451
|
Bevilacqua JA, Krahn M, Pedraza L, Gejman R, Gonzalez S, Lévy N. Dysferlinopathy in Chile: Evidence of Two Novel Mutations in the First Reported Cases. Genet Test Mol Biomarkers 2009; 13:105-8. [DOI: 10.1089/gtmb.2008.0091] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Jorge A. Bevilacqua
- Departamento de Neurología y Neurocirugía, Hospital Clínico Universidad de Chile, Santiago, Chile
- Programa de Anatomía y Biología del Desarrollo. ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Martin Krahn
- Département de Génétique Médicale, Hôpital d'Enfants de la Timone, AP-HM, Marseille, France
- Inserm UMR910: “Génétique Médicale et Génomique Fonctionnelle,” Faculté de Médecine Timone, Université de la Méditerranée, Marseille, France
| | - Luis Pedraza
- Departamento de Neurología y Neurocirugía, Hospital Clínico Universidad de Chile, Santiago, Chile
| | - Roger Gejman
- Departamento de Anatomía Patológica, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Sergio Gonzalez
- Departamento de Anatomía Patológica, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nicolas Lévy
- Département de Génétique Médicale, Hôpital d'Enfants de la Timone, AP-HM, Marseille, France
- Inserm UMR910: “Génétique Médicale et Génomique Fonctionnelle,” Faculté de Médecine Timone, Université de la Méditerranée, Marseille, France
| |
Collapse
|
452
|
Fulton L, Batoux M, Vaddepalli P, Yadav RK, Busch W, Andersen SU, Jeong S, Lohmann JU, Schneitz K. DETORQUEO, QUIRKY, and ZERZAUST represent novel components involved in organ development mediated by the receptor-like kinase STRUBBELIG in Arabidopsis thaliana. PLoS Genet 2009; 5:e1000355. [PMID: 19180193 PMCID: PMC2628281 DOI: 10.1371/journal.pgen.1000355] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2008] [Accepted: 12/23/2008] [Indexed: 12/26/2022] Open
Abstract
Intercellular signaling plays an important role in controlling cellular behavior in apical meristems and developing organs in plants. One prominent example in Arabidopsis is the regulation of floral organ shape, ovule integument morphogenesis, the cell division plane, and root hair patterning by the leucine-rich repeat receptor-like kinase STRUBBELIG (SUB). Interestingly, kinase activity of SUB is not essential for its in vivo function, indicating that SUB may be an atypical or inactive receptor-like kinase. Since little is known about signaling by atypical receptor-like kinases, we used forward genetics to identify genes that potentially function in SUB-dependent processes and found recessive mutations in three genes that result in a sub-like phenotype. Plants with a defect in DETORQEO (DOQ), QUIRKY (QKY), and ZERZAUST (ZET) show corresponding defects in outer integument development, floral organ shape, and stem twisting. The mutants also show sub-like cellular defects in the floral meristem and in root hair patterning. Thus, SUB, DOQ, QKY, and ZET define the STRUBBELIG-LIKE MUTANT (SLM) class of genes. Molecular cloning of QKY identified a putative transmembrane protein carrying four C(2) domains, suggesting that QKY may function in membrane trafficking in a Ca(2+)-dependent fashion. Morphological analysis of single and all pair-wise double-mutant combinations indicated that SLM genes have overlapping, but also distinct, functions in plant organogenesis. This notion was supported by a systematic comparison of whole-genome transcript profiles during floral development, which molecularly defined common and distinct sets of affected processes in slm mutants. Further analysis indicated that many SLM-responsive genes have functions in cell wall biology, hormone signaling, and various stress responses. Taken together, our data suggest that DOQ, QKY, and ZET contribute to SUB-dependent organogenesis and shed light on the mechanisms, which are dependent on signaling through the atypical receptor-like kinase SUB.
Collapse
Affiliation(s)
- Lynette Fulton
- Entwicklungsbiologie der Pflanzen, Wissenschaftszentrum Weihenstephan, Technische Universität München, Freising, Germany
| | - Martine Batoux
- Entwicklungsbiologie der Pflanzen, Wissenschaftszentrum Weihenstephan, Technische Universität München, Freising, Germany
| | - Prasad Vaddepalli
- Entwicklungsbiologie der Pflanzen, Wissenschaftszentrum Weihenstephan, Technische Universität München, Freising, Germany
| | - Ram Kishor Yadav
- Entwicklungsbiologie der Pflanzen, Wissenschaftszentrum Weihenstephan, Technische Universität München, Freising, Germany
| | - Wolfgang Busch
- Max Planck Institute for Developmental Biology, Department of Molecular Biology, AG Lohmann, Tübingen, Germany
| | - Stig U. Andersen
- Max Planck Institute for Developmental Biology, Department of Molecular Biology, AG Lohmann, Tübingen, Germany
| | - Sangho Jeong
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, California, United States of America
| | - Jan U. Lohmann
- Max Planck Institute for Developmental Biology, Department of Molecular Biology, AG Lohmann, Tübingen, Germany
- Center for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Kay Schneitz
- Entwicklungsbiologie der Pflanzen, Wissenschaftszentrum Weihenstephan, Technische Universität München, Freising, Germany
- * E-mail:
| |
Collapse
|
453
|
Mitsuhashi S, Nonaka I, Wu S, Moreno CAI, Shalaby S, Hayashi YK, Noguchi S, Nishino I. Distal myopathy in multi-minicore disease. Intern Med 2009; 48:1759-62. [PMID: 19797833 DOI: 10.2169/internalmedicine.48.2425] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A 52-year-old man noted distal dominant slowly progressive muscle weakness at age 36 years. On muscle CT, the red muscles of the soleus, anterior tibial and paraspinal muscles, where type 1 fiber is known to predominate, were almost totally replaced by fat tissue while quadriceps femoris, gastrocnemius and upper extremity muscles were relatively spared. Quadriceps muscle biopsy revealed multi-minicores in addition to occasional larger cores, in about 70% of the type 1 fibers. A novel heterozygous nucleotide change c.5869T > A (p.S1957T) was identified in RYR1. Although pathogenicity was not confirmed, this nucleotide change was absent in 100 control DNA. We did not find a mutation in either multi-minicore disease-associated gene, SEPN1, or major distal myopathy-related genes, including GNE, ZASP, MYOT, exons 32-36 of MYH7, and the last exon of TTN. This is probably a unique form of distal myopathy characterized by the presence of multi-minicores with preferential involvement of type 1 fibers.
Collapse
Affiliation(s)
- Satomi Mitsuhashi
- National Institute of Neuroscience, Department of Neuromuscular Research, National Center of Neurology and Psychiatry, Tokyo
| | | | | | | | | | | | | | | |
Collapse
|
454
|
Udd B. Genetics and pathogenesis of distal muscular dystrophies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 652:23-38. [PMID: 20225017 DOI: 10.1007/978-90-481-2813-6_3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Distal myopathies are distal muscular dystrophies because they are genetic disorders with progressive loss of muscle tissue. The true distal dystrophies not only show a distal onset; they also remain more distal than proximal throughout the course of the disease. Currently almost 20 different entities of distal muscular dystrophies have been genetically determined, compared to just five entities delineated on clinical grounds in the 1980s. Half of the genes underlying these disorders have been associated with distal phenotypes only, whereas the other genes can manifest also with other than distal phenotypes such as proximal, scapuloperoneal or generalized phenotypes. Interestingly, most of the genes causing distal muscular dystrophies code for protein components of the sarcomere, in contrast to the proximal dystrophies in which most of the genes cause defects in sarcolemmal proteins. The reason for why some gene defects predominantly affect distal muscles is not well understood. The fact that the majority of these defects are due to structural and functional components of the sarcomere is intriguing but so far it does not provide further clues for understanding or for therapeutic approaches. The highly selective involvement of muscles in many of the distal dystrophies is even less well understood.
Collapse
Affiliation(s)
- Bjarne Udd
- Neuromuscular Centre, Tampere University Hospital and University of Tampere, Helsinki, Finland.
| |
Collapse
|
455
|
Paradas C, González-Quereda L, De Luna N, Gallardo E, García-Consuegra I, Gómez H, Cabello A, Illa I, Gallano P. A new phenotype of dysferlinopathy with congenital onset. Neuromuscul Disord 2008; 19:21-5. [PMID: 19084402 DOI: 10.1016/j.nmd.2008.09.015] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2008] [Revised: 08/27/2008] [Accepted: 09/25/2008] [Indexed: 11/27/2022]
Abstract
We report two patients with a new phenotype of dysferlinopathy presenting as congenital muscular disease. Both patients showed weakness in proximal lower limbs and neck flexor muscles at birth. The presence of normal CK levels during the first years should be noted. Initial MRI showed no abnormalities but short-time-inversion-recovery (STIR) sequences revealed a striking myoedema in gastrocnemius and hamstring muscles at the age of 5. Muscle biopsy showed mild dystrophic features and the absence of dysferlin. Dysferlin gene (DYSF) analysis revealed a p.Ala927LeufsX21 mutation in a homozygous state in both siblings. This new phenotype widens the clinical spectrum of dysferlin myopathies.
Collapse
Affiliation(s)
- C Paradas
- Department of Neurology, Hospital de Valme, Sevilla, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
456
|
Schmidt S, Vieweger A, Obst M, Mueller S, Gross V, Gutberlet M, Steinbrink J, Taubert S, Misselwitz B, Luedemann L, Spuler S. Dysferlin-deficient muscular dystrophy: gadofluorine M suitability at MR imaging in a mouse model. Radiology 2008; 250:87-94. [PMID: 19001151 DOI: 10.1148/radiol.2501080180] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
PURPOSE To compare the usefulness of gadofluorine M with that of Gadomer in assessment of dysferlin-deficient muscular dystrophy at 7.0-T magnetic resonance (MR) imaging. MATERIALS AND METHODS All experiments were approved by local review boards. SJL/J mice (n = 24) with dysferlin-deficient muscular dystrophy and C57BL/6 control mice (n = 24) were imaged at 12-15 weeks (young) or older than 30 weeks (old) by using dynamic contrast material-enhanced imaging with inversion-prepared steady-state free-precession sequence before, during, and after administration of gadofluorine M at 2 micromol or Gadomer at 4 micromol intravenously. After imaging, regions of interest were determined from the upper extremity and left ventricular chamber; fractional extravascular extracellular volume, v(e), and permeability surface tissue density product, PS rho, were measured by using a two-compartment pharmacokinetic model. The natural history of muscular dystrophy was assessed histologically in 70 mice (seven five-mouse groups each of SJL/J mice and of control mice) at 4-week intervals from 8 to 32 weeks. In addition, three SJL/J mice and three control mice at age 33 weeks were sacrificed, and fluorescence microscopy was performed for visualization of intravenously administered carbocyanine-labeled gadofluorine M in muscle cells. Statistical analysis was performed by using the t test. RESULTS Gadofluorine M enhancement was significantly greater in skeletal muscle of 30-week-old mice with dysferlin-deficient muscular dystrophy, compared with control mice. Gadofluorine M demonstrated both increased rate of enhancement (PS rho sec(-1) +/- standard error of the mean: 0.004 e(-)(4) +/- 3 vs 0.002 e(-)(4) +/- 3; P < .05) and increased level of enhancement (v(e) +/- standard error of the mean: 0.035 +/- 0.004 vs 0.019 +/- 0.004; P < .05). Gadomer showed no differential enhancement in the two mouse groups. Histologic examination confirmed the presence of labeled gadofluorine M in muscle cells. CONCLUSION Gadofluorine M-enhanced MR imaging may be of value in monitoring dysferlin-deficient muscular dystrophy disease progression in this animal model and could prove to be a useful tool in following the course of chronic muscle diseases in humans.
Collapse
Affiliation(s)
- Saskia Schmidt
- Muscle Research Unit, Experimental and Clinical Research Center, Charité University Medicine Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
457
|
Idone V, Tam C, Andrews NW. Two-way traffic on the road to plasma membrane repair. Trends Cell Biol 2008; 18:552-9. [PMID: 18848451 PMCID: PMC2593466 DOI: 10.1016/j.tcb.2008.09.001] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2008] [Revised: 08/31/2008] [Accepted: 09/01/2008] [Indexed: 12/21/2022]
Abstract
Ca(2+) influx through plasma membrane wounds triggers a rapid-repair response that is essential for cell survival. Earlier studies showed that repair requires the exocytosis of intracellular vesicles. Exocytosis was thought to promote resealing by 'patching' the plasma membrane lesion or by facilitating bilayer restoration through reduction in membrane tension. However, cells also rapidly repair lesions created by pore-forming proteins, a form of injury that cannot be resealed solely by exocytosis. Recent studies indicate that, in cells injured by pores or mechanical abrasions, exocytosis is followed by lesion removal through endocytosis. Describing the relationship between wound-induced exocytosis and endocytosis has implications for the understanding of muscular degenerative diseases that are associated with defects in plasma membrane repair.
Collapse
Affiliation(s)
- Vincent Idone
- Section of Microbial Pathogenesis, Yale University School of Medicine, 295 Congress Street, New Haven, CT 06511, USA
| | | | | |
Collapse
|
458
|
Roche JA, Lovering RM, Bloch RJ. Impaired recovery of dysferlin-null skeletal muscle after contraction-induced injury in vivo. Neuroreport 2008; 19:1579-84. [PMID: 18815587 PMCID: PMC2662728 DOI: 10.1097/wnr.0b013e328311ca35] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The protein, dysferlin, mediates sarcolemmal repair in vitro, implicating defective membrane repair in dysferlinopathies. To study the role of dysferlin in vivo, we assessed contractile function, sarcolemmal integrity, and myogenesis before and after injury from large-strain lengthening contractions in dysferlin-null and control mice. We report that dysferlin-null muscles produce higher contractile torque, and are equally susceptible to initial injury but recover from injury more slowly. Two weeks after injury, control muscles retain fluorescein dextran and do not show myogenesis. Dysferlin-null muscles do not retain fluorescein dextran, and show necrosis followed by myogenesis. Our data indicate that recovery of control muscles from injury primarily involves sarcolemmal repair whereas recovery of dysferlin-null muscles primarily involves myogenesis without repair and long-term survival of myofibers.
Collapse
Affiliation(s)
- Joseph A Roche
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | | | | |
Collapse
|
459
|
Kesari A, Fukuda M, Knoblach S, Bashir R, Nader GA, Rao D, Nagaraju K, Hoffman EP. Dysferlin deficiency shows compensatory induction of Rab27A/Slp2a that may contribute to inflammatory onset. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 173:1476-87. [PMID: 18832576 DOI: 10.2353/ajpath.2008.080098] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mutations in the dysferlin gene cause limb girdle muscular dystrophy 2B (LGMD2B) and Miyoshi myopathy. Dysferlin-deficient cells show abnormalities in vesicular traffic and membrane repair although onset of symptoms is not commonly seen until the late teenage years and is often associated with subacute onset and marked muscle inflammation. To identify molecular networks specific to dysferlin-deficient muscle that might explain disease pathogenesis, muscle mRNA profiles from 10 mutation-positive LGMD2B/MM patients were compared with a disease control [LGMD2I; (n = 9)], and normal muscle samples (n = 11). Query of inflammatory pathways suggested LGMD2B-specific increases in co-stimulatory signaling between dendritic cells and T cells (CD86, CD28, and CTLA4), associated with localized expression of both versican and tenascin. LGMD2B muscle also showed an increase in vesicular trafficking pathway proteins not normally observed in muscle (synaptotagmin-like protein Slp2a/SYTL2 and the small GTPase Rab27A). We propose that Rab27A/Slp2a expression in LGMD2B muscle provides a compensatory vesicular trafficking pathway that is able to repair membrane damage in the absence of dysferlin. However, this same pathway may release endocytotic vesicle contents, resulting in an inflammatory microenvironment. As dysferlin deficiency has been shown to enhance phagocytosis by macrophages, together with our findings of abnormal myofiber endocytosis pathways and dendritic-T cell activation markers, these results suggest a model of immune and inflammatory network over-stimulation that may explain the subacute inflammatory presentation.
Collapse
Affiliation(s)
- Akanchha Kesari
- Research Center for Genetic Medicine, Children's National Medical Center, Washington DC 20010, USA
| | | | | | | | | | | | | | | |
Collapse
|
460
|
Shirafuji T, Otsuka Y, Kobessho H, Minami N, Hayashi Y, Nishino I, Kanda F. [Case of LGMD2A (calpainopathy) clinically presenting as Miyoshi distal myopathy]. Rinsho Shinkeigaku 2008; 48:651-655. [PMID: 19048948 DOI: 10.5692/clinicalneurol.48.651] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
We reported a 23-year-old woman with distal myopathy and highly elevated serum creatine kinase (CK) caused by calpainopathy. Although muscle weakness was not evident, a muscle CT scan revealed replacement by adipose tissue in the medial head of the gastrocnemius. The gluteus maximus and biceps femoris were also affected to a lesser degree, but the lateral head of the gastrocnemius was preserved. A histological study of a biopsied specimen of the biceps brachii revealed obvious variation in fiber size and a few necrotic or regenerating fibers. Rimmed vacuoles or lobulated fibers were absent in vacuoles. Although the clinical features suggested Miyoshi's distal myopathy, gene analysis of calpain 3 revealed a c.802-9G > A mutation in intron 5 and a c.1319G > A (p.Arg440Gln) in exon 10. Mini-multiplex Western Blotting (MMW) of the patient's muscle showed no band in calpain 3 (p94) and calpain 3 30 kDa fragments and immunoblotting did not reveal any dysferlin abnormalities. Calpainopathy should be also considered in patients with clinical manifestations of Miyoshi distal myopathy.
Collapse
Affiliation(s)
- Toshihiko Shirafuji
- Division of Neurology, Department of Internal Medicine, Kobe University Graduate School of Medicine
| | | | | | | | | | | | | |
Collapse
|
461
|
Changes in skeletal muscle expression of AQP1 and AQP4 in dystrophinopathy and dysferlinopathy patients. Acta Neuropathol 2008; 116:235-46. [PMID: 18392839 DOI: 10.1007/s00401-008-0369-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2007] [Revised: 02/12/2008] [Accepted: 03/13/2008] [Indexed: 10/22/2022]
Abstract
Transmembrane water transport is mediated by aquaporins (AQPs), of which AQP1 and AQP4 are expressed in skeletal muscle. AQP4 expression is reduced in Duchenne muscular dystrophy (DMD) patients, and is reported to correlate with decreased alpha1-syntrophin and altered osmotic permeability. In this study, we assessed the relationship between AQP1, AQP4, dystrophin and alpha1-syntrophin in dystrophinopathy and dysferlinopathy patients. Muscle biopsies of patients with DMD (n = 8) and limb-girdle muscular dystrophy type 2B (LGMD2B; n = 5) were screened for AQP1 and AQP4 expression by real-time quantitative RT-PCR or Western blot and immunohistochemistry. AQP expression was further analyzed in primary myotubes derived from DMD and LGMD2B patients by cell culture and immunohistochemistry. AQP1 transcript and protein expression was significantly elevated in DMD biopsies, and was localized to the sarcolemma of muscle fibers and endothelia of muscle capillaries. AQP4 was significantly reduced despite normal dystrophin and alpha1-syntrophin in dysferlinopathy patients, while expression of AQP1 was variably upregulated. Expression of AQP1 and AQP4 was normal in patient-derived primary myotubes, suggesting that altered AQPs observed in biopsies are likely secondary to the dystrophic process. Our study shows that AQP4 downregulation can occur in muscular dystrophies with either normal or disrupted expression of dystrophin-associated proteins, and that this might be associated with upregulation of AQP1.
Collapse
|
462
|
Abstract
Like all mammalian tissues, skeletal muscle is dependent on membrane traffic for proper development and homeostasis. This fact is underscored by the observation that several human diseases of the skeletal muscle are caused by mutations in gene products of the membrane trafficking machinery. An examination of these diseases and the proteins that underlie them is instructive both in terms of determining disease pathogenesis and of understanding the normal aspects of muscle biology regulated by membrane traffic. This review highlights our current understanding of the trafficking genes responsible for human myopathies.
Collapse
Affiliation(s)
- James J Dowling
- Department of Pediatrics, University of Michigan Medical Center, Ann Arbor, MI 48109, USA.
| | | | | |
Collapse
|
463
|
Martens S, McMahon HT. Mechanisms of membrane fusion: disparate players and common principles. Nat Rev Mol Cell Biol 2008; 9:543-56. [PMID: 18496517 DOI: 10.1038/nrm2417] [Citation(s) in RCA: 541] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Membrane fusion can occur between cells, between different intracellular compartments, between intracellular compartments and the plasma membrane and between lipid-bound structures such as viral particles and cellular membranes. In order for membranes to fuse they must first be brought together. The more highly curved a membrane is, the more fusogenic it becomes. We discuss how proteins, including SNAREs, synaptotagmins and viral fusion proteins, might mediate close membrane apposition and induction of membrane curvature to drive diverse fusion processes. We also highlight common principles that can be derived from the analysis of the role of these proteins.
Collapse
Affiliation(s)
- Sascha Martens
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge, CB2 0QH, UK.
| | | |
Collapse
|
464
|
Vieira NM, Bueno CR, Brandalise V, Moraes LV, Zucconi E, Secco M, Suzuki MF, Camargo MM, Bartolini P, Brum PC, Vainzof M, Zatz M. SJL dystrophic mice express a significant amount of human muscle proteins following systemic delivery of human adipose-derived stromal cells without immunosuppression. Stem Cells 2008; 26:2391-8. [PMID: 18583542 DOI: 10.1634/stemcells.2008-0043] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Limb-girdle muscular dystrophies (LGMDs) are a heterogeneous group of disorders characterized by progressive degeneration of skeletal muscle caused by the absence of or defective muscular proteins. The murine model for limb-girdle muscular dystrophy 2B (LGMD2B), the SJL mice, carries a deletion in the dysferlin gene that causes a reduction in the protein levels to 15% of normal. The mice show muscle weakness that begins at 4-6 weeks and is nearly complete by 8 months of age. The possibility of restoring the defective muscle protein and improving muscular performance by cell therapy is a promising approach for the treatment of LGMDs or other forms of progressive muscular dystrophies. Here we have injected human adipose stromal cells (hASCs) into the SJL mice, without immunosuppression, aiming to assess their ability to engraft into recipient dystrophic muscle after systemic delivery; form chimeric human/mouse muscle fibers; express human muscle proteins in the dystrophic host and improve muscular performance. We show for the first time that hASCs are not rejected after systemic injection even without immunosuppression, are able to fuse with the host muscle, express a significant amount of human muscle proteins, and improve motor ability of injected animals. These results may have important applications for future therapy in patients with different forms of muscular dystrophies.
Collapse
Affiliation(s)
- Natássia M Vieira
- Human Genome Research Center, Biosciences Institute, University of São Paulo, São Paulo, Brazil
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
465
|
Patel P, Harris R, Geddes SM, Strehle EM, Watson JD, Bashir R, Bushby K, Driscoll PC, Keep NH. Solution structure of the inner DysF domain of myoferlin and implications for limb girdle muscular dystrophy type 2b. J Mol Biol 2008; 379:981-90. [PMID: 18495154 DOI: 10.1016/j.jmb.2008.04.046] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2008] [Revised: 04/11/2008] [Accepted: 04/21/2008] [Indexed: 11/23/2022]
Abstract
Mutations in the protein dysferlin, a member of the ferlin family, lead to limb girdle muscular dystrophy type 2B and Myoshi myopathy. The ferlins are large proteins characterised by multiple C2 domains and a single C-terminal membrane-spanning helix. However, there is sequence conservation in some of the ferlin family in regions outside the C2 domains. In one annotation of the domain structure of these proteins, an unusual internal duplication event has been noted where a putative domain is inserted in between the N- and C-terminal parts of a homologous domain. This domain is known as the DysF domain. Here, we present the solution structure of the inner DysF domain of the dysferlin paralogue myoferlin, which has a unique fold held together by stacking of arginine and tryptophans, mutations that lead to clinical disease in dysferlin.
Collapse
Affiliation(s)
- Pryank Patel
- Institute of Structural and Molecular Biology and School of Crystallography, Birkbeck University of London, London WC1E 7HX, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
466
|
Huang Y, de Morrée A, van Remoortere A, Bushby K, Frants RR, Dunnen JT, van der Maarel SM. Calpain 3 is a modulator of the dysferlin protein complex in skeletal muscle. Hum Mol Genet 2008; 17:1855-66. [PMID: 18334579 PMCID: PMC2900895 DOI: 10.1093/hmg/ddn081] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2008] [Accepted: 03/09/2008] [Indexed: 11/13/2022] Open
Abstract
Muscular dystrophies comprise a genetically heterogeneous group of degenerative muscle disorders characterized by progressive muscle wasting and weakness. Two forms of limb-girdle muscular dystrophy, 2A and 2B, are caused by mutations in calpain 3 (CAPN3) and dysferlin (DYSF), respectively. While CAPN3 may be involved in sarcomere remodeling, DYSF is proposed to play a role in membrane repair. The coexistence of CAPN3 and AHNAK, a protein involved in subsarcolemmal cytoarchitecture and membrane repair, in the dysferlin protein complex and the presence of proteolytic cleavage fragments of AHNAK in skeletal muscle led us to investigate whether AHNAK can act as substrate for CAPN3. We here demonstrate that AHNAK is cleaved by CAPN3 and show that AHNAK is lost in cells expressing active CAPN3. Conversely, AHNAK accumulates when calpain 3 is defective in skeletal muscle of calpainopathy patients. Moreover, we demonstrate that AHNAK fragments cleaved by CAPN3 have lost their affinity for dysferlin. Thus, our findings suggest interconnectivity between both diseases by revealing a novel physiological role for CAPN3 in regulating the dysferlin protein complex.
Collapse
Affiliation(s)
| | | | | | - Kate Bushby
- Institute of Human Genetics, International Centre for Life, Newcastle-upon-Tyne, UK
| | | | | | | |
Collapse
|
467
|
Seror P, Krahn M, Laforet P, Leturcq F, Maisonobe T. Complete fatty degeneration of lumbar erector spinae muscles caused by a primary dysferlinopathy. Muscle Nerve 2008; 37:410-4. [PMID: 17932988 DOI: 10.1002/mus.20910] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Magnetic resonance imaging of the thoracolumbar spine showed complete fatty degeneration of the lumbar erector spinae muscles in a woman who had complained of chronic lower back pain for 5 years and of progressive weakness of the lower limbs for 1 year. Neuromuscular examination of the lower limbs showed no obvious anomaly, and there was no camptocormia. Serum creatine kinase levels were increased (six- to ninefold); electrodiagnostic examination revealed no activity at rest or during effort in the erector spinae muscles and was normal in proximal and distal muscles of the limbs. Muscle computed tomography revealed mild fatty degeneration of thigh and gastrocnemius muscles, and histopathology of the deltoid muscle showed dystrophic features and complete lack of dysferlin. Molecular analysis identified a homozygous disease-causing mutation in the gene encoding dysferlin. Because there were no similar cases in the family, the final diagnosis was sporadic limb-girdle muscular dystrophy type 2B. Overall, this case report shows that the lumbar and lower thoracic of erector spinae muscles may display complete fatty degeneration without the occurrence of camptocormia, with primary dysferlin deficiency as a possible cause.
Collapse
Affiliation(s)
- P Seror
- Electromyography Laboratory, 146 avenue Ledru Rollin, 75011 Paris, France.
| | | | | | | | | |
Collapse
|
468
|
Klinge L, Dean AF, Kress W, Dixon P, Charlton R, Müller JS, Anderson LV, Straub V, Barresi R, Lochmüller H, Bushby K. Late onset in dysferlinopathy widens the clinical spectrum. Neuromuscul Disord 2008; 18:288-90. [PMID: 18396043 DOI: 10.1016/j.nmd.2008.01.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2007] [Revised: 12/18/2007] [Accepted: 01/10/2008] [Indexed: 10/22/2022]
Abstract
LGMD2B, Miyoshi Myopathy and Distal Anterior Compartment Myopathy are caused by mutations in the dysferlin gene (DYSF) leading to progressive muscular weakness and wasting with onset usually within the second or third decade of life. We here present a patient with disease onset at 73 years. The presenting symptom was exercise-induced stiffness of the trunk and proximal leg muscles without major progression over a period of 12 years. Gastrocnemius muscle biopsy revealed dystrophic morphology and biochemical depletion of dysferlin, while sequence analysis revealed compound heterozygous splicing mutations of the dysferlin gene. This case represents the eldest age of onset of dysferlinopathy reported so far and widens the clinical spectrum of this disease.
Collapse
Affiliation(s)
- L Klinge
- Institute of Human Genetics, University of Newcastle upon Tyne, International Centre for Life, Central Parkway, Newcastle upon Tyne, NE1 3BZ, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
469
|
Sáenz A, López de Munain A. Matrices de ADN: visión general y aplicaciones específicas. Med Clin (Barc) 2008; 130:504-9. [DOI: 10.1157/13119504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
470
|
Lionikas A, Blizard DA. Diverse effects of stanozolol in C57BL/6J and A/J mouse strains. Eur J Appl Physiol 2008; 103:333-41. [DOI: 10.1007/s00421-008-0708-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2008] [Indexed: 11/29/2022]
|
471
|
Hernández-Deviez DJ, Howes MT, Laval SH, Bushby K, Hancock JF, Parton RG. Caveolin regulates endocytosis of the muscle repair protein, dysferlin. J Biol Chem 2008; 283:6476-88. [PMID: 18096699 DOI: 10.1074/jbc.m708776200] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Dysferlin and Caveolin-3 are plasma membrane proteins associated with muscular dystrophy. Patients with mutations in the CAV3 gene show dysferlin mislocalization in muscle cells. By utilizing caveolin-null cells, expression of caveolin mutants, and different mutants of dysferlin, we have dissected the site of action of caveolin with respect to dysferlin trafficking pathways. We now show that Caveolin-1 or -3 can facilitate exit of a dysferlin mutant that accumulates in the Golgi complex of Cav1(-/-) cells. In contrast, wild type dysferlin reaches the plasma membrane but is rapidly endocytosed in Cav1(-/-) cells. We demonstrate that the primary effect of caveolin is to cause surface retention of dysferlin. Caveolin-1 or Caveolin-3, but not specific caveolin mutants, inhibit endocytosis of dysferlin through a clathrin-independent pathway colocalizing with internalized glycosylphosphatidylinositol-anchored proteins. Our results provide new insights into the role of this endocytic pathway in surface remodeling of specific surface components. In addition, they highlight a novel mechanism of action of caveolins relevant to the pathogenic mechanisms underlying caveolin-associated disease.
Collapse
Affiliation(s)
- Delia J Hernández-Deviez
- Institute for Molecular Bioscience, Centre for Microscopy and Microanalysis, University of Queensland, Brisbane, Queensland 4072, Australia
| | | | | | | | | | | |
Collapse
|
472
|
Matsuda C, Kameyama K, Suzuki A, Mishima W, Yamaji S, Okamoto H, Nishino I, Hayashi YK. Affixin activates Rac1 via βPIX in C2C12 myoblast. FEBS Lett 2008; 582:1189-96. [DOI: 10.1016/j.febslet.2008.01.064] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2007] [Accepted: 01/31/2008] [Indexed: 01/15/2023]
|
473
|
Spuler S, Carl M, Zabojszcza J, Straub V, Bushby K, Moore SA, Bähring S, Wenzel K, Vinkemeier U, Rocken C. Dysferlin-deficient muscular dystrophy features amyloidosis. Ann Neurol 2008; 63:323-8. [PMID: 18306167 DOI: 10.1002/ana.21309] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Dysferlin (DYSF) gene mutations cause limb girdle muscular dystrophy type 2B and Miyoshi's myopathy. The consequences of DYSF mutations on protein structure are poorly understood. METHODS The gene encoding dysferlin was sequenced in patients with suspected dysferlin-deficient muscular dystrophy. Muscle biopsy specimens were analyzed by histochemistry, immunohistochemistry, and electron microscopy. Antibodies against N-terminal dysferlin-peptides were raised. RESULTS We found three families with muscular dystrophy caused by homozygous or compound heterozygous DYSF mutations featuring sarcolemmal and interstitial amyloid deposits. These mutations were all located in the N-terminal region of the protein. Dysferlin was a constituent of the amyloid deposits. INTERPRETATION Limb girdle muscular dystrophy type 2B is the first muscular dystrophy associated with amyloidosis. Molecular treatment strategies will necessarily have to consider the presence of amyloidogenesis.
Collapse
Affiliation(s)
- Simone Spuler
- Muscle Research Unit, Experimental and Clinical Research Center at the Charité and the Max-Delbrück Center, Berlin, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
474
|
Nagaraju K, Rawat R, Veszelovszky E, Thapliyal R, Kesari A, Sparks S, Raben N, Plotz P, Hoffman EP. Dysferlin deficiency enhances monocyte phagocytosis: a model for the inflammatory onset of limb-girdle muscular dystrophy 2B. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 172:774-85. [PMID: 18276788 DOI: 10.2353/ajpath.2008.070327] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Dysferlin deficiency causes limb-girdle muscular dystrophy type 2B (LGMD2B; proximal weakness) and Miyoshi myopathy (distal weakness). Muscle inflammation is often present in dysferlin deficiency, and patients are frequently misdiagnosed as having polymyositis. Because monocytes normally express dysferlin, we hypothesized that monocyte/macrophage dysfunction in dysferlin-deficient patients might contribute to disease onset and progression. We therefore examined phagocytic activity, in the presence and absence of cytokines, in freshly isolated peripheral blood monocytes from LGMD2B patients and in the SJL dysferlin-deficient mouse model. Dysferlin-deficient monocytes showed increased phagocytic activity compared with control cells. siRNA-mediated inhibition of dysferlin expression in the J774 macrophage cell line resulted in significantly enhanced phagocytosis, both at baseline and in response to tumor necrosis factor-alpha. Immunohistochemical analysis revealed positive staining for several mononuclear cell activation markers in LGMD2B human muscle and SJL mouse muscle. SJL muscle showed strong up-regulation of endocytic proteins CIMPR, clathrin, and adaptin-alpha, and LGMD2B muscle exhibited decreased expression of decay accelerating factor, which was not dysferlin-specific. We further showed that expression levels of small Rho family GTPases RhoA, Rac1, and Cdc 42 were increased in dysferlin-deficient murine immune cells compared with control cells. Therefore, we hypothesize that mild myofiber damage in dysferlin-deficient muscle stimulates an inflammatory cascade that may initiate, exacerbate, and possibly perpetuate the underlying myofiber-specific dystrophic process.
Collapse
Affiliation(s)
- Kanneboyina Nagaraju
- Research Center for Genetic Medicine, Children's National Medical Center, Washington, DC, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
475
|
Robinson JM, Ackerman WE, Kniss DA, Takizawa T, Vandré DD. Proteomics of the human placenta: promises and realities. Placenta 2008; 29:135-43. [PMID: 18222537 DOI: 10.1016/j.placenta.2007.12.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2007] [Revised: 12/06/2007] [Accepted: 12/11/2007] [Indexed: 02/08/2023]
Abstract
Proteomics is an area of study that sets as its ultimate goal the global analysis of all of the proteins expressed in a biological system of interest. However, technical limitations currently hamper proteome-wide analyses of complex systems. In a more practical sense, a desired outcome of proteomics research is the translation of large protein data sets into formats that provide meaningful information regarding clinical conditions (e.g., biomarkers to serve as diagnostic and/or prognostic indicators of disease). Herein, we discuss placental proteomics by describing existing studies, pointing out their strengths and weaknesses. In so doing, we strive to inform investigators interested in this area of research about the current gap between hyperbolic promises and realities. Additionally, we discuss the utility of proteomics in discovery-based research, particularly as regards the capacity to unearth novel insights into placental biology. Importantly, when considering under studied systems such as the human placenta and diseases associated with abnormalities in placental function, proteomics can serve as a robust 'shortcut' to obtaining information unlikely to be garnered using traditional approaches.
Collapse
Affiliation(s)
- J M Robinson
- Department of Physiology and Cell Biology, Ohio State University, Columbus, OH 43210, USA.
| | | | | | | | | |
Collapse
|
476
|
Okahashi S, Ogawa G, Suzuki M, Ogata K, Nishino I, Kawai M. Asymptomatic sporadic dysferlinopathy presenting with elevation of serum creatine kinase. Typical distribution of muscle involvement shown by MRI but not by CT. Intern Med 2008; 47:305-7. [PMID: 18277035 DOI: 10.2169/internalmedicine.47.0519] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We report an 18-year-old man with elevation of the creatine kinase (CK) level to 11,068 IU/L. There was no muscle atrophy or fat replacement on CT while muscles in the posterior compartment of lower legs showed high T2 signal intensity on MRI. We performed muscle biopsy from the gastrocnemius muscle. Immunohistochemical analysis demonstrated an absence of dysferlin leading to a diagnosis of preclinical dysferlinopathy. Typical distribution of muscle involvement was demonstrated not by CT but by MRI which may have contributed to facilitating diagnosing the earliest stage of preclinical dysferlinopathy, presenting with asymptomatic elevation of serum creatine kinase.
Collapse
Affiliation(s)
- Satomi Okahashi
- Department of Neurology, Higashisaitama Hospital, National Hospital Organization, Hasuda, Japan
| | | | | | | | | | | |
Collapse
|
477
|
Rosas-Vargas H, Gómez-Díaz B, Ruano-Calderón L, Fernández-Valverde F, Roque-Ramírez B, Portillo-Bobadilla T, Ordoñez-Razo R, Minauro-Sanmiguel F, Coral-Vázquez R. Dysferlin Homozygous Mutation G1418D Causes Limb-Girdle Type 2B in a Mexican Family. ACTA ACUST UNITED AC 2007; 11:391-6. [DOI: 10.1089/gte.2007.0039] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- H. Rosas-Vargas
- Unidad de Investigación Médica en Genética Humana, Hospital de Pediatría, Centro Médico Nacional Siglo XXI-IMSS, México D.F., México
| | - B. Gómez-Díaz
- Unidad de Investigación Médica en Genética Humana, Hospital de Pediatría, Centro Médico Nacional Siglo XXI-IMSS, México D.F., México
| | - L. Ruano-Calderón
- Servicio de Enfermedades Neuromusculares, Instituto Nacional de Neurología y Neurocirugía de México, México D.F., México
| | - F. Fernández-Valverde
- Departamento de Neuropatología, Instituto Nacional de Neurología y Neurocirugía de México, México D.F., México
| | - B. Roque-Ramírez
- Unidad de Investigación Médica en Genética Humana, Hospital de Pediatría, Centro Médico Nacional Siglo XXI-IMSS, México D.F., México
| | - T. Portillo-Bobadilla
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, México D.F., México
| | - R.M. Ordoñez-Razo
- Unidad de Investigación Médica en Genética Humana, Hospital de Pediatría, Centro Médico Nacional Siglo XXI-IMSS, México D.F., México
| | - F. Minauro-Sanmiguel
- Unidad de Investigación Médica en Genética Humana, Hospital de Pediatría, Centro Médico Nacional Siglo XXI-IMSS, México D.F., México
| | - R. Coral-Vázquez
- Unidad de Investigación Médica en Genética Humana, Hospital de Pediatría, Centro Médico Nacional Siglo XXI-IMSS, México D.F., México
| |
Collapse
|
478
|
Saito H, Suzuki N, Ishiguro H, Hirota K, Itoyama Y, Takahashi T, Aoki M. Distal anterior compartment myopathy with early ankle contractures. Muscle Nerve 2007; 36:525-7. [PMID: 17614318 DOI: 10.1002/mus.20836] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Dysferlinopathies exhibit marked heterogeneity in the initial distribution of muscle involvement at the onset of the disease. We describe a Japanese patient with dysferlinopathy who exhibited distal anterior compartment myopathy (DACM) with early contractures of the ankle, whose pedigree included patients with two other types of dysferlinopathy. The existence of three phenotypes of dysferlinopathy in one pedigree is reported, indicating the involvement of molecules other than dysferlin in the pathogenesis.
Collapse
Affiliation(s)
- Hiroshi Saito
- Department of Neurology, Akita Red Cross Hospital, Akita, Japan
| | | | | | | | | | | | | |
Collapse
|
479
|
Uchio N, Oma Y, Toriumi K, Sasagawa N, Tanida I, Fujita E, Kouroku Y, Kuroda R, Momoi T, Ishiura S. Endoplasmic reticulum stress caused by aggregate-prone proteins containing homopolymeric amino acids. FEBS J 2007; 274:5619-27. [DOI: 10.1111/j.1742-4658.2007.06085.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
480
|
Lo HP, Cooper ST, Evesson FJ, Seto JT, Chiotis M, Tay V, Compton AG, Cairns AG, Corbett A, MacArthur DG, Yang N, Reardon K, North KN. Limb-girdle muscular dystrophy: diagnostic evaluation, frequency and clues to pathogenesis. Neuromuscul Disord 2007; 18:34-44. [PMID: 17897828 DOI: 10.1016/j.nmd.2007.08.009] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2007] [Revised: 07/23/2007] [Accepted: 08/17/2007] [Indexed: 11/19/2022]
Abstract
We characterized the frequency of limb-girdle muscular dystrophy (LGMD) subtypes in a cohort of 76 Australian muscular dystrophy patients using protein and DNA sequence analysis. Calpainopathies (8%) and dysferlinopathies (5%) are the most common causes of LGMD in Australia. In contrast to European populations, cases of LGMD2I (due to mutations in FKRP) are rare in Australasia (3%). We have identified a cohort of patients in whom all common disease candidates have been excluded, providing a valuable resource for identification of new disease genes. Cytoplasmic localization of dysferlin correlates with fiber regeneration in a subset of muscular dystrophy patients. In addition, we have identified a group of patients with unidentified forms of LGMD and with markedly abnormal dysferlin localization that does not correlate with fiber regeneration. This pattern is mimicked in primary caveolinopathy, suggesting a subset of these patients may also possess mutations within proteins required for membrane targeting of dysferlin.
Collapse
Affiliation(s)
- Harriet P Lo
- Institute for Neuromuscular Research, The Children's Hospital at Westmead, Sydney, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
481
|
Lammerding J, Lee RT. Torn apart: membrane rupture in muscular dystrophies and associated cardiomyopathies. J Clin Invest 2007; 117:1749-52. [PMID: 17607350 PMCID: PMC1904332 DOI: 10.1172/jci32686] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Muscular dystrophies are often caused by mutations in cytoskeletal proteins that render cells more susceptible to strain-induced injury in mechanically active tissues such as skeletal or cardiac muscle. In this issue of the JCI, Han et al. report that dysferlin participates in membrane resealing in cardiomyocytes and that exercise results in increased membrane damage and disturbed cardiac function in dysferlin-deficient mice (see the related article beginning on page 1805). Thus, in addition to repetitive membrane damage, inadequate membrane repair may participate in the pathogenesis of muscular dystrophies and cardiomyopathies.
Collapse
Affiliation(s)
- Jan Lammerding
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02139, USA
| | | |
Collapse
|
482
|
Han R, Bansal D, Miyake K, Muniz VP, Weiss RM, McNeil PL, Campbell KP. Dysferlin-mediated membrane repair protects the heart from stress-induced left ventricular injury. J Clin Invest 2007; 117:1805-13. [PMID: 17607357 PMCID: PMC1904311 DOI: 10.1172/jci30848] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2006] [Accepted: 04/10/2007] [Indexed: 12/21/2022] Open
Abstract
Dilated cardiomyopathy is a life-threatening syndrome that can arise from a myriad of causes, but predisposition toward this malady is inherited in many cases. A number of inherited forms of dilated cardiomyopathy arise from mutations in genes that encode proteins involved in linking the cytoskeleton to the extracellular matrix, and disruption of this link renders the cell membrane more susceptible to injury. Membrane repair is an important cellular mechanism that animal cells have developed to survive membrane disruption. We have previously shown that dysferlin deficiency leads to defective membrane resealing in skeletal muscle and muscle necrosis; however, the function of dysferlin in the heart remains to be determined. Here, we demonstrate that dysferlin is also involved in cardiomyocyte membrane repair and that dysferlin deficiency leads to cardiomyopathy. In particular, stress exercise disturbs left ventricular function in dysferlin-null mice and increases Evans blue dye uptake in dysferlin-deficient cardiomyocytes. Furthermore, a combined deficiency of dystrophin and dysferlin leads to early onset cardiomyopathy. Our results suggest that dysferlin-mediated membrane repair is important for maintaining membrane integrity of cardiomyocytes, particularly under conditions of mechanical stress. Thus, our study establishes what we believe is a novel mechanism underlying the cardiomyopathy that results from a defective membrane repair in the absence of dysferlin.
Collapse
Affiliation(s)
- Renzhi Han
- Howard Hughes Medical Institute,
Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center,
Department of Molecular Physiology and Biophysics,
Department of Neurology, and
Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA.
Institute of Molecular Medicine and Genetics and
Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta, Georgia, USA
| | - Dimple Bansal
- Howard Hughes Medical Institute,
Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center,
Department of Molecular Physiology and Biophysics,
Department of Neurology, and
Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA.
Institute of Molecular Medicine and Genetics and
Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta, Georgia, USA
| | - Katsuya Miyake
- Howard Hughes Medical Institute,
Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center,
Department of Molecular Physiology and Biophysics,
Department of Neurology, and
Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA.
Institute of Molecular Medicine and Genetics and
Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta, Georgia, USA
| | - Viviane P. Muniz
- Howard Hughes Medical Institute,
Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center,
Department of Molecular Physiology and Biophysics,
Department of Neurology, and
Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA.
Institute of Molecular Medicine and Genetics and
Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta, Georgia, USA
| | - Robert M. Weiss
- Howard Hughes Medical Institute,
Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center,
Department of Molecular Physiology and Biophysics,
Department of Neurology, and
Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA.
Institute of Molecular Medicine and Genetics and
Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta, Georgia, USA
| | - Paul L. McNeil
- Howard Hughes Medical Institute,
Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center,
Department of Molecular Physiology and Biophysics,
Department of Neurology, and
Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA.
Institute of Molecular Medicine and Genetics and
Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta, Georgia, USA
| | - Kevin P. Campbell
- Howard Hughes Medical Institute,
Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center,
Department of Molecular Physiology and Biophysics,
Department of Neurology, and
Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA.
Institute of Molecular Medicine and Genetics and
Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta, Georgia, USA
| |
Collapse
|
483
|
Hattori H, Nagata E, Oya Y, Takahashi T, Aoki M, Ito D, Suzuki N. A novel compound heterozygous dysferlin mutation in Miyoshi myopathy siblings responding to dantrolene. Eur J Neurol 2007; 14:1288-91. [PMID: 17868276 DOI: 10.1111/j.1468-1331.2007.01958.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Miyoshi myopathy (MM) is an autosomal recessive distal muscular dystrophy characterized by mutations of the dysferlin gene. Although several pairs of homozygous/heterozygous mutations have been reported, few effective treatments of MM are available. We had observed the decreased serum creatine kinase (CK) before and after administration of dantrolene in the elder brother and the increased serum CK before and after discontinuance of the drug on suspicion of drug-induced hepatopathy in the younger sister. We report a novel pair of heterozygous mutations in the 3'-splicing site of exon 26 and the translation site of exon 28 of the dysferlin gene in two siblings, and effective treatment of their MM with dantrolene.
Collapse
Affiliation(s)
- H Hattori
- Department of Neurology, Keio University School of Medicine, Tokyo, Japan.
| | | | | | | | | | | | | |
Collapse
|
484
|
Wenzel K, Geier C, Qadri F, Hubner N, Schulz H, Erdmann B, Gross V, Bauer D, Dechend R, Dietz R, Osterziel KJ, Spuler S, Ozcelik C. Dysfunction of dysferlin-deficient hearts. J Mol Med (Berl) 2007; 85:1203-14. [PMID: 17828519 DOI: 10.1007/s00109-007-0253-7] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2007] [Revised: 07/24/2007] [Accepted: 07/26/2007] [Indexed: 01/23/2023]
Abstract
Mutations in the gene encoding dysferlin cause limb-girdle muscular dystrophy 2B (LGMD2B), a disorder that is believed to spare the heart. We observed dilated cardiomyopathy in two out of seven LGMD2B patients and cardiac abnormalities in three others. Cardiac biopsies showed that dysferlin was completely absent from the sarcolemma and appeared to be trapped within the cardiomyocytes. SJL/J mice (33-week-old) had diminished end-systolic pressure and reduced dP/dt; however, the hearts were histologically normal. Gene expression profiles of cardiac tissue were obtained and later confirmed by quantitative RT-PCR. Dysferlin-deficient and control mice had different gene expression patterns in terms of cardiomyocyte Z-disc and signal transduction proteins. CapZ, LIM-domain-binding protein 3 (LDB3, MLP), cypher (ZASP), desmin, and the cardiac ankyrin-repeated protein (CARP) were differentially expressed, compared to controls. Mechanical stress induced by the nonselective beta-adrenergic agonist isoproterenol (5 mg/kg body weight) given daily for 10 days resulted in reduced fractional shortening and increased cardiac fibrosis in SJL/J mice as compared to controls. Isoproterenol also caused metalloproteinase-2 upregulation in SJL/J mice. In A/J mice, the effect of isoproterenol injection was even more dramatic and lead to premature death as well as marked sarcolemmal injury as demonstrated by Evans blue dye penetration. Our data suggest that disturbances in dysferlin as well as Z-line proteins and transcription factors particularly under mechanical stress cause cardiomyopathy.
Collapse
Affiliation(s)
- Katrin Wenzel
- Department of Cardiology, Franz Volhard Clinic, Helios Clinic and Campus Virchow Clinic, Charité, Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
485
|
Leshinsky-Silver E, Argov Z, Rozenboim L, Cohen S, Tzofi Z, Cohen Y, Wirguin Y, Dabby R, Lev D, Sadeh M. Dysferlinopathy in the Jews of the Caucasus: a frequent mutation in the dysferlin gene. Neuromuscul Disord 2007; 17:950-4. [PMID: 17825554 DOI: 10.1016/j.nmd.2007.07.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2007] [Revised: 07/17/2007] [Accepted: 07/25/2007] [Indexed: 11/18/2022]
Abstract
Dysferlin encoding gene (DYS) is mutated in the autosomal recessive disorders Miyoshi myopathy, Limb Girdle Muscular Dystrophy type 2B (LGMD2B) and distal anterior compartment myopathy, causing dysferlin deficiency in muscle biopsy. Three ethnic clusters have previously been described in Dysferlinopathy: the Libyan Jewish population originating in the area of Tripoli, Italian and Spanish populations. We report another cluster of this muscular dystrophy in Israel among Jews of the Caucasus region. A genomic analysis of the dysferlin coding sequence performed in patients from this ethnic group, who demonstrated an absence of dysferlin expression in muscle biopsy, revealed a homozygous frameshift mutation of G deletion at codon 927 (2779delG) predicting a truncated protein and a complete loss of functional protein. The possible existence of a founder effect is strengthened by our finding of a 4% carrier frequency in this community. These findings are important for genetic counseling and also enable a molecular diagnosis of LGMD2B in Jews of the Caucasus region.
Collapse
|
486
|
Han R, Campbell KP. Dysferlin and muscle membrane repair. Curr Opin Cell Biol 2007; 19:409-16. [PMID: 17662592 PMCID: PMC2144911 DOI: 10.1016/j.ceb.2007.07.001] [Citation(s) in RCA: 187] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2007] [Revised: 06/11/2007] [Accepted: 07/03/2007] [Indexed: 11/19/2022]
Abstract
The ability to repair membrane damage is conserved across eukaryotic cells and is necessary for the cells to survive a variety of physiological and pathological membrane disruptions. Membrane repair is mediated by rapid Ca(2+)-triggered exocytosis of various intracellular vesicles, such as lysosomes and enlargeosomes, which lead to the formation of a membrane patch that reseals the membrane lesion. Recent findings suggest a crucial role for dysferlin in this repair process in muscle, possibly as a Ca(2+) sensor that triggers vesicle fusion. The importance of membrane repair is highlighted by the genetic disease, dysferlinopathy, in which the primary defect is the loss of Ca(2+)-regulated membrane repair due to dysferlin deficiency. Future research on dysferlin and its interacting partners will enhance the understanding of this important process and provide novel avenues to potential therapies.
Collapse
Affiliation(s)
- Renzhi Han
- Howard Hughes Medical Institute, Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, Department of Molecular Physiology and Biophysics, Department of Neurology, and Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, Iowa 52242; ;
| | - Kevin P. Campbell
- Howard Hughes Medical Institute, Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, Department of Molecular Physiology and Biophysics, Department of Neurology, and Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, Iowa 52242; ;
| |
Collapse
|
487
|
Vandré DD, Ackerman WE, Kniss DA, Tewari AK, Mori M, Takizawa T, Robinson JM. Dysferlin is expressed in human placenta but does not associate with caveolin. Biol Reprod 2007; 77:533-42. [PMID: 17554076 DOI: 10.1095/biolreprod.107.062190] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
A proteomics screen of human placental microvillous syncytiotrophoblasts (STBs) revealed the expression of dysferlin (DYSF), a plasma membrane repair protein associated with certain muscular dystrophies. This was unexpected given that previous studies of DYSF have been restricted to skeletal muscle. Within the placenta, DYSF localized to the STB and, with the exception of variable labeling in the fetal placental endothelium, none of the other cell types expressed detectable levels of DYSF. Such restricted expression was recapitulated using primary trophoblast cell cultures, because the syncytia expressed DYSF, but not the prefusion mononuclear cells. The apical plasma membrane of the STB contained approximately 4-fold more DYSF than the basal membrane, suggesting polarized trafficking. Unlike skeletal muscle, DYSF in the STB is localized to the plasma membrane in the absence of caveolin. DYSF expression in the STB was developmentally regulated, because first-trimester placentas expressed approximately 3-fold more DYSF than term placentas. As the current literature indicates that few cell types express DYSF, it is of interest that the two major syncytial structures in the human body, skeletal muscle and the STB, express this protein.
Collapse
Affiliation(s)
- Dale D Vandré
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | | | | | |
Collapse
|
488
|
Gissen P, Maher ER. Cargos and genes: insights into vesicular transport from inherited human disease. J Med Genet 2007; 44:545-55. [PMID: 17526798 PMCID: PMC2597945 DOI: 10.1136/jmg.2007.050294] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Many cellular functions depend on the correct delivery of proteins to specific intracellular destinations. Mutations that alter protein structure and disrupt trafficking of the protein (the "cargo") occur in many genetic disorders. In addition, an increasing number of disorders have been linked to mutations in the genes encoding components of the vesicular transport machinery responsible for normal protein trafficking. We review the clinical phenotypes and molecular pathology of such inherited "protein-trafficking disorders", which provide seminal insights into the molecular mechanisms of protein trafficking. Further characterisation of this expanding group of disorders will provide a basis for developing new diagnostic techniques and treatment strategies and offer insights into the molecular pathology of common multifactorial diseases that have been linked to disordered trafficking mechanisms.
Collapse
Affiliation(s)
- Paul Gissen
- Department of Medical and Molecular Genetics, University of Birmingham School of Medicine, Institute of Biomedical Research West, Edgbaston, Birmingham, B15 2TT, UK.
| | | |
Collapse
|
489
|
Complex regulation and multiple developmental functions of misfire, the Drosophila melanogaster ferlin gene. BMC DEVELOPMENTAL BIOLOGY 2007; 7:21. [PMID: 17386097 PMCID: PMC1853072 DOI: 10.1186/1471-213x-7-21] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2006] [Accepted: 03/26/2007] [Indexed: 11/30/2022]
Abstract
Background Ferlins are membrane proteins with multiple C2 domains and proposed functions in Ca2+ mediated membrane-membrane interactions in animals. Caenorhabditis elegans has two ferlin genes, one of which is required for sperm function. Mammals have several ferlin genes and mutations in the human dysferlin (DYSF) and otoferlin (OTOF) genes result in muscular dystrophy and hearing loss, respectively. Drosophila melanogaster has a single ferlin gene called misfire (mfr). A previous study showed that a mfr mutation caused male sterility because of defects in fertilization. Here we analyze the expression and structure of the mfr gene and the consequences of multiple mutations to better understand the developmental function of ferlins. Results We show that mfr is expressed in the testis and ovaries of adult flies, has tissue-specific promoters, and expresses alternatively spliced transcripts that are predicted to encode distinct protein isoforms. Studies of 11 male sterile mutations indicate that a predicted Mfr testis isoform with five C2 domains and a transmembrane (TM) domain is required for sperm plasma membrane breakdown (PMBD) and completion of sperm activation during fertilization. We demonstrate that Mfr is not required for localization of Sneaky, another membrane protein necessary for PMBD. The mfr mutations vary in their effects in females, with a subset disrupting egg patterning and causing a maternal effect delay in early embryonic development. Locations of these mutations indicate that a short Mfr protein isoform carries out ferlin activities during oogenesis. Conclusion The mfr gene exhibits complex transcriptional and post-transcriptional regulation and functions in three developmental processes: sperm activation, egg patterning, and early embryogenesis. These functions are in part due to the production of protein isoforms that vary in the number of C2 domains. These findings help establish D. melanogaster as model system for understanding ferlin function and dysfunction in animals, including humans.
Collapse
|
490
|
Klinge L, Laval S, Keers S, Haldane F, Straub V, Barresi R, Bushby K. From T-tubule to sarcolemma: damage-induced dysferlin translocation in early myogenesis. FASEB J 2007; 21:1768-76. [PMID: 17363620 DOI: 10.1096/fj.06-7659com] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The dysferlin gene is mutated in limb-girdle muscular dystrophy type 2B, Miyoshi myopathy, and distal anterior compartment myopathy. In mature skeletal muscle, dysferlin is located predominantly at the sarcolemma, where it plays a role in membrane fusion and repair. To investigate the role of dysferlin during early muscle differentiation, its localization was studied at high resolution in a muscle cell line. This demonstrated that dysferlin is not expressed at the plasmalemma of myotubes but mostly localizes to the T-tubule network. However, dysferlin translocated to the site of injury and toward the plasma membrane in a Ca2+-dependent fashion in response to a newly designed in vitro wounding assay. This reaction was specific to the full-length protein, as heterologously expressed deletion mutants of distinct C2 domains of dysferlin did not show this response. These results shed light on the dynamics of muscle membrane repair and are highly indicative of a specific role of dysferlin in this process in early myogenesis.
Collapse
Affiliation(s)
- Lars Klinge
- Institute of Human Genetics, University of Newcastle upon Tyne, International Centre for Life, Central Pkwy, NE1 3BZ Newcastle upon Tyne, England, UK
| | | | | | | | | | | | | |
Collapse
|
491
|
Lynch GS, Schertzer JD, Ryall JG. Therapeutic approaches for muscle wasting disorders. Pharmacol Ther 2007; 113:461-87. [PMID: 17258813 DOI: 10.1016/j.pharmthera.2006.11.004] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2006] [Revised: 11/10/2006] [Accepted: 11/10/2006] [Indexed: 12/12/2022]
Abstract
Muscle wasting and weakness are common in many disease states and conditions including aging, cancer cachexia, sepsis, denervation, disuse, inactivity, burns, HIV-acquired immunodeficiency syndrome (AIDS), chronic kidney or heart failure, unloading/microgravity, and muscular dystrophies. Although the maintenance of muscle mass is generally regarded as a simple balance between protein synthesis and protein degradation, these mechanisms are not strictly independent, but in fact they are coordinated by a number of different and sometimes complementary signaling pathways. Clearer details are now emerging about these different molecular pathways and the extent to which these pathways contribute to the etiology of various muscle wasting disorders. Therapeutic strategies for attenuating muscle wasting and improving muscle function vary in efficacy. Exercise and nutritional interventions have merit for slowing the rate of muscle atrophy in some muscle wasting conditions, but in most cases they cannot halt or reverse the wasting process. Hormonal and/or other drug strategies that can target key steps in the molecular pathways that regulate protein synthesis and protein degradation are needed. This review describes the signaling pathways that maintain muscle mass and provides an overview of some of the major conditions where muscle wasting and weakness are indicated. The review provides details on some therapeutic strategies that could potentially attenuate muscle atrophy, promote muscle growth, and ultimately improve muscle function. The emphasis is on therapies that can increase muscle mass and improve functional outcomes that will ultimately lead to improvement in the quality of life for affected patients.
Collapse
Affiliation(s)
- Gordon S Lynch
- Basic and Clinical Myology Laboratory, Department of Physiology, The University of Melbourne, Victoria 3010, Australia.
| | | | | |
Collapse
|
492
|
Fujita E, Kouroku Y, Isoai A, Kumagai H, Misutani A, Matsuda C, Hayashi YK, Momoi T. Two endoplasmic reticulum-associated degradation (ERAD) systems for the novel variant of the mutant dysferlin: ubiquitin/proteasome ERAD(I) and autophagy/lysosome ERAD(II). Hum Mol Genet 2007; 16:618-29. [PMID: 17331981 DOI: 10.1093/hmg/ddm002] [Citation(s) in RCA: 276] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Dysferlin is a type-II transmembrane protein and the causative gene of limb girdle muscular dystrophy type 2B and Miyoshi myopathy (LGMD2B/MM), in which specific loss of dysferlin labeling has been frequently observed. Recently, a novel mutant (L1341P) dysferlin has been shown to aggregate in the muscle of the patient. Little is known about the relationship between degradation of dysferlin and pathogenesis of LGMD2B/MM. Here, we examined the degradation of normal and mutant (L1341P) dysferlin. Wild-type (wt) dysferlin mainly localized to the ER/Golgi, associated with retrotranslocon, Sec61alpha, and VCP(p97), and was degraded by endoplasmic reticulum (ER)-associated degradation system (ERAD) composed of ubiquitin/proteasome. In contrast, mutant dysferlin spontaneously aggregated in the ER and induced eukaryotic translation initiation factor 2alpha (eIF2alpha) phosphorylation and LC3 conversion, a key step for autophagosome formation, and finally, ER stress cell death. Unlike proteasome inhibitor, E64d/pepstatin A, inhibitors of lysosomal proteases did not stimulate the accumulation of the wt-dysferlin, but stimulated aggregation of mutant dysferlin in the ER. Furthermore, deficiency of Atg5 and dephosphorylation of eIF2alpha, key molecules for LC3 conversion, also stimulated the mutant dysferlin aggregation in the ER. Rapamycin, which induces eIF2alpha phosphorylation-mediated LC3 conversion, inhibited mutant dysferlin aggregation in the ER. Thus, mutant dysferlin aggregates in the ER-stimulated autophagosome formation to engulf them via activation of ER stress-eIF2alpha phosphorylation pathway. We propose two ERAD models for dysferlin degradation, ubiquitin/proteasome ERAD(I) and autophagy/lysosome ERAD(II). Mutant dysferlin aggregates on the ER are degraded by the autophagy/lysosome ERAD(II), as an alternative to ERAD(I), when retrotranslocon/ERAD(I) system is impaired by these mutant aggregates.
Collapse
Affiliation(s)
- Eriko Fujita
- Divisions of Development and Differentiation, Department of Human Inherited Metabolic Disease, Yokohama, Kanagawa, Japan
| | | | | | | | | | | | | | | |
Collapse
|
493
|
Danièle N, Richard I, Bartoli M. Ins and outs of therapy in limb girdle muscular dystrophies. Int J Biochem Cell Biol 2007; 39:1608-24. [PMID: 17339125 DOI: 10.1016/j.biocel.2007.02.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2006] [Revised: 02/02/2007] [Accepted: 02/05/2007] [Indexed: 12/11/2022]
Abstract
Muscular dystrophies are hereditary degenerative muscle diseases that cause life-long disability in patients. They comprise the well-known Duchenne Muscular Dystrophy (DMD) but also the group of Limb Girdle Muscular Dystrophies (LGMD) which account for a third to a fourth of DMD cases. From the clinical point of view, LGMD are characterised by predominant effects on the proximal limb muscles. The LGMD group is still growing today and consists of 19 autosomal dominant and recessive forms (LGMD1A to LGMD1G and LGMD2A to LGMD2M). The proteins involved are very diverse and include sarcomeric, sarcolemmal and enzymatic proteins. With respect to this variability and in line with the intense search for a potent therapeutic approach for DMD, many different strategies have been tested in rodent models. These include replacing the lost function by gene transfer or stem cell transplantation, using a related protein for functional substitution, increasing muscle mass, or blocking the molecular pathological mechanisms by pharmacological means to alleviate the symptoms. The purpose of this review is to summarize current data arising from these preclinical studies and to examine the potential of the tested strategies to lead to clinical applications.
Collapse
|
494
|
Takahashi T, Aoki M, Imai T, Yoshioka M, Konno H, Higano S, Onodera Y, Saito H, Kimura I, Itoyama Y. A case of dysferlinopathy presenting choreic movements. Mov Disord 2007; 21:1513-5. [PMID: 16817213 DOI: 10.1002/mds.21027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Mutations in the dysferlin gene cause limb-girdle muscular dystrophy type 2B (LGMD2B). The involvement of the central nervous system in dysferlinopathy has not been described. We describe the clinical features of a patient with LGMD2B associated with dysferlin mutations (homozygous G3370T) who presented progressive choreic movements. The patient had no evidence of other causes of chorea. It is suggested that the chorea may be associated with the altered expression of the brain isoform of dysferlin.
Collapse
Affiliation(s)
- Toshiaki Takahashi
- Department of Neurology and Division of Clinical Research, Nishitaga National Hospital, Sendai, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
495
|
Heydemann A, Doherty KR, McNally EM. Genetic modifiers of muscular dystrophy: Implications for therapy. Biochim Biophys Acta Mol Basis Dis 2007; 1772:216-28. [PMID: 16916601 DOI: 10.1016/j.bbadis.2006.06.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2006] [Accepted: 06/22/2006] [Indexed: 10/24/2022]
Abstract
The genetic understanding of the muscular dystrophies has advanced considerably in the last two decades. Over 25 different individual genes are now known to produce muscular dystrophy, and many different "private" mutations have been described for each individual muscular dystrophy gene. For the more common forms of muscular dystrophy, phenotypic variability can be explained by precise mutations. However, for many genetic mutations, the presence of the identical mutation is associated with marked phenotypic range that affects muscle function as well as cardiac function. The explanation for phenotype variability in the muscular dystrophies is only now being explored. The availability of genetically engineered animal models has allowed the generation of single mutations on the background of highly inbred strain. Phenotypic variation that is altered by genetic background argues for the presence of genetic modifier loci that can ameliorate or enhance aspects of the dystrophic phenotype. A number of individual genes have been implicated as modifiers of muscular dystrophy by studies in genetically engineered mouse models of muscular dystrophy. The value of these genes and products is that the pathways identified through these experiments may be exploited for therapy.
Collapse
Affiliation(s)
- Ahlke Heydemann
- Department of Medicine, Section of Cardiology, The University of Chicago, Chicago, IL 60637, USA
| | | | | |
Collapse
|
496
|
Shaw CA, Larochelle N, Dudley RWR, Lochmuller H, Danialou G, Petrof BJ, Karpati G, Holland PC, Nalbantoglu J. Simultaneous dystrophin and dysferlin deficiencies associated with high-level expression of the coxsackie and adenovirus receptor in transgenic mice. THE AMERICAN JOURNAL OF PATHOLOGY 2007; 169:2148-60. [PMID: 17148677 PMCID: PMC1762479 DOI: 10.2353/ajpath.2006.060570] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The Coxsackie and adenovirus receptor (CAR), a cell adhesion molecule of the immunoglobulin superfamily, is usually confined to the sarcolemma at the neuromuscular junction in mature skeletal muscle fibers. Previously, we reported that adenovirus-mediated gene transfer is greatly facilitated in hemizygous transgenic mice with extrasynaptic CAR expression driven by a muscle-specific promoter. However, in the present study, when these mice were bred to homozygosity, they developed a severe myopathic phenotype and died prematurely. Large numbers of necrotic and regenerating fibers were present in the skeletal muscle of the homozygous CAR transgenics. The myopathy was further characterized by increased levels of caveolin-3 and beta-dystroglycan and decreased levels of dystrophin, dysferlin, and neuronal nitric-oxide synthase. Even the hemizygotes manifested a subtle phenotype, displaying deficits in isometric force generation and perturbed mitogen-activated protein kinase (MAPK-erk1/2) activation during contraction. There are few naturally occurring or engineered mouse lines showing as severe a skeletal myopathy as observed with ectopic expression of CAR in the homozygotes. Taken together, these findings suggest that substantial overexpression of CAR may lead to physiological dysfunction by disturbing sarcolemmal integrity (through dystrophin deficiency), impairing sarcolemmal repair (through dysferlin deficiency), and interfering with normal signaling (through alterations in caveolin-3 and neuronal nitric-oxide synthase levels).
Collapse
Affiliation(s)
- Christian A Shaw
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University Health Center and Meakins-Christie Laboratories, 3801 University St., Montreal, Quebec, Canada H3A 2B4
| | | | | | | | | | | | | | | | | |
Collapse
|
497
|
|
498
|
Abstract
Calpains, particularly conventional dimeric calpains, have claimed to be involved in the cell degeneration processes that characterize numerous disease conditions linked to dysfunctions of cellular Ca2+ homeostasis. The evidence supporting their involvement has traditionally been indirect and circumstantial, but recent work has added more solid evidence supporting the role of ubiquitous dimeric calpains in the process of neurodegeneration. The only disease condition in which a calpain defect has been conclusively involved concerns an atypical monomeric calpain: the muscle specific calpain-3, also known as p94. Inactivating defects in its gene cause a muscular dystrophy termed LGMD-2A. The molecular mechanism by which the absence of the proteolytic activity of calpain-3 causes the dystrophic process is unknown. Another atypical calpain, which has been characterized recently as a Ca2(+)-dependent protease, calpain 10, appears To be involved in the etiology of type 2 diabetes. The involvement has been inferred essentially from genetic evidence. Also in the case of type 2 diabetes the molecular mechanisms that could link the disease to calpain 10 are unknown.
Collapse
Affiliation(s)
- I Bertipaglia
- Department of Biochemistry, University of Padova, Italy
| | | |
Collapse
|
499
|
De Luna N, Freixas A, Gallano P, Caselles L, Rojas-García R, Paradas C, Nogales G, Dominguez-Perles R, Gonzalez-Quereda L, Vílchez JJ, Márquez C, Bautista J, Guerrero A, Salazar JA, Pou A, Illa I, Gallardo E. Dysferlin expression in monocytes: A source of mRNA for mutation analysis. Neuromuscul Disord 2007; 17:69-76. [PMID: 17070050 DOI: 10.1016/j.nmd.2006.09.006] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2006] [Revised: 07/28/2006] [Accepted: 09/08/2006] [Indexed: 10/24/2022]
Abstract
Dysferlin protein is expressed in peripheral blood monocytes. The genomic analysis of the DYSF gene has proved to be time consuming because it has 55 exons. We designed a mutational screening strategy based on cDNA from monocytes to find out whether the mutational analysis could be performed in mRNA from a source less invasive than the muscle biopsy. We studied 34 patients from 23 families diagnosed with dysferlinopathy. The diagnosis was based on clinical findings and on the absence of protein expression using either immunohistochemistry or Western blot of skeletal muscle and/or monocytes. We identified 28 different mutations, 13 of which were novel. The DYSF mutations in both alleles were found in 30 patients and only in one allele in four. The results were confirmed using genomic DNA in 26/34 patients. This is the first report to furnish evidence of reliable mutational analysis using monocytes cDNA and constitutes a good alternative to genomic DNA analysis.
Collapse
Affiliation(s)
- N De Luna
- Servei de Neurologia i Laboratori de Neurologia Experimental, Hospital de la Santa Creu i Sant Pau i Institut de Recerca de HSCSP, Universitat Autònoma, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
500
|
|