451
|
Zhang L, Dresser MJ, Chun JK, Babbitt PC, Giacomini KM. Cloning and functional characterization of a rat renal organic cation transporter isoform (rOCT1A). J Biol Chem 1997; 272:16548-54. [PMID: 9195965 DOI: 10.1074/jbc.272.26.16548] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Polyspecific organic cation transporters in the renal proximal tubule mediate the secretion of many clinically used drugs as well as endogenous metabolites. Recently, two organic cation transporters (rOCT1 and rOCT2) were cloned from rat kidney. In this study, we report the cloning and functional expression of an rOCT1 isoform, rOCT1A, from rat kidney. Genomic DNA cloning and sequencing demonstrated that rOCT1A is an alternatively spliced variant of rOCT1 with a deletion of 104 base pairs near the 5'-end. The uptake of [14C]tetraethylammonium (TEA) in oocytes injected with the cRNA-encoding rOCT1A was increased 16-fold over that in water-injected oocytes (29 +/- 2.8 pmol/oocyte/h versus 1.8 +/- 0.13 pmol/oocyte/h, mean +/- S.E., p < 0.05). [14C]TEA uptake in the cRNA-injected oocytes was saturable (Km = 42 +/- 11 microM) and was inhibited significantly by organic cations, including cimetidine and N1-methylnicotinamide. The amino acid sequence was deduced from the cDNA after examination of all three reading frames. Two overlapping open reading frames were found. Studies with synthetic constructs suggest that a functional organic cation transporter is encoded by the larger open reading frame. The larger open reading frame encodes a 430-amino acid protein (termed rOCT1A) that is 92% identical to rOCT1 and 57% identical to rOCT2. From hydropathy analysis, rOCT1A is predicted to have 10 transmembrane domains with both amino and carboxyl termini intracellular. RNase protection assays demonstrate the presence of rOCT1A mRNA transcripts in rat kidney cortex, medulla, and intestine. These studies demonstrate the presence of a functional, alternatively spliced organic cation transporter (rOCT1A) in rat kidney.
Collapse
Affiliation(s)
- L Zhang
- Department of Biopharmaceutical Sciences, University of California, San Francisco, California 94143, USA
| | | | | | | | | |
Collapse
|
452
|
Zhang L, Dresser MJ, Gray AT, Yost SC, Terashita S, Giacomini KM. Cloning and functional expression of a human liver organic cation transporter. Mol Pharmacol 1997; 51:913-21. [PMID: 9187257 DOI: 10.1124/mol.51.6.913] [Citation(s) in RCA: 285] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Polyspecific organic cation transporters in the liver mediate the elimination of a wide array of endogenous amines and xenobiotics. In contrast to our understanding of the mechanisms of organic cation transport in rat liver, little is known about the mechanisms of organic cation transport in the human liver. We report the cloning, sequencing, and functional characterization of the first human polyspecific organic cation transporter from liver (hOCT1). hOCT1 (554 amino acids) is 78% identical to the previously cloned organic cation transporter from rat, rOCT1 [Nature (Lond.) 372:549-552 (1994)]. In Xenopus laevis oocytes injected with the cRNA of hOCT1, the specific uptake of the organic cation 3H-1-methyl-4-phenylpyridinium (3H-MPP+) was significantly enhanced (8-fold) over that in water-injected oocytes. Uptake of 3H-MPP+ was saturable (K(m) = 14.6 +/- 4.39 microM) and sensitive to membrane potential. Both small monovalent organic cations such as tetraethylammonium and N1-methylnicotinamide and bulkier organic cations (e.g., vecuronium and decynium-22) inhibited the uptake of 3H-MPP+. In addition, the bile acid taurocholate inhibited the uptake of 3H-MPP+ in oocytes expressing hOCT1. Northern analysis demonstrated that the mRNA transcript of hOCT1 is expressed primarily in the human liver, whereas the mRNA transcript of rOCT1 is found in rat kidney, liver, intestine, and colon [Nature (Lond.) 372:549-552 (1994)]. In comparison to rOCT1, hOCT1 exhibits notable differences in its kinetic characteristics and tissue distribution. The functional expression of hOCT1 will provide a powerful tool for elucidation of the mechanisms of organic cation transport in the human liver and understanding of the mechanisms involved in the disposition and hepatotoxicity of drugs.
Collapse
Affiliation(s)
- L Zhang
- Department of Biopharmaceutical Sciences, University of California San Francisco 94143, USA
| | | | | | | | | | | |
Collapse
|
453
|
Chun JK, Piquette-Miller M, Zhang L, Giacomini KM. Expression of human polyspecific renal organic cation transport activity in Xenopus laevis oocytes. J Pharm Sci 1997; 86:753-5. [PMID: 9188060 DOI: 10.1021/js960509l] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Polyspecific organic cation transporters in the basolateral and brush border membrane of the kidney play a role in the elimination of many clinically important drugs and endogenous compounds. In this study we report the functional expression of organic cation transport activity in Xenopus laevis oocytes injected with poly(A)+RNA (mRNA) isolated from human kidney. Uptake of [14C]tetraethylammonium (TEA) was measured in mRNA-injected or water-injected oocytes, 4 days after injection. In oocytes injected with 50 ng of mRNA isolated from human renal cortex, the uptake of [14C]TEA was significantly increased in comparison with water-injected oocytes (7.2 +/- 0.6 and 3.5 +/- 0.3 pmol/oocyte/h, respectively). Injection of 20 ng of an enriched size-fraction (fraction C) of mRNA (mean size of 2.3 kb) resulted in further enhancement of [14C]TEA uptake: [14C]TEA uptake was enhanced six-to seven-fold in oocytes injected with fraction C (23.7 +/- 3.7 pmol/oocyte/h) in comparison with water-injected oocytes. The uptake of TEA in mRNA-injected oocytes was significantly inhibited by 5 mM of unlabeled TEA, cimetidine, and N1-methylnicotinamide. These data suggest that polyspecific organic cation transport activity can be successfully expressed in Xenopus laevis oocytes injected with mRNA isolated from human kidney.
Collapse
Affiliation(s)
- J K Chun
- Department of Biopharmaceutical Sciences, School of Pharmacy, University of California, San Francisco 94143-0446, USA
| | | | | | | |
Collapse
|
454
|
|
455
|
Suzuki H, Terasaki T, Sugiyama Y. Role of efflux transport across the blood-brain barrier and blood-cerebrospinal fluid barrier on the disposition of xenobiotics in the central nervous system. Adv Drug Deliv Rev 1997. [DOI: 10.1016/s0169-409x(97)00503-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
456
|
Hepatobiliary elimination of cationic drugs: the role of P-glycoproteins and other ATP-dependent transporters. Adv Drug Deliv Rev 1997. [DOI: 10.1016/s0169-409x(97)00498-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
457
|
Gründemann D, Babin-Ebell J, Martel F, Ording N, Schmidt A, Schömig E. Primary structure and functional expression of the apical organic cation transporter from kidney epithelial LLC-PK1 cells. J Biol Chem 1997; 272:10408-13. [PMID: 9099681 DOI: 10.1074/jbc.272.16.10408] [Citation(s) in RCA: 157] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Renal secretion of organic cations involves at least two distinct transporters, located in the basolateral and apical membranes of proximal tubule cells. Whereas the basolateral transporter has recently been cloned, sequence information about the apical type was not yet available. An organic cation transporter, OCT2p, was cloned from LLC-PK1 cells, a porcine cell line with properties of proximal tubular epithelial cells. OCT2p was heterologously expressed and characterized in human embryonic kidney 293 cells. OCT2p-mediated uptake of the prototypical organic cation [14C]tetraethylammonium ([14C]TEA) into 293 cells was saturable. There was a highly significant correlation between the Ki values for the inhibition of apical [14C]TEA uptake into LLC-PK1 cells and 293 cells transfected with OCT2p (r = 0.995; p < 0.001; n = 6). Although OCT2p is structurally related to OCT1r, the basolateral organic cation transporter from rat kidney, the transporters could be clearly discriminated pharmacologically with corticosterone, decynium22, and O-methylisoprenaline. The findings at hand suggest that OCT2 corresponds to the apical type of organic cation transporter. Reverse transcriptase-polymerase chain reaction indicates that mRNA of OCT1r is limited to non-neuronal tissue, whereas OCT2r, the OCT2p homologue from rat, was found in both the kidney and central nervous regions known to be rich in the monoamine transmitter dopamine.
Collapse
Affiliation(s)
- D Gründemann
- Department of Pharmacology, University of Heidelberg, Im Neuenheimer Feld 366, 69120 Heidelberg, Germany.
| | | | | | | | | | | |
Collapse
|
458
|
Schinkel AH, Mayer U, Wagenaar E, Mol CA, van Deemter L, Smit JJ, van der Valk MA, Voordouw AC, Spits H, van Tellingen O, Zijlmans JM, Fibbe WE, Borst P. Normal viability and altered pharmacokinetics in mice lacking mdr1-type (drug-transporting) P-glycoproteins. Proc Natl Acad Sci U S A 1997; 94:4028-33. [PMID: 9108099 PMCID: PMC20562 DOI: 10.1073/pnas.94.8.4028] [Citation(s) in RCA: 670] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The mdr1-type P-glycoproteins (P-gps) confer multidrug resistance to cancer cells by active extrusion of a wide range of drugs from the cell. To study their physiological roles, we have generated mice genetically deficient in the mdr1b gene [mdr1b (-/-) mice] and in both the mdr1a and mdr1b genes [mdr1a/1b (-/-) mice]. In spite of the host of functions speculatively attributed to the mdrl-type P-gps, we found no physiological abnormalities in either strain. Viability, fertility, and a range of histological, hematological, serum-chemical, and immunological parameters were not abnormal in mdr1a/1b (-/-) mice. The high level of mdrlb P-gp normally present in the pregnant uterus did not protect fetuses from a drug (digoxin) in the bloodstream of the mother, although the protein did reduce drug accumulation in the adrenal gland and ovaries. Pharmacologically, mdr1a/1b (-/-) mice behaved similarly to the previously analyzed mdr1a (-/-) mice, displaying, for instance, increased brain penetration and reduced elimination of digoxin. However, both mdr1a and mdr1b P-gps contributed to the extrusion of rhodamine from hematopoietic progenitor cells, suggesting a potential role for the endogenous mdr1-type P-gps in protection of bone marrow against cytotoxic anticancer drugs. This, and the normal viability of mdr1a/1b (-/-) mice, has implications for the use of P-gp-blocking agents in cancer and other chemotherapy. mdr1a/1b (-/-) mice should provide a useful model system to further test the pharmacological roles of the drug-transporting P-gps and to analyze the specificity and effectivity of P-gp-blocking drugs.
Collapse
Affiliation(s)
- A H Schinkel
- Division of Molecular Biology, The Netherlands Cancer Institute, Amsterdam
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
459
|
Djelloul S, Forgue-Lafitte ME, Hermelin B, Mareel M, Bruyneel E, Baldi A, Giordano A, Chastre E, Gespach C. Enterocyte differentiation is compatible with SV40 large T expression and loss of p53 function in human colonic Caco-2 cells. Status of the pRb1 and pRb2 tumor suppressor gene products. FEBS Lett 1997; 406:234-42. [PMID: 9136893 DOI: 10.1016/s0014-5793(97)00208-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Transfer of the SV40 large-T (LT) oncogene into isolated human and murine intestinal epithelial cells induced alterations of the ultrastructural organization and polarization of the resulting immortalized cell lines. We now demonstrate that the functional expression of the SV40 LT antigen in Caco-2 cells did not alter phenotypic markers of differentiation, including expression of villin, sucrase-isomaltase, brush border and dome formation. As compared to parental cells, the transfected Caco-2 LT9 cells exhibited similar growth curves and no invasive properties in vitro. The major oncogenic function of the SV40 LT antigen in transfected Caco-2 cells is associated with reduced latency times necessary for the manifestation of tumors in athymic nude mice. The Caco-2 cell line contained deleted and mutant p53 alleles (stop codon in position 204) and has no detectable truncated p53 protein by Western blot. Molecular complexes between the SV40 LT antigen and the retinoblastoma-related proteins pRb1 and Rb2 were clearly identified at the different phases of the growth curve. When compared to normal human colonic crypts, Caco-2 cell differentiation is related to partial redistribution of pRb1 into hypophosphorylated, antiproliferative forms. The pRb2 protein is found elevated in a subset of human colorectal tumors and their corresponding liver metastases. We conclude that: (1) Caco-2 cells exert a dominant control against the oncogenic functions of the LT antigen; (2) loss of p53 function is not restrictive for the establishment of polarity and differentiation of the enterocyte lineage; (3) the levels and phosphorylation status of the Rb1 and Rb2 proteins may play important roles in the proliferation and differentiation of normal and neoplastic human colonic mucosa.
Collapse
Affiliation(s)
- S Djelloul
- INSERM U55 Equipe Cancerogénèse et Différenciation de l'Epithélium Gastro-Intestinal, Hôpital Saint-Antoine, Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
460
|
Lopez-Nieto CE, You G, Bush KT, Barros EJ, Beier DR, Nigam SK. Molecular cloning and characterization of NKT, a gene product related to the organic cation transporter family that is almost exclusively expressed in the kidney. J Biol Chem 1997; 272:6471-8. [PMID: 9045672 DOI: 10.1074/jbc.272.10.6471] [Citation(s) in RCA: 208] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
We have identified a gene product (NKT) encoding an apparently novel transcript that appears to be related to the organic ion transporter family and is expressed almost exclusively in the kidney. Analysis of the deduced 546-amino acid protein sequence indicates that NKT is a unique gene product which shares a similar transmembrane domain hydropathy profile as well as transporter-specific amino acid motifs with a variety of bacterial and mammalian nutrient transporters. Nevertheless, the overall homology of NKT to two recently cloned organic ion transport proteins (NLT and OCT-1) is significantly greater; together these three gene products may represent a new subgroup of transporters. The NKT was characterized further with respect to its tissue distribution and its expression during kidney development. A 2.5-kilobase transcript was found in kidney and at much lower levels in brain, but not in a number of other tissues. Studies on the embryonic kidney indicate that the NKT transcript is developmentally regulated with significant expression beginning at mouse gestational day 18 and rising just before birth, consistent with a role in differentiated kidney function. Moreover, in situ hybridization detected specific signals in mouse renal proximal tubules. NKT was mapped by linkage disequilibrium to mouse chromosome 19, the same site to which several mouse mutations localize, including that for osteochondrodystrophy (ocd). Although initial experiments in a Xenopus oocyte expression system failed to demonstrate transport of known substrates for OCT-1, the homology to OCT-1 and other transporters, along with the proximal tubule localization, raise the possibility that this gene may play a role in organic solute transport or drug elimination by the kidney.
Collapse
Affiliation(s)
- C E Lopez-Nieto
- Renal and Genetics Divisions, Department of Medicine, Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
461
|
|
462
|
In vitro permeability of peptidomimetic drugs: The role of polarized efflux pathways as additional barriers to absorption. Adv Drug Deliv Rev 1997. [DOI: 10.1016/s0169-409x(96)00432-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
463
|
Busch AE, Quester S, Ulzheimer JC, Waldegger S, Gorboulev V, Arndt P, Lang F, Koepsell H. Electrogenic properties and substrate specificity of the polyspecific rat cation transporter rOCT1. J Biol Chem 1996; 271:32599-604. [PMID: 8955087 DOI: 10.1074/jbc.271.51.32599] [Citation(s) in RCA: 155] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The previously cloned rat cation transporter rOCT1 detected in renal proximal tubules and hepatocytes (Gründemann, D., Gorboulev, V., Gambaryan, S., Veyhl, M., and Koepsell, H. (1994) Nature 372, 549-552) was expressed in Xenopus oocytes, and transport properties were analyzed using tracer uptake studies and electrophysiological measurements. rOCT1 induced highly active transport of a variety of cations, including the classical substrates for cation transport, such as N-1-methylnicotinamide, 1-methyl-4-phenylpyridinium (MPP), and tetraethylammonium (TEA), but also the physiologically important choline. In oocytes rOCT1 also mediated efflux of MPP, which could be trans-stimulated by MPP and TEA. Cation transport via rOCT1 was electrogenic. In voltage-clamped oocytes, transport of TEA and choline via rOCT1 produced inwardly directed currents, which were independent of extracellular ion composition or pH. The choline- and TEA-induced currents were voltage-dependent at nonsaturating concentrations, and the apparent affinity of these cations was decreased at depolarized voltages. Other substrates transported by rOCT1 were the polyamines spermine and spermidine. Interestingly, the previously described potent inhibitors of rOCT1, cyanine 863, quinine, and D-tubocurarine were substrates themselves. The data indicate that rOCT1 is an effective transport system that is responsible for electrogenic uptake of a wide variety of organic cations into epithelial cells of renal proximal tubules and hepatocytes.
Collapse
Affiliation(s)
- A E Busch
- Institut für Physiologie der Eberhard-Karls-Universität, 72076 Tübingen, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
464
|
Martel F, Martins MJ, Hipólito-Reis C, Azevedo I. Inward transport of [3H]-1-methyl-4-phenylpyridinium in rat isolated hepatocytes: putative involvement of a P-glycoprotein transporter. Br J Pharmacol 1996; 119:1519-24. [PMID: 8982496 PMCID: PMC1915793 DOI: 10.1111/j.1476-5381.1996.tb16067.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
1. The liver has an important role in the detoxification of organic cations from the circulation. [3H]-1-methyl-4-phenylpyridinium ([3H]-MPP+), a low molecular weight organic cation, is efficiently taken up and accumulated by rat hepatocytes through mechanisms partially unknown. 2. The aim of the present work was to characterize further the uptake of MPP+ by rat isolated hepatocytes. The putative interactions of a wide range of drugs, including inhibitors/substrates of P-glycoprotein, were studied. 3. The uptake of MPP+ was investigated in rat freshly isolated hepatocytes (incubated in Krebs-Henseleit medium with 200 nM [3H]-MPP+ for 5 min) and in the rat liver in situ (perfused with Krebs-Henseleit/BSA medium with 200 nM [3H]-MPP+ for 30 min). [3H]-MPP+ accumulation in the cells and in tissue was determined by liquid scintillation counting. 4. Verapamil (100 microM), quinidine (100 microM), amiloride (1 mM), (+)-tubocurarine (100 microM), vecuronium (45 microM), bilirubin (200 microM), progesterone (200 microM), daunomycin (100 microM), vinblastine (100 microM), cyclosporin A (100 microM) and cimetidine (100 microM) had a significant inhibitory effect on the accumulation of [3H]-MPP+ in isolated hepatocytes. Tetraethylammonium (100 microM) had no effect. 5. In the rat perfused liver, both cyclosporin A (100 microM) and verapamil (100 microM) had much less marked inhibitory effects as compared to their effects on isolated hepatocytes (0% against 35% and 45% against 96% of inhibition, respectively). 6. Inhibition of alkaline phosphatase activity by increasing or decreasing the pH of the incubation medium or by the presence of vanadate (1 mM) or homoarginine (500 microM) led to a significant increase in the accumulation of [3H]-MPP+ in isolated hepatocytes. 7. It was concluded that, in addition to the type I organic cation hepatic transporter, [3H]-MPP+ is taken up by rat hepatocytes through P-glycoprotein, a canalicular transport system that usually excretes endobiotics and xenobiotics. We proposed that the reversal of transport through P-glycoprotein may be related to the loss of efficacy of alkaline in isolated hepatocytes.
Collapse
Affiliation(s)
- F Martel
- Department of Biochemistry, Faculty of Medicine, Porto, Portugal
| | | | | | | |
Collapse
|
465
|
Abstract
Multidrug efflux systems display the ability to transport a variety of structurally unrelated drugs from a cell and consequently are capable of conferring resistance to a diverse range of chemotherapeutic agents. This review examines multidrug efflux systems which use the proton motive force to drive drug transport. These proteins are likely to operate as multidrug/proton antiporters and have been identified in both prokaryotes and eukaryotes. Such proton-dependent multidrug efflux proteins belong to three distinct families or superfamilies of transport proteins: the major facilitator superfamily (MFS), the small multidrug resistance (SMR) family, and the resistance/ nodulation/cell division (RND) family. The MFS consists of symporters, antiporters, and uniporters with either 12 or 14 transmembrane-spanning segments (TMS), and we show that within the MFS, three separate families include various multidrug/proton antiport proteins. The SMR family consists of proteins with four TMS, and the multidrug efflux proteins within this family are the smallest known secondary transporters. The RND family consists of 12-TMS transport proteins and includes a number of multidrug efflux proteins with particularly broad substrate specificity. In gram-negative bacteria, some multidrug efflux systems require two auxiliary constituents, which might enable drug transport to occur across both membranes of the cell envelope. These auxiliary constituents belong to the membrane fusion protein and the outer membrane factor families, respectively. This review examines in detail each of the characterized proton-linked multidrug efflux systems. The molecular basis of the broad substrate specificity of these transporters is discussed. The surprisingly wide distribution of multidrug efflux systems and their multiplicity in single organisms, with Escherichia coli, for instance, possessing at least nine proton-dependent multidrug efflux systems with overlapping specificities, is examined. We also discuss whether the normal physiological role of the multidrug efflux systems is to protect the cell from toxic compounds or whether they fulfil primary functions unrelated to drug resistance and only efflux multiple drugs fortuitously or opportunistically.
Collapse
Affiliation(s)
- I T Paulsen
- School of Biological Sciences, University of Sydney, New South Wales, Australia
| | | | | |
Collapse
|
466
|
Bossuyt X, Müller M, Meier PJ. Multispecific amphipathic substrate transport by an organic anion transporter of human liver. J Hepatol 1996; 25:733-8. [PMID: 8938553 DOI: 10.1016/s0168-8278(96)80246-7] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND Hepatic uptake of differently charged amphipathic endo- and xenobiotics is thought to occur via distinct carrier-mediated transport systems. Alternatively, a single rat organic anion transporting polypeptide (oatp) has recently been demonstrated to mediate hepatocellular uptake of differently charged amphipathic substrates. AIM To investigate whether a cloned human liver organic anion transporting polypeptide (OATP) also can mediate charge- and class-independent hepatocellular uptake of amphipathic substrates. METHODS Xenopus laevis oocytes were injected with OATP-cRNA. Sodium-independent uptake of estrone-3-sulfate, ouabain and the organic cation N-(4,4-azo-n-pentyl)-21-ajmalinium was compared in OATP-expressing and uninjected (or water injected) control oocytes. RESULTS Our results indicate that OATP, in addition to bromosulfophthalein and bile salts, can also transport anionic estrone-3-sulfate (Km approximately 59 microM), neutral ouabain (K(m) approximately 5.5 mM) and cationic N-(4,4-azo-n-pentyl)-21-ajmalinium. For each of these compounds, OATP-mediated uptake was cis-inhibited by the OATP substrate taurochenodeoxycholate and the transport activities correlated well with the amounts of cRNA injected. CONCLUSION Similar to the rat liver oatp, the human liver OATP can also mediate multispecific and charge-independent uptake of lipophilic amphipathic organic compounds. Thus, OATP may play an important role in the first pass clearance of drugs and other xenobiotics by the human liver.
Collapse
Affiliation(s)
- X Bossuyt
- Department of Medicine, University Hospital, Zurich, Switzerland
| | | | | |
Collapse
|
467
|
Busch AE, Quester S, Ulzheimer JC, Gorboulev V, Akhoundova A, Waldegger S, Lang F, Koepsell H. Monoamine neurotransmitter transport mediated by the polyspecific cation transporter rOCT1. FEBS Lett 1996; 395:153-6. [PMID: 8898084 DOI: 10.1016/0014-5793(96)01030-7] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The polyspecific cation transporter rOCT,1 which is localized in the basolateral membrane of rat renal proximal tubules and in sinusoidal membranes of hepatocytes, was analyzed for transport of monoamine neurotransmitters. In voltage-clamp experiments with rOCT1-expressing Xenopus oocytes, superfusion with dopamine, serotonin, noradrenaline, histamine and the permanent cation acetylcholine induced saturable inwardly directed currents with apparent Km values ranging from 20 to 100 microM. Transport of dopamine was also demonstrated by uptake measurements in oocytes and in the mammalian cell line (HEK 293) which was permanently transfected with rOCT1. The high uptake rates measured in rOCT1-expressing oocytes and in transfected HEK 293 cells suggest that rOCT1 is a high capacity transporter which mediates the first step in the excretion of monoamine neurotransmitters.
Collapse
Affiliation(s)
- A E Busch
- Institut für Physiologie der Eberhard-Karls-Universität, Tübingen, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
468
|
Schweifer N, Barlow DP. The Lx1 gene maps to mouse chromosome 17 and codes for a protein that is homologous to glucose and polyspecific transmembrane transporters. Mamm Genome 1996; 7:735-40. [PMID: 8854860 DOI: 10.1007/s003359900223] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A novel mouse gene, provisionally named Lx1, has been cloned and sequenced. Lx1 most likely represents the mouse homolog of the rat gene OCT1, which encodes a polyspecific transmembrane transporter that is possibly involved in drug elimination. The LX1 predicted protein is highly hydrophobic, possesses twelve putative transmembrane domains, and also shares significant homology with members of the sugar transporter family, particularly the novel liver-specific transporter NLT. Lx1 mRNA is expressed at high levels in mouse liver, kidney, and intestine, and at low levels in the adrenals and in lactating mammary glands. The Lx1 gene maps very close to the imprinted Igf2r/Mpr300 gene on mouse Chromosome (Chr) 17, in a region that is syntenic to human Chr 6q. Chr 6q has been previously associated with transient neonatal diabetes mellitus and breast cancer.
Collapse
Affiliation(s)
- N Schweifer
- Research Institute of Molecular Pathology, Dr. Bohr-Gasse 7, A-1030 Vienna, Austria
| | | |
Collapse
|
469
|
Martel F, Martins MJ, Azevedo I. Inward transport of 3H-MPP+ in freshly isolated rat hepatocytes: evidence for interaction with catecholamines. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 1996; 354:305-11. [PMID: 8878060 DOI: 10.1007/bf00171061] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
1-Methyl-4-phenylpyridinium (MPP+), the neurotoxic metabolite of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), is efficiently taken up and accumulated by rat hepatocytes. However, the nature of the mechanism(s) involved in the hepatic uptake of MPP+ remains partially unknown. The aim of the present study was to further characterize the hepatic uptake of 3H-MPP+, namely by investigating the interactions of catecholamines (which are also efficiently taken up by rat hepatocytes) with MPP+ transport. The accumulation of 3H-MPP+ in isolated rat hepatocytes occurred through saturable and non-saturable mechanisms. The kinetics of the saturable component of 3H-MPP+ uptake was as follows: Vmax = 181.3 +/- 11.1 pmol mg protein-1 min-1 and Km = 47.1 microM (27.9, 66.3) (n = 5). The diffusion constant (in ml mg protein-1 min-1) for the non-saturable uptake of 3H-MPP+ was 0.00068 (0.00052, 0.00083) (n = 5). From the analysis of the time course of 3H-MPP+ accumulation at a substrate concentration of 100 nM 3H-MPP+, it was found that the rate constant of inward transport of 3H-MPP+ into hepatocytes (k(in)) was 15.7 +/- 3.8 microliters mg protein-1 min-1, the rate constant of outward transport of 3H-MPP+ from hepatocytes (kout) was 0.077 +/- 0.023 min-1 and the equilibrium accumulation (Amax) of 3H-MPP+ was 20.2 +/- 2.0 pmol mg protein-1 (n = 36). Decynium22 (1,1'-diethyl-2,2'-cyanide; 1 microM) significantly reduced kin to 6.1 +/- 1.8 microliters mg protein-1 min-1 (P < 0.05) and the equilibrium accumulation (Amax) of 3H-MPP+ to 9.6 +/- 1.3 pmol mg protein-1 (P < 0.005) (n = 36). 3H-MPP+ accumulation (in cells incubated with 200 nM 3H-MPP+) was sensitive to (-)-adrenaline, (-)-isoprenaline, (-)-dopamine, (+/-)-adrenaline and (-)-noradrenaline. The most potent catecholamine in inhibiting 3H-MPP+ uptake was (-)-adrenaline, with an IC50 of 99 (22, 449) microM (n = 6). (-)-Adrenaline competitively inhibited 3H-MPP+ uptake, as it significantly increased the Km value of 3H-MPP+ uptake (to 125.4 microM (63.6; 187.1); P < 0.02; n = 3) but did not change the Vmax value. The cyanine-derivatives decynium22 and cyanine863 (1-ethyl-2-([1,4-dimethyl-2-phenyl-6-pyrimidinylidene] methyl)quinolinium), which inhibit uptake2 as well as the apical type of the renal transporter for organic cations, potently inhibited 3H-MPP+ uptake with IC50's of 1.4 (0.4-5.3) (n = 6) and 6.5 (2.6-16) (n = 4) microM, respectively. Under conditions of monoamine oxidase (MAO) and catechol-O-methyl transferase (COMT) inhibition (with either pargyline (500 microM) + Ro01-2812 (3,5-dinitropyrocatechol; 2 microM) or pargyline (500 microM) + U-0521 (3,4-dihidroxy-2-methyl-propiophenone; 12 microM)), (-)-adrenaline (up to 1 mM) had no inhibitory effect on the uptake of 3H-MPP+. Moreover, the uptake of 3H-MPP+ in the presence of pargyline + Ro 01-2812 was significantly lower (66.9 +/- 30.4%; P < 0.05; n = 4) than in the absence of these compounds. Therefore, the effect of these MAO and COMT inhibitors on 3H-MPP+ uptake was examined. Interestingly enough, pargyline, Ro 01-2812 and U-0521 were found to inhibit the uptake of 3H-MPP+ (in cells incubated with 200 nM 3H-MPP+): 500 microM pargyline, 2 microM Ro 01-2812 and 100 microM U-0521 decreased the accumulation of 3H-MPP+ to 38.1 +/- 6.8 (n = 5), 60.5 +/- 10.1 (n = 7) and 71.3 +/- 14.5 (n = 7) % of control, respectively. It is concluded that 3H-MPP+ is efficiently taken up by rat hepatocytes by a carrier-mediated mechanism sensitive to catecholamines, decynium22 and cyanane863, and to the enzyme inhibitors pargyline, Ro 01-2812 and U-0521.
Collapse
Affiliation(s)
- F Martel
- Department of Biochemistry, Faculty of Medicine, Porto, Portugal
| | | | | |
Collapse
|
470
|
Abstract
The renal proximal tubule actively transports charged, potentially toxic xenobiotics from blood to lumen. Basolateral uptake of organic anions is indirectly coupled to the sodium gradient through Na-dicarboxylate cotransport and dicarboxylate-organic anion exchange. Upon entry, a significant fraction of intracellular organic anion is sequestered within vesicles. Disruption of the cellular microtubular network can lead to both diminished vesicular movement and reduced transepithelial secretion. Luminal efflux of organic anions is energetically downhill, but carrier mediated. Both anion exchange and potential driven transport are present, but neither completely accounts for transport from cell to lumen. For organic cations, basolateral entry is downhill via potential driven facilitated diffusion. Intracellular sequestration of organic cations in vesicles is substantial, but its role in secretion is uncertain. Multiple carriers are available to drive organic cations uphill into the tubular lumen. The classical system indirectly taps the energy of the luminal Na gradient to drive organic cation efflux via Na(+)-H+ and proton-organic cation exchange. In addition, the multidrug resistance ATPase can pump organic cations into the tubular lumen. Thus, although much detailed information has been added over the last 50 years, it is not yet possible to provide a detailed, quantitative understanding of these important excretory systems.
Collapse
Affiliation(s)
- J B Pritchard
- Laboratory of Cellular and Molecular Pharmacology, National Institutes of Health, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA.
| | | |
Collapse
|
471
|
Dudley AJ, Brown CD. Mediation of cimetidine secretion by P-glycoprotein and a novel H(+)-coupled mechanism in cultured renal epithelial monolayers of LLC-PK1 cells. Br J Pharmacol 1996; 117:1139-44. [PMID: 8882608 PMCID: PMC1909765 DOI: 10.1111/j.1476-5381.1996.tb16708.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
1. Previous studies have shown that the weak base, cimetidine, is actively secreted by the renal proximal tubule. In this study we have examined the transport of cimetidine by renal LLC-PK1 epithelial cell monolayers. 2. In LLC-PK1 cell monolayers the basal-to-apical flux of cimetidine was significantly greater than the apical-to basal flux, consistent with net secretion of cimetidine in a basal-to-apical direction. 3. Net secretion of cimetidine was significantly (70%) reduced by the addition of either 100 microM verapamil or 100 microM nifedipine to the apical membrane. The reduction in net secretion was the result of an inhibition of basal-to-apical flux; these agents had no effect upon flux in the apical-to-basal direction. These results suggest that cimetidine secretion is mediated primarily by P-glycoprotein located in the apical membrane. In addition we found no evidence of a role for organic cation antiport in the secretion of cimetidine. 4. In the presence of an inwardly directed proton gradient across the apical membrane (pH 6.0), cimetidine secretion was significantly reduced compared to that measured at an apical pH of 7.4. The reduction in net secretion at pH 6.0 was the result of a stimulation of cimetidine uptake across the apical membrane. This pH-dependent uptake mechanism was sensitive to inhibition by DIDS (100 microM). 5. Experiments with BCECF (2',7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein) loaded monolayers demonstrated that cimetidine influx across the apical membrane was associated with proton flow into the cell and was sensitive to inhibition by DIDS. 6. These results suggest that net secretion of cimetidine across the apical membrane is a function of the relative magnitudes of cimetidine secretion mediated by P-glycoprotein and cimetidine absorption mediated by a novel proton-coupled, DIDS-sensitive transport mechanism.
Collapse
Affiliation(s)
- A J Dudley
- Department of Physiological Sciences, University of Newcastle upon Tyne
| | | |
Collapse
|
472
|
Koehler MR, Gorboulev V, Koepsell H, Steinlein C, Schmid M. Roct1, a rat polyspecific transporter gene for the excretion of cationic drugs, maps to chromosome 1q11-12. Mamm Genome 1996; 7:247-8. [PMID: 8833261 DOI: 10.1007/s003359900074] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- M R Koehler
- Department of Human Genetics, University of Wurzburg, Germany
| | | | | | | | | |
Collapse
|
473
|
Streich S, Brüss M, Bönisch H. Expression of the extraneuronal monoamine transporter (uptake2) in human glioma cells. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 1996; 353:328-33. [PMID: 8692289 DOI: 10.1007/bf00168636] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Tritiated methylphenylpyridinium ([3H]MPP+), a substrate of the neuronal and extraneuronal noradrenaline transporter (uptake1 and uptake2, respectively) and of the organic cation transporter (OCT1), was used to characterize the amine transport system of the established human glioma cell line SK-MG-1. Uptake of [3H]MPP+ (25 nM) into SK-MG-1 cells increased linearly with time for up to 15 min. Selective uptake1 inhibitors (e.g. (+)oxaprotiline) or omission of Na+ or Cl-ions did not affect [3H]MPP+ uptake, whereas uptake2 inhibitors such as O-methyl-isoprenaline (OMI) or corticosterone as well as depolarizing concentrations of K+ or Ba2+ strongly reduced [3H]MPP+ uptake. Initial rates of OMI(100 microM)-sensitive [3H]MPP+ uptake were saturable, with a K(m) of about 17 microM and a maximal rate of about 50 pmol/(min x mg protein). IC50 (or Ki) values for inhibition of [3H]MPP+ uptake by substrates and inhibitors of uptake2 or OCT1 were highly significantly correlated with published IC50 values for inhibition of uptake2 but not with corresponding values for inhibition of OCT1. The results presented here clearly demonstrate that human glioma cells express an uptake2 transporter. Thus, glial cells in the human central nervous system endowed with this transporter are likely to contribute to the inactivation of neuronally released noradrenaline.
Collapse
Affiliation(s)
- S Streich
- Institut für Pharmakologie und Toxikologie, Universität Bonn, Germany
| | | | | |
Collapse
|
474
|
Abstract
Membrane transporter proteins are encoded by numerous genes that can be classified into several superfamilies, on the basis of sequence identity and biological function. Prominent examples include facilitative transporters, the secondary active symporters and antiporters driven by ion gradients, and active ABC (ATP binding cassette) transporters involved in multiple-drug resistance and targeting of antigenic peptides to MHC Class I molecules. Transported substrates range from nutrients and ions to a broad variety of drugs, peptides and proteins. Deleterious mutations of transporter genes may lead to genetic diseases or loss of cell viability. Transporter structure, function and regulation, genetic factors, and pharmaceutical implications are summarized in this review.
Collapse
Affiliation(s)
- W Sadée
- School of Pharmacy, University of California, San Francisco 94143-0446, USA
| | | | | |
Collapse
|
475
|
Dudley AJ, Brown CD. pH-dependent transport of procainamide in cultured renal epithelial monolayers of OK cells: consistent with nonionic diffusion. Br J Pharmacol 1995; 116:1685-91. [PMID: 8564238 PMCID: PMC1908901 DOI: 10.1111/j.1476-5381.1995.tb16392.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
1. Previous studies suggest that procainamide is a substrate for organic cation/proton antiport. In order to study the coupling between procainamide flux and proton flux in greater detail we investigated the effects of extracellular procainamide addition upon intracellular pH in cultured monolayers of renal OK cells. Intracellular pH was monitored by use of BCECF as a probe. 2. Apical addition of procainamide (10 mM) caused a significant alkalinisation of intracellular pH. Basolateral addition of procainamide was equally effective in raising intracellular pH. A similar alkalinisation was found in two other renal cell lines: MDCK strain 1 and LLCPK1. 3. In contrast, both tetraethylammonium and N-methylnicotinamide, archetypal substrates for organic cation/proton antiport were without effect upon intracellular pH. 4. At physiological pH values, procainamide exists as a neutral weak base (B) and its conjugate weak acid (BH+). To test which species of procainamide was responsible for the alkalinisation, experiments in which [B] was kept constant whilst [BH+] was varied from 1.15 mM to 7.25 mM were performed. The results suggested that the neutral weak base (B) was the permeant species. 5. Procainamide efflux from procainamide-loaded cell monolayers resulted in a significant acidification of intracellular pH. As with procainamide uptake, this result could be ascribed to the movement of neutral weak base. 6. These effects of procainamide upon intracellular pH are consistent with nonionic diffusion of procainamide rather than an interaction of procainamide with the organic cation/proton antiporter. In addition, the results suggest that organic cation/proton antiport is not highly expressed in OK cells.
Collapse
Affiliation(s)
- A J Dudley
- Department of Physiological Sciences, University of Newcastle upon Tyne, Medical School
| | | |
Collapse
|
476
|
David C, Rumrich G, Ullrich KJ. Luminal transport system for H+/organic cations in the rat proximal tubule. Kinetics, dependence on pH; specificity as compared with the contraluminal organic cation-transport system. Pflugers Arch 1995; 430:477-92. [PMID: 7491274 DOI: 10.1007/bf00373884] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The efflux of radiolabelled organic cations from the tubular lumen into proximal tubular cells was investigated by using the stop-flow microperfusion method. The efflux rate increased in the sequence: N1-methylnicotinamide (NMeN+) < cimetidine < tetraethylammonium (TEA+) < N-methyl-4-phenylpyridinium (MPP+). Preloading the animals by i.v. infusion or pre perfusion of the peritubular capillaries with NMeN+ increased the efflux rate of MPP+. Luminal efflux was also augmented when the tubular solution was made alkaline with HCO3- or phosphate, whereby HCO3- is more effective than phosphate. Replacement of Na+ by Cs+ showed no effect. With i.v. preloading the animals with NMeN+ and with 25 mM HCO3- in the luminal perfusate the 2-s efflux follows kinetics with a Michaelis constant Km = 0.21 mmol/l and maximal flux Jmax = 0.42 pmol.cm-1.s-1 and a permeability term with P = 37.7 microns2.s-1. Comparing the apparent luminal inhibitory constant values for MPP+ (Kil,MPP+) with the apparent contraluminal Kicl,NMeN+ values of substrates of homologous series, it was found that (1) limitation by molecular size occurs at the contraluminal cell side earlier than at the luminal cell side; (2) affinity increases with hydrophobicity of the substrates at the luminal cell side, with a steeper or equal slope than at the contraluminal cell side; (3) affinity increases with basicity (i.e. pKa values) at the luminal cell side with a steeper slope than at the contraluminal cell side. Taken together, substrates with low hydrophobicity and low basicity interact at the luminal cell side more weakly than at the contraluminal cell side. On the other hand large, hydrophobic substrates have, at the luminal cell side, a higher affinity than at the contraluminal cell side. Many substrates, however, have equal affinity at the luminal and contraluminal cell sides.
Collapse
Affiliation(s)
- C David
- Max-Planck-Institut für Biophysik, Frankfurt am Main, Germany
| | | | | |
Collapse
|