451
|
Abstract
Robust lipid traffic within and among membranes is essential for cell growth and membrane biogenesis. Many of these transport reactions occur by nonvesicular pathways, and the genetic and biochemical details of these processes are now beginning to emerge. Intramembrane lipid transport reactions utilize P-type ATPases, ABC transporters, scramblases, and Niemann-Pick type C (NPC) family proteins. The intramembrane processes regulate the establishment and elimination of membrane lipid asymmetry, the cellular influx and efflux of sterols and phospholipids, and the egress of lysosomally deposited lipids. The intermembrane lipid transport processes play important roles in membrane biogenesis, sterol sequestration, and steroid hormone formation. The roles of soluble lipid carriers and membrane-bound lipid-transporting complexes, as well as the mechanisms for regulation of their targeting and assembly, are now becoming apparent. Elucidation of the details of these systems is providing new perspectives on the regulation of lipid traffic within cells.
Collapse
Affiliation(s)
- Dennis R Voelker
- Program in Cell Biology, Department of Medicine, National Jewish Health, Denver, CO 80206, USA.
| |
Collapse
|
452
|
Glucocerebroside: an evolutionary advantage for patients with Gaucher disease and a new immunomodulatory agent. Immunol Cell Biol 2009; 87:514-24. [PMID: 19529001 DOI: 10.1038/icb.2009.42] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Gaucher disease (GD) is caused by the reduced activity of a lysosomal enzyme, glucocerebrosidase, leading to the accumulation of glucocerebroside (GC). The relatively high prevalence of this disease within an ethnic group is believed to reflect a selective advantage. Treatment with enzyme replacement therapy (ERT) is safe and effective in ameliorating the primary symptoms of the disease, yet there have been reports that some patients on ERT have developed type 2 diabetes or metabolic syndrome, malignancies and central nervous system disorders. A series of animal studies suggest that these complications may be related to the reduction of GC levels by the enzyme administered. GC has been shown to have an immunomodulatory effect through the promotion of dendritic cells, natural killer T cells, and regulatory T cells. The break down of GC to ceramide can underline part of these findings. Clinical trials suggested a beneficial effect of GC in type 2 diabetes or nonalcoholic steatohepatitis. This review of the data from animal models and humans proposes that the increased level of GC may provide an evolutionary advantage for patients with GD. Indirectly, these data support treating symptomatic patients with mild/moderate GD with low-dose ERT and re-evaluating the use of ERT in asymptomatic patients.
Collapse
|
453
|
Zhai X, Malakhova ML, Pike HM, Benson LM, Bergen HR, Sugár IP, Malinina L, Patel DJ, Brown RE. Glycolipid acquisition by human glycolipid transfer protein dramatically alters intrinsic tryptophan fluorescence: insights into glycolipid binding affinity. J Biol Chem 2009; 284:13620-13628. [PMID: 19270338 PMCID: PMC2679463 DOI: 10.1074/jbc.m809089200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Revised: 02/23/2009] [Indexed: 01/28/2023] Open
Abstract
Glycolipid transfer proteins (GLTPs) are small, soluble proteins that selectively accelerate the intermembrane transfer of glycolipids. The GLTP fold is conformationally unique among lipid binding/transfer proteins and serves as the prototype and founding member of the new GLTP superfamily. In the present study, changes in human GLTP tryptophan fluorescence, induced by membrane vesicles containing glycolipid, are shown to reflect glycolipid binding when vesicle concentrations are low. Characterization of the glycolipid-induced "signature response," i.e. approximately 40% decrease in Trp intensity and approximately 12-nm blue shift in emission wavelength maximum, involved various modes of glycolipid presentation, i.e. microinjection/dilution of lipid-ethanol solutions or phosphatidylcholine vesicles, prepared by sonication or extrusion and containing embedded glycolipids. High resolution x-ray structures of apo- and holo-GLTP indicate that major conformational alterations are not responsible for the glycolipid-induced GLTP signature response. Instead, glycolipid binding alters the local environment of Trp-96, which accounts for approximately 70% of total emission intensity of three Trp residues in GLTP and provides a stacking platform that aids formation of a hydrogen bond network with the ceramide-linked sugar of the glycolipid headgroup. The changes in Trp signal were used to quantitatively assess human GLTP binding affinity for various lipids including glycolipids containing different sugar headgroups and homogenous acyl chains. The presence of the glycolipid acyl chain and at least one sugar were essential for achieving a low-to-submicromolar dissociation constant that was only slightly altered by increased sugar headgroup complexity.
Collapse
Affiliation(s)
- Xiuhong Zhai
- The Hormel Institute, University of Minnesota, Austin, Minnesota 55912
| | | | - Helen M Pike
- The Hormel Institute, University of Minnesota, Austin, Minnesota 55912
| | - Linda M Benson
- Mayo Proteomics Research Center, Mayo Clinic College of Medicine, Rochester, Minnesota 55905
| | - H Robert Bergen
- Mayo Proteomics Research Center, Mayo Clinic College of Medicine, Rochester, Minnesota 55905
| | - István P Sugár
- Department of Neurology, Mount Sinai School of Medicine, New York, New York 10029
| | - Lucy Malinina
- Structural Biology, CIC bioGUNE, Parque Tecnológico de Vizcaya, Ed. 800, Derio 48160, Spain.
| | - Dinshaw J Patel
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10065.
| | - Rhoderick E Brown
- The Hormel Institute, University of Minnesota, Austin, Minnesota 55912.
| |
Collapse
|
454
|
Uemura S, Yoshida S, Shishido F, Inokuchi JI. The cytoplasmic tail of GM3 synthase defines its subcellular localization, stability, and in vivo activity. Mol Biol Cell 2009; 20:3088-100. [PMID: 19420140 DOI: 10.1091/mbc.e08-12-1219] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
GM3 synthase (SAT-I) is the primary glycosyltransferase responsible for the biosynthesis of ganglio-series gangliosides. In this study, we identify three isoforms of mouse SAT-I proteins, named M1-SAT-I, M2-SAT-I, and M3-SAT-I, which possess distinct lengths in their NH(2)-terminal cytoplasmic tails. These isoforms are produced by leaky scanning from mRNA variants of mSAT-Ia and mSAT-Ib. M2-SAT-I and M3-SAT-I were found to be localized in the Golgi apparatus, as expected, whereas M1-SAT-I was exclusively found in the endoplasmic reticulum (ER). Specific multiple arginines (R) arranged in an R-based motif, RRXXXXR necessary for ER targeting, were found in the cytoplasmic tail of M1-SAT-I, and in vivo GM3 biosynthesis by M1-SAT-I was very low because of restricted transport to the Golgi apparatus. In addition, M1-SAT-I and M3-SAT-I had a long half-life relative to M2-SAT-I. This is the first report demonstrating the presence of an ER-targeting R-based motif in the cytoplasmic tail of a protein in the mammalian glycosyltransferase family of enzymes. The system, which produces SAT-I isoforms having distinct characteristics, is likely to be of critical importance for the regulation of GM3 biosynthesis under various pathological and physiological conditions.
Collapse
Affiliation(s)
- Satoshi Uemura
- Division of Glycopathology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Pharmaceutical University, Sendai, Miyagi 981-8558, Japan
| | | | | | | |
Collapse
|
455
|
Abstract
The Golgi complex is the central sorting and processing station of the secretory pathway, ensuring that cargo proteins, which are synthesized in the endoplasmic reticulum, are properly glycosylated and packaged into carriers for transport to their final destinations. Two recent studies highlight the fact that properties of membrane lipids play key roles in Golgi structural organization and trafficking. The Antonny laboratory has demonstrated the mechanism by which a Golgi tether containing a membrane-curvature-sensing domain at one end can link highly curved and flat membranes together in a reversible manner. In this way, a strong interaction that binds membranes together in an oriented fashion can easily be disrupted as the properties of the membranes change. The Lippincott-Schwartz laboratory has developed a new model for intra-Golgi trafficking, called the rapid-partitioning model, which incorporates lipid trafficking as an integral part. Simulations reveal that the sorting of lipids into processing and export domains that are connected to each Golgi cisterna, and bidirectional trafficking throughout the Golgi to allow proteins to associate with their preferred lipid environment, is sufficient to drive protein transport through the secretory pathway. Although only a proof in principle, this model for the first time invokes lipid sorting as the driving force in intra-Golgi trafficking, and provides a framework for future experimental work.
Collapse
Affiliation(s)
- Catherine L Jackson
- Laboratoire d'Enzymologie et Biochimie Structurales, CNRS, 91198 Gif-sur-Yvette, France.
| |
Collapse
|
456
|
Petersen NHT, Joensen J, McKinney LV, Brodersen P, Petersen M, Hofius D, Mundy J. Identification of proteins interacting with Arabidopsis ACD11. JOURNAL OF PLANT PHYSIOLOGY 2009; 166:661-6. [PMID: 18845362 DOI: 10.1016/j.jplph.2008.08.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Accepted: 08/10/2008] [Indexed: 05/08/2023]
Abstract
The Arabidopsis ACD11 gene encodes a sphingosine transfer protein and was identified by the accelerated cell death phenotype of the loss of function acd11 mutant, which exhibits heightened expression of genes involved in the disease resistance hypersensitive response (HR). We used ACD11 as bait in a yeast two-hybrid screen of an Arabidopsis cDNA library to identify ACD11 interacting proteins. One interactor identified is a protein of unknown function with an RNA recognition motif (RRM) designated BPA1 (binding partner of ACD11). Co-immunoprecipitation experiments confirmed the ACD11-BPA1 interactions in vivo and in vitro. Two other ACD11 interactors (PRA7 and PRA8) are homologous to each other and to mammalian PRA1, and both were subsequently shown to interact with BPA1 in yeast. A fourth interactor (VAP27-1) is homologous to mammalian VAP-A, and was found to interact more strongly with a homolog of ACD11 than ACD11 itself. All interactors were shown to be associated with membrane fractions, suggesting that ACD11 function could be related to the regulation of membrane compartments.
Collapse
|
457
|
González-Rioja R, Asturias JA, Martínez A, Goñi FM, Viguera AR. Par j 1 and Par j 2, the two major allergens in Parietaria judaica, bind preferentially to monoacylated negative lipids. FEBS J 2009; 276:1762-75. [PMID: 19236482 DOI: 10.1111/j.1742-4658.2009.06911.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Par j 1 and Par j 2 proteins are the two major allergens in Parietaria judaica pollen, one of the main causes of allergic diseases in the Mediterranean area. Each of them contains eight cysteine residues organized in a pattern identical to that found in plant nonspecific lipid transfer proteins. The 139- and 102-residue recombinant allergens, corresponding respectively to Par j 1 and Par j 2, refold properly to fully functional forms, whose immunological properties resemble those of the molecules purified from the natural source. Molecular modeling shows that, despite the lack of extensive primary structure homology with nonspecific lipid transfer proteins, both allergens contain a hydrophobic cavity suited to accommodate a lipid ligand. In the present study, we present novel evidence for the formation of complexes of these natural and recombinant proteins from Parietaria pollen with lipidic molecules. The dissociation constant of oleyl-lyso-phosphatidylcholine is 9.1 +/- 1.2 microm for recombinant Par j 1, whereas pyrenedodecanoic acid shows a much higher affinity, with a dissociation constant of approximately 1 microm for both recombinant proteins, as well as for the natural mixture. Lipid binding does not alter the secondary structure content of the protein but is very efficient in protecting disulfide bonds from reduction by dithiothreitol. We show that Par j 1 and Par j 2 not only bind lipids from micellar dispersions, but also are able to extract and transfer negative phospholipids from bilayers.
Collapse
|
458
|
D'Angelo G, Vicinanza M, Di Campli A, De Matteis MA. The multiple roles of PtdIns(4)P -- not just the precursor of PtdIns(4,5)P2. J Cell Sci 2009; 121:1955-63. [PMID: 18525025 DOI: 10.1242/jcs.023630] [Citation(s) in RCA: 176] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The phosphoinositides (PIs) are membrane phospholipids that actively operate at membrane-cytosol interfaces through the recruitment of a number of effector proteins. In this context, each of the seven different PI species represents a topological determinant that can establish the nature and the function of the membrane where it is located. Phosphatidylinositol 4-phosphate (PtdIns(4)P) is the most abundant of the monophosphorylated inositol phospholipids in mammalian cells, and it is produced by D-4 phosphorylation of the inositol ring of PtdIns. PtdIns(4)P can be further phosphorylated to PtdIns(4,5)P(2) by PtdIns(4)P 5-kinases and, indeed, PtdIns(4)P has for many years been considered to be just the precursor of PtdIns(4,5)P(2). Over the last decade, however, a large body of evidence has accumulated that shows that PtdIns(4)P is, in its own right, a direct regulator of important cell functions. The subcellular localisation of the PtdIns(4)P effectors initially led to the assumption that the bulk of this lipid is present in the membranes of the Golgi complex. However, the existence and physiological relevance of ;non-Golgi pools' of PtdIns(4)P have now begun to be addressed. The aim of this Commentary is to describe our present knowledge of PtdIns(4)P metabolism and the molecular machineries that are directly regulated by PtdIns(4)P within and outside of the Golgi complex.
Collapse
Affiliation(s)
- Giovanni D'Angelo
- Laboratory of Secretion Physiopathology, Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, 66030 Santa Maria Imbaro (CH), Italy
| | | | | | | |
Collapse
|
459
|
Hanada K, Kumagai K, Tomishige N, Yamaji T. CERT-mediated trafficking of ceramide. Biochim Biophys Acta Mol Cell Biol Lipids 2009; 1791:684-91. [PMID: 19416656 DOI: 10.1016/j.bbalip.2009.01.006] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Revised: 01/13/2009] [Accepted: 01/13/2009] [Indexed: 11/16/2022]
Abstract
The transport and sorting of lipids from the sites of their synthesis to their appropriate destinations are fundamental for membrane biogenesis. In the synthesis of sphingolipids in mammalian cells, ceramide is newly produced at the endoplasmic reticulum (ER), and transported from the ER to the trans Golgi regions, where it is converted to sphingomyelin. CERT mediates the ER-to-Golgi trafficking of ceramide. CERT contains several functional domains and motifs including i) a START domain capable of catalyzing inter-membrane transfer of ceramide, ii) a pleckstrin homology domain, which serves to target the Golgi apparatus, iii) a FFAT motif which interacts with the ER-resident membrane protein VAP, and iv) a serine-repeat motif, of which hyperphosphorylation down-regulates CERT activity. It has been suggested that CERT extracts ceramide from the ER and carries it to the Golgi apparatus in a non-vesicular manner and that efficient CERT-mediated trafficking of ceramide occurs at membrane contact sites between the ER and the Golgi apparatus.
Collapse
Affiliation(s)
- Kentaro Hanada
- Department of Biochemistry, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan.
| | | | | | | |
Collapse
|
460
|
Ngo M, Ridgway ND. Oxysterol binding protein-related Protein 9 (ORP9) is a cholesterol transfer protein that regulates Golgi structure and function. Mol Biol Cell 2009; 20:1388-99. [PMID: 19129476 DOI: 10.1091/mbc.e08-09-0905] [Citation(s) in RCA: 141] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Oxysterol-binding protein (OSBP) and OSBP-related proteins (ORPs) constitute a large gene family that differentially localize to organellar membranes, reflecting a functional role in sterol signaling and/or transport. OSBP partitions between the endoplasmic reticulum (ER) and Golgi apparatus where it imparts sterol-dependent regulation of ceramide transport and sphingomyelin synthesis. ORP9L also is localized to the ER-Golgi, but its role in secretion and lipid transport is unknown. Here we demonstrate that ORP9L partitioning between the trans-Golgi/trans-Golgi network (TGN), and the ER is mediated by a phosphatidylinositol 4-phosphate (PI-4P)-specific PH domain and VAMP-associated protein (VAP), respectively. In vitro, both OSBP and ORP9L mediated PI-4P-dependent cholesterol transport between liposomes, suggesting their primary in vivo function is sterol transfer between the Golgi and ER. Depletion of ORP9L by RNAi caused Golgi fragmentation, inhibition of vesicular somatitus virus glycoprotein transport from the ER and accumulation of cholesterol in endosomes/lysosomes. Complete cessation of protein transport and cell growth inhibition was achieved by inducible overexpression of ORP9S, a dominant negative variant lacking the PH domain. We conclude that ORP9 maintains the integrity of the early secretory pathway by mediating transport of sterols between the ER and trans-Golgi/TGN.
Collapse
Affiliation(s)
- Mike Ngo
- Department of Pediatrics, Atlantic Research Centre, Dalhousie University, Halifax, Nova Scotia, Canada
| | | |
Collapse
|
461
|
Martín‐Belmonte F, Rodríguez‐Fraticelli AE. Chapter 3 Acquisition of Membrane Polarity in Epithelial Tube Formation. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2009; 274:129-82. [DOI: 10.1016/s1937-6448(08)02003-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
462
|
Gassama-Diagne A, Payrastre B. Phosphoinositide signaling pathways: promising role as builders of epithelial cell polarity. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2009; 273:313-43. [PMID: 19215908 DOI: 10.1016/s1937-6448(08)01808-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Polarity is a prerequisite for proper development and function of epithelia in metazoa. The major feature of polarized epithelial cells is the presence of specialized domains with asymmetric distribution of macromolecular contents including proteins and lipids. The apical domain is involved in exchange with the organ lumen, and the basolateral membrane maintains contact with neighboring cells and the underlying extracellular matrix. The two domains are separated by tight junctions, which act as a diffusion barrier to prevent free mixing of domain-specific proteins and lipids. Extensive studies have shed light on the numerous protein families involved in cell polarization. However, many questions still remain regarding the molecular mechanisms of polarity regulation and in particular very little is known about the role of lipids in building polarity. In this chapter, essential determinants of epithelial polarity will be reviewed with a particular focus on metabolism and function of phosphoinositides.
Collapse
Affiliation(s)
- Ama Gassama-Diagne
- Unité Mixte INSERM U785/Université Paris XI, Centre Hépatobiliaire, Hôpital Paul Brousse, Villejuif, France
| | | |
Collapse
|
463
|
Abstract
In this chapter, roles of bioactive sphingolipids in the regulation of cancer pathogenesis and therapy will be reviewed. Sphingolipids have emerged as bioeffector molecules, which control various aspects of cell growth, proliferation, and anti-cancer therapeutics. Ceramide, the central molecule of sphingolipid metabolism, generally mediates anti-proliferative responses such as inhibition of cell growth, induction of apoptosis, and/or modulation of senescence. On the other hand, sphingosine 1-phosphate (S1P) plays opposing roles, and induces transformation, cancer cell growth, or angiogenesis. A network of metabolic enzymes regulates the generation of ceramide and S1P, and these enzymes serve as transducers of sphingolipid-mediated responses that are coupled to various exogenous or endogenous cellular signals. Consistent with their key roles in the regulation of cancer growth and therapy, attenuation of ceramide generation and/or increased S1P levels are implicated in the development of resistance to drug-induced apoptosis, and escape from cell death. These data strongly suggest that advances in the molecular and biochemical understanding of sphingolipid metabolism and function will lead to the development of novel therapeutic strategies against human cancers, which may also help overcome drug resistance.
Collapse
|
464
|
Blagoveshchenskaya A, Mayinger P. SAC1 lipid phosphatase and growth control of the secretory pathway. MOLECULAR BIOSYSTEMS 2008; 5:36-42. [PMID: 19081929 DOI: 10.1039/b810979f] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Phosphoinositide lipids play a dual role in cell physiology. Specific sets of these molecules are short-lived downstream mediators of growth signals, regulating cell survival and differentiation. In addition, distinct classes of phosphoinositide lipids function as constitutive mediators of membrane traffic and organelle identity. Recent work has provided the first direct evidence that phosphoinositides also play a direct role in linking protein secretion with cell growth and proliferation. This review focuses on SAC1 lipid phosphatase and how this enzyme operates in an evolutionary conserved mechanism to coordinate the secretory capacity of ER and Golgi during cell growth.
Collapse
Affiliation(s)
- Anastasia Blagoveshchenskaya
- Division of Nephrology & Hypertension and Department of Cell & Developmental Biology, Oregon Health & Science University, Portland, Oregon, USA
| | | |
Collapse
|
465
|
Crespo PM, Silvestre DC, Gil GA, Maccioni HJF, Daniotti JL, Caputto BL. c-Fos activates glucosylceramide synthase and glycolipid synthesis in PC12 cells. J Biol Chem 2008; 283:31163-71. [PMID: 18784083 PMCID: PMC2662181 DOI: 10.1074/jbc.m709257200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2007] [Revised: 09/02/2008] [Indexed: 11/06/2022] Open
Abstract
It has been demonstrated that c-Fos has, in addition to its well recognized AP-1 transcription factor activity, the capacity to associate to the endoplasmic reticulum and activate key enzymes involved in the synthesis of phospholipids required for membrane biogenesis during cell growth and neurite formation. Because membrane genesis requires the coordinated supply of all its integral membrane components, the question emerges as to whether c-Fos also activates the synthesis of glycolipids, another ubiquitous membrane component. We show that c-Fos activates the metabolic labeling of glycolipids in differentiating PC12 cells. Specifically, c-Fos activates the enzyme glucosylceramide synthase (GlcCerS), the product of which, GlcCer, is the first glycosylated intermediate in the pathway of synthesis of glycolipids. By contrast, the activities of GlcCer galactosyltransferase 1 and lactosylceramide sialyltransferase 1 are essentially unaffected by c-Fos. Co-immunoprecipitation experiments in cells co-transfected with c-Fos and a V5-tagged version of GlcCerS evidenced that both proteins participate in a physical association. c-Fos expression is tightly regulated by specific environmental cues. This strict regulation assures that lipid metabolism activation will occur as a response to cell requirements thus pointing to c-Fos as an important regulator of key membrane metabolisms in membrane biogenesis-demanding processes.
Collapse
Affiliation(s)
- Pilar M Crespo
- Centro de Investigaciones en Química Biológica de Córdoba, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba X5000HUA, Argentina
| | | | | | | | | | | |
Collapse
|
466
|
Abstract
The mammalian Golgi apparatus is composed of multiple stacks of cisternal membranes organized laterally into a ribbon-like structure, with close apposition of trans Golgi regions with specialized endoplasmic reticulum (ER) membranes. These contacts may be the site of ceramide transfer from its site of synthesis (ER) to sphingomyelin (SM) synthase through ceramide transfer protein (CERT). CERT extracts ceramide from the ER and transfers it to Golgi membranes but the role of overall Golgi structure in this process is unknown. We show here that localization of CERT in puncta around the Golgi complex requires both ER- and Golgi-binding domains of CERT. To examine how Golgi structure contributes to SM synthesis, we treated cells with Golgi-perturbing drugs and measured newly synthesized SM. Interestingly, disruption of Golgi morphology with nocodazole, but not ilimaquinone inhibited SM synthesis. Decreased localization of CERT with a Golgi marker correlated with decreased SM synthesis. We propose that some Golgi structural perturbations interfere with efficient ceramide trafficking through CERT, and thus SM synthesis. The organization of the mammalian Golgi ribbon together with CERT may promote specific ER-Golgi interactions for efficient delivery of ceramide for SM synthesis.
Collapse
Affiliation(s)
- Suchismita Chandran
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Carolyn E. Machamer
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| |
Collapse
|
467
|
Schulze H, Kolter T, Sandhoff K. Principles of lysosomal membrane degradation: Cellular topology and biochemistry of lysosomal lipid degradation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1793:674-83. [PMID: 19014978 DOI: 10.1016/j.bbamcr.2008.09.020] [Citation(s) in RCA: 180] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 07/04/2008] [Revised: 09/24/2008] [Accepted: 09/30/2008] [Indexed: 12/17/2022]
Abstract
Cellular membranes enter the lysosomal compartment by endocytosis, phagocytosis, or autophagy. Within the lysosomal compartment, membrane components of complex structure are degraded into their building blocks. These are able to leave the lysosome and can then be utilized for the resynthesis of complex molecules or can be further degraded. Constitutive degradation of membranes occurs on the surface of intra-endosomal and intra-lysosomal membrane structures. Many integral membrane proteins are sorted to the inner membranes of endosomes and lysosome after ubiquitinylation. In the lysosome, proteins are degraded by proteolytic enzymes, the cathepsins. Phospholipids originating from lipoproteins or cellular membranes are degraded by phospholipases. Water-soluble glycosidases sequentially cleave off the terminal carbohydrate residues of glycoproteins, glycosaminoglycans, and glycosphingolipids. For glycosphingolipids with short oligosaccharide chains, the additional presence of membrane-active lysosomal lipid-binding proteins is required. The presence of lipid-binding proteins overcomes the phase problem of water soluble enzymes and lipid substrates by transferring the substrate to the degrading enzyme or by solubilizing the internal membranes. The lipid composition of intra-lysosomal vesicles differs from that of the plasma membrane. To allow at least glycosphingolipid degradation by hydrolases and activator proteins, the cholesterol content of these intraorganellar membranes decreases during endocytosis and the concentration of bis(monoacylglycero)phosphate, a stimulator of sphingolipid degradation, increases. A considerable part of our current knowledge about mechanism and biochemistry of lysosomal lipid degradation is derived from a class of human diseases, the sphingolipidoses, which are caused by inherited defects within sphingolipid and glycosphingolipid catabolism.
Collapse
Affiliation(s)
- Heike Schulze
- LIMES Program Unit Membrane Biology and Lipid Biochemistry, Laboratory of Lipid Biochemistry, Kekulé-Institut für Organische Chemie und Biochemie der Universität Bonn, Germany
| | | | | |
Collapse
|
468
|
Mattjus P. Glycolipid transfer proteins and membrane interaction. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1788:267-72. [PMID: 19007748 DOI: 10.1016/j.bbamem.2008.10.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2008] [Revised: 10/07/2008] [Accepted: 10/07/2008] [Indexed: 12/17/2022]
Abstract
The glycolipid transfer protein is found from animals and fungi to plants and red micro-alga. Some eukaryotes that do not encode the glucosylceramide synthase like the yeast Schizosaccharomyces pombe and Saccharomyces cerevisiae do neither produce glycolipid transfer like proteins. On the other hand yeast like Eremothecium gossypii that do synthesize glucosylceramide also express glycolipid transfer protein. Based on this novel genetic relationship it is not far fetched to assume that there must be a strong correlation between the synthesis of the glycolipid precursor and the glycolipid transfer protein. Because the glycolipid transfer protein is localized in the cytosol it is unlikely that it would participate in events associated with lipid rafts or caveolar structures, since they are found on the outer leaflet of the plasma membrane. Rather, GLTP is likely to be involved in events at the cytosolic side of the plasma membrane or the endoplasmic reticulum, maybe function as a reporter or sensor of glycolipid levels. A similar function has been proposed for other proteins with affinity for lipids like the oxysterol binding proteins and phosphatidylinositol transfer proteins that are thought to be able act as lipid sensors. Recent discoveries in the glycolipid transfer protein field are discussed.
Collapse
Affiliation(s)
- Peter Mattjus
- Department of Biochemistry and Pharmacy, Abo Akademi University, Turku, Finland.
| |
Collapse
|
469
|
Function and dysfunction of the PI system in membrane trafficking. EMBO J 2008; 27:2457-70. [PMID: 18784754 PMCID: PMC2536629 DOI: 10.1038/emboj.2008.169] [Citation(s) in RCA: 167] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2008] [Accepted: 08/05/2008] [Indexed: 02/01/2023] Open
Abstract
The phosphoinositides (PIs) function as efficient and finely tuned switches that control the assembly–disassembly cycles of complex molecular machineries with key roles in membrane trafficking. This important role of the PIs is mainly due to their versatile nature, which is in turn determined by their fast metabolic interconversions. PIs can be tightly regulated both spatially and temporally through the many PI kinases (PIKs) and phosphatases that are distributed throughout the different intracellular compartments. In spite of the enormous progress made in the past 20 years towards the definition of the molecular details of PI–protein interactions and of the regulatory mechanisms of the individual PIKs and phosphatases, important issues concerning the general principles of the organisation of the PI system and the coordination of the different PI-metabolising enzymes remain to be addressed. The answers should come from applying a systems biology approach to the study of the PI system, through the integration of analyses of the protein interaction data of the PI enzymes and the PI targets with those of the ‘phenomes' of the genetic diseases that involve these PI-metabolising enzymes.
Collapse
|
470
|
Petersen NHT, McKinney LV, Pike H, Hofius D, Zakaria A, Brodersen P, Petersen M, Brown RE, Mundy J. Human GLTP and mutant forms of ACD11 suppress cell death in the Arabidopsis acd11 mutant. FEBS J 2008; 275:4378-88. [PMID: 18657186 PMCID: PMC2585820 DOI: 10.1111/j.1742-4658.2008.06584.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The Arabidopsis acd11 mutant exhibits runaway, programmed cell death due to the loss of a putative sphingosine transfer protein (ACD11) with homology to mammalian GLTP. We demonstrate that transgenic expression in Arabidopsis thaliana of human GLTP partially suppressed the phenotype of the acd11 null mutant, resulting in delayed programmed cell death development and plant survival. Surprisingly, a GLTP mutant form impaired in glycolipid transfer activity also complemented the acd11 mutants. To understand the relationship between functional complementarity and transfer activity, we generated site-specific mutants in ACD11 based on homologous GLTP residues required for glycolipid transfer. We show that these ACD11 mutant forms are impaired in their in vitro transfer activity of sphingolipids. However, transgenic expression of these mutant forms fully complemented acd11 mutant cell death, and transgenic plants showed normal induction of hypersensitive cell death upon infection with avirulent strains of Pseudomonas syringae. The significance of these findings with respect to the function(s) of ACD11 in sphingolipid transport and cell death regulation is discussed.
Collapse
Affiliation(s)
- Nikolaj H. T. Petersen
- Department of Biology, Copenhagen Biocenter, Ole Maaløesvej 5, 2200 Copenhagen N, Denmark
| | - Lea Vig McKinney
- Department of Biology, Copenhagen Biocenter, Ole Maaløesvej 5, 2200 Copenhagen N, Denmark
| | - Helen Pike
- Laboratory of Membrane Biochemistry, The Hormel Institute, University of Minnesota, 801 16th Ave NE, Austin, MN 55912 USA
| | - Daniel Hofius
- Department of Biology, Copenhagen Biocenter, Ole Maaløesvej 5, 2200 Copenhagen N, Denmark
| | - Asif Zakaria
- Laboratory of Membrane Biochemistry, The Hormel Institute, University of Minnesota, 801 16th Ave NE, Austin, MN 55912 USA
| | - Peter Brodersen
- Department of Biology, Copenhagen Biocenter, Ole Maaløesvej 5, 2200 Copenhagen N, Denmark
- Present address: Institut de Biologie Moléculaire des Plantes CNRS UPR 2357, 12, rue du Général Zimmer, 67084 Strasbourg Cedex, France
| | - Morten Petersen
- Department of Biology, Copenhagen Biocenter, Ole Maaløesvej 5, 2200 Copenhagen N, Denmark
| | - Rhoderick E. Brown
- Laboratory of Membrane Biochemistry, The Hormel Institute, University of Minnesota, 801 16th Ave NE, Austin, MN 55912 USA
| | - John Mundy
- Department of Biology, Copenhagen Biocenter, Ole Maaløesvej 5, 2200 Copenhagen N, Denmark
| |
Collapse
|
471
|
Yamaji T, Kumagai K, Tomishige N, Hanada K. Two sphingolipid transfer proteins, CERT and FAPP2: Their roles in sphingolipid metabolism. IUBMB Life 2008; 60:511-8. [DOI: 10.1002/iub.83] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
472
|
Foresti O, Denecke J. Intermediate organelles of the plant secretory pathway: identity and function. Traffic 2008; 9:1599-612. [PMID: 18627574 DOI: 10.1111/j.1600-0854.2008.00791.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The secretory pathway of eukaryotic cells comprises a network of organelles that connects three large membranes, the plasma membrane, the vacuole and the endoplasmic reticulum. The Golgi apparatus and the various post-Golgi organelles that control vacuolar sorting, secretion and endocytosis can be regarded as intermediate organelles of the endocytic and biosynthetic routes. Many processes in the secretory pathway have evolved differently in plants and cannot be studied using yeast or mammalian cells as models. The best characterized organelles are the Golgi apparatus and the prevacuolar compartment, but recent work has shed light on the role of the trans Golgi network, which has to be regarded as a separate organelle in plants. In this study, we wish to highlight recent findings regarding the late secretory pathway and its crosstalk with the early secretory pathway as well as the endocytic route in plants. Recently published findings and suggested models are discussed within the context of known features of the equivalent pathway in other eukaryotes.
Collapse
Affiliation(s)
- Ombretta Foresti
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | | |
Collapse
|
473
|
Patterson GH, Hirschberg K, Polishchuk RS, Gerlich D, Phair RD, Lippincott-Schwartz J. Transport through the Golgi apparatus by rapid partitioning within a two-phase membrane system. Cell 2008; 133:1055-67. [PMID: 18555781 DOI: 10.1016/j.cell.2008.04.044] [Citation(s) in RCA: 391] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2007] [Revised: 11/15/2007] [Accepted: 04/24/2008] [Indexed: 11/27/2022]
Abstract
The prevailing view of intra-Golgi transport is cisternal progression, which has a key prediction--that newly arrived cargo exhibits a lag or transit time before exiting the Golgi. Instead, we find that cargo molecules exit at an exponential rate proportional to their total Golgi abundance with no lag. Incoming cargo molecules rapidly mix with those already in the system and exit from partitioned domains with no cargo privileged for export based on its time of entry into the system. Given these results, we constructed a new model of intra-Golgi transport that involves rapid partitioning of enzymes and transmembrane cargo between two lipid phases combined with relatively rapid exchange among cisternae. Simulation and experimental testing of this rapid partitioning model reproduced all the key characteristics of the Golgi apparatus, including polarized lipid and protein gradients, exponential cargo export kinetics, and cargo waves.
Collapse
Affiliation(s)
- George H Patterson
- Cell Biology and Metabolism Program, National Institutes of Health, Building 18T, Room 101, 18 Library Drive, Bethesda, MD 20892-5430, USA
| | | | | | | | | | | |
Collapse
|
474
|
West G, Viitanen L, Alm C, Mattjus P, Salminen TA, Edqvist J. Identification of a glycosphingolipid transfer protein GLTP1 in Arabidopsis thaliana. FEBS J 2008; 275:3421-37. [DOI: 10.1111/j.1742-4658.2008.06498.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
475
|
Takabe K, Paugh SW, Milstien S, Spiegel S. "Inside-out" signaling of sphingosine-1-phosphate: therapeutic targets. Pharmacol Rev 2008; 60:181-95. [PMID: 18552276 DOI: 10.1124/pr.107.07113] [Citation(s) in RCA: 556] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Sphingosine 1-phosphate (S1P) is a bioactive sphingolipid metabolite involved in many critical cellular processes including proliferation, survival, and migration, as well as angiogenesis and allergic responses. S1P levels inside cells are tightly regulated by the balance between its synthesis by sphingosine kinases and degradation. S1P is interconvertible with ceramide, which is a critical mediator of apoptosis. It has been postulated that the ratio between S1P and ceramide determines cell fate. Activation of sphingosine kinase by a variety of agonists increases intracellular S1P, which in turn can function intracellularly as a second messenger or be secreted out of the cell and act extracellularly by binding to and signaling through S1P receptors in autocrine and/or paracrine manners. Recent studies suggest that this "inside-out" signaling by S1P may play a role in many human diseases, including cancer, atherosclerosis, inflammation, and autoimmune disorders such as multiple sclerosis. In this review we summarize metabolism of S1P, mechanisms of sphingosine kinase activation, and S1P receptors and their downstream signaling pathways and examine relationships to multiple disease processes. In particular, we describe recent preclinical and clinical trials of therapies targeting S1P signaling, including 2-amino-2-propane-1,3-diol hydrochloride (FTY720, fingolimod), S1P receptor agonists, sphingosine kinase inhibitors, and anti-S1P monoclonal antibody.
Collapse
Affiliation(s)
- Kazuaki Takabe
- Department of Surgery, Division of Surgical Oncology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | | | | | | |
Collapse
|
476
|
van der Spoel AC, Mott R, Platt FM. Differential sensitivity of mouse strains to an N-alkylated imino sugar: glycosphingolipid metabolism and acrosome formation. Pharmacogenomics 2008; 9:717-31. [PMID: 18518850 PMCID: PMC2749735 DOI: 10.2217/14622416.9.6.717] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This review deals with the pharmacological properties of an alkylated monosaccharide mimetic, N-butyldeoxynojirimycin (NB-DNJ). This compound is of pharmacogenetic interest because one of its biological effects in mice - impairment of spermatogenesis, leading to male infertility - depends greatly on the genetic background of the animal. In susceptible mice, administration of NB-DNJ perturbs the formation of an organelle, the acrosome, in early post-meiotic male germ cells. In all recipient mice, irrespective of reproductive phenotype, NB-DNJ has a similar biochemical effect: inhibition of the glucosylceramidase beta-glucosidase 2 and subsequent elevation of glucosylceramide, a glycosphingolipid. The questions that we now need to address are: how can glucosylceramide specifically affect early acrosome formation, and why is this contingent on genetic factors? Here we discuss relevant aspects of reproductive biology, the metabolism and cell biology of sphingolipids, and complex trait analysis; we also present a speculative model that takes our observations into account.
Collapse
Affiliation(s)
| | - Richard Mott
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Frances M Platt
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK E-mail:
| |
Collapse
|
477
|
D'Angelo G, Vicinanza M, De Matteis MA. Lipid-transfer proteins in biosynthetic pathways. Curr Opin Cell Biol 2008; 20:360-70. [PMID: 18490149 DOI: 10.1016/j.ceb.2008.03.013] [Citation(s) in RCA: 233] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2008] [Revised: 03/19/2008] [Accepted: 03/20/2008] [Indexed: 11/19/2022]
Abstract
Compartmentalization is a defining feature of eukaryotic cells that allows the spatial segregation of different functions, such as protein and lipid synthesis, and ensures their fidelity and efficiency. This imposes the need for an intense flux of metabolic intermediates between segregated enzymatic activities, as seen for the sequential transport of neosynthesized proteins through the segments of the secretory pathway during their post-translational modification. For lipid synthesis, the identification of proteins that transfer lipids between membranes has revealed an additional mechanism for this intercompartment exchange. The intense interest elicited by the lipid-transfer proteins over the last few years has led to the definition of their central role in key processes, such as lipid metabolism, membrane trafficking, and signaling.
Collapse
Affiliation(s)
- Giovanni D'Angelo
- Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, 66030 Santa Maria Imbaro Chieti, Italy
| | | | | |
Collapse
|
478
|
|
479
|
Hannun YA, Obeid LM. Principles of bioactive lipid signalling: lessons from sphingolipids. Nat Rev Mol Cell Biol 2008; 9:139-50. [PMID: 18216770 DOI: 10.1038/nrm2329] [Citation(s) in RCA: 2837] [Impact Index Per Article: 177.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
It has become increasingly difficult to find an area of cell biology in which lipids do not have important, if not key, roles as signalling and regulatory molecules. The rapidly expanding field of bioactive lipids is exemplified by many sphingolipids, such as ceramide, sphingosine, sphingosine-1-phosphate (S1P), ceramide-1-phosphate and lyso-sphingomyelin, which have roles in the regulation of cell growth, death, senescence, adhesion, migration, inflammation, angiogenesis and intracellular trafficking. Deciphering the mechanisms of these varied cell functions necessitates an understanding of the complex pathways of sphingolipid metabolism and the mechanisms that regulate lipid generation and lipid action.
Collapse
Affiliation(s)
- Yusuf A Hannun
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, South Carolina 29425, USA.
| | | |
Collapse
|
480
|
Abstract
Throughout the biological world, a 30 A hydrophobic film typically delimits the environments that serve as the margin between life and death for individual cells. Biochemical and biophysical findings have provided a detailed model of the composition and structure of membranes, which includes levels of dynamic organization both across the lipid bilayer (lipid asymmetry) and in the lateral dimension (lipid domains) of membranes. How do cells apply anabolic and catabolic enzymes, translocases and transporters, plus the intrinsic physical phase behaviour of lipids and their interactions with membrane proteins, to create the unique compositions and multiple functionalities of their individual membranes?
Collapse
|
481
|
Fölsch H. Regulation of membrane trafficking in polarized epithelial cells. Curr Opin Cell Biol 2008; 20:208-13. [PMID: 18282697 DOI: 10.1016/j.ceb.2008.01.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2007] [Accepted: 01/04/2008] [Indexed: 12/27/2022]
Abstract
Polarized epithelial cells continuously sort transmembrane proteins to either apical or basolateral plasma membrane domains. Research in recent years has made tremendous progress in understanding the molecular mechanisms of the major pathways to either basolateral or apical domain. This understanding will help us elucidating how these pathways are interconnected in ensuring maintenance of cell polarity and integrity of epithelial monolayers.
Collapse
Affiliation(s)
- Heike Fölsch
- Department of Biochemistry, Molecular Biology & Cell Biology, Northwestern University, 2205 Tech Drive, Evanston, IL 60202, USA.
| |
Collapse
|
482
|
Roles of l-serine and sphingolipid synthesis in brain development and neuronal survival. Prog Lipid Res 2008; 47:188-203. [PMID: 18319065 DOI: 10.1016/j.plipres.2008.01.003] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2007] [Revised: 11/30/2007] [Accepted: 01/17/2008] [Indexed: 01/14/2023]
Abstract
Sphingolipids represent a class of membrane lipids that contain a hydrophobic ceramide chain as its common backbone structure. Sphingolipid synthesis requires two simple components: l-serine and palmitoyl CoA. Although l-serine is classified as a non-essential amino acid, an external supply of l-serine is essential for the synthesis of sphingolipids and phosphatidylserine (PS) in particular types of central nervous system (CNS) neurons. l-Serine is also essential for these neurons to undergo neuritogenesis and to survive. Biochemical analysis has shown that l-serine is synthesized from glucose and released by astrocytes but not by neurons, which is the major reason why this amino acid is an essential amino acid for neurons. Biosynthesis of membrane lipids, such as sphingolipids, PS, and phosphatidylethanolamine (PE), in neurons is completely dependent on this astrocytic factor. Recent advances in lipid biology research using transgenic mice have demonstrated that synthesis of endogenous l-serine and neuronal sphingolipids is essential for brain development. In this review, we discuss the metabolic system that coordinates sphingolipid synthesis with the l-serine synthetic pathway between neurons and glia. We also discuss the crucial roles of the metabolic conversion of l-serine to sphingolipids in neuronal development and survival. Human diseases associated with serine and sphingolipid biosynthesis are also discussed.
Collapse
|
483
|
Zou X, Chung T, Lin X, Malakhova ML, Pike HM, Brown RE. Human glycolipid transfer protein (GLTP) genes: organization, transcriptional status and evolution. BMC Genomics 2008; 9:72. [PMID: 18261224 PMCID: PMC2262070 DOI: 10.1186/1471-2164-9-72] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2007] [Accepted: 02/08/2008] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Glycolipid transfer protein is the prototypical and founding member of the new GLTP superfamily distinguished by a novel conformational fold and glycolipid binding motif. The present investigation provides the first insights into the organization, transcriptional status, phylogenetic/evolutionary relationships of GLTP genes. RESULTS In human cells, single-copy GLTP genes were found in chromosomes 11 and 12. The gene at locus 11p15.1 exhibited several features of a potentially active retrogene, including a highly homologous (approximately 94%), full-length coding sequence containing all key amino acid residues involved in glycolipid liganding. To establish the transcriptional activity of each human GLTP gene, in silico EST evaluations, RT-PCR amplifications of GLTP transcript(s), and methylation analyses of regulator CpG islands were performed using various human cells. Active transcription was found for 12q24.11 GLTP but 11p15.1 GLTP was transcriptionally silent. Heterologous expression and purification of the GLTP paralogs showed glycolipid intermembrane transfer activity only for 12q24.11 GLTP. Phylogenetic/evolutionary analyses indicated that the 5-exon/4-intron organizational pattern and encoded sequence of 12q24.11 GLTP were highly conserved in therian mammals and other vertebrates. Orthologs of the intronless GLTP gene were observed in primates but not in rodentiates, carnivorates, cetartiodactylates, or didelphimorphiates, consistent with recent evolutionary development. CONCLUSION The results identify and characterize the gene responsible for GLTP expression in humans and provide the first evidence for the existence of a GLTP pseudogene, while demonstrating the rigorous approach needed to unequivocally distinguish transcriptionally-active retrogenes from silent pseudogenes. The results also rectify errors in the Ensembl database regarding the organizational structure of the actively transcribed GLTP gene in Pan troglodytes and establish the intronless GLTP as a primate-specific, processed pseudogene marker. A solid foundation has been established for future identification of hereditary defects in human GLTP genes.
Collapse
Affiliation(s)
- Xianqiong Zou
- The Hormel Institute, University of Minnesota, Austin, Minnesota 55912, USA.
| | | | | | | | | | | |
Collapse
|
484
|
Sabourdy F, Kedjouar B, Sorli SC, Colié S, Milhas D, Salma Y, Levade T. Functions of sphingolipid metabolism in mammals--lessons from genetic defects. Biochim Biophys Acta Mol Cell Biol Lipids 2008; 1781:145-83. [PMID: 18294974 DOI: 10.1016/j.bbalip.2008.01.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2007] [Revised: 01/15/2008] [Accepted: 01/15/2008] [Indexed: 01/23/2023]
Abstract
Much is known about the pathways that control the biosynthesis, transport and degradation of sphingolipids. During the last two decades, considerable progress has been made regarding the roles this complex group of lipids play in maintaining membrane integrity and modulating responses to numerous signals. Further novel insights have been provided by the analysis of newly discovered genetic diseases in humans as well as in animal models harboring mutations in the genes whose products control sphingolipid metabolism and action. Through the description of the phenotypic consequences of genetic defects resulting in the loss of activity of the many proteins that synthesize, transport, bind, or degrade sphingolipids, this review summarizes the (patho)physiological functions of these lipids.
Collapse
|
485
|
|
486
|
Abstract
Very few lipid transfer proteins (LTPs) have been caught in the act of transferring lipids in vivo from a donor membrane to an acceptor membrane. Now, two studies (Halter, D., S. Neumann, S.M. van Dijk, J. Wolthoorn, A.M. de Maziere, O.V. Vieira, P. Mattjus, J. Klumperman, G. van Meer, and H. Sprong. 2007. J. Cell Biol. 179:101-115; D'Angelo, G., E. Polishchuk, G.D. Tullio, M. Santoro, A.D. Campli, A. Godi, G. West, J. Bielawski, C.C. Chuang, A.C. van der Spoel, et al. 2007. Nature. 449:62-67) agree that four-phosphate adaptor protein 2 (FAPP2) transfers glucosylceramide (GlcCer), a lipid that takes an unexpectedly circuitous route.
Collapse
Affiliation(s)
- Tim P Levine
- University College London Institute of Ophthalmology, London EC1V 9EL, England, UK.
| |
Collapse
|
487
|
Glucosylceramide synthase decrease in frontal cortex of Alzheimer brain correlates with abnormal increase in endogenous ceramides: Consequences to morphology and viability on enzyme suppression in cultured primary neurons. Brain Res 2008; 1191:136-47. [DOI: 10.1016/j.brainres.2007.10.066] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2007] [Revised: 10/22/2007] [Accepted: 10/26/2007] [Indexed: 02/02/2023]
|
488
|
Tuuf J, Mattjus P. Human glycolipid transfer protein—Intracellular localization and effects on the sphingolipid synthesis. Biochim Biophys Acta Mol Cell Biol Lipids 2007; 1771:1353-63. [DOI: 10.1016/j.bbalip.2007.09.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2007] [Revised: 08/30/2007] [Accepted: 09/11/2007] [Indexed: 12/20/2022]
|
489
|
|