451
|
Cherry SR, Baltimore D. Chromatin remodeling directly activates V(D)J recombination. Proc Natl Acad Sci U S A 1999; 96:10788-93. [PMID: 10485904 PMCID: PMC17961 DOI: 10.1073/pnas.96.19.10788] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
V(D)J recombination substrate choice is regulated to ensure that the appropriate gene segments are rearranged during lymphocyte development. It has been proposed that regulation of substrate usage is determined by changes in accessibility of the DNA targets. We show that Rag-mediated recombination of an episomal substrate in cells is affected by its packaging into chromatin. Chromatinized substrates were inefficiently rearranged, and methylation further reduced recombination. Disruption of nucleosomes by using butyrate on methylated substrates was sufficient to activate recombination, and dexamethasone could activate recombination in the absence of detectable transcription. Therefore, chromatin structure, and its manipulation by altering nucleosome positioning, can directly affect recombination efficiencies.
Collapse
Affiliation(s)
- S R Cherry
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | |
Collapse
|
452
|
Chen H, Lin RJ, Xie W, Wilpitz D, Evans RM. Regulation of hormone-induced histone hyperacetylation and gene activation via acetylation of an acetylase. Cell 1999; 98:675-86. [PMID: 10490106 DOI: 10.1016/s0092-8674(00)80054-9] [Citation(s) in RCA: 499] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Nuclear receptors have been postulated to regulate gene expression via their association with histone acetylase (HAT) or deacetylase complexes. We report that hormone induces dramatic hyperacetylation at endogenous target genes through the HAT activity of p300/CBP. Unexpectedly, this hyperacetylation is transient and coincides with attenuation of hormone-induced gene activation. In exploring the underlying mechanism, we found that the acetylase ACTR can be acetylated by p300/CBP. The acetylation neutralizes the positive charges of two lysine residues adjacent to the core LXXLL motif and disrupts the association of HAT coactivator complexes with promoter-bound estrogen receptors. These results provide strong in vivo evidence that histone acetylation plays a key role in hormone-induced gene activation and define cofactor acetylation as a novel regulatory mechanism in hormonal signaling.
Collapse
Affiliation(s)
- H Chen
- The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | | | | | | | | |
Collapse
|
453
|
Huang W, Shostak Y, Tarr P, Sawyers C, Carey M. Cooperative assembly of androgen receptor into a nucleoprotein complex that regulates the prostate-specific antigen enhancer. J Biol Chem 1999; 274:25756-68. [PMID: 10464314 DOI: 10.1074/jbc.274.36.25756] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Prostate cancer is characterized by elevated serum levels of prostate-specific antigen (PSA). PSA gene expression is controlled by an androgen-responsive transcriptional enhancer. Our study suggests that formation of a nucleoprotein complex, encompassing 170 base pairs of enhancer DNA, mediates androgen-responsive PSA enhancer activity. The complex is assembled by cooperative binding of androgen receptor to at least four tandem, nonconsensus androgen response elements (AREs). Systematic mutagenesis of the AREs demonstrated that they act synergistically to stimulate androgen receptor-responsive gene expression. We discuss a mechanism whereby a combination of high androgen receptor levels in the prostate and low affinity AREs contribute to the cell type specificity and activity of the enhancer.
Collapse
Affiliation(s)
- W Huang
- Department of Biological Chemistry, Box 1737, UCLA School of Medicine, Los Angeles, California 90095, USA
| | | | | | | | | |
Collapse
|
454
|
Huang S, Qiu Y, Stein RW, Brandt SJ. p300 functions as a transcriptional coactivator for the TAL1/SCL oncoprotein. Oncogene 1999; 18:4958-67. [PMID: 10490830 DOI: 10.1038/sj.onc.1202889] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Activation of the TAL1 (or SCL) gene, originally identified through its involvement by a recurrent chromosomal translocation, is the most frequent gain-of-function mutation recognized in T-cell acute lymphoblastic leukemia (T-ALL). The TAL1 proteins contain a basic helix - loop - helix (bHLH) motif characteristic of a large family of transcription factors that control transcription from an E box target element as heterodimers with the E2A- and HEB-encoded gene products. Gene knockout studies in mice indicate that this transcription factor is required for embryonic and adult hematopoiesis, and considerable evidence suggests it has specific functions in terminal erythroid differentiation. We investigated whether the broadly expressed nuclear protein p300, known to function as a coactivator for other bHLH proteins involved in cellular differentiation, also interacts with TAL1. p300 was found to coimmunoprecipitate with Tal1 in extracts from murine erythroleukemia (MEL) cells induced to differentiate with dimethylsulfoxide (DMSO), and p300 and Tal1 were observed in a common E box DNA-binding complex in extracts from differentiating MEL cells. p300 also interacted with Tal1 in protein pulldown assays, suggesting this was a direct interaction. Finally, p300 augmented transcription by Tal1 from an E box-containing promoter and by a GAL4-Tal1 fusion from a promoter containing the GAL4 DNA-binding element. Deletion analysis identified the bHLH domain of Tal1 and amino-terminal sequences of p300 as necessary for p300-stimulated transactivation and Tal1-p300 interaction in vitro. These results indicate that recruitment of the transcriptional coactivator p300 can positively regulate TAL1-directed gene expression. The dependence of their interaction in MEL cells on addition of a differentiation inducer suggests, further, that this TAL1-p300 complex may have an important role in terminal erythroid differentiation.
Collapse
Affiliation(s)
- S Huang
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, TN 37232, USA
| | | | | | | |
Collapse
|
455
|
Grimwade D. The pathogenesis of acute promyelocytic leukaemia: evaluation of the role of molecular diagnosis and monitoring in the management of the disease. Br J Haematol 1999; 106:591-613. [PMID: 10468848 DOI: 10.1046/j.1365-2141.1999.01501.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- D Grimwade
- Division of Medical and Molecular Genetics, Guy's, King's and St Thomas' School of Medicine,, Department of Haematology, London
| |
Collapse
|
456
|
Kim HJ, Yi JY, Sung HS, Moore DD, Jhun BH, Lee YC, Lee JW. Activating signal cointegrator 1, a novel transcription coactivator of nuclear receptors, and its cytosolic localization under conditions of serum deprivation. Mol Cell Biol 1999; 19:6323-32. [PMID: 10454579 PMCID: PMC84603 DOI: 10.1128/mcb.19.9.6323] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/1998] [Accepted: 06/14/1999] [Indexed: 11/20/2022] Open
Abstract
Activating signal cointegrator 1 (ASC-1) harbors an autonomous transactivation domain that contains a putative zinc finger motif which provides binding sites for basal transcription factors TBP and TFIIA, transcription integrators steroid receptor coactivator 1 (SRC-1) and CBP-p300, and nuclear receptors, as demonstrated by the glutathione S-transferase pull-down assays and the yeast two-hybrid tests. The ASC-1 binding sites involve the hinge domain but not the C-terminal AF2 core domain of nuclear receptors. Nonetheless, ASC-1 appears to require the AF2-dependent factors to function (i.e., CBP-p300 and SRC-1), as suggested by the ability of ASC-1 to coactivate nuclear receptors, either alone or in cooperation with SRC-1 and p300, as well as its inability to coactivate a mutant receptor lacking the AF2 core domain. By using indirect immunofluorescence, we further show that ASC-1, a nuclear protein, is localized to the cytoplasm under conditions of serum deprivation but is retained in the nucleus when it is serum starved in the presence of ligand or coexpressed CBP or SRC-1. These results suggest that ASC-1 is a novel coactivator molecule of nuclear receptors which functions in conjunction with CBP-p300 and SRC-1 and may play an important role in establishing distinct coactivator complexes under different cellular conditions.
Collapse
Affiliation(s)
- H J Kim
- Center for Ligand and Transcription, Chonnam National University, Kwangju 500-757, Korea
| | | | | | | | | | | | | |
Collapse
|
457
|
Abstract
Studies using both transgenic mice and transfected mammary epithelial cells have established that composite response elements containing multiple binding sites for several transcription factors mediate the hormonal and developmental regulation of milk protein gene expression. Activation of signal transduction pathways by lactogenic hormones and cell-substratum interactions activate transcription factors and change chromatin structure and milk protein gene expression. The casein promoters have binding sites for signal transducers and activators of transcription 5, Yin Yang 1, CCAAT/enhancer binding protein, and the glucocorticoid receptor. The whey protein gene promoters have binding sites for nuclear factor I, as well as the glucocorticoid receptor and the signal transducers and activators of transcription 5. The functional importance of some of these factors in mammary gland development and milk protein gene expression has been elucidated by studying mice in which some of these factors have been deleted.
Collapse
Affiliation(s)
- J M Rosen
- Department of Cell Biology, Baylor College of Medicine, Houston, Texas 77030-3498, USA.
| | | | | |
Collapse
|
458
|
Sun Z, Pan J, Hope WX, Cohen SN, Balk SP. Tumor susceptibility gene 101 protein represses androgen receptor transactivation and interacts with p300. Cancer 1999; 86:689-96. [PMID: 10440698 DOI: 10.1002/(sici)1097-0142(19990815)86:4<689::aid-cncr19>3.0.co;2-p] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Functional inactivation of the tsg101 gene in mouse fibroblasts leads to cell transformation and the ability to form metastatic tumors in nude mice. Abnormal TSG101 transcripts with highly-specific deletions in the protein-coding region have been identified in human tumor samples and cancer cell lines, including prostate and breast carcinomas, and have been attributed to alternative splicing of TSG101 mRNA. The function of the TSG101 protein is not known, although its predicted sequence has suggested that it may function as a transcription factor. METHODS Human TSG101 N-terminal (encoding amino acids 10-240) and C-terminal (encoding amino acids 230-391) fragments were cloned and used in both transient transfection and protein binding experiments. The transient transfections were carried in CV-1 cells. Protein-protein interactions were determined by both glutathione-S-transferase fusion protein binding and co-immunoprecipitation. RESULTS The N-terminal region of TSG101, when fused to the GAL4 DNA binding domain, can activate transcription; whereas the C-terminal region mediates transcriptional repression. Full-length TSG101 or its separated regions repressed ligand-dependent transcriptional activation by nuclear receptors, including androgen receptor and estrogen receptor, which play central roles in prostate carcinoma and breast carcinoma, respectively. In addition, a direct association between TSG101 and the transcriptional co-factor p300 was demonstrated in vitro and in vivo. CONCLUSIONS These results indicate that TSG101 can function as a transcription modulator to affect nuclear receptor-mediated transcriptional activation, which raises the possibility that the tumor suppression by TSG101 observed previously may be mediated at least in part by its effects on nuclear receptor function.
Collapse
Affiliation(s)
- Z Sun
- Liem Sioe Liong Molecular Biology Laboratory, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | | | | | | | | |
Collapse
|
459
|
Kumar MB, Tarpey RW, Perdew GH. Differential recruitment of coactivator RIP140 by Ah and estrogen receptors. Absence of a role for LXXLL motifs. J Biol Chem 1999; 274:22155-64. [PMID: 10428779 DOI: 10.1074/jbc.274.32.22155] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Ah receptor (AhR), a soluble cytosolic protein, mediates most of the toxic effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and related environmental contaminants. The mechanism of ligand-mediated AhR activation has been, in part, elucidated. The sequence of events following the binding of the AhR/AhR nuclear translocator protein (ARNT) heterodimer to dioxin response elements has yet to be completely understood. The role of coactivator, RIP140, in the modulation of transcriptional activity of AhR/ARNT heterodimer was examined. RIP140 enhanced TCDD-mediated, dioxin response element-driven reporter gene activity in three cell lines. Co-immunoprecipitation and co-localization assays revealed that RIP140 interacted with AhR, but not with ARNT, both in vitro and in cells. Mapping of the interaction sites revealed that RIP140 was recruited by the AhR transactivation domain via the Q-rich subdomain. The RIP140 domain that interacts with the AhR was mapped to a location between amino acid residues 154 and 350, which is distinct from those involved in estrogen receptor binding. The signature motif, LXXLL, which is responsible for binding of several coactivators to nuclear receptors, is not required for RIP140 binding to AhR. These results demonstrate that the AhR recruits coactivators that are capable of enhancing transcription and, thus, the AhR may compete with steroid receptors for a common coactivator pool. In addition, the data suggest that there are distinct motif(s) for the recruitment of RIP140 to AhR and possibly other non-steroid receptors/transcription factors.
Collapse
Affiliation(s)
- M B Kumar
- Center for Molecular Toxicology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | |
Collapse
|
460
|
Tagami T, Park Y, Jameson JL. Mechanisms that mediate negative regulation of the thyroid-stimulating hormone alpha gene by the thyroid hormone receptor. J Biol Chem 1999; 274:22345-53. [PMID: 10428804 DOI: 10.1074/jbc.274.32.22345] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A group of transcriptional cofactors for nuclear hormone receptors, referred to as corepressors (CoRs) and coactivators (CoAs), has been shown to induce transcriptional silencing and hormone-induced activation, respectively, of genes that contain positive hormone response elements. Transcriptional silencing by CoRs involves the recruitment of histone deacetylases (HDACs), whereas ligand-dependent activation is associated with the recruitment of CoAs, which possess or recruit histone acetyltransferases (HATs). In a reciprocal manner, negatively regulated genes are stimulated by nuclear receptors in the absence of ligand and are repressed in response to ligand binding to receptors. We show here that negative regulation of the thyroid-stimulating hormone alpha (TSHalpha) promoter by the thyroid hormone receptor (TR) involves a novel mechanism in which the recruitment of CoRs by TR is associated with transcriptional stimulation and histone acetylation. Expression of excess HDAC reverses the stimulation mediated by the TR.CoR complex, consistent with a pivotal role for acetylation in this event. Addition of the ligand, 3,5,3'-triiodothyronine (T3), induces transcriptional repression of the TSHalpha promoter and is associated with the loss of histone acetylation. T3-dependent repression is blocked by phosphorylation of cAMP response element binding protein, or by inhibition of HDAC, indicating that receptor action is subverted by maneuvers that stimulate histone acetylation of the target gene. We propose that negative regulation of a subset of genes by TR involves the active exchange of CoRs and CoAs with intrinsic promoter regulatory elements that normally strongly induce histone acetylation and transcriptional activation.
Collapse
Affiliation(s)
- T Tagami
- Division of Endocrinology, Metabolism, and Molecular Medicine, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | | | | |
Collapse
|
461
|
Roux-Rouquie M, Chauvet ML, Munnich A, Frezal J. Human genes involved in chromatin remodeling in transcription initiation, and associated diseases: An overview using the GENATLAS database. Mol Genet Metab 1999; 67:261-77. [PMID: 10444337 DOI: 10.1006/mgme.1999.2867] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Chromatin structure is inextricably linked to transcription regulation and differentiation. It consists of a multicomponent system, and impairments in such complex arrays may elicit dramatic biological effects and diseases. We present an overview of human genes involved in chromatin remodeling, which consist of the histone acetyltransferase/deacetylase system and the SWI/SNF-like complexes containing DNA-dependent ATPase activity. Special attention is given to the functional and physical interactions in which these components are involved, notably as transcriptional coactivators and/or corepressors of a large variety of genes. Linking seemingly distinct pathways allows integration of individual components into complex genetic and molecular processes and assessment of the underlying molecular bases of diseases. This was performed using GENATLAS (http://www.infobiogen.fr/), a gene database which compiles the information relevant to the mapping efforts from the published literature.
Collapse
Affiliation(s)
- M Roux-Rouquie
- Service de Génétique Médicale, U393 INSERM, Paris, France.
| | | | | | | |
Collapse
|
462
|
Abstract
The vitamin D endocrine systems plays a critical role in calcium and phosphate homeostasis. The active form of vitamin D, 1, 25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)], binds with high affinity to a specific cellular receptor that acts as a ligand-activated transcription factor. The activated vitamin D receptor (VDR) dimerizes with another nuclear receptor, the retinoid X receptor (RXR), and the heterodimer binds to specific DNA motifs (vitamin D response elements, VDREs) in the promoter region of target genes. This heterodimer recruits nuclear coactivators and components of the transcriptional preinitiation complex to alter the rate of gene transcription. 1,25(OH)(2)D(3) also binds to a cell-surface receptor that mediates the activation of second messenger pathways, some of which may modulate the activity of the VDR. Recent studies with VDR-ablated mice confirm that the most critical role of 1, 25(OH)(2)D(3) is the activation of genes that control intestinal calcium transport. However, 1,25(OH)(2)D(3) can control the expression of many genes involved in a plethora of biological actions. Many of these nonclassic responses have suggested a number of therapeutic applications for 1,25(OH)(2)D(3) and its analogs.
Collapse
Affiliation(s)
- A J Brown
- Renal Division, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| | | | | |
Collapse
|
463
|
Yang L, Munoz-Medellin D, Kim HT, Ostrowski J, Reczek P, Brown PH. Retinoic acid receptor antagonist BMS453 inhibits the growth of normal and malignant breast cells without activating RAR-dependent gene expression. Breast Cancer Res Treat 1999; 56:277-91. [PMID: 10573118 DOI: 10.1023/a:1006219411078] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
To elucidate the role of RAR-dependent gene transcription in inhibiting breast cell growth, we have investigated the ability of retinoids to suppress growth of normal, immortal, and malignant breast cells. We compared the ability of all trans retinoic acid (atRA) to activate retinoid receptors in normal, immortal, and malignant breast cells, with its ability to inhibit the growth of these cells. Our studies demonstrate that normal breast cells are more sensitive to the growth inhibitory effect of atRA than are immortal nonmalignant breast cells and breast cancer cells. atRA activated RAR-dependent gene transcription in both atRA-sensitive and -resistant breast cells as determined by transfection of a RARE-containing reporter gene. These results demonstrate that activation of RAR-dependent gene transcription by atRA is not sufficient to inhibit growth in atRA-resistant breast cancer cells. To determine whether activation of RAR-dependent gene transcription by atRA is necessary for growth inhibition, we tested the growth suppressive effect of a retinoid (BMS453) which binds RAR receptors and transrepresses AP-1 but does not activate RAR-dependent gene expression. This retinoid inhibited the growth of normal breast cells (HMEC and 184) and T47D breast cancer cells. Breast cancer cells which were resistant to atRA, were also resistant to BMS453. Normal human breast cells were most sensitive to the anti-proliferative effects of BMS453. These results indicate that in some breast cells RAR-dependent transactivation is not necessary for retinoids to inhibit growth. Instead, retinoids may suppress growth by inhibiting transcription factors such as AP-1 through transcription factor crosstalk.
Collapse
Affiliation(s)
- L Yang
- Department of Medicine, University of Texas Health Science Center at San Antonio, USA
| | | | | | | | | | | |
Collapse
|
464
|
Chariot A, van Lint C, Chapelier M, Gielen J, Merville MP, Bours V. CBP and histone deacetylase inhibition enhance the transactivation potential of the HOXB7 homeodomain-containing protein. Oncogene 1999; 18:4007-14. [PMID: 10435624 DOI: 10.1038/sj.onc.1202776] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Homeodomain-containing proteins are transcription factors regulating the coordinated expression of multiple target genes involved in development, differentiation and cellular transformation. In this study, we demonstrated that HOXB7, one member of this family, behaved as a transactivator in breast cancer cells. Deletion of either the HOXB7 N-terminal domain or the C-terminal acidic tail abolished this transcriptional effect, suggesting a combination of distinct functional transactivating domains. HOXB7 physically interacted both in vitro and in vivo with the coactivator CREB-binding protein (CBP). This interaction led to an enhanced transactivating potential and required the N-terminal of HOXB7 as well as two domains located at the C-terminal part of CBP. Moreover, trichostatin A, a deacetylase inhibitor, strongly enhanced the transcriptional properties of HOXB7. Our data therefore indicate that HOX proteins can directly interact with CBP and that acetylation/deacetylation may regulate their transcriptional properties.
Collapse
Affiliation(s)
- A Chariot
- Laboratory of Medical Chemistry and Medical Oncology, CHU B35, University of Liege Sart-Tilman, Belgium
| | | | | | | | | | | |
Collapse
|
465
|
Kakizawa T, Miyamoto T, Ichikawa K, Kaneko A, Suzuki S, Hara M, Nagasawa T, Takeda T, Mori JI, Kumagai M, Hashizume K. Functional interaction between Oct-1 and retinoid X receptor. J Biol Chem 1999; 274:19103-8. [PMID: 10383413 DOI: 10.1074/jbc.274.27.19103] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The retinoid X receptor (RXR) is a member of the nuclear hormone receptor superfamily and heterodimerizes with a variety of other family members such as the thyroid hormone receptor (TR),1 retinoic acid receptor, vitamin D receptor, and peroxisome proliferator-activated receptor. Therefore, RXR is supposed to play a key role in a ligand-dependent regulation of gene transcription by nuclear receptors. In this study, we have identified the octamer-binding transcription factor-1 (Oct-1) as a novel interaction factor of RXR. In vitro pull-down assays using RXR deletion mutants showed that the interaction surfaces were located in the region encompassing the DNA binding domain (C domain) and the hinge domain (D domain) of RXR. We also showed that RXR interacted with the POU homeodomain but not with the POU-specific domain of Oct-1. Gel shift analysis revealed that Oct-1 reduced the binding of TR/RXR heterodimers to the thyroid hormone response element (TRE). In transient transfection assays using COS1 cells, Oct-1 repressed the T3-dependent transcriptional activity of TR/RXR heterodimers, consistent with in vitro DNA binding data; however, transcriptional activation by Gal4-TR(LBD) (LBD, ligand binding domain), which lacks its own DNA binding domain but retains responsiveness to T3, was not influenced by Oct-1. These results suggest that Oct-1 functionally interacts with RXR and negatively regulates the nuclear receptor signaling pathway by altering the DNA binding ability of the receptors.
Collapse
Affiliation(s)
- T Kakizawa
- Department of Geriatrics, Endocrinology, and Metabolism, Shinshu University School of Medicine, Matsumoto 390-8621, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
466
|
Castillo AI, Jimenez-Lara AM, Tolon RM, Aranda A. Synergistic activation of the prolactin promoter by vitamin D receptor and GHF-1: role of the coactivators, CREB-binding protein and steroid hormone receptor coactivator-1 (SRC-1). Mol Endocrinol 1999; 13:1141-54. [PMID: 10406465 DOI: 10.1210/mend.13.7.0320] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
PRL gene expression is dependent on the presence of the pituitary-specific transcription factor GHF-1/Pit-1, which is transcribed in a highly restricted manner in cells of the anterior pituitary. In pituitary GH3 cells, vitamin D increases the levels of PRL transcripts and stimulates the PRL promoter. We have analyzed the role of GHF-1 and of the vitamin D receptor (VDR) to confer vitamin D responsiveness to the PRL promoter. For this purpose we have used nonpituitary HeLa cells, which do not express GHF-1. We found that VDR activates the PRL promoter both in a ligand-dependent and -independent manner through a sequence located between positions -45/-27 in the proximal 5'-flanking region. This sequence also confers VDR and vitamin D responsiveness to a heterologous promoter. In the context of the PRL gene, VDR requires the presence of GHF-1 to activate the promoter. Truncation of the last 12 C-terminal amino acids of VDR, which contain the ligand-dependent activation function (AF2), abolishes regulation by vitamin D, suggesting that binding of coactivators to this region mediates ligand-dependent stimulation of the PRL promoter by the receptor. Indeed, expression of the coactivators, steroid hormone receptor coactivator-1 (SRC-1) and CREB-binding protein (CBP), significantly enhances the stimulatory effect of vitamin D mediated by the wild-type VDR but not by the AF2 mutant receptor. Furthermore, CBP also increases the activation of the PRL promoter by GHF-1 and the ligand-independent activation by both wild-type and mutant VDR.
Collapse
Affiliation(s)
- A I Castillo
- Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | | | | | | |
Collapse
|
467
|
Kino T, Nordeen SK, Chrousos GP. Conditional modulation of glucocorticoid receptor activities by CREB-binding protein (CBP) and p300. J Steroid Biochem Mol Biol 1999; 70:15-25. [PMID: 10528999 DOI: 10.1016/s0960-0760(99)00100-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Coactivators of nuclear receptors are integral components of the signal transduction pathways of steroid hormones. Here, we show that one of the major coactivators of the glucocorticoid receptor (GR), CREB-binding protein (CBP), can also function conditionally as a negative regulator of its activities. Indeed, CBP suppressed the responsiveness of the mouse mammary tumor virus (MMTV) promoter to dexamethasone in a dose-dependent fashion in HeLa and A204 cells. Similarly, this protein suppressed the responsiveness of several glucocorticoid-responsive element (GRE)-containing synthetic promoters. Using deletion mutants of CBP, we localized the repressor effect of this protein to its N-terminal domain and showed that it was independent of the histone acetyltransferase and coactivator-binding domains but dependent upon its GR-binding domain. We also demonstrated functional differentiation between CBP and other coactivators, including SRC-1 and the CBP-related protein p300, both of which influenced GR signaling in a positive fashion. In fact, p300 completely antagonized the suppressive effects of CBP in a dose-dependent fashion, probably by competing with this protein at the level of the transcription complex. These findings suggest that CBP and p300 may function additively or antagonistically to each other depending on their relative concentrations and type of target tissue, to influence the sensitivity of tissues to glucocorticoids.
Collapse
Affiliation(s)
- T Kino
- Section on Pediatric Endocrinology, Developmental Endocrinology Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-1862, USA.
| | | | | |
Collapse
|
468
|
Gingras S, Simard J, Groner B, Pfitzner E. p300/CBP is required for transcriptional induction by interleukin-4 and interacts with Stat6. Nucleic Acids Res 1999; 27:2722-9. [PMID: 10373589 PMCID: PMC148481 DOI: 10.1093/nar/27.13.2722] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Interleukin-4 (IL-4) induces tyrosine phosphorylation of the latent transcription factor Stat6, which mediates the transcriptional responses of IL-4. The transactivation domain of Stat6 has recently been mapped to the C-terminal region of Stat6. We have investigated the mechanism by which Stat6, through its transactivation domain, induces transcription. Previous studies have shown that diverse regulated transcription factors interact with coactivators such as p300 and CBP. We report that Stat6 used the interaction with p300/CBP to exert its stimulatory effects. Overexpression of p300/CBP increased IL-4-induced transcription of Stat6 activated reporter genes. The requirement of p300/CBP for Stat6-mediated transactivation is shown by coexpression of the adenovirus E1A protein. E1A repressed the IL-4-induced reporter gene activity, while mutants of E1A, which do not interact with p300/CBP, failed to block the IL-4-induced response. In addition, we found that the minimal transactivation domain of Stat6, when fused to the GAL4 DNA-binding domain, was repressed by E1A, whereas the fusion protein p300-VP16 increased the transcriptional activity. In two-hybrid protein interaction assays in mammalian cells, we mapped the interaction domain of CBP to a C-terminal region between amino acids 1850 and 2176, a region distinct from the interaction domain of CBP with Stat1, Stat2 or Stat5. Finally, we show that antibodies raised against p300 coimmunoprecipitated Stat6 and p300 from transfected COS7 cells and antibodies against Stat6 coimmunprecipitated endogenous Stat6 and CBP from Ba/F3 cells. Our data suggest that the transactivation domain of Stat6 makes contact with the basal transcription machinery by binding to p300/CBP.
Collapse
Affiliation(s)
- S Gingras
- Medical Research Council Group in Molecular Endocrinology, CHUL Research Center and Laval University, 2705 Laurier Boulevard, Quebec City G1V 4G2, Canada
| | | | | | | |
Collapse
|
469
|
Lin RJ, Kao HY, Ordentlich P, Evans RM. The transcriptional basis of steroid physiology. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 1999; 63:577-85. [PMID: 10384323 DOI: 10.1101/sqb.1998.63.577] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- R J Lin
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | | | | | | |
Collapse
|
470
|
Subramaniam N, Treuter E, Okret S. Receptor interacting protein RIP140 inhibits both positive and negative gene regulation by glucocorticoids. J Biol Chem 1999; 274:18121-7. [PMID: 10364267 DOI: 10.1074/jbc.274.25.18121] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recent development in the field of gene regulation by nuclear receptors (NRs) have identified a role for cofactors in transcriptional control. While some of the NR-associated proteins serve as coactivators, the effect of the receptor interacting protein 140 (RIP140) on NR transcriptional responses is complex. In this report we have studied the effect of RIP140 on gene regulation by the glucocorticoid receptor (GR). We demonstrate that RIP140 antagonized all GR-mediated responses tested, which included activation through classical GRE, the synergistic effects of glucocorticoids on AP-1 and Pbx1/HOXB1 responsive elements, as well as gene repression through a negative GRE and cross-talk with NF-kappaB (RelA). This involved the ligand-binding domain of the GR and did not occur when the GR was bound to the antagonist RU486. The strong repressive effect of RIP140 was restricted to glucocorticoid-mediated responses in as much as it slightly increased signaling through the RelA and the Pit-1/Pbx proteins and only slightly repressed signaling through the Pbx1/HOXB1 and AP-1 proteins, excluding general squelching as a mechanism. Instead, this suggests that RIP140 acts as a direct inhibitor of GR function. In line with a direct effect of RIP140 on the GR, we demonstrate a GR-RIP140 interaction in vitro by a glutathione S-transferase-pull down assay. Furthermore, the repressive effect of RIP140 could partially be overcome by overexpression of the coactivator TIF2, which involved a competition between TIF2 and RIP140 for binding to the GR.
Collapse
Affiliation(s)
- N Subramaniam
- Department, Karolinska Institutet, Huddinge University Hospital, F60 Novum, SE-141 86 Huddinge, Sweden
| | | | | |
Collapse
|
471
|
Johnston H, Kneer J, Chackalaparampil I, Yaciuk P, Chrivia J. Identification of a novel SNF2/SWI2 protein family member, SRCAP, which interacts with CREB-binding protein. J Biol Chem 1999; 274:16370-6. [PMID: 10347196 DOI: 10.1074/jbc.274.23.16370] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ability of cAMP response-element binding protein (CREB)-binding protein (CBP) to function as a co-activator for a number of transcription factors appears to be mediated by its ability to act as a histone acetyltransferase and through its interaction with a number of other proteins (general transcription factors, histone acetyltransferases, and other co-activators). Here we report that CBP also interacts with a novel ATPase termed Snf2-Related CBP Activator Protein (SRCAP). Consistent with this activity, SRCAP contains the conserved ATPase domain found within members of the Snf2 family. Transfection experiments demonstrate that SRCAP is able to activate transcription when expressed as a Gal-SRCAP chimera and that SRCAP also enhances the ability of CBP to activate transcription. The adenoviral protein E1A was found to disrupt interaction between SRCAP and CBP possibly representing a mechanism for E1A-mediated transcriptional repression.
Collapse
Affiliation(s)
- H Johnston
- Department of Pharmacological and Physiological Sciences, Saint Louis University, Saint Louis, Missouri 63104, USA
| | | | | | | | | |
Collapse
|
472
|
Fritsch M, Aluker M, Murdoch FE. Identification of a unique liganded estrogen receptor complex released from the nucleus by decavanadate. Biochemistry 1999; 38:6987-96. [PMID: 10353810 DOI: 10.1021/bi982190k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Unoccupied estrogen receptor (ER) can be extracted from tissues by homogenization with a hypotonic buffer, whereas hormone-occupied ER becomes tightly bound to the nuclear pellet and must be extracted with high-salt-containing buffers. The molecular basis for estrogen-induced tight nuclear binding of ER remains an important puzzle. The different subcellular fractionation behaviors of the occupied and unoccupied ER are presumed to be due to a difference in their ability to interact with nuclear components, such as DNA and proteins. The proteins that are the targets for interaction with the hormone-occupied ER may be important for transcriptional regulation. However, the salt-extracted ER is recovered as a homodimer, and associated proteins are presumably lost due to the high-salt conditions. We have discovered an alternate method of releasing the occupied ER from the nucleus. Inclusion of 2 mM orthovanadate, polymerized primarily to decavanadate, in a hypotonic buffer efficiently releases over 90% of estrogen-bound ER from the nuclear pellet. The recovered ER complex is fully functional in terms of estrogen and DNA binding and is full-length by western blot analysis. Our data suggest that the mechanism of ER release is by decavanadate competition with nuclear DNA, rather than by inhibition of a phosphotyrosine phosphatase. Of particular interest, the decavanadate released occupied ER complex shows distinct behavior by sucrose density gradient sedimentation analysis. It is larger than the salt-extracted transformed ER, suggesting that an occupied ER in complex with nuclear proteins may be released from the nucleus by decavanadate.
Collapse
Affiliation(s)
- M Fritsch
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814-4799, USA
| | | | | |
Collapse
|
473
|
Abstract
Nuclear receptor coregulators are coactivators or corepressors that are required by nuclear receptors for efficient transcripitonal regulation. In this context, we define coactivators, broadly, as molecules that interact with nuclear receptors and enhance their transactivation. Analogously, we refer to nuclear receptor corepressors as factors that interact with nuclear receptors and lower the transcription rate at their target genes. Most coregulators are, by definition, rate limiting for nuclear receptor activation and repression, but do not significantly alter basal transcription. Recent data have indicated multiple modes of action of coregulators, including direct interactions with basal transcription factors and covalent modification of histones and other proteins. Reflecting this functional diversity, many coregulators exist in distinct steady state precomplexes, which are thought to associate in promoter-specific configurations. In addition, these factors may function as molecular gates to enable integration of diverse signal transduction pathways at nuclear receptor-regulated promoters. This review will summarize selected aspects of our current knowledge of the cellular and molecular biology of nuclear receptor coregulators.
Collapse
Affiliation(s)
- N J McKenna
- Department of Cell Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | |
Collapse
|
474
|
Shen XQ, Bubulya A, Zhou XF, Khazak V, Golemis EA, Shemshedini L. Ligand-free RAR can interact with the RNA polymerase II subunit hsRPB7 and repress transcription. Endocrine 1999; 10:281-9. [PMID: 10484292 DOI: 10.1007/bf02738627] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Upon binding retinoic acid (RA), the retinoic acid receptors (RARs) are able to positively and negatively regulate transcription. It has been shown that the DNA-binding domain and carboxy terminus of RARs are necessary for the ligand-dependent ability of the receptor to repress AP-1 transcriptional activity. A fusion of these two regions, shown to constitutively inhibit AP-1 activity, was used in a yeast two-hybrid screen to identify a novel hRARalpha-interacting protein. This protein, hsRPB7, a subunit of RNA polymerase II, interacts with hRARalpha in the absence of RA and addition of RA disrupts the interaction. Truncation analysis indicates that hsRPB7 specifically interacts with the hRARalpha DNA-binding domain. This interaction appears to compromise transcription, since overexpressed hRARalpha, in the absence of RA, is able to repress the activity of several RNA polymerase II-dependent activators, including AP-1 and the glucocorticoid receptor. This repression is relieved by transfected hsRPB7, strongly suggesting that ligand-free hRARalpha can block AP-1 activity by sequestering hsRPB7. The repression is dependent on the integrity of the hRARalpha DBD, since a mutation within the DBD blocks both the hRARalpha-hsRPB7 interaction and ligand-free hRARalpha repression of AP-1. These results provide evidence that non-liganded hRARalpha can regulate transcription by directly interacting with RNA polymerase II, and thus suggest a novel pathway by which hRARalpha can cross-talk with AP-1 and perhaps other families of transcriptional activators.
Collapse
Affiliation(s)
- X Q Shen
- University of Toledo, Department of Biology, Ohio 43606, USA
| | | | | | | | | | | |
Collapse
|
475
|
Jiménez-Lara AM, Aranda A. Vitamin D represses retinoic acid-dependent transactivation of the retinoic acid receptor-beta2 promoter: the AF-2 domain of the vitamin D receptor is required for transrepression. Endocrinology 1999; 140:2898-907. [PMID: 10342883 DOI: 10.1210/endo.140.6.6770] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Retinoic acid (RA)-dependent activation of the RA receptor beta2 (RARbeta2) gene in embryonal carcinoma cells is mediated by binding of retinoid receptor heterodimers (RAR/RXR) to a RA response element (RARE) located closely to the TATA box. We have analyzed the effect of vitamin D on the response of the RARbeta2 promoter to RA in pituitary GH4C1 cells that coexpress receptors for retinoids and vitamin D. Incubation with vitamin D markedly reduced the response to RA caused by transcriptional interference of the vitamin D receptor (VDR) on the RARE. This DNA element binds VDR/RXR heterodimers with high affinity, and these inactive heterodimers can displace active RAR/RXR from the RARE. Overexpression of RXR in GH4C1 cells, as well as incubation with BMS649 (a RXR-specific ligand), increased the inhibitory effect of vitamin D, suggesting that the VDR/RXR heterodimer is the repressive species and that titration of RXR is not responsible for this inhibition. Although DNA binding could be required for full potency of the inhibitory activity of VDR, it is not absolutely required because a truncated receptor (VDR delta1-111), lacking the DNA binding domain, also displays repressor activity. Furthermore, the ability to mediate transrepression by vitamin D was strongly decreased when a mutant VDR in which the last 12 C-terminal aminoacids have been deleted (VDR deltaAF-2) was used. Because this region contains the domain responsible for ligand-dependent recruitment of coactivators, titration of common coactivators for VDR and RAR could be involved in the inhibitory effect of vitamin D. In agreement with this hypothesis, overexpression of E1A, which can act as a RARbeta2 promoter-specific coactivator, significantly reversed repression by vitamin D.
Collapse
Affiliation(s)
- A M Jiménez-Lara
- Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Spain
| | | |
Collapse
|
476
|
Yukawa K, Tanaka T, Tsuji S, Akira S. Regulation of transcription factor C/ATF by the cAMP signal activation in hippocampal neurons, and molecular interaction of C/ATF with signal integrator CBP/p300. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1999; 69:124-34. [PMID: 10350644 DOI: 10.1016/s0169-328x(99)00086-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The CCAAT/enhancer binding proteins related activating transcription factor, C/ATF, is a mouse leucine-zipper transcription factor which is structurally homologous to ApCREB2, a suppressor integral to long-term synaptic plasticity in Aplysia. To gain a clue to whether C/ATF is involved in long-term plasticities of brain, we examined if the expression levels of C/ATF are modulated by cAMP, an inducer crucial for memory formation in Aplysia, Drosophila and mice. Our in situ hybridization analysis revealed the expression of C/ATF mRNA in hippocampal neurons. C/ATF protein levels increased after the cAMP signal stimulation in hippocampal neurons, while C/ATF mRNA levels remained constant. The human activating transcription factor 4 (hATF4), another homolog of ApCREB2, interacts with multiple domains of the coactivator CREB-binding protein (CBP), resulting in the potentiation of its ability to activate transcription. As expected, C/ATF was found to interact with three domains of CBP including CREB binding domain or kinase-inducible interaction (KIX) domain, the third cysteine-histidine-rich region (CH3 domain) and the nuclear receptor coactivator p160/SRC-1-interacting domain. Interestingly, C/ATF was further found to interact strongly with CREB binding protein/p300 (CBP/p300) CH1 domain. Mammalian two hybrid assays indicated that the interaction between C/ATF and CBP/p300 can occur in mammalian cells, and that the p300 CH1 domain is critical for the interaction. Thus, C/ATF may be implicated in transcription-dependent phase of hippocampal long-term plasticities through the modulation of its protein level under cAMP signal and the interaction with signal integrator, CBP/p300.
Collapse
Affiliation(s)
- K Yukawa
- Department of Physiology II, Wakayama Medical College, 811-1 kimiidera, Wakayama 641-0012, Japan.
| | | | | | | |
Collapse
|
477
|
Deconstructing a Disease: RAR, Its Fusion Partners, and Their Roles in the Pathogenesis of Acute Promyelocytic Leukemia. Blood 1999. [DOI: 10.1182/blood.v93.10.3167.410k44_3167_3215] [Citation(s) in RCA: 734] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
478
|
McMahon C, Suthiphongchai T, DiRenzo J, Ewen ME. P/CAF associates with cyclin D1 and potentiates its activation of the estrogen receptor. Proc Natl Acad Sci U S A 1999; 96:5382-7. [PMID: 10318892 PMCID: PMC21868 DOI: 10.1073/pnas.96.10.5382] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Cyclin D1 is overexpressed in a significant percentage of human breast cancers, particularly in those that also express the estrogen receptor (ER). We and others have demonstrated previously that experimentally overexpressed cyclin D1 can associate with the ER and stimulate its transcriptional functions in the absence of estrogen. This effect is separable from the established function of cyclin D1 as a regulator of cyclin-dependent kinases. Here, we demonstrate that cyclin D1 can also interact with the histone acetyltransferase, p300/CREB-binding protein-associated protein (P/CAF), thereby facilitating an association between P/CAF and the ER. Ectopic expression of P/CAF potentiates cyclin D1-stimulated ER activity in a dose-dependent manner. This effect is largely dependent on the acetyltransferase activity of P/CAF. These results suggest that cyclin D1 may trigger the activation of the ER through the recruitment of P/CAF, by providing histone acetyltransferase activity and, potentially, links to additional P/CAF-associated transcriptional coactivators.
Collapse
Affiliation(s)
- C McMahon
- Department of Adult Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston MA 02115, USA
| | | | | | | |
Collapse
|
479
|
Jiménez-Lara AM, Aranda A. Lysine 246 of the vitamin D receptor is crucial for ligand-dependent interaction with coactivators and transcriptional activity. J Biol Chem 1999; 274:13503-10. [PMID: 10224118 DOI: 10.1074/jbc.274.19.13503] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mutant K246A in the predicted helix 3 of the ligand-binding domain, as well as mutants L417S and E420Q in helix 12, which contains the core ligand-dependent transcriptional activation domain (AF-2), were generated to examine AF-2 activity of the vitamin D receptor (VDR). These mutations abolished vitamin D-dependent transactivation. In addition, VDR mediates a ligand-dependent repression of the response of the retinoic acid receptor beta2 promoter to retinoic acid, and the helix 3 and helix 12 mutants were unable to mediate transrepression. Furthermore, the VDR mutants, but not the native receptor, enhanced phorbol ester induction of the activator protein-1-containing collagenase promoter. The helix 3 and helix 12 mutations strikingly reduced the ability of VDR to interact with the coactivators steroid receptor coactivator-1, ACTR, and the CREB-binding protein. As a consequence, overexpression of steroid receptor coactivator-1 increased vitamin D-dependent transactivation by VDR but not by the K246A mutant. These results indicate that the lysine 246 participates, together with residues in helix 12, in the recruitment of coactivators and that AF-2 activity is involved both in ligand-dependent transactivation and in transrepression by VDR.
Collapse
Affiliation(s)
- A M Jiménez-Lara
- Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, 28029 Madrid, Spain
| | | |
Collapse
|
480
|
Billon N, Carlisi D, Datto MB, van Grunsven LA, Watt A, Wang XF, Rudkin BB. Cooperation of Sp1 and p300 in the induction of the CDK inhibitor p21WAF1/CIP1 during NGF-mediated neuronal differentiation. Oncogene 1999; 18:2872-82. [PMID: 10362258 DOI: 10.1038/sj.onc.1202712] [Citation(s) in RCA: 120] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Addition of nerve growth factor (NGF) to PC12 cells promotes neuronal differentiation while inhibiting cell proliferation. In order to understand how NGF exerts its antimitogenic effect during differentiation, we have studied the mechanism by which this factor activates the promoter of the CDK inhibitor p21W4F1/CIP1. The minimal region of the p21 promoter required for the NGF-induction was mapped to a contiguous stretch of 10 bp located 83 bases upstream of the transcription initiation site. This GC-rich region was shown to interact specifically with the transcription factor Sp1 and the related protein Sp3, in either exponentially-growing or NGF-treated PC12 cells. The addition of NGF resulted in an accumulation of the transcriptional co-activator p300 in complexes associated with the NGF-responsive region. Transcriptional activity of Sp1, Sp3 and p300 was specifically induced by NGF in a Gal4-fusion assay, indicating that induction of p21 during neuronal differentiation may involve regulation of the activity of these factors by NGF. Furthermore, p300 was able to act as a co-activator for Sp1-mediated transcriptional activation in PC12 cells, suggesting that p300 and Sp1 may cooperate in activating p21 transcription during the withdrawal of neuronal precursors from the cell cycle. This hypothesis is supported by experiments showing that p300 and Sp1 form complexes in PC12 cells.
Collapse
Affiliation(s)
- N Billon
- Differentiation & Cell Cycle Group, Laboratoire de Biologie Moleculaire et Cellulaire, UMR 49 CNRS/Ecole Normale Supérieure de Lyon, France
| | | | | | | | | | | | | |
Collapse
|
481
|
Macián F, Rao A. Reciprocal modulatory interaction between human immunodeficiency virus type 1 Tat and transcription factor NFAT1. Mol Cell Biol 1999; 19:3645-53. [PMID: 10207088 PMCID: PMC84169 DOI: 10.1128/mcb.19.5.3645] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) gene expression is regulated by interactions between both viral and host factors. These interactions are also responsible for changes in the expression of many host cell genes, including cytokines and other immune regulators, which may account for the state of immunological dysregulation that characterizes HIV-1 infection. We have investigated the role of a host cell protein, the transcription factor NFAT1, in HIV-1 pathogenesis. We show that NFAT1 interacts with Tat and that this interaction, which involves the major transactivation domain of NFAT1 and the amino-terminal region of Tat, results in a reciprocal modulatory interplay between the proteins: whereas Tat enhances NFAT1-driven transcription in Jurkat T cells, NFAT1 represses Tat-mediated transactivation of the HIV-1 long terminal repeat (LTR). Moreover, NFAT1 binds to the kappaB sites on the viral LTR and negatively regulates NF-kappaB-mediated activation of HIV-1 transcription, by competing with NF-kappaB1 for its binding sites on the HIV-1 LTR. Tat-mediated enhancement of NFAT1 transactivation may explain the upregulation of interleukin 2 and other cytokines that occurs during HIV-1 infection. We discuss the potentially opposing roles of NFAT1 and another family member, NFAT2, in regulating gene transcription of HIV-1 and endogenous cytokine genes.
Collapse
Affiliation(s)
- F Macián
- Department of Pathology, Harvard Medical School, and Center for Blood Research, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
482
|
Abstract
The functions of the group of proteins known as nuclear receptors will be understood fully only when their working three-dimensional structures are known. These ligand-activated transcription factors belong to the steroid-thyroid-retinoid receptor superfamily, which include the receptors for steroids, thyroid hormone, vitamins A- and D-derived hormones, and certain fatty acids. The majority of family members are homologous proteins for which no ligand has been identified (the orphan receptors). Molecular cloning and structure/function analyses have revealed that the members of the superfamily have a common functional domain structure. This includes a variable N-terminal domain, often important for transactivation of transcription; a well conserved DNA-binding domain, crucial for recognition of specific DNA sequences and protein:protein interactions; and at the C-terminal end, a ligand-binding domain, important for hormone binding, protein: protein interactions, and additional transactivation activity. Although the structure of some independently expressed single domains of a few of these receptors have been solved, no holoreceptor structure or structure of any two domains together is yet available. Thus, the three-dimensional structure of the DNA-binding domains of the glucocorticoid, estrogen, retinoic acid-beta, and retinoid X receptors, and of the ligand-binding domains of the thyroid, retinoic acid-gamma, retinoid X, estrogen, progesterone, and peroxisome proliferator activated-gamma receptors have been solved. The secondary structure of the glucocorticoid receptor N-terminal domain, in particular the taul transcription activation region, has also been studied. The structural studies available not only provide a beginning stereochemical knowledge of these receptors, but also a basis for understanding some of the topological details of the interaction of the receptor complexes with coactivators, corepressors, and other components of the transcriptional machinery. In this review, we summarize and discuss the current information on structures of the steroid-thyroid-retinoid receptors.
Collapse
Affiliation(s)
- R Kumar
- Department of Human Biological Chemistry and Genetics, University of Texas Medical Branch at Galveston, 77555-0645, USA
| | | |
Collapse
|
483
|
Webster GA, Perkins ND. Transcriptional cross talk between NF-kappaB and p53. Mol Cell Biol 1999; 19:3485-95. [PMID: 10207072 PMCID: PMC84141 DOI: 10.1128/mcb.19.5.3485] [Citation(s) in RCA: 487] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/1998] [Accepted: 02/12/1999] [Indexed: 11/20/2022] Open
Abstract
Many cellular stimuli result in the induction of both the tumor suppressor p53 and NF-kappaB. In contrast to activation of p53, which is associated with the induction of apoptosis, stimulation of NF-kappaB has been shown to promote resistance to programmed cell death. These observations suggest that a regulatory mechanism must exist to integrate these opposing outcomes and coordinate this critical cellular decision-making event. Here we show that both p53 and NF-kappaB inhibit each other's ability to stimulate gene expression and that this process is controlled by the relative levels of each transcription factor. Expression of either wild-type p53 or the RelA(p65) NF-kappaB subunit suppresses stimulation of transcription by the other factor from a reporter plasmid in vivo. Moreover, endogenous, tumor necrosis factor alpha-activated NF-kappaB will inhibit endogenous wild-type p53 transactivation. Following exposure to UV light, however, the converse is observed, with p53 downregulating NF-kappaB-mediated transcriptional activation. Both p53 and RelA(p65) interact with the transcriptional coactivator proteins p300 and CREB-binding protein (CBP), and we demonstrate that these results are consistent with competition for a limiting pool of p300/CBP complexes in vivo. These observations have many implications for regulation of the transcriptional decision-making mechanisms that govern cellular processes such as apoptosis. Furthermore, they suggest a previously unrealized mechanism through which dysregulated NF-kappaB can contribute to tumorigenesis and disease.
Collapse
Affiliation(s)
- G A Webster
- Department of Biochemistry, Division of Gene Regulation and Expression, University of Dundee, Dundee DD1 5EH, Scotland, United Kingdom
| | | |
Collapse
|
484
|
Mice Homozygous for a Truncated Form of CREB-Binding Protein Exhibit Defects in Hematopoiesis and Vasculo-angiogenesis. Blood 1999. [DOI: 10.1182/blood.v93.9.2771] [Citation(s) in RCA: 119] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
CREB-binding protein (CBP) and the closely related adenovirus E1A-associated 300-kD protein (p300) function as coactivators of transcription factors such as CREB, c-Fos, c-Jun, c-Myb, and several nuclear receptors. To study the roles of CBP in embryonic development, we generated CBP homozygous mutant mouse embryos that expressed a truncated form of CBP protein (1-1084 out of 2441 residues). The embryos died between embryonic days 9.5 (E9.5) and E10.5 and exhibited a defect in neural tube closure. They appeared pale and showed decreases in erythroid cells and colony-forming cells (CFCs) in the yolk sac, suggesting defects in primitive hematopoiesis. Immunohistochemistry with an anti-PECAM antibody showed a lack of vascular network formation. Organ culture of para-aortic splanchnopleural mesoderm (P-Sp) with stromal cells (OP9) showed an autonomous abnormality of putative endothelial precursors, which may induce the microenvironmental defect in hematopoiesis. In addition, these defects were partially rescued by the addition of VEGF to this culture. Our analyses demonstrate that CBP plays an essential role in hematopoiesis and vasculo-angiogenesis.
Collapse
|
485
|
Mice Homozygous for a Truncated Form of CREB-Binding Protein Exhibit Defects in Hematopoiesis and Vasculo-angiogenesis. Blood 1999. [DOI: 10.1182/blood.v93.9.2771.409a46_2771_2779] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
CREB-binding protein (CBP) and the closely related adenovirus E1A-associated 300-kD protein (p300) function as coactivators of transcription factors such as CREB, c-Fos, c-Jun, c-Myb, and several nuclear receptors. To study the roles of CBP in embryonic development, we generated CBP homozygous mutant mouse embryos that expressed a truncated form of CBP protein (1-1084 out of 2441 residues). The embryos died between embryonic days 9.5 (E9.5) and E10.5 and exhibited a defect in neural tube closure. They appeared pale and showed decreases in erythroid cells and colony-forming cells (CFCs) in the yolk sac, suggesting defects in primitive hematopoiesis. Immunohistochemistry with an anti-PECAM antibody showed a lack of vascular network formation. Organ culture of para-aortic splanchnopleural mesoderm (P-Sp) with stromal cells (OP9) showed an autonomous abnormality of putative endothelial precursors, which may induce the microenvironmental defect in hematopoiesis. In addition, these defects were partially rescued by the addition of VEGF to this culture. Our analyses demonstrate that CBP plays an essential role in hematopoiesis and vasculo-angiogenesis.
Collapse
|
486
|
O'Connor MJ, Zimmermann H, Nielsen S, Bernard HU, Kouzarides T. Characterization of an E1A-CBP interaction defines a novel transcriptional adapter motif (TRAM) in CBP/p300. J Virol 1999; 73:3574-81. [PMID: 10196247 PMCID: PMC104130 DOI: 10.1128/jvi.73.5.3574-3581.1999] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The adenovirus E1A protein subverts cellular processes to induce mitotic activity in quiescent cells. Important targets of E1A include members of the transcriptional adapter family containing CBP/p300. Competition for CBP/p300 binding by various cellular transcription factors has been suggested as a means of integrating different signalling pathways and may also represent a potential mechanism by which E1A manipulates cell fate. Here we describe the characterization of the interaction between E1A and the C/H3 region of CBP. We define a novel conserved 12-residue transcriptional adapter motif (TRAM) within CBP/p300 that represents the binding site for both E1A and numerous cellular transcription factors. We also identify a sequence (FPESLIL) within adenovirus E1A that is required to bind the CBP TRAM. Furthermore, an E1A peptide containing the FPESLIL sequence is capable of preventing the interaction between CBP and TRAM-binding transcription factors, such as p53, E2F, and TFIIB, thus providing a molecular model for E1A action. As an in vivo demonstration of this model, we used a small region of CBP containing a functional TRAM that can bind to the p53 protein. The CBP TRAM binds p53 sequences targeted by the cellular regulator MDM2, and we demonstrate that an MDM2-p53 interaction can be disrupted by the CBP TRAM, leading to stabilization of cellular p53 levels and the activation of p53-dependent transcription. Transcriptional activation of p53 by the CBP TRAM is abolished by wild-type E1A but not by a CBP-binding-deficient E1A mutant.
Collapse
Affiliation(s)
- M J O'Connor
- Institute of Molecular and Cell Biology, Singapore 117 609, Singapore.
| | | | | | | | | |
Collapse
|
487
|
Böger H, Gruss P. Functional determinants for the tetracycline-dependent transactivator tTA in transgenic mouse embryos. Mech Dev 1999; 83:141-53. [PMID: 10381574 DOI: 10.1016/s0925-4773(99)00042-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Tetracycline-dependent transgenes promise to be an important tool for investigating the time dependence of gene function during mouse development. The pivotal element of this approach is the recombinant tetracycline-dependent transactivator tTA. Using a modified gene trap approach we successfully generated mouse lines expressing tTA in a wide spread manner during embryogenesis. The transgenic model system which we established allowed us to depict transactivator and target gene expression patterns with high resolution by histochemical means. Our data provide evidence that with decreasing concentrations of tTA protein the state of chromatin acetylation becomes an increasingly important determinant for tTA function. The observation of tTA-dependent position effects on tetO-linked target genes suggests that transcription patterns can be encoded at the level of promoter preactivation.
Collapse
Affiliation(s)
- H Böger
- Department of Molecular Cell Biology, Max-Planck-Institute for Biophysical Chemistry, Am Fassberg, 37077, Göttingen, Germany
| | | |
Collapse
|
488
|
Dressel U, Thormeyer D, Altincicek B, Paululat A, Eggert M, Schneider S, Tenbaum SP, Renkawitz R, Baniahmad A. Alien, a highly conserved protein with characteristics of a corepressor for members of the nuclear hormone receptor superfamily. Mol Cell Biol 1999; 19:3383-94. [PMID: 10207062 PMCID: PMC84131 DOI: 10.1128/mcb.19.5.3383] [Citation(s) in RCA: 146] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/1998] [Accepted: 01/08/1999] [Indexed: 02/04/2023] Open
Abstract
Some members of nuclear hormone receptors, such as the thyroid hormone receptor (TR), silence gene expression in the absence of the hormone. Corepressors, which bind to the receptor's silencing domain, are involved in this repression. Hormone binding leads to dissociation of corepressors and binding of coactivators, which in turn mediate gene activation. Here, we describe the characteristics of Alien, a novel corepressor. Alien interacts with TR only in the absence of hormone. Addition of thyroid hormone leads to dissociation of Alien from the receptor, as shown by the yeast two-hybrid system, glutathione S-transferase pull-down, and coimmunoprecipitation experiments. Reporter assays indicate that Alien increases receptor-mediated silencing and that it harbors an autonomous silencing function. Immune staining shows that Alien is localized in the cell nucleus. Alien is a highly conserved protein showing 90% identity between human and Drosophila. Drosophila Alien shows similar activities in that it interacts in a hormone-sensitive manner with TR and harbors an autonomous silencing function. Specific interaction of Alien is seen with Drosophila nuclear hormone receptors, such as the ecdysone receptor and Seven-up, the Drosophila homologue of COUP-TF1, but not with retinoic acid receptor, RXR/USP, DHR 3, DHR 38, DHR 78, or DHR 96. These properties, taken together, show that Alien has the characteristics of a corepressor. Thus, Alien represents a member of a novel class of corepressors specific for selected members of the nuclear hormone receptor superfamily.
Collapse
Affiliation(s)
- U Dressel
- Genetisches Institut der Justus-Liebig-Universität, D-35392 Giessen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
489
|
Affiliation(s)
- L P Freedman
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA
| |
Collapse
|
490
|
Stoecklin E, Wissler M, Schaetzle D, Pfitzner E, Groner B. Interactions in the transcriptional regulation exerted by Stat5 and by members of the steroid hormone receptor family. J Steroid Biochem Mol Biol 1999; 69:195-204. [PMID: 10418993 DOI: 10.1016/s0960-0760(99)00052-7] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The pathways which connect extracellular signals with the regulation of the activity of transcription factors are being investigated in molecular detail. Extensive progress has been made in the description of the mode of action of steroid hormones and of cytokines. Steroid hormones associate intracellularly with latent receptor molecules, cause the dissociation of masking proteins, the dimerization of receptors, and their binding to specific hormone response elements in the promoters of target genes. Cytokines also activate latent transcription factors (Stats--signal transducers and activators of transcription), but act through an enzymatic mechanism. Tyrosine kinases associated with the transmembrane cytokine receptors phosphorylate Stat molecules. The phosphorylated monomers dimerize and assume specific DNA binding ability. Both classes of transcription factors bind to different response elements and regulate different target genes and both signals, cytokines and steroid hormones, can affect growth differentiation and homeostasis of different cell types. Here, we describe that Stat5, a molecule activated by several essential cytokines, functionally interacts with members of the steroid receptor family. We find that glucocorticoid receptor, mineralocorticoid receptor and progesterone receptor synergize with Stat5 in the induction of the transcription from the beta-casein gene promoter. The estrogen receptor diminishes Stat5 mediated induction and the androgen receptor has no effect. Conversely, Stat5 negatively interferes with glucocorticoid receptor, mineralocorticoid receptor and progesterone receptor induced transcription from the MMTV LTR and the estrogen receptor induced transcription from an ERE-containing promoter.
Collapse
Affiliation(s)
- E Stoecklin
- Institute for Experimental Cancer Research, Tumor Biology Center, Freiburg, Germany
| | | | | | | | | |
Collapse
|
491
|
Mihara S, Suzuki N, Wakisaka S, Suzuki S, Sekita N, Yamamoto S, Saito N, Hoshino T, Sakane T. Effects of thyroid hormones on apoptotic cell death of human lymphocytes. J Clin Endocrinol Metab 1999; 84:1378-85. [PMID: 10199782 DOI: 10.1210/jcem.84.4.5598] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Apoptosis plays a critical role in the development and homeostasis of tissues, especially those with high cell turnover such as the lymphoid system. We have examined the effects of thyroid hormones, TSH and TRH, on apoptosis of human T lymphocytes. We found that T lymphocytes cultured with T3 and T4, but not TSH nor TRH, in vitro showed enhanced apoptosis, evidenced by DNA ladder formation and characteristic morphological changes. In addition, prolonged cultivation with thyroid hormones of the lymphocytes further enhanced the extent of apoptosis. We also found that treatment with thyroid hormones of T lymphocytes induced reduction of mitochondrial transmembrane potential (delta psi) and production of reactive oxygen species, both of which are intimately associated with apoptotic cell death. In addition, cellular expression of antiapoptotic Bcl-2 protein was clearly reduced by the treatment of lymphocytes with thyroid hormones in vitro. Thus, T lymphocytes treated with thyroid hormones accompany reduction of Bcl-2 protein expression, production of reactive oxygen species, and reduction of mitochondrial delta psi, resulting in apoptotic lymphocyte death. Moreover, we found that lymphocytes in patients with Graves' disease showed enhanced apoptosis compared with those in normal individuals. These results suggest that thyroid hormones have the potential to induce apoptotic cell death of human lymphocytes in vivo and in vitro.
Collapse
Affiliation(s)
- S Mihara
- Department of Immunology, St. Marianna University School of Medicine, Kawasaki, Kanagawa, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
492
|
Richardson J, Vinson C, Bodwell J. Cyclic adenosine-3',5'-monophosphate-mediated activation of a glutamine synthetase composite glucocorticoid response element. Mol Endocrinol 1999; 13:546-54. [PMID: 10194761 DOI: 10.1210/mend.13.4.0268] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The glutamate synthetase gene (GS) contains a composite glucocorticoid response element (cGRE) comprised of a GRE and an adjacent element with features of both a cAMP-response element (CRE) and a 12-O-tetradecanoylphorbol 13-acetate (TPA) response element (TRE). The CRE/TRE element of the cGRE contributed to two modes of transcriptional activation: 1) enhancement of the response to cortisol and 2) a synergistic response to cortisol and increased cAMP. COS-7 cells transfected with a cGRE-luciferase construct show minimal expression under basal conditions or forskolin treatment. After cortisol treatment, luciferase activity from the cGRE is enhanced 4- to 8-fold greater than the GRE portion of the cGRE or a GRE from the tyrosine aminotransferase gene. Treatment with both forskolin and cortisol produced a 2- to 4-fold synergistic response over cortisol alone. Synergy is also seen with 8-bromo-cAMP, is specific for the cGRE, and occurs in a number of established cell lines. Elimination of the GRE or CRE/TRE reduces the synergy by 70-100%. Altering the CRE/TRE to GRE spacing changed both enhancement and synergy. Moving the elements 3 bp closer or extending 15 bp reduced enhancement. Synergy was markedly reduced when elements were one half of a helical turn out of phase. Western blots verified that CREB (cAMP-responsive binding protein) and ATF-1 (activating transcription factor-1) binds to the cGRE sequence. A specific dominant negative inhibitor of the CREB family, A-CREB, reduced synergy by 50%. These results suggest that the GS cGRE can potentially integrate signaling from both the cAMP and glucocorticoid receptor transduction pathways and that CREB/ATF-1 may play an important role in this process.
Collapse
Affiliation(s)
- J Richardson
- Department of Physiology, Dartmouth Medical School, Lebanon, New Hampshire 03756, USA
| | | | | |
Collapse
|
493
|
Abstract
The nuclear hormone receptors constitute a large family of transcription factors. The binding of the hormonal ligands induces nuclear receptors to assume a configuration that leads to transcriptional activation. Recent studies of retinoic acid and thyroid hormone receptors revealed that, upon ligand binding, a histone deacetylase (HDAC)-containing complex is displaced from the nuclear receptor in exchange for a histone acetyltransferase (HAT)-containing complex. These observations suggest that ligand-dependent recruitment of chromatin-remodeling activity serves as a general mechanism underlying the switch of nuclear receptors from being transcriptionally repressive to being transcriptionally active.
Collapse
Affiliation(s)
- L Xu
- Howard Hughes Medical Institute, Biomedical Sciences PhD Program, University of California at San Diego, La Jolla, California 92093-0648, USA
| | | | | |
Collapse
|
494
|
McKenna NJ, Xu J, Nawaz Z, Tsai SY, Tsai MJ, O'Malley BW. Nuclear receptor coactivators: multiple enzymes, multiple complexes, multiple functions. J Steroid Biochem Mol Biol 1999; 69:3-12. [PMID: 10418975 DOI: 10.1016/s0960-0760(98)00144-7] [Citation(s) in RCA: 286] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Nuclear receptors are ligand-inducible transcription factors which mediate the physiological effects of steroid, thyroid and retinoid hormones. By regulating the assembly of a transcriptional preinitiation complex at the promoter of target genes, they enhance the expression of these genes in response to hormone. Recent evidence suggests that nuclear receptors act in part by recruiting multiple coregulator proteins which may have specific functions during transcriptional initiation. Liganded receptors recruit members of the SRC family, a group of structurally and functionally related transcriptional coactivators. Receptors also interact with the transcriptional cointegrators p300 and CBP, which are proposed to integrate diverse afferent signals at hormone-regulated promoters. p300/CBP and members of the SRC coactivator family have intrinsic histone acetyltransferase activity which is believed to disrupt the nucleosomal structure at these promoters. Other nuclear receptor coactivators include a member of the SWI/SNF complex, BRG-1, which couples ATP hydrolysis to chromatin remodelling, and the E3 ubiquitin-protein ligases E6-AP and RPF-1. Finally, nuclear receptor coactivators appear to be organized into preformed subcomplexes, an arrangement that may facilitate their efficient assembly into diverse higher order configurations.
Collapse
Affiliation(s)
- N J McKenna
- Department of Cell Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
495
|
Agadir A, Lazzaro G, Zheng Y, Zhang XK, Mehta R. Resistance of HBL100 human breast epithelial cells to vitamin D action. Carcinogenesis 1999; 20:577-82. [PMID: 10223184 DOI: 10.1093/carcin/20.4.577] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Vitamin D analogs are effective inhibitors of breast cancer cell growth, but many breast cancer cell lines show various degrees of resistance to the growth inhibitory effect of vitamin D. In this study, we investigated the mechanism of 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] resistance of the human breast epithelial cell line HBL100, which had been immortalized by Simian virus 40 (SV40) large T antigen. We determined the expression, DNA binding and transactivation activity of vitamin D3 receptor (VDR) in HBL100 and a vitamin D-sensitive ZR75-1 breast cancer cell line. Western blot analysis revealed a comparable expression of VDR gene in both cell lines. However, gel retardation assays demonstrated nuclear proteins from ZR75-1 cells but not from HBL100; cells expressed a 9-fold increase in the binding activity with a vitamin D response element (VDRE). Using a transient transfection assay, we showed that the VDRE was activated by 8-fold in ZR75-1. However, in HBL100 cells there was no activation observed in response to 1,25(OH)2D3. On the other hand, co-transfection of a VDR expression vector could restore 1,25(OH)2D3-induced VDRE transcription in HBL100 cells. Moreover, stable expression of VDR in HBL100 cells resulted in enhanced sensitivity of the cells to the growth inhibitory effect of 1,25(OH)2D3. Since CV-1 cells express very little endogenous VDR, the interactions of VDR and large T antigen were carried out in these cells. By transient co-transfection, we observed that expression of the large T antigen strongly inhibited 1,25(OH)2D3-induced VDRE transcriptional activity in a dose-dependent fashion in CV-1 cells. At 120 ng VDR concentration, the inhibition was completely reversed. Thus the loss of the growth inhibitory effect of vitamin D3 in HBL100 cells may be caused by the expression of the large T antigen in the cells, and provide further evidence that VDR is required for efficient growth inhibition by vitamin D3.
Collapse
Affiliation(s)
- A Agadir
- Burnham Institute, La Jolla Cancer Research Center, CA 92037, USA
| | | | | | | | | |
Collapse
|
496
|
Miyamoto T, Kakizawa T, Hashizume K. Inhibition of nuclear receptor signalling by poly(ADP-ribose) polymerase. Mol Cell Biol 1999; 19:2644-9. [PMID: 10082530 PMCID: PMC84057 DOI: 10.1128/mcb.19.4.2644] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Mammalian poly(ADP-ribose) polymerase (PARP) is a nuclear chromatin-associated protein with a molecular mass of 114 kDa that catalyzes the transfer of ADP-ribose units from NAD+ to nuclear proteins that are located within chromatin. We report here the identification of a novel property of PARP as a modulator of nuclear receptor signalling. PARP bound directly to retinoid X receptors (RXR) and repressed ligand-dependent transcriptional activities mediated by heterodimers of RXR and thyroid hormone receptor (TR). The interacting surface is located in the DNA binding domain of RXRalpha. Gel shift assays demonstrated that PARP bound to TR-RXR heterodimers on the response element. Overexpression of wild-type PARP selectively blocked nuclear receptor function in transient transfection experiments, while enzyme-defective mutant PARP did not show significant inhibition, suggesting that the essential role of poly(ADP-ribosyl) enzymatic activity is in gene regulation by nuclear receptors. Furthermore, PARP fused to the Gal4 DNA binding domain suppressed the transcriptional activity of the promoter harboring the Gal4 binding site. Thus, PARP has transcriptional repressor activity when recruited to the promoter. These results indicates that poly(ADP-ribosyl)ation is a negative cofactor in gene transcription, regulating a member of the nuclear receptor superfamily.
Collapse
Affiliation(s)
- T Miyamoto
- Department of Geriatrics, Endocrinology and Metabolism, Shinshu University School of Medicine, Matsumoto 390-8621, Japan.
| | | | | |
Collapse
|
497
|
Perissi V, Dasen JS, Kurokawa R, Wang Z, Korzus E, Rose DW, Glass CK, Rosenfeld MG. Factor-specific modulation of CREB-binding protein acetyltransferase activity. Proc Natl Acad Sci U S A 1999; 96:3652-7. [PMID: 10097092 PMCID: PMC22349 DOI: 10.1073/pnas.96.7.3652] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
CREB-binding proteins (CBP) and p300 are essential transcriptional coactivators for a large number of regulated DNA-binding transcription factors, including CREB, nuclear receptors, and STATs. CBP and p300 function in part by mediating the assembly of multiprotein complexes that contain additional cofactors such as p300/CBP interacting protein (p/CIP), a member of the p160/SRC family of coactivators, and the p300/CBP associated factor p/CAF. In addition to serving as molecular scaffolds, CBP and p300 each possess intrinsic acetyltransferase activities that are required for their function as coactivators. Here we report that the adenovirus E1A protein inhibits the acetyltransferase activity of CBP on binding to the C/H3 domain, whereas binding of CREB, or a CREB/E1A fusion protein to the KIX domain, fails to inhibit CBP acetyltransferase activity. Surprisingly, p/CIP can either inhibit or stimulate CBP acetyltransferase activity depending on the specific substrate evaluated and the functional domains present in the p/CIP protein. While the CBP interaction domain of p/CIP inhibits acetylation of histones H3, H4, or high mobility group by CBP, it enhances acetylation of other substrates, such as Pit-1. These observations suggest that the acetyltransferase activities of CBP/p300 and p/CAF can be differentially modulated by factors binding to distinct regions of CBP/p300. Because these interactions are likely to result in differential effects on the coactivator functions of CBP/p300 for different classes of transcription factors, regulation of CBP/p300 acetyltransferase activity may represent a mechanism for integration of diverse signaling pathways.
Collapse
Affiliation(s)
- V Perissi
- Howard Hughes Medical Institute, University of California at San Diego, La Jolla, CA 92093-0648, USA
| | | | | | | | | | | | | | | |
Collapse
|
498
|
Dell H, Hadzopoulou-Cladaras M. CREB-binding protein is a transcriptional coactivator for hepatocyte nuclear factor-4 and enhances apolipoprotein gene expression. J Biol Chem 1999; 274:9013-21. [PMID: 10085149 DOI: 10.1074/jbc.274.13.9013] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hepatocyte nuclear factor-4 (HNF-4) is a liver-enriched transcription factor that is crucial in the regulation of a large number of genes involved in glucose, cholesterol, and fatty acid metabolism and in determining the hepatic phenotype. We have previously shown that HNF-4 contains transcription activation functions at the N terminus (AF-1) and the C terminus (AF-2) which work synergistically to confer full HNF-4 activity. Here, we show that HNF-4 recruits the CREB-binding protein (CBP) coactivator on promoters of genes that contain functional HNF-4 sites. HNF-4 interacts with the N-terminal region of CBP (amino acids 1-771) and the C-terminal region of CBP (amino acids 1812-2441). The two activating functions of HNF-4, AF-1 and AF-2, interact with the N terminus and the N and C terminus of CBP, respectively. In addition, we show that in contrast to the other nuclear hormone receptors the interaction between HNF-4 and CBP is ligand-independent. Recruitment of CBP by HNF-4 results in an enhancement of the transcriptional activity of the latter. CBP does not activate gene expression in the absence of HNF-4, and dominant negative forms of HNF-4 prevent transcriptional activation by CBP, suggesting that the mere recruitment of CBP by HNF-4 is not sufficient for enhancement of gene expression. These findings demonstrate that CBP acts as a transcriptional coactivator for HNF-4 and provide new insights into the regulatory function of HNF-4.
Collapse
Affiliation(s)
- H Dell
- Department of Medicine, Section of Molecular Genetics, Cardiovascular Institute, Boston University School of Medicine, Center for Advanced Biomedical Research, Boston, Massachusetts 02118-2394, USA
| | | |
Collapse
|
499
|
Gelman L, Zhou G, Fajas L, Raspé E, Fruchart JC, Auwerx J. p300 interacts with the N- and C-terminal part of PPARgamma2 in a ligand-independent and -dependent manner, respectively. J Biol Chem 1999; 274:7681-8. [PMID: 10075656 DOI: 10.1074/jbc.274.12.7681] [Citation(s) in RCA: 179] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The nuclear peroxisome proliferator-activated receptor gamma (PPARgamma) activates the transcription of multiple genes involved in intra- and extracellular lipid metabolism. Several cofactors are crucial for the stimulation or the silencing of nuclear receptor transcriptional activities. The two homologous cofactors p300 and CREB-binding protein (CBP) have been shown to co-activate the ligand-dependent transcriptional activities of several nuclear receptors as well as the ligand-independent transcriptional activity of the androgen receptor. We show here that the interaction between p300/CBP and PPARgamma is complex and involves multiple domains in each protein. p300/CBP not only bind in a ligand-dependent manner to the DEF region of PPARgamma but also bind directly in a ligand-independent manner to a region in the AB domain localized between residue 31 to 99. In transfection experiments, p300/CBP could thereby enhance the transcriptional activities of both the activating function (AF)-1 and AF-2 domains. p300/CBP displays itself at least two docking sites for PPARgamma located in its N terminus (between residues 1 and 113 for CBP) and in the middle of the protein (between residues 1099 and 1460).
Collapse
Affiliation(s)
- L Gelman
- Unité 325 INSERM, Département d'Athérosclérose, Institut Pasteur de Lille, 1, rue du Prof. Calmette, 59019 Lille Cédex, France
| | | | | | | | | | | |
Collapse
|
500
|
Doucas V, Tini M, Egan DA, Evans RM. Modulation of CREB binding protein function by the promyelocytic (PML) oncoprotein suggests a role for nuclear bodies in hormone signaling. Proc Natl Acad Sci U S A 1999; 96:2627-32. [PMID: 10077561 PMCID: PMC15819 DOI: 10.1073/pnas.96.6.2627] [Citation(s) in RCA: 133] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Disaggregation of the spherical nuclear bodies termed promyelocytic (PML) oncogenic domains (PODs) is a characteristic of acute promyelocytic leukemia. Here, we demonstrate that the cAMP enhancer binding protein (CREB)-binding protein (CBP) associates with PML in vitro and is recruited to the PODs in vivo. Through its association with CBP, wild-type PML dramatically stimulates nuclear receptor transcriptional activity. These results demonstrate that a fraction of CBP is compartmentalized to the POD through its association with PML and thus suggest that PML and other POD-associated proteins may play an unexpectedly broad role in aspects of transcriptional regulation and human disease.
Collapse
Affiliation(s)
- V Doucas
- Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| | | | | | | |
Collapse
|