451
|
Abstract
Estrogen exhibits a broad spectrum of physiological functions ranging from regulation of the menstrual cycle and reproduction to modulation of bone density, brain function, and cholesterol mobilization. Despite the beneficial actions of endogenous estrogen, sustained exposure to exogenous estrogen is a well-established risk factor for various cancers. We summarize our current understanding of the molecular mechanisms of estrogen signaling in normal and cancer cells and discuss the major challenges to existing antiestrogen therapies.
Collapse
Affiliation(s)
- Jing Liang
- Tianjin Key Laboratory of Medical Epigenetics, Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin 300070, China.
| | | |
Collapse
|
452
|
Ghosh SK, Patton JR, Spanjaard RA. A small RNA derived from RNA coactivator SRA blocks steroid receptor signaling via inhibition of Pus1p-mediated pseudouridylation of SRA: evidence of a novel RNA binding domain in the N-terminus of steroid receptors. Biochemistry 2012; 51:8163-72. [PMID: 22998747 DOI: 10.1021/bi300602r] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Estrogen receptors (ERs) and androgen receptors (ARs) are important targets for cancer therapy; however, the efficacy of receptor antagonists is limited, and alternative strategies are needed. Steroid receptor RNA Activator (SRA) is a long, noncoding RNA coactivator (although some protein-encoding 5' splice variants have also been reported) that requires pseudouridylation by Pus1p to stimulate steroid receptor signaling. A uridine at position 206 (U206), which is located in small hairpin structure STR5 in the conserved SRA core sequence, is a critical target for pseudouridylation. We assessed if synthetic STR5 could serve as a novel competitive inhibitor of ERα and AR signaling by disrupting the Pus1p-SRA-steroid receptor axis. STR5 specifically inhibited Pus1p-dependent pseudouridylation of SRA with higher efficiency than STR5 mutant U206A. We show that SRA binds to the N-terminal domain (NTD) of ERα and AR with high affinity despite the absence of a recognizable RNA binding motif (RBM). Finally, we show that STR5 specifically inhibits ERα- and AR-dependent transactivation of target genes in steroid-sensitive cancer cells, consistent with disruption of the targeted Pus1p-SRA pathway. Together, our results show that the NTD of ERα and AR contains a novel RBM that directly binds SRA, and that STR5 can serve as a novel class of RNA inhibitor of ERα and AR signaling by interfering with Pus1p-mediated SRA pseudouridylation. Targeting this unexplored receptor signaling pathway may pave the way for the development of new types of cancer therapeutics.
Collapse
Affiliation(s)
- Sajal K Ghosh
- Department of Medicine, Cancer Center, Boston University School of Medicine, Boston, MA 02118, USA
| | | | | |
Collapse
|
453
|
Shrivastav A, Murphy L. Interactions of PI3K/Akt/mTOR and estrogen receptor signaling in breast cancer. BREAST CANCER MANAGEMENT 2012. [DOI: 10.2217/bmt.12.37] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
SUMMARY Endocrine therapies are used to treat estrogen receptor-positive (ER+) breast cancer; however, patients develop resistance in some cases due to hormone-independent activation of ER signaling. Dysregulation of mTOR, a central hub for various signaling pathways regulated by hormones and growth factors, is a mechanism of endocrine therapy resistance. Activation of kinases in these pathways can cause ligand-independent ER signaling. Phosphorylation of ER regulates activity and predicts clinical outcome in ER+ breast cancer. PI3K/Akt/mTOR pathway activation in breast cancer is common and considered a therapeutic target. PI3K/Akt/mTOR signaling is complex and interacts with ER signaling. mTOR’s downstream target p70S6K negatively regulates Akt on one hand and can phosphorylate ER. Moreover, overexpressed p70S6K activates ER in breast cancer cells. An overall understanding of signaling events, especially those governed by mTOR, is important in deciding treatment protocols for ER+ breast cancers.
Collapse
Affiliation(s)
- Anuraag Shrivastav
- Department of Biology, University of Winnipeg, 515 Portage Avenue, Winnipeg, R3B 2E9, MB, Canada
| | - Leigh Murphy
- Department of Biochemistry & Medical Genetics & the Manitoba Institute of Cell Biology, University of Manitoba & CancerCare Manitoba, 675 McDermot Avenue, Winnipeg, R3E 0V9, MB, Canada
| |
Collapse
|
454
|
Gonda K, Miyashita M, Watanabe M, Takahashi Y, Goda H, Okada H, Nakano Y, Tada H, Amari M, Ohuchi N. Development of a quantitative diagnostic method of estrogen receptor expression levels by immunohistochemistry using organic fluorescent material-assembled nanoparticles. Biochem Biophys Res Commun 2012; 426:409-14. [PMID: 22959769 DOI: 10.1016/j.bbrc.2012.08.105] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2012] [Accepted: 08/21/2012] [Indexed: 11/19/2022]
Abstract
The detection of estrogen receptors (ERs) by immunohistochemistry (IHC) using 3,3'-diaminobenzidine (DAB) is slightly weak as a prognostic marker, but it is essential to the application of endocrine therapy, such as antiestrogen tamoxifen-based therapy. IHC using DAB is a poor quantitative method because horseradish peroxidase (HRP) activity depends on reaction time, temperature and substrate concentration. However, IHC using fluorescent material provides an effective method to quantitatively use IHC because the signal intensity is proportional to the intensity of the photon excitation energy. However, the high level of autofluorescence has impeded the development of quantitative IHC using fluorescence. We developed organic fluorescent material (tetramethylrhodamine)-assembled nanoparticles for IHC. Tissue autofluorescence is comparable to the fluorescence intensity of quantum dots, which are the most representative fluorescent nanoparticles. The fluorescent intensity of our novel nanoparticles was 10.2-fold greater than quantum dots, and they did not bind non-specifically to breast cancer tissues due to the polyethylene glycol chain that coated their surfaces. Therefore, the fluorescent intensity of our nanoparticles significantly exceeded autofluorescence, which produced a significantly higher signal-to-noise ratio on IHC-imaged cancer tissues than previous methods. Moreover, immunostaining data from our nanoparticle fluorescent IHC and IHC with DAB were compared in the same region of adjacent tissues sections to quantitatively examine the two methods. The results demonstrated that our nanoparticle staining analyzed a wide range of ER expression levels with higher accuracy and quantitative sensitivity than DAB staining. This enhancement in the diagnostic accuracy and sensitivity for ERs using our immunostaining method will improve the prediction of responses to therapies that target ERs and progesterone receptors that are induced by a downstream ER signal.
Collapse
Affiliation(s)
- Kohsuke Gonda
- Department of Nano-Medical Science, Graduate School of Medicine, Tohoku University, Seiryo-machi, Sendai 980-8575, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
455
|
Putnik M, Zhao C, Gustafsson JÅ, Dahlman-Wright K. Global identification of genes regulated by estrogen signaling and demethylation in MCF-7 breast cancer cells. Biochem Biophys Res Commun 2012; 426:26-32. [PMID: 22902638 DOI: 10.1016/j.bbrc.2012.08.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 08/02/2012] [Indexed: 01/16/2023]
Abstract
Estrogen signaling and epigenetic modifications, in particular DNA methylation, are involved in regulation of gene expression in breast cancers. Here we investigated a potential regulatory cross-talk between these two pathways by identifying their common target genes and exploring underlying molecular mechanisms in human MCF-7 breast cancer cells. Gene expression profiling revealed that the expression of approximately 140 genes was influenced by both 17β-estradiol (E2) and a demethylating agent 5-aza-2'-deoxycytidine (DAC). Gene ontology (GO) analysis suggests that these genes are involved in intracellular signaling cascades, regulation of cell proliferation and apoptosis. Based on previously reported association with breast cancer, estrogen signaling and/or DNA methylation, CpG island prediction and GO analysis, we selected six genes (BTG3, FHL2, PMAIP1, BTG2, CDKN1A and TGFB2) for further analysis. Tamoxifen reverses the effect of E2 on the expression of all selected genes, suggesting that they are direct targets of estrogen receptor. Furthermore, DAC treatment reactivates the expression of all selected genes in a dose-dependent manner. Promoter CpG island methylation status analysis revealed that only the promoters of BTG3 and FHL2 genes are methylated, with DAC inducing demethylation, suggesting DNA methylation directs repression of these genes in MCF-7 cells. In a further analysis of the potential interplay between estrogen signaling and DNA methylation, E2 treatment showed no effect on the methylation status of these promoters. Additionally, we show that the ERα recruitment occurs at the FHL2 promoter in an E2- and DAC-independent fashion. In conclusion, we identified a set of genes regulated by both estrogen signaling and DNA methylation. However, our data does not support a direct molecular interplay of mediators of estrogen and epigenetic signaling at promoters of regulated genes.
Collapse
Affiliation(s)
- Milica Putnik
- Department of Biosciences and Nutrition, Novum, Karolinska Institutet, Huddinge S-14183, Sweden.
| | | | | | | |
Collapse
|
456
|
Kampa M, Notas G, Pelekanou V, Troullinaki M, Andrianaki M, Azariadis K, Kampouri E, Lavrentaki K, Castanas E. Early membrane initiated transcriptional effects of estrogens in breast cancer cells: First pharmacological evidence for a novel membrane estrogen receptor element (ERx). Steroids 2012; 77:959-67. [PMID: 22406407 DOI: 10.1016/j.steroids.2012.02.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 02/16/2012] [Accepted: 02/17/2012] [Indexed: 01/20/2023]
Abstract
The complexity of estrogen actions mainly relies to the presence of different identified receptors (ERα, ERβ, their isoforms, and GPR30/GPER) and their discrete cellular distribution. Depending on the localization of the receptor that mediates estrogen effects, nuclear and extra-nuclear actions have been described. The latter can trigger a number of signaling events leading also to transcriptional modifications. In an attempt to clarify the nature of the receptor(s) involved in the membrane initiated effect of estrogens on gene expression, we performed a whole transcriptome analysis of breast cancer cell lines with different receptor profiles (T47D, MCF7, MDA-MB-231, SK-BR-3). A pharmacological approach was conducted with the use of estradiol (E(2)) or membrane-impermeable E(2)-BSA in the absence or presence of a specific ERα-β or GPR30/GPER antagonist. Our results clearly show that in addition to the ERα isoforms and/or GPR30/GPER that mainly mediate the transcriptional effect of E(2)-BSA, there is a specific transcriptional signature (found in T47D and MCF-7 cells) suggesting the presence of an unidentified membrane ER element (ERx). Analysis of its signature and phenotypic verification revealed that important cell function such as apoptosis, transcriptional regulation, and growth factor signaling are associated with ERx.
Collapse
Affiliation(s)
- Marilena Kampa
- Laboratory of Experimental Endocrinology, University of Crete, School of Medicine, Greece.
| | | | | | | | | | | | | | | | | |
Collapse
|
457
|
Generation of ERα-floxed and knockout mice using the Cre/LoxP system. Biochem Biophys Res Commun 2012; 424:710-6. [DOI: 10.1016/j.bbrc.2012.07.016] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 07/06/2012] [Indexed: 11/18/2022]
|
458
|
Notas G, Kampa M, Pelekanou V, Castanas E. Interplay of estrogen receptors and GPR30 for the regulation of early membrane initiated transcriptional effects: A pharmacological approach. Steroids 2012; 77:943-50. [PMID: 22138208 DOI: 10.1016/j.steroids.2011.11.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2011] [Revised: 11/05/2011] [Accepted: 11/09/2011] [Indexed: 01/08/2023]
Abstract
Estrogens exert their effect through ERα and ERβ intracellular transcription factors and rapid, usually membrane-initiated receptors, influencing cytosolic signaling and transcription. The nature of extranuclear estrogen elements has not been elucidated so far; classical or alternatively transcribed ER isoforms (ERα36, ERα46) anchored to the plasma membrane and GPR30 (GPER1) have been reported to exert early estrogen actions. Here, we used E2-BSA, an impermeable estradiol analog for a transcriptome analysis in four GREP1 positive breast cancer cell lines with different estrogen receptor profiles (T47D, MCF-7, MDA-MB-231 and SKBR3) in order to evaluate GPER1 transcriptional effects. Early effects of E2-BSA were assayed after 3h of incubation, in the absence/presence of ICI182,780 (ER-inhibitor) or G15 (GREP1-specific inhibitor). E2-BSA specifically modified 277-549 transcripts in the different cell lines. Two different clusters of transcripts could be identified: (1) the majority of transcripts were inhibited by both ICI182,780 and G15, suggesting an interaction of E2-BSA with a common ER-related element, or a direct ER-GPER1 interaction; (2) a small number of G15-only modified transcripts, in two cell lines (T47D and SKBR3 cells), indicative of specific GPER1-related effects. The latter transcripts were significantly related to pathways including FOXA2/FOXA3 transcription factor networks, RNA-Polymerases Transcription Regulation and lipid metabolism, while ICI/G15 inhibited transcripts affected pathways related to apoptosis, erythropoietin signaling, metabolic effects through the citric acid cycle, IL-4 and IL-5 mediated events and homologous DNA recombination. Finally, we review the current literature of GPER1 actions, in view of our results of ER-dependent and independent GPER1-modified pathways.
Collapse
Affiliation(s)
- George Notas
- Laboratory of Experimental Endocrinology, University of Crete, School of Medicine, Greece.
| | | | | | | |
Collapse
|
459
|
Marino M, Pellegrini M, La Rosa P, Acconcia F. Susceptibility of estrogen receptor rapid responses to xenoestrogens: Physiological outcomes. Steroids 2012; 77:910-7. [PMID: 22410438 DOI: 10.1016/j.steroids.2012.02.019] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Revised: 02/13/2012] [Accepted: 02/24/2012] [Indexed: 02/06/2023]
Abstract
17β-Estradiol (E2) binding induces rapid modification in the conformation of its cognate receptors (i.e., ERα and ERβ). These allosteric changes allow the association of ERs with cell specific transcriptional cofactors, thus determining cellular contexts specific variations in gene expression. In addition, E2-ER complexes could also interact with membrane and cytosolic signal molecules triggering extra-nuclear signalling pathways. The synergy between these mechanisms is necessary for E2-induced pleiotropic actions in target tissues. Besides E2, the ER ligand binding domains can accommodate many other natural and synthetic ligands. Several of these compounds act as agonist or antagonist of ER transcriptional activity due to their ability to modify the interactions between ERs and transcriptional co-regulators. However, the ability of natural or manmade ER ligands to affect the extra-nuclear interactions of the ERs has been rarely evaluated. Here, the ability of two diet-derived flavonoids (i.e., naringenin and quercetin) and of the synthetic food-contaminant bisphenol A to modulate specifically ER extra-nuclear signalling pathways will be reported. All the tested compounds bind to both ER subtypes even if lesser than E2 activating divergent signal transduction pathways. In fact, in the presence of ERα, both naringenin and quercetin decouple ERα activities by specifically interfering with ERα membrane initiating signals. On the other hand, bisphenol A, but not flavonoids, maintains ERβ at the membrane thus impairing the activation of the downstream kinases. As a whole, extra-nuclear ER signals are highly susceptible to different ligands that, by unbalancing E2-induced cell functions drive cells to different functional endpoints.
Collapse
Affiliation(s)
- Maria Marino
- Department of Biology, University Roma TRE, viale G. Marconi, 446, I-00146 Rome, Italy.
| | | | | | | |
Collapse
|
460
|
Barton M. Position paper: The membrane estrogen receptor GPER--Clues and questions. Steroids 2012; 77:935-42. [PMID: 22521564 DOI: 10.1016/j.steroids.2012.04.001] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 03/13/2012] [Accepted: 04/01/2012] [Indexed: 12/25/2022]
Abstract
Rapid signaling of estrogen involves membrane estrogen receptors (ERs), including membrane subpopulations of ERα and ERβ. In the mid-1990s, several laboratories independently reported the cloning of an orphan G protein-coupled receptor from vascular and cancer cells that was named GPR30. Research published between 2000 and 2005 provided evidence that GPR30 binds and signals via estrogen indicating that this intracellular receptor is involved in rapid, non-genomic estrogen signaling. The receptor has since been designated as the G protein-coupled estrogen receptor (GPER) by the International Union of Pharmacology. The availability of genetic tools such as different lines of GPER knock-out mice, as well as GPER-selective agonists and antagonists has advanced our understanding, but also added some confusion about the new function of this receptor. GPER not only binds estrogens but also other substances, including SERMs, SERDs, and environmental ER activators (endocrine disruptors; xenoestrogens) and also interacts with other proteins. This article represents a summary of a lecture given at the 7(th) International Meeting on Rapid Responses to Steroid Hormones in September 2011 in Axos, Crete, and reviews the current knowledge and questions about GPER-dependent signaling and function. Controversies that have complicated our understanding of GPER, including interactions with human ERα-36 and aldosterone as a potential ligand, will also be discussed.
Collapse
Affiliation(s)
- Matthias Barton
- Molecular Internal Medicine, University of Zurich, LTK Y44 G22, Winterthurerstrasse 190, 8057 Zürich, Switzerland.
| |
Collapse
|
461
|
Cheng L, Li J, Han Y, Lin J, Niu C, Zhou Z, Yuan B, Huang K, Li J, Jiang K, Zhang H, Ding L, Xu X, Ye Q. PES1 promotes breast cancer by differentially regulating ERα and ERβ. J Clin Invest 2012; 122:2857-70. [PMID: 22820289 DOI: 10.1172/jci62676] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Accepted: 05/31/2012] [Indexed: 12/21/2022] Open
Abstract
The initiation of breast cancer is associated with increased expression of tumor-promoting estrogen receptor α (ERα) protein and decreased expression of tumor-suppressive ERβ protein. However, the mechanism underlying this process is unknown. Here we show that PES1 (also known as Pescadillo), an estrogen-inducible protein that is overexpressed in breast cancer, can regulate the balance between ERα and ERβ. We found that PES1 modulated many estrogen-responsive genes by enhancing the transcriptional activity of ERα while inhibiting transcriptional activity of ERβ. Consistent with this regulation of ERα and ERβ transcriptional activity, PES1 increased the stability of the ERα protein and decreased that of ERβ through the ubiquitin-proteasome pathway, mediated by the carboxyl terminus of Hsc70-interacting protein (CHIP). Moreover, PES1 transformed normal human mammary epithelial cells and was required for estrogen-induced breast tumor growth in nude mice. Further analysis of clinical samples showed that expression of PES1 correlated positively with ERα expression and negatively with ERβ expression and predicted good clinical outcome in breast cancer. Our data demonstrate that PES1 contributes to breast tumor growth through regulating the balance between ERα and ERβ and may be a better target for the development of drugs that selectively regulate ERα and ERβ activities.
Collapse
Affiliation(s)
- Long Cheng
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing, People’s Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
462
|
Thomas C, Gustafsson JÅ. Targeting PES1 for restoring the ERα/ERβ ratio in breast cancer. J Clin Invest 2012; 122:2771-3. [PMID: 22820293 DOI: 10.1172/jci65133] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Alteration of the ERα/ERβ balance is a critical step in breast cancer development and progression, and selective restoration of the activity of estrogen receptors has been proposed as one of the major therapeutic approaches for breast cancer. In this issue of JCI, Cheng et al. show that, by differentially modulating the stability of ERα and ERβ, PES1 increases the ERα/ERβ ratio and triggers breast tumor growth. These findings highlight PES1 as a potential target for the treatment of breast cancer.
Collapse
|
463
|
Hussain S, Lawrence MG, Taylor RA, Lo CYW, BioResource APC, Frydenberg M, Ellem SJ, Furic L, Risbridger GP. Estrogen receptor β activation impairs prostatic regeneration by inducing apoptosis in murine and human stem/progenitor enriched cell populations. PLoS One 2012; 7:e40732. [PMID: 22808245 PMCID: PMC3393688 DOI: 10.1371/journal.pone.0040732] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Accepted: 06/12/2012] [Indexed: 11/19/2022] Open
Abstract
Androgen depletion is the primary treatment for prostate disease; however, it fails to target residual castrate-resistant cells that are regenerative and cells of origin of prostate cancer. Estrogens, like androgens, regulate survival in prostatic cells, and the goal of this study was to determine the advantages of selective activation of estrogen receptor β (ERβ) to induce cell death in stem cells that are castrate-resistant. Here we show two cycles of short-term ERβ agonist (8β-VE2) administration this treatment impairs regeneration, causing cystic atrophy that correlates with sustained depletion of p63+ basal cells. Furthermore, agonist treatment attenuates clonogenicity and self-renewal of murine prostatic stem/progenitor cells and depletes both murine (Lin(-)Sca1(+)CD49f(hi)) and human (CD49f(hi)Trop2(hi)) prostatic basal cells. Finally, we demonstrate the combined added benefits of selective stimulation of ERβ, including the induction of cell death in quiescent post-castration tissues. Subsequent to castration ERβ-induces further apoptosis in basal, luminal and intermediate cells. Our results reveal a novel benefit of ERβ activation for prostate disease and suggest that combining selective activation of ERβ with androgen-deprivation may be a feasible strategy to target stem cells implicated in the origin of prostatic disease.
Collapse
Affiliation(s)
- Shirin Hussain
- Prostate & Breast Cancer Research Program, Department of Anatomy & Developmental Biology, Monash University, Clayton, Victoria, Australia
| | - Mitchell G. Lawrence
- Prostate & Breast Cancer Research Program, Department of Anatomy & Developmental Biology, Monash University, Clayton, Victoria, Australia
| | - Renea A. Taylor
- Prostate & Breast Cancer Research Program, Department of Anatomy & Developmental Biology, Monash University, Clayton, Victoria, Australia
| | - Camden Yeung-Wah Lo
- Monash Micro Imaging, Monash Health Translation Precinct, Clayton, Victoria, Australia
| | - A. P. C. BioResource
- Australian Prostate Cancer BioResource, Victorian Node, Monash University, Clayton, Victoria, Australia
| | - Mark Frydenberg
- Department of Surgery, Faculty of Medicine, Monash University, Clayton, Victoria, Australia
| | - Stuart J. Ellem
- Prostate & Breast Cancer Research Program, Department of Anatomy & Developmental Biology, Monash University, Clayton, Victoria, Australia
| | - Luc Furic
- Prostate & Breast Cancer Research Program, Department of Anatomy & Developmental Biology, Monash University, Clayton, Victoria, Australia
| | - Gail P. Risbridger
- Prostate & Breast Cancer Research Program, Department of Anatomy & Developmental Biology, Monash University, Clayton, Victoria, Australia
- Australian Prostate Cancer BioResource, Victorian Node, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
464
|
Bianco S, Gévry N. Endocrine resistance in breast cancer: from cellular signaling pathways to epigenetic mechanisms. Transcription 2012; 3:165-70. [PMID: 22771991 DOI: 10.4161/trns.20496] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Although multiple cellular mechanisms have been proposed to explain endocrine resistance in breast cancer, the genomics events promoting the dysregulation of gene expression pattern are not clearly understood. Because chromatin plays a dynamic role in the estrogen receptor α (ERα) transcriptional program, we herein review signaling pathways implicated in endocrine resistance and try to merge them with recent epigenetic studies.
Collapse
Affiliation(s)
- Stéphanie Bianco
- Département de Biologie, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | | |
Collapse
|
465
|
Aiyer HS, Warri AM, Woode DR, Hilakivi-Clarke L, Clarke R. Influence of berry polyphenols on receptor signaling and cell-death pathways: implications for breast cancer prevention. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:5693-708. [PMID: 22300613 PMCID: PMC3383353 DOI: 10.1021/jf204084f] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Breast cancer is the most commonly diagnosed cancer among women worldwide. Many women have become more aware of the benefits of increasing fruit consumption, as part of a healthy lifestyle, for the prevention of cancer. The mechanisms by which fruits, including berries, prevent breast cancer can be partially explained by exploring their interactions with pathways known to influence cell proliferation and evasion of cell-death. Two receptor pathways, estrogen receptor (ER) and tyrosine kinase receptors, especially the epidermal growth factor receptor (EGFR) family, are drivers of cell proliferation and play a significant role in the development of both primary and recurrent breast cancer. There is strong evidence to show that several phytochemicals present in berries such as cyanidin, delphinidin, quercetin, kaempferol, ellagic acid, resveratrol, and pterostilbene interact with and alter the effects of these pathways. Furthermore, they also induce cell death (apoptosis and autophagy) via their influence on kinase signaling. This review summarizes in vitro data regarding the interaction of berry polyphenols with the specific receptors and the mechanisms by which they induce cell death. This paper also presents in vivo data of primary breast cancer prevention by individual compounds and whole berries. Finally, a possible role for berries and berry compounds in the prevention of breast cancer and a perspective on the areas that require further research are presented.
Collapse
Affiliation(s)
- Harini S Aiyer
- Georgetown University School of Medicine, Vincent T. Lombardi Comprehensive Cancer Center, Georgetown University, 3970 Reservoir Road NW, W401, Research Bldg, Washington, D.C. 20057
- Corresponding author: Harini S. Aiyer, PhD (Tel: 202-687-4060; Fax: 202-687-7505; )
| | - Anni M Warri
- Georgetown University School of Medicine, Vincent T. Lombardi Comprehensive Cancer Center, Georgetown University, 3970 Reservoir Road NW, W401, Research Bldg, Washington, D.C. 20057
| | - Denzel R Woode
- Columbia University, 5992 Lerner Hall, New York, NY 10027
| | - Leena Hilakivi-Clarke
- Georgetown University School of Medicine, Vincent T. Lombardi Comprehensive Cancer Center, Georgetown University, 3970 Reservoir Road NW, W401, Research Bldg, Washington, D.C. 20057
| | - Robert Clarke
- Georgetown University School of Medicine, Vincent T. Lombardi Comprehensive Cancer Center, Georgetown University, 3970 Reservoir Road NW, W401, Research Bldg, Washington, D.C. 20057
| |
Collapse
|
466
|
Wang D, Huang P, Zhu B, Sun L, Huang Q, Wang J. Induction of estrogen receptor α-36 expression by bone morphogenetic protein 2 in breast cancer cell lines. Mol Med Rep 2012; 6:591-6. [PMID: 22711074 DOI: 10.3892/mmr.2012.945] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2012] [Accepted: 06/06/2012] [Indexed: 11/06/2022] Open
Abstract
The expression of estrogen receptor-α (ERα) is one of the most important diagnostic and prognostic factors of breast cancer. Recently, ERα-36 has been identified as a novel variant of ER-α. ERα-36 lacks intrinsic transcription activity and mainly mediates non-genomic estrogen signaling. Bone morphogenetic proteins (BMPs) are recognized as key factors during the control of cell fate and cancer development. However, the correlation between BMP and the ER signaling pathway remains unclear. In this study, we show that BMP2, a member of the BMP family, is a novel inducer of ERα-36 expression in breast cancer cells. As shown by western blot assays, the upregulation of ERα-36 by BMP2 was significant. In MDA-MB-231 cells which are ERα-66-negative, BMP2 was able to induce the expression of ERα-36 in a dose-dependent manner, and the RNA interference assay indicated a correlation between BMP2 and ERα-36 expression. BMP2 inhibited the growth of MCF-7 and MDA-MB-231 cells; however, the inhibitory effect was antagonized by tamoxifen, suggesting that the ER signal was involved. The growth of MDA-MB‑231 cells was stimulated by 17-β-estradiol (E2) after BMP2 induction, even though the cells were previously insensitive to E2. These results suggest that BMP2 induces ERα-36 expression and alters tumor resistance to endocrine therapy by changing the expression profile of ERs.
Collapse
Affiliation(s)
- Dingding Wang
- Department of Biotechnology, Institute of Life Science and Biological Pharmacy, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, PR China
| | | | | | | | | | | |
Collapse
|
467
|
Leung YK, Lee MT, Lam HM, Tarapore P, Ho SM. Estrogen receptor-beta and breast cancer: translating biology into clinical practice. Steroids 2012; 77:727-37. [PMID: 22465878 PMCID: PMC3356459 DOI: 10.1016/j.steroids.2012.03.008] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 03/15/2012] [Accepted: 03/16/2012] [Indexed: 02/07/2023]
Abstract
Estrogen receptor (ER) β was discovered over a decade ago. The design of most studies on this receptor was based on knowledge of its predecessor, ERα. Although breast cancer (BCa) has been a main focus of ERβ research, its precise roles in breast carcinogenesis remain elusive. Data from in vitro models have not always matched those from observational or clinical studies. Several inherent factors may contribute to these discrepancies: (a) several ERβ spliced variants are expressed at the protein level, and isoform-specific antibodies are unavailable for some variants; (b) post-translational modifications of the receptor regulate receptor functions; (c) the role of the receptor differs significantly depending on the type of ligands, cis-elements, and co-regulators that interact with the receptor; and (d) the diversity of distribution of the receptor among intracellular organelles of BCa cells. This review addresses the gaps in knowledge in ERβ research as it pertains to BCa regarding the following questions: (1) is ERβ a tumor suppressor in BCa?; (2) do ERβ isoforms play differential roles in breast carcinogenesis?; (3) do nuclear signaling and extranuclear ERβ signaling differ in BCa?; (4) what are the consequences of post-translational modifications of ERβ in BCa?; (5) how do co-regulators and interacting proteins increase functional diversity of ERβ?; and (6) how do the types of ligand and regulatory cis-elements affect the action of ERβ in BCa?. Insights gained from these key questions in ERβ research should help in prevention, diagnosis/prognosis, and treatment of BCa.
Collapse
Affiliation(s)
- Yuet-Kin Leung
- Division of Environmental Genetics and Molecular Toxicology, Department of Environmental Health, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA.
| | | | | | | | | |
Collapse
|
468
|
Snelten CS, Dietz B, Bolton JL. Modulation of Estrogen Chemical Carcinogenesis by Botanical Supplements used for Postmenopausal Women's Health. ACTA ACUST UNITED AC 2012; 9. [PMID: 24223609 DOI: 10.1016/j.ddmec.2012.11.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Breast cancer risk has been associated with long-term estrogen exposure including traditional hormone therapy (HT, formally hormone replacement therapy). To avoid traditional HT and associated risks, women have been turning to botanical supplements such as black cohosh, red clover, licorice, hops, dong gui, and ginger to relieve menopausal symptoms despite a lack of efficacy evidence. The mechanisms of estrogen carcinogenesis involve both hormonal and chemical pathways. Botanical supplements could protect women from estrogen carcinogenesis by modulating key enzymatic steps [aromatase, P4501B1, P4501A1, catechol-O-methyltransferase (COMT), NAD(P)H quinone oxidoreductase 1 (NQO1), and reactive oxygen species (ROS) scavenging] in estradiol metabolism leading to estrogen carcinogenesis as outlined in Figure 1. This review summarizes the influence of popular botanical supplements used for women's health on these key steps in the estrogen chemical carcinogenesis pathway, and suggests that botanical supplements may have added chemopreventive benefits by modulating estrogen metabolism.
Collapse
Affiliation(s)
- Courtney S Snelten
- Department of Medicinal Chemistry and Pharmacognosy and UIC/NIH Center for Botanical Dietary Supplements Research in Women's Health, University of Illinois at Chicago, College of Pharmacy, 833 S. Wood Street, M/C 781, Chicago, Illinois, 60612-7231
| | | | | |
Collapse
|
469
|
Vedin LL, Gustafsson JÅ, Steffensen KR. The oxysterol receptors LXRα and LXRβ suppress proliferation in the colon. Mol Carcinog 2012; 52:835-44. [PMID: 22610535 DOI: 10.1002/mc.21924] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 04/20/2012] [Accepted: 04/24/2012] [Indexed: 12/13/2022]
Abstract
The oxysterol receptors LXRα and LXRβ are members of the nuclear receptor family and established transcriptional regulators of lipid metabolism with additional anti-inflammatory functions. Recent investigations have indicated an important role of LXRs in the control of proliferation. Here we further extend this knowledge to human colon cancer cells and proliferation in mouse colon. We show that activation of LXRs leads to a robust cell cycle arrest in colorectal adenocarcinoma cell lines. At the molecular level LXRs control expression of several cell cycle genes including Skp2, c-Myc, CDKs, cyclins, and p15. Furthermore, activation of LXRs causes hypo-phosphorylation of the retinoblastoma (Rb) tumor suppressor protein. Experiments performed in vivo show that the colon structure appears to be intact in LXR null mice. However, LXRαβ(-/-) mice show a significant increase of proliferation markers in colon compared to wild type mice and administration of the LXR specific agonist, GW3965 significantly reduced expression of proliferation in mouse colon. Taken together, these findings point toward a strong anti-proliferative effect of LXRs in colon revealing the potential of LXR ligands as possible anti cancer agents.
Collapse
Affiliation(s)
- Lise-Lotte Vedin
- Department of Biosciences and Nutrition, Center for Biosciences, Karolinska Institutet, Stockholm, Sweden
| | | | | |
Collapse
|
470
|
Grubisha MJ, Cifuentes ME, Hammes SR, Defranco DB. A local paracrine and endocrine network involving TGFβ, Cox-2, ROS, and estrogen receptor β influences reactive stromal cell regulation of prostate cancer cell motility. Mol Endocrinol 2012; 26:940-54. [PMID: 22593181 DOI: 10.1210/me.2011-1371] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The tumor microenvironment plays a critical role in supporting cancer cells particularly as they disengage from limitations on their growth and motility imposed by surrounding nonreactive stromal cells. We show here that stromal-derived androgenic precursors are metabolized by DU145 human prostate cancer (PCa) cells to generate ligands for estrogen receptor-β, which act to limit their motility through transcriptional regulation of E-cadherin. Although primary human PCa-associated fibroblasts and the human WPMY-1-reactive prostate stromal cell line maintain this inherent estrogen receptor (ER)β-dependent motility inhibitor activity, they are subverted by TGF-β1 pro-oxidant signals derived from cocultured DU145 PCa cells. Specifically, stromal-produced H(2)O(2), which requires Cox-2, acts as a second paracrine factor to inhibit ERβ activity in adjacent DU145 cells. Chromatin immunoprecipitation analysis reveals that ERβ recruitment to the E-cadherin promoter is inhibited when H(2)O(2) is present. Both neutralization of H(2)O(2) with catalase and prevention of its production by silencing Cox-2 expression in stromal cells restore the motility-suppression activity of stromal-derived ERβ ligand precursors. These data suggest that reactive stromal cells may still have a capacity to limit cancer cell motility through a local endocrine network but must be protected from pro-oxidant signals triggered by cancer cell-derived TGF-β1 to exhibit this cancer-suppressive function.
Collapse
Affiliation(s)
- Melanie J Grubisha
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | | | | | | |
Collapse
|
471
|
Jakobsson T, Treuter E, Gustafsson JÅ, Steffensen KR. Liver X receptor biology and pharmacology: new pathways, challenges and opportunities. Trends Pharmacol Sci 2012; 33:394-404. [PMID: 22541735 DOI: 10.1016/j.tips.2012.03.013] [Citation(s) in RCA: 240] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 03/05/2012] [Accepted: 03/26/2012] [Indexed: 01/12/2023]
Abstract
Nuclear receptors (NRs) are master regulators of transcriptional programs that integrate the homeostatic control of almost all biological processes. Their direct mode of ligand regulation and genome interaction is at the core of modern pharmacology. The two liver X receptors LXRα and LXRβ are among the emerging newer drug targets within the NR family. LXRs are best known as nuclear oxysterol receptors and physiological regulators of lipid and cholesterol metabolism that also act in an anti-inflammatory way. Because LXRs control diverse pathways in development, reproduction, metabolism, immunity and inflammation, they have potential as therapeutic targets for diseases as diverse as lipid disorders, atherosclerosis, chronic inflammation, autoimmunity, cancer and neurodegenerative diseases. Recent insights into LXR signaling suggest future targeting strategies aiming at increasing LXR subtype and pathway selectivity. This review discusses the current status of our understanding of LXR biology and pharmacology, with an emphasis on the molecular aspects of LXR signaling that constitute the potential of LXRs as drug targets.
Collapse
Affiliation(s)
- Tomas Jakobsson
- Center for Biosciences, Department of Biosciences and Nutrition, Karolinska Institutet, S-14183 Stockholm, Sweden
| | | | | | | |
Collapse
|
472
|
Xu Y, Liu X, Guo F, Ning Y, Zhi X, Wang X, Chen S, Yin L, Li X. Effect of estrogen sulfation by SULT1E1 and PAPSS on the development of estrogen-dependent cancers. Cancer Sci 2012; 103:1000-9. [PMID: 22380844 DOI: 10.1111/j.1349-7006.2012.02258.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 01/11/2012] [Accepted: 02/26/2012] [Indexed: 12/21/2022] Open
Abstract
Estrogens are involved in the complex regulation of cell proliferation and apoptosis of hormone sensitive tumors including breast and endometrial cancers. Sulfation is the main pathway for estrogen metabolism, which is believed to be involved in the inactivation of estrogens in target tissues. SULT1E1 and PAPSS (PAPSS1 and PAPSS2) are responsible for the estrogen sulfation by providing catalyzing enzyme and universal sulfate donor. The present study showed the expression patterns of SULT1E1 and PAPSS in the breast and endometrial tissues by tissue array analysis and the assessment of clinical samples. The estrogen sulfation enzymes were comparatively higher in the tumorous tissues than their adjacent normal tissues. SULT1E1 overexpression inhibited the tumorigenesis in subcutaneous xenograft model. By CCK-8 assay and flow cytometry assay, overexpression of SULT1E1 and PAPSS1 by adenovirus blocked the estrogen pro-proliferating effect and promoted cell apoptosis induced by H(2)O(2) in MCF-7 cells. By real-time reverse transcription-polymerase chain reaction and western-blot assays, overexpression of SULT1E1 and PAPSS1 suppressed cell growth and triggered apoptosis by downregulating the levels of c-myc, cyclin D1 and bcl-2, meanwhile, upregulating bax expression. In conclusion, the discrepancies in expressions of SULT1E1 and PAPSS between breast and endometrial tumorous tissues and their adjacent normal tissues were prominent. Overexpression of SULT1E1 and PAPSS1 retarded MCF-7 cells growth in vivo and in vitro by arresting cell cycles and inducing apoptosis. Thus, targeting SULT1E1 and PAPSS expressions might be an important approach for estrogen-dependent cancers.
Collapse
Affiliation(s)
- Yali Xu
- Department of Physiology and Pathophysiology, Fudan University Shanghai Medical College, Shanghai, China
| | | | | | | | | | | | | | | | | |
Collapse
|
473
|
Abstract
Several of the active compounds in foods, poisons, drugs, and industrial chemicals may, by epigenetic mechanisms, increase or decrease the risk of breast cancers. Enzymes that are involved in DNA methylation and histone modifications have been shown to be altered in several types of breast and other cancers resulting in abnormal patterns of methylation and/or acetylation. Hypermethylation at the CpG islands found in estrogen response element (ERE) promoters occurs in conjunction with ligand-bonded alpha subunit estrogen receptor (Erα) dimers wherein the ligand ERα dimer complex acts as a transcription factor and binds to the ERE promoter. Ligands could be 17-β-estradiol (E2), phytoestrogens, heterocyclic amines, and many other identified food additives and heavy metals. The dimer recruits DNA methyltransferases which catalyze the transfer of methyl groups from S-adenosyl-L-methionine (SAM) to 5'-cytosine on CpG islands. Other enzymes are recruited to the region by ligand-ERα dimers which activate DNA demethylases to act simultaneously to increase gene expression of protooncogenes and growth-promoting genes. Ligand-ERα dimers also recruit histone acetyltransferase to the ERE promoter region. Histone demethylases such as JMJD2B and histone methyltransferases are enzymes which demethylate lysine residues on histones H3 and/or H4. This makes the chromatin accessible for transcription factors and enzymes.
Collapse
|
474
|
Choleris E, Clipperton-Allen AE, Phan A, Valsecchi P, Kavaliers M. Estrogenic involvement in social learning, social recognition and pathogen avoidance. Front Neuroendocrinol 2012; 33:140-59. [PMID: 22369749 DOI: 10.1016/j.yfrne.2012.02.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2011] [Revised: 02/13/2012] [Accepted: 02/14/2012] [Indexed: 12/25/2022]
Abstract
Sociality comes with specific cognitive skills that allow the proper processing of information about others (social recognition), as well as of information originating from others (social learning). Because sociality and social interactions can also facilitate the spread of infection among individuals the ability to recognize and avoid pathogen threat is also essential. We review here various studies primarily from the rodent literature supporting estrogenic involvement in the regulation of social recognition, social learning (socially acquired food preferences and mate choice copying) and the recognition and avoidance of infected and potentially infected individuals. We consider both genomic and rapid estrogenic effects involving estrogen receptors α and β, and G-protein coupled estrogen receptor 1, along with their interactions with neuropeptide systems in the processing of social stimuli and the regulation and expression of these various socially relevant behaviors.
Collapse
Affiliation(s)
- Elena Choleris
- Department of Psychology, University of Guelph, Guelph, Ontario, Canada N1G 2W1.
| | | | | | | | | |
Collapse
|
475
|
Rotwein P. Mapping the growth hormone--Stat5b--IGF-I transcriptional circuit. Trends Endocrinol Metab 2012; 23:186-93. [PMID: 22361342 PMCID: PMC3313013 DOI: 10.1016/j.tem.2012.01.001] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Revised: 01/10/2012] [Accepted: 01/20/2012] [Indexed: 12/13/2022]
Abstract
Growth hormone (GH) and insulin-like growth factor-I (IGF-I) exert powerful influences on somatic growth, metabolism, and tissue repair, and have been implicated in aging and carcinogenesis. Since the formulation of the somatomedin hypothesis over 50 years ago, GH and IGF-I have been linked intimately to one another. Recent studies have established that GH potently stimulates IGF-I gene transcription, and through this mechanism controls production of IGF-I. A key mediator of the GH-IGF-I biosynthetic pathway is the latent transcription factor Stat5b. This review summarizes the potentially complex mechanistic relationship between GH action, Stat5b, and IGF-I gene activation, and suggests that Stat5b may have a broad role in mediating IGF-I gene regulation in response to diverse physiological inputs.
Collapse
Affiliation(s)
- Peter Rotwein
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, OR 97239-3098, USA.
| |
Collapse
|
476
|
Kolkova Z, Casslén V, Henic E, Ahmadi S, Ehinger A, Jirström K, Casslén B. The G protein-coupled estrogen receptor 1 (GPER/GPR30) does not predict survival in patients with ovarian cancer. J Ovarian Res 2012; 5:9. [PMID: 22424333 PMCID: PMC3348072 DOI: 10.1186/1757-2215-5-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 03/18/2012] [Indexed: 11/10/2022] Open
Abstract
Background Even though ovarian tumors are not generally considered estrogen-sensitive, estrogens may still have an impact on ovarian tumor progression. The recently identified trans-membrane estrogen receptor GPER is involved in rapid estrogen signaling. Furthermore, it binds selective estrogen receptor modulators with agonistic effect, which could explain tamoxifen controversies. Methods GPER mRNA was assayed with quantitative real-time PCR (qPCR) in 42 primary ovarian tumors and 7 ovarian cancer cell lines. ERα and ERβ mRNA were analyzed for comparison. GPER protein was semi-quantified with densitometric scanning of Western blots and its tissue distribution analyzed with immunohistochemistry (IHC) in 40 ovarian tumors. In addition, IHC was evaluated in a tissue microarray (TMA) of 150 primary malignant ovarian tumors. Results All tumor samples contained GPER mRNA. The content of mRNA was not different between benign and malignant tumors, but one third of malignant samples over-expressed GPER mRNA. The content of ERα mRNA was higher in malignant than in benign tumors, whereas ERβ mRNA was higher in benign than in malignant tumors. GPER mRNA was detected in all seven ovarian cancer cell lines with highest levels in TOV21G and TOV112D cells. Similar expression pattern was seen for ERβ mRNA. Western blot demonstrated GPER protein in all tumor samples. Semi-quantification showed no difference between benign and malignant tumors, but about one third of malignant samples over-expressed GPER protein. GPER staining was localized mainly in epithelial cells. In the TMA study we found no correlation between GPER staining and clinical stage, histological grade or patient survival. Conclusions GPER mRNA as well as GPER protein is present in both benign and malignant ovarian tumor tissue. About one third of malignant tumors over-expressed both GPER mRNA and protein. This, however, correlated neither with histological or clinical parameters nor with patient survival.
Collapse
Affiliation(s)
- Zuzana Kolkova
- Department of Gynecology & Obstetrics, Department of Clinical Sciences, Lund University, Skåne University Hospital Lund, SE-221 85 Lund, Sweden.
| | | | | | | | | | | | | |
Collapse
|
477
|
Krakstad C, Trovik J, Wik E, Engelsen IB, Werner HMJ, Birkeland E, Raeder MB, Øyan AM, Stefansson IM, Kalland KH, Akslen LA, Salvesen HB. Loss of GPER identifies new targets for therapy among a subgroup of ERα-positive endometrial cancer patients with poor outcome. Br J Cancer 2012; 106:1682-8. [PMID: 22415229 PMCID: PMC3349187 DOI: 10.1038/bjc.2012.91] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The G protein-coupled oestrogen receptor, GPER, has been suggested as an alternative oestrogen receptor. Our purpose was to investigate the potential of GPER as a prognostic and predictive marker in endometrial carcinoma and to search for new drug candidates to improve treatment of aggressive disease. MATERIALS AND METHOD A total of 767 primary endometrial carcinomas derived from three patient series, including an external dataset, were studied for protein and mRNA expression levels to investigate and validate if GPER loss identifies poor prognosis and new targets for therapy in endometrial carcinoma. Gene expression levels, according to ERα/GPER status, were used to search the connectivity map database for small molecular inhibitors with potential for treatment of metastatic disease for receptor status subgroups. RESULTS Loss of GPER protein is significantly correlated with low GPER mRNA, high FIGO stage, non-endometrioid histology, high grade, aneuploidy and ERα loss (all P-values ≤0.05). Loss of GPER among ERα-positive patients identifies a subgroup with poor prognosis that until now has been unrecognised, with reduced 5-year survival from 93% to 76% (P=0.003). Additional loss of GPER from primary to metastatic lesion counterparts further supports that loss of GPER is associated with disease progression. CONCLUSION These results support that GPER status adds clinically relevant information to ERα status in endometrial carcinoma and suggest a potential for new inhibitors in the treatment of metastatic endometrial cancers with ERα expression and GPER loss.
Collapse
Affiliation(s)
- C Krakstad
- Department of Clinical Medicine, Section for Gynecology and Obstetrics, University of Bergen, Jonas Lies Vei 72, Bergen 5020, Norway.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
478
|
Kristiansen W, Andreassen K, Karlsson R, Aschim E, Bremnes R, Dahl O, Fosså S, Klepp O, Langberg C, Solberg A, Tretli S, Adami HO, Wiklund F, Grotmol T, Haugen T. Gene variations in sex hormone pathways and the risk of testicular germ cell tumour: a case–parent triad study in a Norwegian–Swedish population. Hum Reprod 2012; 27:1525-35. [DOI: 10.1093/humrep/des075] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
|
479
|
Hu D, Zhou Z, Davidson NE, Huang Y, Wan Y. Novel insight into KLF4 proteolytic regulation in estrogen receptor signaling and breast carcinogenesis. J Biol Chem 2012; 287:13584-97. [PMID: 22389506 DOI: 10.1074/jbc.m112.343566] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Krüppel-like factor 4 (KLF4), a zinc finger-containing transcriptional factor, is a pivotal regulator of cellular fate. KLF4 has attracted considerable attention for its opposing effect in carcinogenesis as tumor suppressor (e.g. colorectal cancer) or oncoprotein (e.g. breast cancer), depending on tissue context, with the underlying mechanism remaining largely unknown. Here we report that KLF4 mediates estrogen signaling in breast cancer formation. Accumulation of KLF4 by inhibiting its turnover triggers estrogen-induced transactivation. We identified Von Hippel-Lindau, pVHL, as the protein that governs KLF4 turnover in breast cancer cells and demonstrated that estrogen-induced down-regulation of pVHL facilitates accumulation of KLF4. We provide mechanistic insights into KLF4 steady-state degradation as well as its elevation in the presence of estrogen and show that elevated levels of pVHL or depletion of KLF4 attenuates the estrogen-induced transactivation and cell growth. Finally, immunohistochemical staining revealed reduced concentration of pVHL and accumulation of KLF4 in breast cancer tissues. We thus propose that suppression of pVHL in response to estrogen signaling results in elevation of KLF4, which mediates estrogen-induced mitogenic effect.
Collapse
Affiliation(s)
- Dong Hu
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | |
Collapse
|
480
|
Soriano S, Alonso-Magdalena P, García-Arévalo M, Novials A, Muhammed SJ, Salehi A, Gustafsson JA, Quesada I, Nadal A. Rapid insulinotropic action of low doses of bisphenol-A on mouse and human islets of Langerhans: role of estrogen receptor β. PLoS One 2012; 7:e31109. [PMID: 22347437 PMCID: PMC3275611 DOI: 10.1371/journal.pone.0031109] [Citation(s) in RCA: 147] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Accepted: 01/02/2012] [Indexed: 11/19/2022] Open
Abstract
Bisphenol-A (BPA) is a widespread endocrine-disrupting chemical (EDC) used as the base compound in the manufacture of polycarbonate plastics. It alters pancreatic β-cell function and can be considered a risk factor for type 2 diabetes in rodents. Here we used ERβ-/- mice to study whether ERβ is involved in the rapid regulation of K(ATP) channel activity, calcium signals and insulin release elicited by environmentally relevant doses of BPA (1 nM). We also investigated these effects of BPA in β-cells and whole islets of Langerhans from humans. 1 nM BPA rapidly decreased K(ATP) channel activity, increased glucose-induced [Ca(2+)](i) signals and insulin release in β-cells from WT mice but not in cells from ERβ-/- mice. The rapid reduction in the K(ATP) channel activity and the insulinotropic effect was seen in human cells and islets. BPA actions were stronger in human islets compared to mouse islets when the same BPA concentration was used. Our findings suggest that BPA behaves as a strong estrogen via nuclear ERβ and indicate that results obtained with BPA in mouse β-cells may be extrapolated to humans. This supports that BPA should be considered as a risk factor for metabolic disorders in humans.
Collapse
Affiliation(s)
- Sergi Soriano
- Instituto Bioingeniería and CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Universidad Miguel Hernández de Elche, Elche, Alicante, Spain
| | - Paloma Alonso-Magdalena
- Instituto Bioingeniería and CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Universidad Miguel Hernández de Elche, Elche, Alicante, Spain
| | - Marta García-Arévalo
- Instituto Bioingeniería and CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Universidad Miguel Hernández de Elche, Elche, Alicante, Spain
| | - Anna Novials
- Institut D'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) and CIBERDEM, Barcelona, Spain
| | | | - Albert Salehi
- Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Jan-Ake Gustafsson
- Department of Cell Biology and Biochemistry, Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, Texas, United States of America
| | - Ivan Quesada
- Instituto Bioingeniería and CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Universidad Miguel Hernández de Elche, Elche, Alicante, Spain
| | - Angel Nadal
- Instituto Bioingeniería and CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Universidad Miguel Hernández de Elche, Elche, Alicante, Spain
- * E-mail:
| |
Collapse
|
481
|
Holst F, Moelans CB, Filipits M, Singer CF, Simon R, van Diest PJ. On the evidence for ESR1 amplification in breast cancer. Nat Rev Cancer 2012; 12:149. [PMID: 22270954 DOI: 10.1038/nrc3093-c3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
482
|
Marques YMFS, Giudice FS, Freitas VM, Abreu e Lima MDCC, Hunter KD, Speight PM, Machado de Sousa SCO. Oestrogen receptor β in adenoid cystic carcinoma of salivary glands. Histopathology 2012; 60:609-16. [PMID: 22260414 DOI: 10.1111/j.1365-2559.2011.04095.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
AIMS This study aimed to describe the expression of oestrogen receptor (ER)α, ERβ and aromatase in salivary gland adenoid cystic carcinoma (ACC). METHODS AND RESULTS ERα, ERβ and aromatase expression was analysed by immunohistochemistry in tissue microarray blocks from 38 cases of ACC and seven normal salivary glands. The intracellular localization and amount of total protein expression were investigated by immunofluorescence and western blotting in an ACC cell line. Western blotting analysis showed overexpression of ERα, ERβ and aromatase in the ACC cell line; however, with immunofluorescence, only ERβ was shown to be expressed in the nucleus. Immunohistochemistry revealed positive nuclear expression of ERβ, positive cytoplasmic expression of aromatase and a lack of ERα expression as compared with normal salivary glands. CONCLUSIONS The nuclear expression of ERβ indicates that oestrogen may be active in ACC and possibly able to mediate E2-targeted gene transcription. This study strongly suggests that ERβ may be involved in tumour progression, playing a role in tumour development, and thus corroborating the indication for ER antagonists in the clinical control of ACC. This study opens a new perspective on the potential use of anti-oestrogens and aromatase inhibitors as therapeutic agents against ACC.
Collapse
Affiliation(s)
- Yonara M F S Marques
- Department of Oral Pathology, University of São Paulo, Av. Lineu Prestes 2227, São Paulo ⁄ SP, Brazil.
| | | | | | | | | | | | | |
Collapse
|
483
|
Aquino NB, Sevigny MB, Sabangan J, Louie MC. The role of cadmium and nickel in estrogen receptor signaling and breast cancer: metalloestrogens or not? JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS 2012; 30:189-224. [PMID: 22970719 PMCID: PMC3476837 DOI: 10.1080/10590501.2012.705159] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
During the past half-century, incidences of breast cancer have increased globally. Various factors--genetic and environmental--have been implicated in the initiation and progression of this disease. One potential environmental risk factor that has not received a lot of attention is the exposure to heavy metals. While several mechanisms have been put forth describing how high concentrations of heavy metals play a role in carcinogenesis, it is unclear whether chronic, low-level exposure to certain heavy metals (i.e., cadmium and nickel) can directly result in the development and progression of cancer. Cadmium and nickel have been hypothesized to play a role in breast cancer development by acting as metalloestrogens--metals that bind to estrogen receptors and mimic the actions of estrogen. Since the lifetime exposure to estrogen is a well-established risk factor for breast cancer, anything that mimics its activity will likely contribute to the etiology of the disease. However, heavy metals, depending on their concentration, are capable of binding to a variety of proteins and may exert their toxicities by disrupting multiple cellular functions, complicating the analysis of whether heavy metal-induced carcinogenesis is mediated by the estrogen receptor. The purpose of this review is to discuss the various epidemiological, in vivo, and in vitro studies that show a link between the heavy metals, cadmium and nickel, and breast cancer development. We will particularly focus on the studies that test whether these two metals act as metalloestrogens in order to assess the strength of the data supporting this hypothesis.
Collapse
Affiliation(s)
- Natalie B. Aquino
- Department of Natural Sciences and Mathematics, Dominican University of California, San Rafael CA 94901
| | - Mary B. Sevigny
- Department of Natural Sciences and Mathematics, Dominican University of California, San Rafael CA 94901
| | - Jackielyn Sabangan
- Department of Natural Sciences and Mathematics, Dominican University of California, San Rafael CA 94901
| | - Maggie C. Louie
- Department of Natural Sciences and Mathematics, Dominican University of California, San Rafael CA 94901
| |
Collapse
|
484
|
Cleve A, Fritzemeier KH, Haendler B, Heinrich N, Möller C, Schwede W, Wintermantel T. Pharmacology and clinical use of sex steroid hormone receptor modulators. Handb Exp Pharmacol 2012:543-587. [PMID: 23027466 DOI: 10.1007/978-3-642-30726-3_24] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Sex steroid receptors are ligand-triggered transcription factors. Oestrogen, progesterone and androgen receptors form, together with the glucocorticoid and mineralocorticoid receptors, a subgroup of the superfamily of nuclear receptors. They share a common mode of action, namely translating a hormone-i.e. a small-molecule signal-from outside to changes in gene expression and cell fate, and thereby represent "natural" pharmacological targets.For pharmacological therapy, these receptors have originally been addressed by hormones and synthetic hormone analogues in order to overcome pathologies related to deficiencies in the natural ligands. Another major use for female sex hormone receptor modulators is oral contraception, i.e. birth control.On the other side, blocking the activity of sex steroid receptors has become an established way to treat hormone-dependent malignancies, such as breast and prostate cancer.In this review, we will discuss how the experience gained from the classical pharmacology of these receptors and their molecular similarities led to new options for the treatment of gender-specific diseases and highlight recent progress in medicinal chemistry of sex hormone-modulating drugs.
Collapse
Affiliation(s)
- A Cleve
- Bayer Pharma AG, Muellerstr. 178, Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
485
|
|
486
|
Role of estrogen receptor signaling in breast cancer metastasis. Int J Breast Cancer 2011; 2012:654698. [PMID: 22295247 PMCID: PMC3262597 DOI: 10.1155/2012/654698] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Revised: 09/16/2011] [Accepted: 09/19/2011] [Indexed: 12/21/2022] Open
Abstract
Metastatic breast cancer is a life-threatening stage of cancer and is the leading cause of death in advanced breast cancer patients. Estrogen signaling and the estrogen receptor (ER) are implicated in breast cancer progression, and the majority of the human breast cancers start out as estrogen dependent. Accumulating evidence suggests that ER signaling is complex, involving coregulatory proteins and extranuclear actions. ER-coregualtory proteins are tightly regulated under normal conditions with miss expression primarily reported in cancer. Deregulation of ER coregualtors or ER extranuclear signaling has potential to promote metastasis in ER-positive breast cancer cells. This review summarizes the emerging role of ER signaling in promoting metastasis of breast cancer cells, discusses the molecular mechanisms by which ER signaling contributes to metastasis, and explores possible therapeutic targets to block ER-driven metastasis.
Collapse
|
487
|
Yu KD, Shao ZM. ESR1 gene amplification: another mechanism regulating the cellular levels of ERα. Nat Rev Cancer 2011; 11:823; author reply 823. [PMID: 22020208 DOI: 10.1038/nrc3093-c1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|