficacy of breast cancer treatment.
Collapse
|
464
|
Wu X, Giobbie-Hurder A, Liao X, Connelly C, Connolly EM, Li J, Manos MP, Lawrence D, McDermott D, Severgnini M, Zhou J, Gjini E, Lako A, Lipschitz M, Pak CJ, Abdelrahman S, Rodig S, Hodi FS. Angiopoietin-2 as a Biomarker and Target for Immune Checkpoint Therapy. Cancer Immunol Res 2016; 5:17-28. [PMID: 28003187 DOI: 10.1158/2326-6066.cir-16-0206] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 11/07/2016] [Accepted: 11/09/2016] [Indexed: 01/07/2023]
Abstract
Immune checkpoint therapies targeting CTLA-4 and PD-1 have proven effective in cancer treatment. However, the identification of biomarkers for predicting clinical outcomes and mechanisms to overcome resistance remain as critical needs. Angiogenesis is increasingly appreciated as an immune modulator with potential for combinatorial use with checkpoint blockade. Angiopoietin-2 (ANGPT2) is an immune target in patients and is involved in resistance to anti-VEGF treatment with the monoclonal antibody bevacizumab. We investigated the predictive and prognostic value of circulating ANGPT2 in metastatic melanoma patients receiving immune checkpoint therapy. High pretreatment serum ANGPT2 was associated with reduced overall survival in CTLA-4 and PD-1 blockade-treated patients. These treatments also increased serum ANGPT2 in many patients early after treatment initiation, whereas ipilimumab plus bevacizumab treatment decreased serum concentrations. ANGPT2 increases were associated with reduced response and/or overall survival. Ipilimumab increased, and ipilimumab plus bevacizumab decreased, tumor vascular ANGPT2 expression in a subset of patients, which was associated with increased and decreased tumor infiltration by CD68+ and CD163+ macrophages, respectively. In vitro, bevacizumab blocked VEGF-induced ANGPT2 expression in tumor-associated endothelial cells, whereas ANGPT2 increased PD-L1 expression on M2-polarized macrophages. Treatments elicited long-lasting and functional antibody responses to ANGPT2 in a subset of patients receiving clinical benefit. Our findings suggest that serum ANGPT2 may be considered as a predictive and prognostic biomarker for immune checkpoint therapy and may contribute to treatment resistance via increasing proangiogenic and immunosuppressive activities in the tumor microenvironment. Targeting ANGPT2 provides a rational combinatorial approach to improve the efficacy of immune therapy. Cancer Immunol Res; 5(1); 17-28. ©2016 AACR.
Collapse
Affiliation(s)
- Xinqi Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Anita Giobbie-Hurder
- Center for Immuno-oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Xiaoyun Liao
- Center for Immuno-oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Courtney Connelly
- Center for Immuno-oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Erin M Connolly
- Center for Immuno-oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Melanoma Disease Center, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Jingjing Li
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Michael P Manos
- Center for Immuno-oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Donald Lawrence
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts
| | | | - Mariano Severgnini
- Center for Immuno-oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Jun Zhou
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Evisa Gjini
- Center for Immuno-oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Ana Lako
- Center for Immuno-oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Mikel Lipschitz
- Center for Immuno-oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Christine J Pak
- Center for Immuno-oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Sara Abdelrahman
- Center for Immuno-oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Scott Rodig
- Center for Immuno-oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts
| | - F Stephen Hodi
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts.
- Center for Immuno-oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Melanoma Disease Center, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
465
|
The Fate of the Tumor in the Hands of Microenvironment: Role of TAMs and mTOR Pathway. Mediators Inflamm 2016; 2016:8910520. [PMID: 28074082 PMCID: PMC5198177 DOI: 10.1155/2016/8910520] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 11/19/2016] [Accepted: 11/24/2016] [Indexed: 11/17/2022] Open
Abstract
Since 2000, written with elegance and accuracy, Hanahan and Weinberg have proposed six major hallmarks of cancer and, together, they provide great advances to the understanding of tumoral biology. Our knowledge about tumor behavior has improved and the investigators have now recognized that inflammatory microenvironment may be a new feature for the tumor entities. Macrophages are considered as an important component of tumoral microenvironment. Biologically, two forms of activated macrophages can be observed: classically activated macrophages (M1) and alternative activated macrophages (M2). Despite the canonical pathways that control this puzzle of macrophages polarization, recently, mTOR signaling pathway has been implicated as an important piece in determining the metabolic and functional differentiation of M1 and M2 profiles. Currently, it is believed that macrophages related to tumoral microenvironment present an “M2-like” feature promoting an immunosuppressive microenvironment enhancing tumoral angiogenesis, growth, and metastasis. In the present review we discuss the role of macrophages in the tumor microenvironment and the role of mTOR pathway in M1 and M2 differentiation. We also discuss the recent findings in M1 and M2 polarization as a possible target in the cancer therapy.
Collapse
|
466
|
Inhibition of KPNA4 attenuates prostate cancer metastasis. Oncogene 2016; 36:2868-2878. [PMID: 27941876 DOI: 10.1038/onc.2016.440] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 09/01/2016] [Accepted: 10/20/2016] [Indexed: 02/07/2023]
Abstract
Prostate cancer (PCa) is a common cancer in men. Although current treatments effectively palliate symptoms and prolong life, the metastatic PCa remains incurable. It is important to find biomarkers and targets to improve metastatic PCa diagnosis and treatment. Here we report a novel correlation between karyopherin α4 (KPNA4) and PCa pathological stages. KPNA4 mediates the cytoplasm-to-nucleus translocation of transcription factors, including nuclear factor kappa B, although its role in PCa was largely unknown. We find that knockdown of KPNA4 reduces cell migration in multiple PCa cell lines, suggesting a role of KPNA4 in PCa progression. Indeed, stable knockdown of KPNA4 significantly reduces PCa invasion and distant metastasis in mouse models. Functionally, KPNA4 alters tumor microenvironment in terms of macrophage polarization and osteoclastogenesis by modulating tumor necrosis factor (TNF)-α and -β. Further, KPNA4 is proved as a direct target of miR-708, a tumor-suppressive microRNA. We disclose the role of miR-708-KPNA4-TNF axes in PCa metastasis and KPNA4's potential as a novel biomarker for PCa metastasis.
Collapse
|
467
|
Abstract
Macrophages regulate tissue regeneration following injury. They can worsen tissue injury by producing reactive oxygen species and other toxic mediators that disrupt cell metabolism, induce apoptosis, and exacerbate ischemic injury. However, they also produce a variety of growth factors, such as IGF-1, VEGF-α, TGF-β, and Wnt proteins that regulate epithelial and endothelial cell proliferation, myofibroblast activation, stem and tissue progenitor cell differentiation, and angiogenesis. Proresolving macrophages in turn restore tissue homeostasis by functioning as anti-inflammatory cells, and macrophage-derived matrix metalloproteinases regulate fibrin and collagen turnover. However, dysregulated macrophage function impairs wound healing and contributes to the development of fibrosis. Consequently, the mechanisms that regulate these different macrophage activation states have become active areas of research. In this review, we discuss the common and unique mechanisms by which macrophages instruct tissue repair in the liver, nervous system, heart, lung, skeletal muscle, and intestine and illustrate how macrophages might be exploited therapeutically.
Collapse
Affiliation(s)
- Kevin M Vannella
- Immunopathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892; ,
| | - Thomas A Wynn
- Immunopathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892; ,
| |
Collapse
|
468
|
Kwak Y, Koh J, Kim DW, Kang SB, Kim WH, Lee HS. Immunoscore encompassing CD3+ and CD8+ T cell densities in distant metastasis is a robust prognostic marker for advanced colorectal cancer. Oncotarget 2016; 7:81778-81790. [PMID: 27835889 PMCID: PMC5348429 DOI: 10.18632/oncotarget.13207] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 10/28/2016] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND The immunoscore (IS), an index based on the density of CD3+ and CD8+ tumor-infiltrating lymphocytes (TILs) in the tumor center (CT) and invasive margin (IM), has gained considerable attention as a prognostic marker. Tumor-associated macrophages (TAMs) have also been reported to have prognostic value. However, its clinical significance has not been fully clarified in patients with advanced CRC who present with distant metastases. METHODS The density of CD3+, CD4+, CD8+, FOXP3+, CD68+, and CD163+ immune cells within CRC tissue procured from three sites-the primary CT, IM, and distant metastasis (DM)-was determined using immunohistochemistry and digital image analyzer (n=196). The IS was obtained by quantifying the densities of CD3+ and CD8+ TILs in the CT and IM. IS-metastatic and IS-macrophage-additional IS models designed in this study-were obtained by adding the score of CD3 and CD8 in DM and the score of CD163 in primary tumors (CT and IM), respectively, to the IS. RESULTS Higher IS, IS-metastatic, and IS-macrophage values were significantly correlated with better prognosis (p=0.020, p≤0.001, and p=0.005, respectively). Multivariate analysis revealed that only IS-metastatic was an independent prognostic marker (p=0.012). No significant correlation was observed between KRAS mutation and three IS models. However, in the subgroup analysis, IS-metastatic showed a prognostic association regardless of the KRAS mutational status. CONCLUSIONS IS is a reproducible method for predicting the survival of patients with advanced CRC. Additionally, an IS including the CD3+ and CD8+ TIL densities at DM could be a strong prognostic marker for advanced CRC.
Collapse
Affiliation(s)
- Yoonjin Kwak
- Department of Pathology, Seoul National University Bundang Hospital, Seongnam, South Korea
- Department of Pathology, Seoul National University College of Medicine, Seoul, South Korea
| | - Jiwon Koh
- Department of Pathology, Seoul National University College of Medicine, Seoul, South Korea
| | - Duck-Woo Kim
- Department of Surgery, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Sung-Bum Kang
- Department of Surgery, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Woo Ho Kim
- Department of Pathology, Seoul National University College of Medicine, Seoul, South Korea
| | - Hye Seung Lee
- Department of Pathology, Seoul National University Bundang Hospital, Seongnam, South Korea
- Department of Pathology, Seoul National University College of Medicine, Seoul, South Korea
| |
Collapse
|
469
|
Dong R, Gong Y, Meng W, Yuan M, Zhu H, Ying M, He Q, Cao J, Yang B. The involvement of M2 macrophage polarization inhibition in fenretinide-mediated chemopreventive effects on colon cancer. Cancer Lett 2016; 388:43-53. [PMID: 27913199 DOI: 10.1016/j.canlet.2016.11.029] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 11/23/2016] [Accepted: 11/23/2016] [Indexed: 12/20/2022]
Abstract
Clinical studies have shown that fenretinide (4-HPR) is an attractive chemopreventive agent for cancer treatment. However, to date, few studies have demonstrated the mechanism of the preventive effect of 4-HPR. In our current study, we revealed that 4-HPR could significantly suppress IL-4/IL-13 induced M2-like polarization of macrophages, which was demonstrated by the reduced expression of M2 surface markers, the down-regulation of M2 marker genes, and the inhibition of M2-like macrophages promoted angiogenesis. Mechanistically, our study suggested that the inhibition of the phosphorylation of STAT6, rather than the generation of oxidative stress, is involved in the 4-HPR-driven inhibition of M2 polarization. More intriguingly, by utilizing adenomatous polyposis coli (APCmin/+) transgenic mice, we demonstrated that the tumorigenesis was dramatically decreased by 4-HPR treatment accompanied with fewer M2-like macrophages in the tumor tissues, thereby profoundly blocking tumor angiogenesis. These findings, for the first time, reveal the involvement of M2 polarization inhibition in 4-HPR-mediated chemoprevention, which provides a new point of insight and indicates the potential mechanism underlying the chemopreventive effect of 4-HPR.
Collapse
Affiliation(s)
- Rong Dong
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yanling Gong
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Wen Meng
- Hangzhou First People's Hospital, Hangzhou, China
| | - Meng Yuan
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Hong Zhu
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Meidan Ying
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Qiaojun He
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Ji Cao
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.
| | - Bo Yang
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|
470
|
Boodhoo N, Gurung A, Sharif S, Behboudi S. Marek's disease in chickens: a review with focus on immunology. Vet Res 2016; 47:119. [PMID: 27894330 PMCID: PMC5127044 DOI: 10.1186/s13567-016-0404-3] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 11/03/2016] [Indexed: 12/15/2022] Open
Abstract
Marek's disease (MD), caused by Marek's disease virus (MDV), is a commercially important neoplastic disease of poultry which is only controlled by mass vaccination. Importantly, vaccines that can provide sterile immunity and inhibit virus transmission are lacking; such that vaccines are only capable of preventing neuropathy, oncogenic disease and immunosuppression, but are unable to prevent MDV transmission or infection, leading to emergence of increasingly virulent pathotypes. Hence, to address these issues, developing more efficacious vaccines that induce sterile immunity have become one of the important research goals for avian immunologists today. MDV shares very close genomic functional and structural characteristics to most mammalian herpes viruses such as herpes simplex virus (HSV). MD also provides an excellent T cell lymphoma model for gaining insights into other herpesvirus-induced oncogenesis in mammals and birds. For these reasons, we need to develop an in-depth knowledge and understanding of the host-viral interaction and host immunity against MD. Similarly, the underlying genetic variation within different chicken lines has a major impact on the outcome of infection. In this review article, we aim to investigate the pathogenesis of MDV infection, host immunity to MD and discuss areas of research that need to be further explored.
Collapse
Affiliation(s)
- Nitish Boodhoo
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey, GU24 0NF, UK
| | - Angila Gurung
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey, GU24 0NF, UK
| | - Shayan Sharif
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Shahriar Behboudi
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey, GU24 0NF, UK.
| |
Collapse
|
471
|
Gan L, Qiu Z, Huang J, Li Y, Huang H, Xiang T, Wan J, Hui T, Lin Y, Li H, Ren G. Cyclooxygenase-2 in tumor-associated macrophages promotes metastatic potential of breast cancer cells through Akt pathway. Int J Biol Sci 2016; 12:1533-1543. [PMID: 27994517 PMCID: PMC5166494 DOI: 10.7150/ijbs.15943] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 10/09/2016] [Indexed: 12/18/2022] Open
Abstract
Tumor-associated macrophages (TAMs) promote cancer development and progression by releasing various cytokines and chemokines. Previously, we have found that the number of COX-2+ TAMs was associated with lymph node metastasis in breast cancer. However, the mechanism remains enigmatic. In this study, we show that COX-2 in breast TAMs enhances the metastatic potential of breast cancer cells. COX-2 in TAMs induces MMP-9 expression and promotes epithelial-mesenchymal transition (EMT) in breast cancer cells. In addition, COX-2/PGE2 induces IL-6 release in macrophages. Furthermore, we find that the activation of Akt pathway in cancer cells is crucial for the pro-metastatic effect of COX-2+ TAMs by regulating MMP-9 and EMT. These findings indicate that TAMs facilitate breast cancer cell metastasis through COX-2-mediated intercellular communication.
Collapse
Affiliation(s)
- Lu Gan
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhu Qiu
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jing Huang
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yunhai Li
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hongyan Huang
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Tingxiu Xiang
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jingyuan Wan
- Department of Pharmacology, Chongqing Medical University, Chongqing, China
| | - Tianli Hui
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yong Lin
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hongzhong Li
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Guosheng Ren
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
472
|
Caux C, Ramos RN, Prendergast GC, Bendriss-Vermare N, Ménétrier-Caux C. A Milestone Review on How Macrophages Affect Tumor Growth. Cancer Res 2016; 76:6439-6442. [DOI: 10.1158/0008-5472.can-16-2631] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 09/26/2016] [Indexed: 11/16/2022]
|
473
|
Liu D, Chang C, Lu N, Wang X, Lu Q, Ren X, Ren P, Zhao D, Wang L, Zhu Y, He F, Tang L. Comprehensive Proteomics Analysis Reveals Metabolic Reprogramming of Tumor-Associated Macrophages Stimulated by the Tumor Microenvironment. J Proteome Res 2016; 16:288-297. [PMID: 27809537 DOI: 10.1021/acs.jproteome.6b00604] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Tumor-associated macrophages (TAMs) are major components of the tumor microenvironment. Although a role for TAMs in promoting tumor progression has been revealed, the differentiation mechanisms and intrinsic signals of TAMs regulated by the tumor microenvironment remain unclear. Here we constructed an in vitro TAMs cell model, TES-TAMs, which is from tumor-extract-stimulated bone-marrow-derived macrophages. We performed a comparative proteomics analysis of bone-marrow-derived macrophages and TES-TAMs, which indicated that TES-TAMs possessed characteristic molecular expression of TAMs. Intriguingly, the signal pathways enriched in up-regulated differentially expressed proteins of TAMs demonstrated that glycolysis metabolism reprogramming may play an important role in TAM differentiation. We found that hexokinase-2, a key mediator of aerobic glycolysis, and the downstream proteins PFKL and ENO1 were remarkably increased in both TES-TAMs and primary TAMs from our MMTV-PyMT mice model. This phenomenon was then verified in human THP-1 cell lines stimulated by tumor extract solution from breast cancer patient. Taken together, our study provides insight into the induction of TAM differentiation by the tumor microenvironment through metabolic reprogramming.
Collapse
Affiliation(s)
- Di Liu
- School of Life Sciences, Tsinghua University , Beijing 100084, P. R. China.,State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Engineering Research Center for Protein Drugs, National Center for Protein Sciences (Beijing), Beijing Institute of Radiation Medicine , Beijing 102206, P. R. China
| | - Cheng Chang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Engineering Research Center for Protein Drugs, National Center for Protein Sciences (Beijing), Beijing Institute of Radiation Medicine , Beijing 102206, P. R. China
| | - Ning Lu
- Department of Orthopedics, PLA General Hospital , Beijing 100853, P. R. China
| | - Xing Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Engineering Research Center for Protein Drugs, National Center for Protein Sciences (Beijing), Beijing Institute of Radiation Medicine , Beijing 102206, P. R. China
| | - Qian Lu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Engineering Research Center for Protein Drugs, National Center for Protein Sciences (Beijing), Beijing Institute of Radiation Medicine , Beijing 102206, P. R. China.,Department of Biochemistry and Molecular Biology, Anhui Medical University , Hefei, Anhui Province 230032, P. R. China
| | - Xiaojie Ren
- Department of Orthopedics, PLA General Hospital , Beijing 100853, P. R. China
| | - Peng Ren
- Department of Orthopedics, PLA General Hospital , Beijing 100853, P. R. China
| | - Dianyuan Zhao
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Engineering Research Center for Protein Drugs, National Center for Protein Sciences (Beijing), Beijing Institute of Radiation Medicine , Beijing 102206, P. R. China
| | - Lijing Wang
- Vascular Biology Research Institute, Guangdong Pharmaceutical University , Guangzhou, Guangdong Province 510006, P. R. China
| | - Yunping Zhu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Engineering Research Center for Protein Drugs, National Center for Protein Sciences (Beijing), Beijing Institute of Radiation Medicine , Beijing 102206, P. R. China
| | - Fuchu He
- School of Life Sciences, Tsinghua University , Beijing 100084, P. R. China.,State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Engineering Research Center for Protein Drugs, National Center for Protein Sciences (Beijing), Beijing Institute of Radiation Medicine , Beijing 102206, P. R. China
| | - Li Tang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Engineering Research Center for Protein Drugs, National Center for Protein Sciences (Beijing), Beijing Institute of Radiation Medicine , Beijing 102206, P. R. China.,Department of Biochemistry and Molecular Biology, Anhui Medical University , Hefei, Anhui Province 230032, P. R. China
| |
Collapse
|
474
|
Sun L, Chen B, Jiang R, Li J, Wang B. Resveratrol inhibits lung cancer growth by suppressing M2-like polarization of tumor associated macrophages. Cell Immunol 2016; 311:86-93. [PMID: 27825563 DOI: 10.1016/j.cellimm.2016.11.002] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 10/30/2016] [Accepted: 11/01/2016] [Indexed: 12/15/2022]
Abstract
In cancer, tumor associated macrophages (TAMs) play an important role in the cancer progression, evasion of immunity and dissemination of cancer cells. Inhibition of the activation or the M2 polarization of TAMs is an effective therapy for cancer. In the present study, we investigated the ability of resveratrol (RES) to inhibit lung cancer growth using in vitro and in vivo studies, and examined the underlying mechanisms. We demonstrated that M2 polarization of human monocyte derived macrophage (HMDMs) induced by the lung cancer cells conditioned medium was inhibited by RES. Additionally, RES exhibited inhibitory function in lung cancer cells co-cultured with human macrophages. The activity of signal transducer and activator of transcription 3 (STAT3) was significantly decreased by RES. Moreover, in a mouse lung cancer xenograft model, RES significantly inhibited the tumor growth, which was associated with inhibition of cell proliferation and decreased expression of p-STAT3 in tumor tissues. Further, RES inhibits F4/80 positive expressing cells and M2 polarization in the tumors. These results suggest that RES can effectively inhibit lung cancer progression by suppressing the protumor activation of TAMs.
Collapse
Affiliation(s)
- Liwei Sun
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Disease, Department of Intervention, Tianjin Huanhu Hospital, Tianjin 300060, PR China
| | - Bonian Chen
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Disease, Department of Intervention, Tianjin Huanhu Hospital, Tianjin 300060, PR China
| | - Rong Jiang
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Disease, Department of Intervention, Tianjin Huanhu Hospital, Tianjin 300060, PR China.
| | - Jinduo Li
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Disease, Department of Intervention, Tianjin Huanhu Hospital, Tianjin 300060, PR China
| | - Bin Wang
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Disease, Department of Intervention, Tianjin Huanhu Hospital, Tianjin 300060, PR China
| |
Collapse
|
475
|
Galletti G, Caligaris-Cappio F, Bertilaccio MTS. B cells and macrophages pursue a common path toward the development and progression of chronic lymphocytic leukemia. Leukemia 2016; 30:2293-2301. [DOI: 10.1038/leu.2016.261] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 08/22/2016] [Accepted: 08/30/2016] [Indexed: 12/30/2022]
|
476
|
Patel A, Sant S. Hypoxic tumor microenvironment: Opportunities to develop targeted therapies. Biotechnol Adv 2016; 34:803-812. [PMID: 27143654 PMCID: PMC4947437 DOI: 10.1016/j.biotechadv.2016.04.005] [Citation(s) in RCA: 144] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 04/13/2016] [Accepted: 04/28/2016] [Indexed: 01/18/2023]
Abstract
In recent years, there has been great progress in the understanding of tumor biology and its surrounding microenvironment. Solid tumors create regions with low oxygen levels, generally termed as hypoxic regions. These hypoxic areas offer a tremendous opportunity to develop targeted therapies. Hypoxia is not a random by-product of the cellular milieu due to uncontrolled tumor growth; rather it is a constantly evolving participant in overall tumor growth and fate. This article reviews current trends and recent advances in drug therapies and delivery systems targeting hypoxia in the tumor microenvironment. In the first part, we give an account of important physicochemical changes and signaling pathways activated in the hypoxic microenvironment. This is then followed by various treatment strategies including hypoxia-sensitive signaling pathways and approaches to develop hypoxia-targeted drug delivery systems.
Collapse
Affiliation(s)
- Akhil Patel
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, United States
| | - Shilpa Sant
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, United States; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261, United States; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15261, United States.
| |
Collapse
|
477
|
Shen H, Yu X, Yang F, Zhang Z, Shen J, Sun J, Choksi S, Jitkaew S, Shu Y. Reprogramming of Normal Fibroblasts into Cancer-Associated Fibroblasts by miRNAs-Mediated CCL2/VEGFA Signaling. PLoS Genet 2016; 12:e1006244. [PMID: 27541266 PMCID: PMC4991802 DOI: 10.1371/journal.pgen.1006244] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 07/15/2016] [Indexed: 12/21/2022] Open
Abstract
Cancer-associated fibroblasts (CAFs), the most common constituent of the tumor stoma, are known to promote tumor initiation, progression and metastasis. However, the mechanism of how cancer cells transform normal fibroblasts (NFs) into CAFs is largely unknown. In this study, we determined the contribution of miRNAs in the transformation of NFs into CAFs. We found that miR-1 and miR-206 were down-regulated, whereas miR-31 was up-regulated in lung CAFs when compared with matched NFs. Importantly, modifying the expression of these three deregulated miRNAs induced a functional conversion of NFs into CAFs and vice versa. When the miRNA-reprogrammed NFs and CAFs were co-cultured with lung cancer cells (LCCs), a similar pattern of cytokine expression profiling were observed between two groups. Using a combination of cytokine expression profiling and miRNAs algorithms, we identified VEGFA/CCL2 and FOXO3a as direct targets of miR-1, miR-206 and miR-31, respectively. Importantly, systemic delivery of anti-VEGFA/CCL2 or pre-miR-1, pre-miR-206 and anti-miR-31 significantly inhibited tumor angiogenesis, TAMs accumulation, tumor growth and lung metastasis. Our results show that miRNAs-mediated FOXO3a/VEGF/CCL2 signaling plays a prominent role in LCCs-mediated NFs into CAFs, which may have clinical implications for providing novel biomarker(s) and potential therapeutic target(s) of lung cancer in the future. During tumorigenesis, normal fibroblasts (NFs) within the tumor stroma acquire a modified phenotype and become cancer-associated fibroblasts (CAFs). CAFs provide oncogenic signals to facilitate tumor initiation, progression, and metastasis. Here, we set out to determine the factors that mediate the conversion of NFs into CAFs, focusing on miRNAs and secreted factors. Down-regulation of miR-1 and miR-206 and upregulation of miR-31 were found in CAFs derived from human lung cancer compared to paired NFs. Dysregulation of miR-1, miR-206 and miR-31 expression promotes the conversion of NFs into CAFs through regulating VEGFA, CCL2 and FOXO3a expression. In addition, down-regulation of miR-1 and miR-206 and up-regulation of miR-31 has been observed in lung cancer patient plasma. More importantly, we demonstrated that systemic delivery of anti-VEGFA/CCL2 or pre-miR-1, pre-miR-206 and anti-miR-31 dramatically decreased tumor angiogenesis, TAMs accumulation, tumor growth and lung metastasis. In conclusion, our data showed that miRNAs-mediated FOXO3a/VEGF/CCL2 signaling plays a prominent role in transforming NFs into CAFs, thus providing further support for the development of new diagnostic and therapeutic approaches to lung cancer.
Collapse
Affiliation(s)
- Hua Shen
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Xiaobo Yu
- Department of Thoracic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Fengming Yang
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Zhihua Zhang
- Department of Respiration, First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei Province, China
| | - Jianxin Shen
- Department of Clinical Laborotory, First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei Province, China
| | - Jin Sun
- Department of Nuclear Medicine, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Swati Choksi
- National Institutes of Health, Bethesda, Maryland, United States of America
| | - Siriporn Jitkaew
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Yongqian Shu
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, China
- * E-mail:
| |
Collapse
|
478
|
Gordan S, Biburger M, Nimmerjahn F. bIgG time for large eaters: monocytes and macrophages as effector and target cells of antibody-mediated immune activation and repression. Immunol Rev 2016; 268:52-65. [PMID: 26497512 DOI: 10.1111/imr.12347] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The mononuclear phagocytic system consists of a great variety of cell subsets localized throughout the body in immunological and non-immunological tissues. While one of their prime tasks is to detect, phagocytose, and kill intruding microorganisms, they are also involved in maintaining tissue homeostasis and immune tolerance toward self through removal of dying cells. Furthermore, monocytes and macrophages have been recognized to play a critical role for mediating immunoglobulin G (IgG)-dependent effector functions, including target cell depletion, tissue inflammation, and immunomodulation. For this, monocyte and macrophage populations are equipped with a complex set of Fc-receptors, enabling them to directly interact with pro- or anti-inflammatory IgG preparations. In this review, we will summarize the most recent findings, supporting a central role of monocytes and macrophages for pro- and anti-inflammatory IgG activity.
Collapse
Affiliation(s)
- Sina Gordan
- Department of Biology, Institute of Genetics, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Markus Biburger
- Department of Biology, Institute of Genetics, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Falk Nimmerjahn
- Department of Biology, Institute of Genetics, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
479
|
Pinto AT, Pinto ML, Velho S, Pinto MT, Cardoso AP, Figueira R, Monteiro A, Marques M, Seruca R, Barbosa MA, Mareel M, Oliveira MJ, Rocha S. Intricate Macrophage-Colorectal Cancer Cell Communication in Response to Radiation. PLoS One 2016; 11:e0160891. [PMID: 27513864 PMCID: PMC4981353 DOI: 10.1371/journal.pone.0160891] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 07/26/2016] [Indexed: 11/19/2022] Open
Abstract
Both cancer and tumour-associated host cells are exposed to ionizing radiation when a tumour is subjected to radiotherapy. Macrophages frequently constitute the most abundant tumour-associated immune population, playing a role in tumour progression and response to therapy. The present work aimed to evaluate the importance of macrophage-cancer cell communication in the cellular response to radiation. To address this question, we established monocultures and indirect co-cultures of human monocyte-derived macrophages with RKO or SW1463 colorectal cancer cells, which exhibit higher and lower radiation sensitivity, respectively. Mono- and co-cultures were then irradiated with 5 cumulative doses, in a similar fractionated scheme to that used during cancer patients' treatment (2 Gy/fraction/day). Our results demonstrated that macrophages sensitize RKO to radiation-induced apoptosis, while protecting SW1463 cells. Additionally, the co-culture with macrophages increased the mRNA expression of metabolism- and survival-related genes more in SW1463 than in RKO. The presence of macrophages also upregulated glucose transporter 1 expression in irradiated SW1463, but not in RKO cells. In addition, the influence of cancer cells on the expression of pro- and anti-inflammatory macrophage markers, upon radiation exposure, was also evaluated. In the presence of RKO or SW1463, irradiated macrophages exhibit higher levels of pro-inflammatory TNF, IL6, CCL2 and CCR7, and of anti-inflammatory CCL18. However, RKO cells induce an increase of macrophage pro-inflammatory IL1B, while SW1463 cells promote higher pro-inflammatory CXCL8 and CD80, and also anti-inflammatory VCAN and IL10 levels. Thus, our data demonstrated that macrophages and cancer cells mutually influence their response to radiation. Notably, conditioned medium from irradiated co-cultures increased non-irradiated RKO cell migration and invasion and did not impact on angiogenesis in a chicken embryo chorioallantoic membrane assay. Overall, the establishment of primary human macrophage-cancer cell co-cultures revealed an intricate cell communication in response to ionizing radiation, which should be considered when developing therapies adjuvant to radiotherapy.
Collapse
Affiliation(s)
- Ana T. Pinto
- i3s-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB-Institute of Biomedical Engineering, University of Porto, Porto, Portugal
- FEUP-Faculty of Engineering, University of Porto, Porto, Portugal
| | - Marta L. Pinto
- i3s-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB-Institute of Biomedical Engineering, University of Porto, Porto, Portugal
- ICBAS-Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
| | - Sérgia Velho
- i3s-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IPATIMUP-Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
| | - Marta T. Pinto
- i3s-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IPATIMUP-Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
| | - Ana P. Cardoso
- i3s-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB-Institute of Biomedical Engineering, University of Porto, Porto, Portugal
| | - Rita Figueira
- Radiotherapy Service, Centro Hospitalar S. João, EPE, Porto, Portugal
| | - Armanda Monteiro
- Radiotherapy Service, Centro Hospitalar S. João, EPE, Porto, Portugal
| | - Margarida Marques
- Radiotherapy Service, Centro Hospitalar S. João, EPE, Porto, Portugal
| | - Raquel Seruca
- i3s-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IPATIMUP-Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
- Department of Pathology and Oncology, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Mário A. Barbosa
- i3s-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB-Institute of Biomedical Engineering, University of Porto, Porto, Portugal
- ICBAS-Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
| | - Marc Mareel
- Department of Radiation Oncology and Experimental Cancer Research, Ghent University Hospital, Ghent, Belgium
| | - Maria J. Oliveira
- i3s-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB-Institute of Biomedical Engineering, University of Porto, Porto, Portugal
- Department of Pathology and Oncology, Faculty of Medicine, University of Porto, Porto, Portugal
- * E-mail:
| | - Sónia Rocha
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
480
|
Gabai VL, Yaglom JA, Wang Y, Meng L, Shao H, Kim G, Colvin T, Gestwicki J, Sherman MY. Anticancer Effects of Targeting Hsp70 in Tumor Stromal Cells. Cancer Res 2016; 76:5926-5932. [PMID: 27503927 DOI: 10.1158/0008-5472.can-16-0800] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 07/12/2016] [Indexed: 12/27/2022]
Abstract
The stress-induced chaperone protein Hsp70 enables the initiation and progression of many cancers, making it an appealing therapeutic target for development. Here, we show that cancer cells resistant to Hsp70 inhibitors in vitro remain sensitive to them in vivo, revealing the pathogenic significance of Hsp70 in tumor stromal cells rather than tumor cells as widely presumed. Using transgenic mouse models of cancer, we found that expression of Hsp70 in host stromal cells was essential to support tumor growth. Furthermore, genetic ablation or pharmacologic inhibition of Hsp70 suppressed tumor infiltration by macrophages needed to enable tumor growth. Overall, our results illustrate how Hsp70 inhibitors mediate the anticancer effects by targeting both tumor cells and tumor stromal cells, with implications for the broad use of these inhibitors as tools to ablate tumor-associated macrophages that enable malignant progression. Cancer Res; 76(20); 5926-32. ©2016 AACR.
Collapse
Affiliation(s)
- Vladimir L Gabai
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts. CureLab Oncology, Needham, Massachusetts
| | - Julia A Yaglom
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts
| | - Yongmei Wang
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts
| | - Le Meng
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts. Center for Biomedical Mass Spectrometry, Boston University School of Medicine, Boston, Massachusetts
| | - Hao Shao
- Department of Pharmaceutical Chemistry and Institute for Neurodegenerative Disease, University of California at San Francisco, San Francisco, California
| | - Geunwon Kim
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts
| | - Teresa Colvin
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts
| | - Jason Gestwicki
- Department of Pharmaceutical Chemistry and Institute for Neurodegenerative Disease, University of California at San Francisco, San Francisco, California
| | - Michael Y Sherman
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts.
| |
Collapse
|
481
|
Cyclooxygenase-2 in tumor-associated macrophages promotes breast cancer cell survival by triggering a positive-feedback loop between macrophages and cancer cells. Oncotarget 2016; 6:29637-50. [PMID: 26359357 PMCID: PMC4745752 DOI: 10.18632/oncotarget.4936] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 07/28/2015] [Indexed: 12/26/2022] Open
Abstract
Tumor-associated macrophages (TAMs) play an important role in cancer cell survival, however, the mechanism of which remains elusive. In this study, we found that COX-2 was abundantly expressed in breast TAMs, which was correlated to poor prognosis in breast cancer patients. Ectopic over-expression of COX-2 in TAMs enhanced breast cancer cell survival both in vitro and in vivo. COX-2 in TAMs was determined to be essential for the induction and maintenance of M2-phenotype macrophage polarity. COX-2+ TAMs promoted breast cancer cell proliferation and survival by increasing Bcl-2 and P-gp and decreasing Bax in cancer cells. Furthermore, COX-2 in TAMs induced the expression of COX-2 in breast cancer cells, which in turn promoted M2 macrophage polarization. Inhibiting PI3K/Akt pathway in cancer cells suppressed COX-2+ TAMs-induced cancer cell survival. These findings suggest that COX-2, functions as a key cancer promoting factor by triggering a positive-feedback loop between macrophages and cancer cells, which could be exploited for breast cancer prevention and therapy.
Collapse
|
482
|
Hardbower DM, Singh K, Asim M, Verriere TG, Olivares-Villagómez D, Barry DP, Allaman MM, Washington MK, Peek RM, Piazuelo MB, Wilson KT. EGFR regulates macrophage activation and function in bacterial infection. J Clin Invest 2016; 126:3296-312. [PMID: 27482886 DOI: 10.1172/jci83585] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 06/02/2016] [Indexed: 12/17/2022] Open
Abstract
EGFR signaling regulates macrophage function, but its role in bacterial infection has not been investigated. Here, we assessed the role of macrophage EGFR signaling during infection with Helicobacter pylori, a bacterial pathogen that causes persistent inflammation and gastric cancer. EGFR was phosphorylated in murine and human macrophages during H. pylori infection. In human gastric tissues, elevated levels of phosphorylated EGFR were observed throughout the histologic cascade from gastritis to carcinoma. Deleting Egfr in myeloid cells attenuated gastritis and increased H. pylori burden in infected mice. EGFR deficiency also led to a global defect in macrophage activation that was associated with decreased cytokine, chemokine, and NO production. We observed similar alterations in macrophage activation and disease phenotype in the Citrobacter rodentium model of murine infectious colitis. Mechanistically, EGFR signaling activated NF-κB and MAPK1/3 pathways to induce cytokine production and macrophage activation. Although deletion of Egfr had no effect on DC function, EGFR-deficient macrophages displayed impaired Th1 and Th17 adaptive immune responses to H. pylori, which contributed to decreased chronic inflammation in infected mice. Together, these results indicate that EGFR signaling is central to macrophage function in response to enteric bacterial pathogens and is a potential therapeutic target for infection-induced inflammation and associated carcinogenesis.
Collapse
|
483
|
Ordoñez M, Rivera IG, Presa N, Gomez-Muñoz A. Implication of matrix metalloproteinases 2 and 9 in ceramide 1-phosphate-stimulated macrophage migration. Cell Signal 2016; 28:1066-74. [DOI: 10.1016/j.cellsig.2016.05.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 05/05/2016] [Accepted: 05/05/2016] [Indexed: 01/08/2023]
|
484
|
Rosewell Shaw A, Suzuki M. Recent advances in oncolytic adenovirus therapies for cancer. Curr Opin Virol 2016; 21:9-15. [PMID: 27379906 DOI: 10.1016/j.coviro.2016.06.009] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 06/14/2016] [Accepted: 06/17/2016] [Indexed: 12/11/2022]
Abstract
Oncolytic adenoviruses (Onc.Ads) selectively replicate in and lyse cancer cells and are therefore commonly used vectors in clinical trials for cancer gene therapy. Building upon the well-characterized adenoviral natural tropism, genetic modification of Onc.Ad can enhance/regulate their transduction and replication within specific cancer cell types. However, Onc.Ad-mediated tumor cell lysis cannot fully eliminate tumors. The hostile tumor microenvironment provides many barriers to efficient oncolytic virotherapy, as tumors develop structure and immune-evasion mechanisms in order to grow and ultimately spread. For these reasons, Onc.Ads modified to deliver structural or immune modulatory molecules (Armed Onc.Ads) have been developed to overcome the physical and immunological barriers of solid tumors. The combination of oncolysis with tumor microenvironment modulation/destruction may provide a promising platform for Ad-based cancer gene therapy.
Collapse
Affiliation(s)
- Amanda Rosewell Shaw
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA; Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston Methodist Hospital, Houston, TX, USA
| | - Masataka Suzuki
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA; Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston Methodist Hospital, Houston, TX, USA.
| |
Collapse
|
485
|
Mataraza JM, Gotwals P. Recent advances in immuno-oncology and its application to urological cancers. BJU Int 2016; 118:506-14. [PMID: 27123757 DOI: 10.1111/bju.13518] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Recent advances in immuno-oncology have the potential to transform the practice of medical oncology. Antibodies directed against negative regulators of T-cell function (checkpoint inhibitors), engineered cell therapies and innate immune stimulators, such as oncolytic viruses, are effective in a wide range of cancers. Immune'based therapies have had a clinically meaningful impact on the treatment of advanced melanoma, and the lessons regarding use of single agents and combinations in melanoma may be applicable to the treatment of urological cancers. Checkpoint inhibitors, cytokine therapy and therapeutic vaccines are already showing promise in urothelial bladder cancer, renal cell carcinoma and prostate cancer. Critical areas of future immuno-oncology research include the prospective identification of patients who will respond to current immune-based cancer therapies and the identification of new therapeutic agents that promote immune priming in tumours, and increase the rate of durable clinical responses.
Collapse
Affiliation(s)
- Jennifer M Mataraza
- Exploratory Immuno-Oncology, Novartis Institutes for BioMedical Research, Cambridge, MA, USA.
| | - Philip Gotwals
- Exploratory Immuno-Oncology, Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| |
Collapse
|
486
|
Enblad G, Karlsson H, Loskog ASI. CAR T-Cell Therapy: The Role of Physical Barriers and Immunosuppression in Lymphoma. Hum Gene Ther 2016; 26:498-505. [PMID: 26230974 DOI: 10.1089/hum.2015.054] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Chimeric antigen receptor (CAR) T-cells have shown remarkable results in patients with B-cell leukemia and lymphoma. However, while CAR T-cells have shown complete responses in a majority of patients with acute lymphoblastic leukemia (ALL), lymphomas are more difficult to treat. Different CAR designs and conditioning protocols seem to affect the persistence of patient responses. However, factors that determine if patients receiving the same CARs will respond or not remain obscure. In Sweden, a phase I/IIa trial using third-generation CAR T-cells is ongoing in which we intend to compare tumor biology and immunology, in each patient, to treatment response. CAR T-cell therapy is a powerful tool to add to the treatment options for this patient group but we need to perform the necessary basic research on the multifactorial mechanisms of action to give patients the best possible option of survival. Such studies are also crucial to expand the success of CAR T-cells beyond CD19+ B-cell malignancy. This review will focus on possible barriers of treating lymphoma to define factors that need to be investigated to develop the next generation of CAR T-cell therapy.
Collapse
Affiliation(s)
- Gunilla Enblad
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University , Uppsala, Sweden
| | - Hannah Karlsson
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University , Uppsala, Sweden
| | - Angelica S I Loskog
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University , Uppsala, Sweden
| |
Collapse
|
487
|
Wu XQ, Dai Y, Yang Y, Huang C, Meng XM, Wu BM, Li J. Emerging role of microRNAs in regulating macrophage activation and polarization in immune response and inflammation. Immunology 2016; 148:237-48. [PMID: 27005899 DOI: 10.1111/imm.12608] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 03/05/2016] [Accepted: 03/16/2016] [Indexed: 02/06/2023] Open
Abstract
Diversity and plasticity are hallmarks of macrophages. Classically activated macrophages are considered to promote T helper type 1 responses and have strong microbicidal, pro-inflammatory activity, whereas alternatively activated macrophages are supposed to be associated with promotion of tissue remodelling and responses to anti-inflammatory reactions. Transformation of different macrophage phenotypes is reflected in their different, sometimes even opposite, roles in various diseases or inflammatory conditions. MicroRNAs (miRNAs) have emerged as critical regulators of macrophage polarization (MP). Several miRNAs are induced by Toll-like receptors signalling in macrophages and target the 3'-untranslated regions of mRNAs encoding key molecules involved in MP. Therefore, identification of miRNAs related to the dynamic changes of MP and understanding their functions in regulating this process are important for discussing the molecular basis of disease progression and developing novel miRNA-targeted therapeutic strategies. Here, we review the current knowledge of the role of miRNAs in MP with relevance to immune response and inflammation.
Collapse
Affiliation(s)
- Xiao-Qin Wu
- School of Pharmacy, Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Hefei, China
| | - Yao Dai
- School of Pharmacy, Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Hefei, China.,Department of Medicine, Central Arkansas Veterans Healthcare System and the University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Yang Yang
- School of Pharmacy, Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Hefei, China
| | - Cheng Huang
- School of Pharmacy, Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Hefei, China
| | - Xiao-Ming Meng
- School of Pharmacy, Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Hefei, China
| | - Bao-Ming Wu
- School of Pharmacy, Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Hefei, China
| | - Jun Li
- School of Pharmacy, Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Hefei, China
| |
Collapse
|
488
|
Hardbower DM, Asim M, Murray-Stewart T, Casero RA, Verriere T, Lewis ND, Chaturvedi R, Piazuelo MB, Wilson KT. Arginase 2 deletion leads to enhanced M1 macrophage activation and upregulated polyamine metabolism in response to Helicobacter pylori infection. Amino Acids 2016; 48:2375-88. [PMID: 27074721 DOI: 10.1007/s00726-016-2231-2] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 04/05/2016] [Indexed: 01/06/2023]
Abstract
We reported that arginase 2 (ARG2) deletion results in increased gastritis and decreased bacterial burden during Helicobacter pylori infection in mice. Our studies implicated a potential role for inducible nitric oxide (NO) synthase (NOS2), as Arg2 (-/-) mice exhibited increased NOS2 levels in gastric macrophages, and NO can kill H. pylori. We now bred Arg2 (-/-) to Nos2 (-/-) mice, and infected them with H. pylori. Compared to wild-type mice, both Arg2 (-/-) and Arg2 (-/-) ;Nos2 (-/-) mice exhibited increased gastritis and decreased colonization, the latter indicating that the effect of ARG2 deletion on bacterial burden was not mediated by NO. While Arg2 (-/-) mice demonstrated enhanced M1 macrophage activation, Nos2 (-/-) and Arg2 (-/-) ;Nos2 (-/-) mice did not demonstrate these changes, but exhibited increased CXCL1 and CXCL2 responses. There was an increased expression of the Th1/Th17 cytokines, interferon gamma and interleukin 17, in gastric tissues and splenic T-cells from Arg2 (-/-), but not Nos2 (-/-) or Arg2 (-/-) ;Nos2 (-/-) mice. Gastric tissues from infected Arg2 (-/-) mice demonstrated increased expression of arginase 1, ornithine decarboxylase, adenosylmethionine decarboxylase 1, spermidine/spermine N (1)-acetyltransferase 1, and spermine oxidase, along with increased spermine levels. These data indicate that ARG2 deletion results in compensatory upregulation of gastric polyamine synthesis and catabolism during H. pylori infection, which may contribute to increased gastric inflammation and associated decreased bacterial load. Overall, the finding of this study is that ARG2 contributes to the immune evasion of H. pylori by restricting M1 macrophage activation and polyamine metabolism.
Collapse
Affiliation(s)
- Dana M Hardbower
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Vanderbilt University School of Medicine, 2215 Garland Avenue, 1030C Medical Research Building IV, Nashville, TN, 37232, USA.,Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Mohammad Asim
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Tracy Murray-Stewart
- The Sydney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Robert A Casero
- The Sydney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Thomas Verriere
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Nuruddeen D Lewis
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Rupesh Chaturvedi
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.,School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - M Blanca Piazuelo
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Keith T Wilson
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Vanderbilt University School of Medicine, 2215 Garland Avenue, 1030C Medical Research Building IV, Nashville, TN, 37232, USA. .,Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA. .,Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN, USA. .,Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN, USA. .,Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN, USA.
| |
Collapse
|
489
|
Takeda Y, Suzuki M, Jin Y, Tachibana I. Preventive Role of Tetraspanin CD9 in Systemic Inflammation of Chronic Obstructive Pulmonary Disease. Am J Respir Cell Mol Biol 2016; 53:751-60. [PMID: 26378766 DOI: 10.1165/rcmb.2015-0122tr] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is frequently associated with extrapulmonary complications, including cardiovascular disease, diabetes, and osteoporosis. Persistent, low-grade, systemic inflammation underlies these comorbid disorders. Tetraspanins, which have a characteristic structure spanning the membrane four times, facilitate lateral organization of molecular complexes and thereby form tetraspanin-enriched microdomains that are distinct from lipid rafts. Recent basic research has suggested a preventive role of tetraspanin CD9 in COPD. CD9-enriched microdomains negatively regulate LPS-induced receptor formation by preventing CD14 from accumulating into the rafts, and decreased CD9 in macrophages enhances inflammation in mice. Mice doubly deficient in CD9 and a related tetraspanin, CD81, show pulmonary emphysema, weight loss, and osteopenia, a phenotype akin to human COPD. A therapeutic approach to up-regulating CD9 in macrophages might improve the clinical course of patients with COPD with comorbidities.
Collapse
Affiliation(s)
- Yoshito Takeda
- 1 Department of Respiratory Medicine, Allergy, and Rheumatic Diseases, Osaka University Graduate School of Medicine, Suita, Osaka, Japan, and
| | - Mayumi Suzuki
- 2 Department of Medicine, Nissay Hospital, Nippon Life Saiseikai Public Interest Incorporated Foundation, Nishi-ku, Osaka, Japan
| | - Yingji Jin
- 1 Department of Respiratory Medicine, Allergy, and Rheumatic Diseases, Osaka University Graduate School of Medicine, Suita, Osaka, Japan, and
| | - Isao Tachibana
- 2 Department of Medicine, Nissay Hospital, Nippon Life Saiseikai Public Interest Incorporated Foundation, Nishi-ku, Osaka, Japan
| |
Collapse
|
490
|
Wynn TA, Vannella KM. Macrophages in Tissue Repair, Regeneration, and Fibrosis. Immunity 2016; 44:450-462. [PMID: 26982353 PMCID: PMC4794754 DOI: 10.1016/j.immuni.2016.02.015] [Citation(s) in RCA: 2564] [Impact Index Per Article: 320.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 01/28/2016] [Accepted: 02/17/2016] [Indexed: 11/18/2022]
Abstract
Inflammatory monocytes and tissue-resident macrophages are key regulators of tissue repair, regeneration, and fibrosis. After tissue injury, monocytes and macrophages undergo marked phenotypic and functional changes to play critical roles during the initiation, maintenance, and resolution phases of tissue repair. Disturbances in macrophage function can lead to aberrant repair, such that uncontrolled production of inflammatory mediators and growth factors, deficient generation of anti-inflammatory macrophages, or failed communication between macrophages and epithelial cells, endothelial cells, fibroblasts, and stem or tissue progenitor cells all contribute to a state of persistent injury, and this could lead to the development of pathological fibrosis. In this review, we discuss the mechanisms that instruct macrophages to adopt pro-inflammatory, pro-wound-healing, pro-fibrotic, anti-inflammatory, anti-fibrotic, pro-resolving, and tissue-regenerating phenotypes after injury, and we highlight how some of these mechanisms and macrophage activation states could be exploited therapeutically.
Collapse
Affiliation(s)
- Thomas A Wynn
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA.
| | - Kevin M Vannella
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
491
|
Yu GT, Bu LL, Zhao YY, Mao L, Deng WW, Wu TF, Zhang WF, Sun ZJ. CTLA4 blockade reduces immature myeloid cells in head and neck squamous cell carcinoma. Oncoimmunology 2016; 5:e1151594. [PMID: 27471622 DOI: 10.1080/2162402x.2016.1151594] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 01/30/2016] [Accepted: 02/02/2016] [Indexed: 01/16/2023] Open
Abstract
Immature myeloid cells such as myeloid-derived suppressor cells (MDSCs) and M2 macrophages play a vital role in the tumor immune escape and tumor progression. Cytotoxic T lymphocyte-associated antigen 4 (CTLA4), as a negative immune checkpoint, is highly expressed in numerous solid tumors. However, precise functions of CTLA4 in head and neck squamous cell carcinoma (HNSCC) have not yet been elucidated. In this study, we demonstrated that the ratio of CD8(+)/CTLA4 can be used as a potential index with a clinical prognostic value for HNSCC. Using immunocompetent transgenic mouse model with spontaneous HNSCC, we directly observed that targeting CTLA4 decreases MDSCs and M2 macrophages and promotes T cell activation in both tumor microenvironment and macro-environment. In all, our study provides direct evidence in vivo and proposes a rationale for CTLA4 inhibition as a future therapeutic strategy in patients with HNSCC.
Collapse
Affiliation(s)
- Guang-Tao Yu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine, Ministry of Education , Wuhan, China
| | - Lin-Lin Bu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine, Ministry of Education , Wuhan, China
| | - Yu-Yue Zhao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine, Ministry of Education , Wuhan, China
| | - Liang Mao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine, Ministry of Education , Wuhan, China
| | - Wei-Wei Deng
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine, Ministry of Education , Wuhan, China
| | - Tian-Fu Wu
- Department of Oral Maxillofacial-Head Neck Oncology, School and Hospital of Stomatology, Wuhan University , Wuhan, China
| | - Wen-Feng Zhang
- Department of Oral Maxillofacial-Head Neck Oncology, School and Hospital of Stomatology, Wuhan University , Wuhan, China
| | - Zhi-Jun Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine, Ministry of Education, Wuhan, China; Department of Oral Maxillofacial-Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
492
|
Stack EC, Foukas PG, Lee PP. Multiplexed tissue biomarker imaging. J Immunother Cancer 2016; 4:9. [PMID: 26885371 PMCID: PMC4754920 DOI: 10.1186/s40425-016-0115-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 02/02/2016] [Indexed: 01/23/2023] Open
Affiliation(s)
- Edward C Stack
- Department of Life science and Technology, PerkinElmer, Hopkinton, MA USA
| | - Periklis G Foukas
- Center of Experimental Therapeutics and Ludwig Institute of Cancer Research, University Hospital of Lausanne, Lausanne, Switzerland ; Department of Pathology, University of Athens Medical School, Attikon University Hospital, Haidari, Greece
| | - Peter P Lee
- Department of Immuno-Oncology, City of Hope, Duarte, CA USA
| |
Collapse
|
493
|
Wu T, Dai Y. Tumor microenvironment and therapeutic response. Cancer Lett 2016; 387:61-68. [PMID: 26845449 DOI: 10.1016/j.canlet.2016.01.043] [Citation(s) in RCA: 1139] [Impact Index Per Article: 142.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 01/18/2016] [Accepted: 01/18/2016] [Indexed: 12/18/2022]
Abstract
The tumor microenvironment significantly influences therapeutic response and clinical outcome. Microenvironment-mediated drug resistance can be induced by soluble factors secreted by tumor or stromal cells. The adhesion of tumor cells to stromal fibroblasts or to components of the extracellular matrix can also blunt therapeutic response. Microenvironment-targeted therapy strategies include inhibition of the extracellular ligand-receptor interactions and downstream pathways. Immune cells can both improve and obstruct therapeutic efficacy and may vary in their activation status within the tumor microenvironment; thus, re-programme of the immune response would be substantially more beneficial. The development of rational drug combinations that can simultaneously target tumor cells and the microenvironment may represent a solution to overcome therapeutic resistance.
Collapse
Affiliation(s)
- Ting Wu
- Department of Gastroenterology, Peking University First Hospital, Beijing 100034, China
| | - Yun Dai
- Department of Gastroenterology, Peking University First Hospital, Beijing 100034, China.
| |
Collapse
|
494
|
Williams CB, Yeh ES, Soloff AC. Tumor-associated macrophages: unwitting accomplices in breast cancer malignancy. NPJ Breast Cancer 2016; 2:15025. [PMID: 26998515 PMCID: PMC4794275 DOI: 10.1038/npjbcancer.2015.25] [Citation(s) in RCA: 331] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 12/12/2015] [Accepted: 12/15/2015] [Indexed: 01/01/2023] Open
Abstract
Deleterious inflammation is a primary feature of breast cancer. Accumulating evidence demonstrates that macrophages, the most abundant leukocyte population in mammary tumors, have a critical role at each stage of cancer progression. Such tumor-associated macrophages facilitate neoplastic transformation, tumor immune evasion and the subsequent metastatic cascade. Herein, we discuss the dynamic process whereby molecular and cellular features of the tumor microenvironment act to license tissue-repair mechanisms of macrophages, fostering angiogenesis, metastasis and the support of cancer stem cells. We illustrate how tumors induce, then exploit trophic macrophages to subvert innate and adaptive immune responses capable of destroying malignant cells. Finally, we discuss compelling evidence from murine models of cancer and early clinical trials in support of macrophage-targeted intervention strategies with the potential to dramatically reduce breast cancer morbidity and mortality.
Collapse
Affiliation(s)
- Carly Bess Williams
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Elizabeth S Yeh
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Adam C Soloff
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
495
|
The proprotein convertase PC1/3 regulates TLR9 trafficking and the associated signaling pathways. Sci Rep 2016; 6:19360. [PMID: 26778167 PMCID: PMC4725977 DOI: 10.1038/srep19360] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 11/23/2015] [Indexed: 12/19/2022] Open
Abstract
Endosomal TLR9 is considered as a potent anti-tumoral therapeutic target. Therefore, it is crucial to decipher the mechanisms controlling its trafficking since it determines TLR9 activation and signalling. At present, the scarcity of molecular information regarding the control of this trafficking and signalling is noticeable. We have recently demonstrated that in macrophages, proprotein convertase 1/3 (PC1/3) is a key regulator of TLR4 Myd88-dependent signalling. In the present study, we established that PC1/3 also regulates the endosomal TLR9. Under CpG-ODN challenge, we found that PC1/3 traffics rapidly to co-localize with TLR9 in CpG-ODN-containing endosomes with acidic pH. In PC1/3 knockdown macrophages, compartmentalization of TLR9 was altered and TLR9 clustered in multivesicular bodies (MVB) as demonstrated by co-localization with Rab7. This demonstrates that PC1/3 controls TLR9 trafficking. This clustering of TLR9 in MVB dampened the anti-inflammatory STAT3 signalling pathway while it promoted the pro-inflammatory NF-kB pathway. As a result, macrophages from PC1/3 KO mice and rat PC1/3-KD NR8383 macrophages secreted more pro-inflammatory cytokines such as TNF-α, IL6, IL1α and CXCL2. This is indicative of a M1 pro-inflammatory phenotype. Therefore, PC1/3 KD macrophages represent a relevant mean for cell therapy as “Trojan” macrophages.
Collapse
|
496
|
Franklin RA, Li MO. Ontogeny of Tumor-associated Macrophages and Its Implication in Cancer Regulation. Trends Cancer 2016; 2:20-34. [PMID: 26949745 DOI: 10.1016/j.trecan.2015.11.004] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Macrophages are innate immune cells with evolutionarily conserved functions in tissue maintenance and host defense. As such, macrophages are among the first hematopoietic cells that seed developing tissues, and respond to inflammatory insults by in situ proliferation or de novo differentiation from monocytes. Recent studies have revealed that monocyte-derived tumor-induced macrophages represent a major tumor-associated macrophage population, which can further expand following their differentiation in tumors. Compared to tissue-resident tumor-associated macrophages, these newly differentiated cells are phenotypically distinct, and likely play a unique role in tissue dysregulation and immune modulation in cancer. These findings imply that tumor growth elicits a specific innate immune response. In this review, we explore the different routes of macrophage seeding and maintenance in tissues during steady state and inflammation and how these principles underlie the responses observed during tumor development. In addition, we highlight the relationship between the origin and function of macrophages in different settings and how this knowledge may be used to create new opportunities for cancer immunotherapy.
Collapse
Affiliation(s)
- Ruth A Franklin
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ming O Li
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
497
|
Park WY, Hong BJ, Lee J, Choi C, Kim MY. H3K27 Demethylase JMJD3 Employs the NF-κB and BMP Signaling Pathways to Modulate the Tumor Microenvironment and Promote Melanoma Progression and Metastasis. Cancer Res 2016; 76:161-70. [PMID: 26729791 DOI: 10.1158/0008-5472.can-15-0536] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Histone methylation is a key epigenetic mark that regulates gene expression. Recently, aberrant histone methylation patterns caused by deregulated histone demethylases have been associated with carcinogenesis. However, the role of histone demethylases, particularly the histone H3 lysine 27 (H3K27) demethylase JMJD3, remains largely uncharacterized in melanoma. Here, we used human melanoma cell lines and a mouse xenograft model to demonstrate a requirement for JMJD3 in melanoma growth and metastasis. Notably, in contrast with previous reports examining T-cell acute lymphoblastic leukemia and hepatoma cells, JMJD3 did not alter the general proliferation rate of melanoma cells in vitro. However, JMJD3 conferred melanoma cells with several malignant features such as enhanced clonogenicity, self-renewal, and transendothelial migration. In addition, JMJD3 enabled melanoma cells not only to create a favorable tumor microenvironment by promoting angiogenesis and macrophage recruitment, but also to activate protumorigenic PI3K signaling upon interaction with stromal components. Mechanistic investigations demonstrated that JMJD3 transcriptionally upregulated several targets of NF-κB and BMP signaling, including stanniocalcin 1 (STC1) and chemokine (C-C motif) ligand 2 (CCL2), which functioned as downstream effectors of JMJD3 in self-renewal and macrophage recruitment, respectively. Furthermore, JMJD3 expression was elevated and positively correlated with that of STC1 and CCL2 in human malignant melanoma. Moreover, we found that BMP4, another JMJD3 target gene, regulated JMJD3 expression via a positive feedback mechanism. Our findings reveal a novel epigenetic mechanism by which JMJD3 promotes melanoma progression and metastasis, and suggest JMJD3 as a potential target for melanoma treatment.
Collapse
Affiliation(s)
- Woo-Yong Park
- Department of Biological Sciences, Cancer Metastasis Control Center, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Beom-Jin Hong
- Department of Biological Sciences, Cancer Metastasis Control Center, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Jungsul Lee
- Department of Bio and Brain Engineering, Cancer Metastasis Control Center, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Chulhee Choi
- Department of Bio and Brain Engineering, Cancer Metastasis Control Center, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea. KAIST Institute for the BioCentury, Cancer Metastasis Control Center, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Mi-Young Kim
- Department of Biological Sciences, Cancer Metastasis Control Center, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea. KAIST Institute for the BioCentury, Cancer Metastasis Control Center, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.
| |
Collapse
|
498
|
Kwon MJ, Yoon HJ, Kim BG. Regeneration-associated macrophages: a novel approach to boost intrinsic regenerative capacity for axon regeneration. Neural Regen Res 2016; 11:1368-1371. [PMID: 27857723 PMCID: PMC5090822 DOI: 10.4103/1673-5374.191194] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Axons in central nervous system (CNS) do not regenerate spontaneously after injuries such as stroke and traumatic spinal cord injury. Both intrinsic and extrinsic factors are responsible for the regeneration failure. Although intensive research efforts have been invested on extrinsic regeneration inhibitors, the extent to which glial inhibitors contribute to the regeneration failure in vivo still remains elusive. Recent experimental evidence has rekindled interests in intrinsic factors for the regulation of regeneration capacity in adult mammals. In this review, we propose that activating macrophages with pro-regenerative molecular signatures could be a novel approach for boosting intrinsic regenerative capacity of CNS neurons. Using a conditioning injury model in which regeneration of central branches of dorsal root ganglia sensory neurons is enhanced by a preceding injury to the peripheral branches, we have demonstrated that perineuronal macrophages surrounding dorsal root ganglia neurons are critically involved in the maintenance of enhanced regeneration capacity. Neuron-derived chemokine (C-C motif) ligand 2 (CCL2) seems to mediate neuron-macrophage interactions conveying injury signals to perineuronal macrophages taking on a soley pro-regenerative phenotype, which we designate as regeneration-associated macrophages (RAMs). Manipulation of the CCL2 signaling could boost regeneration potential mimicking the conditioning injury, suggesting that the chemokine-mediated RAM activation could be utilized as a regenerative therapeutic strategy for CNS injuries.
Collapse
Affiliation(s)
- Min Jung Kwon
- Department of Brain Science, Ajou University School of Medicine, Suwon, Republic of Korea; Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Republic of Korea
| | - Hyuk Jun Yoon
- Department of Brain Science, Ajou University School of Medicine, Suwon, Republic of Korea; Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Republic of Korea
| | - Byung Gon Kim
- Department of Brain Science, Ajou University School of Medicine, Suwon, Republic of Korea; Department of Neurology, Ajou University School of Medicine, Suwon, Republic of Korea; Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Republic of Korea
| |
Collapse
|
499
|
Macrophages and pancreatic ductal adenocarcinoma. Cancer Lett 2015; 381:211-6. [PMID: 26708507 DOI: 10.1016/j.canlet.2015.11.049] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 11/20/2015] [Accepted: 11/27/2015] [Indexed: 01/09/2023]
Abstract
Monocytes and macrophages make up part of the innate immune system and provide one of the first defenses against variety of treats. Macrophages can also modulate the adaptive immune system. Efficient sensing and response to tissue environmental cues highlights the complexity and dynamic nature of macrophages and their plasticity. Macrophages may have divergent roles depending on their polarity and stimulus received. Accumulating evidence demonstrates the critical role played by macrophages in tumor initiation, development, and progression. In this review, we discuss the characteristics of tumor-associated macrophages (TAMs) and their role in pancreatic adenocarcinoma. In addition, we give an overview on recent advances related to the therapeutic implication associated with targeting TAMs in pancreas cancer.
Collapse
|
500
|
Pei Y, Yeo Y. Drug delivery to macrophages: Challenges and opportunities. J Control Release 2015; 240:202-211. [PMID: 26686082 DOI: 10.1016/j.jconrel.2015.12.014] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Revised: 12/05/2015] [Accepted: 12/10/2015] [Indexed: 02/07/2023]
Abstract
Macrophages are prevalent in the body and have roles in almost every aspect of human biology. They have often been considered a subject to avoid during drug delivery. However, with recent understanding of their diverse functions in diseases, macrophages have gained increasing interest as important therapeutic targets. To develop drug carriers to macrophages, it is important to understand their biological roles and requirements for efficient targeting. This review provides an overview of representative carriers and various approaches to address challenges in drug delivery to macrophages such as biodistribution, cellular uptake, intracellular trafficking, and drug release.
Collapse
Affiliation(s)
- Yihua Pei
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, United States
| | - Yoon Yeo
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, United States; Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, United States.
| |
Collapse
|