451
|
Fischer W, Appelt K, Grohmann M, Franke H, Nörenberg W, Illes P. Increase of intracellular Ca2+ by P2X and P2Y receptor-subtypes in cultured cortical astroglia of the rat. Neuroscience 2009; 160:767-83. [PMID: 19289154 DOI: 10.1016/j.neuroscience.2009.02.026] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2008] [Revised: 02/11/2009] [Accepted: 02/12/2009] [Indexed: 11/27/2022]
Abstract
Astrocytes express purinergic receptors that are involved in glial-neuronal cell communication. Experiments were conducted to characterize the expression of functional P2X/P2Y nucleotide receptors in glial cells of mixed cortical cell cultures of the rat. The vast majority of these cells was immunopositive for glial fibrillary acidic protein (GFAP) and was considered therefore astrocyte-like; for the sake of simplicity they were termed "astroglia" throughout. Astroglia expressed predominantly P2X(4,6,7) as well as P2Y(1,2) receptor-subtypes. Less intensive immunostaining was also found for P2X(5) and P2Y(4,6,13,14) receptors. Pressure application of ATP and a range of agonists selective for certain P2X or P2Y receptor-subtypes caused a concentration-dependent increase of intracellular Ca(2+) ([Ca(2+)](i)). Of the agonists tested, only the P2X(1,3) receptor-selective alpha,beta-methylene ATP was ineffective. Experiments with Ca(2+)-free solution and cyclopiazonic acid, an inhibitor of the endoplasmic Ca(2+)-ATPase, indicated that the [Ca(2+)](i) response to most nucleotides, except for ATP and 2',3'-O-(benzoyl-4-benzoyl)-ATP, was due primarily to the release of Ca(2+) from intracellular stores. A Gprotein-mediated release of Ca(2+) is the typical signaling mechanism of various P2Y receptor-subtypes, whose presence was confirmed also by cross-desensitization experiments and by using selective antagonists. Thus, our results provide direct evidence that astroglia in mixed cortical cell cultures express functional P2Y (P2Y(1,2,6,14) and probably also P2Y(4)) receptors. Several unidentified P2X receptors, including P2X(7), may also be present, although they appear to only moderately participate in the regulation of [Ca(2+)](i). The rise of [Ca(2+)](i) is due in this case to the transmembrane flux of Ca(2+) via the P2X receptor-channel. In conclusion, P2Y rather than P2X receptor-subtypes are involved in modulating [Ca(2+)](i) of cultured astroglia and thereby may play an important role in cell-to-cell signaling.
Collapse
Affiliation(s)
- W Fischer
- Rudolf-Boehm-Institute of Pharmacology und Toxicology, University of Leipzig, Haertelstrasse 16-18, Leipzig, Germany.
| | | | | | | | | | | |
Collapse
|
452
|
Neary JT, Zimmermann H. Trophic functions of nucleotides in the central nervous system. Trends Neurosci 2009; 32:189-98. [PMID: 19282037 DOI: 10.1016/j.tins.2009.01.002] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2008] [Revised: 01/14/2009] [Accepted: 01/14/2009] [Indexed: 12/28/2022]
Abstract
In addition to short-term effects, one of the fundamental roles of extracellular nucleotides in the central nervous system involves long-term trophic effects. Physiological outcomes include neurogenesis, neuronal differentiation, glial proliferation, migration, growth arrest and apoptosis. Nucleotides exert these functions via P2-receptor-mediated mechanisms that can also interact with polypeptide-growth-factor-mediated or integrin-mediated signaling pathways. In addition, pathogenic roles for extracellular nucleotides in response to central nervous system injury including trauma and ischemia have been observed after the release of nucleotides by damaged and dying cells and in the development of neuropathic and inflammatory pain. Here, we illuminate the contribution of extracellular nucleotides to the development, growth, cellular plasticity and death of neural cells and the mechanisms regulating these trophic effects.
Collapse
Affiliation(s)
- Joseph T Neary
- Department of Pathology, Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33125, USA
| | | |
Collapse
|
453
|
Tsuda M, Toyomitsu E, Kometani M, Tozaki-Saitoh H, Inoue K. Mechanisms underlying fibronectin-induced up-regulation of P2X4R expression in microglia: distinct roles of PI3K-Akt and MEK-ERK signalling pathways. J Cell Mol Med 2009; 13:3251-9. [PMID: 19298529 PMCID: PMC4516482 DOI: 10.1111/j.1582-4934.2009.00719.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Abstract Microglia are resident immune cells in the central nervous system that become activated and produce pro-inflammatory and neurotrophic factors upon activation of various cell-surface receptors. The P2X4 receptor (P2X4R) is a sub-type of the purinergic ion-channel receptors expressed in microglia. P2X4R expression is up-regulated under inflammatory or neurodegenerative conditions, and this up-regulation is implicated in disease pathology. However, the molecular mechanism underlying up-regulation of P2X4R in microglia remains unknown. In the present study, we investigated the intracellular signal transduction pathway that promotes P2X4R expression in microglia in response to fibronectin, an extracellular matrix protein that has previously been shown to stimulate P2X4R expression. We found that in fibronectin-stimulated microglia, activation of phosphatidylinositol 3-kinase (PI3K)–Akt and mitogen-activated protein kinase kinase (MAPK kinase, MEK)–extracellular signal-regulated kinase (ERK) signalling cascades occurred divergently downstream of Src-family kinases (SFKs). Pharmacological interference of PI3K–Akt signalling inhibited fibronectin-induced P2X4R gene expression. Activation of PI3K–Akt signalling resulted in a decrease in the protein level of the transcription factor p53 via mouse double minute 2 (MDM2), an effect that was prevented by MG-132, an inhibitor of the proteasome. In microglia pre-treated with MG-132, fibronectin failed to up-regulate P2X4R expression. Conversely, an inhibitor of p53 caused increased expression of P2X4R, implying a negative regulatory role of p53. On the other hand, inhibiting MEK–ERK signalling activated by fibronectin suppressed an increase in P2X4R protein but interestingly did not affect the level of P2X4R mRNA. We also found that fibronectin stimulation resulted in the activation of the translational factor eIF4E via MAPK-interacting protein kinase-1 (MNK1) in an MEK–ERK signalling-dependent manner, and an MNK1 inhibitor attenuated the increase in P2X4R protein. Together, these results suggest that the PI3K–Akt and MEK–ERK signalling cascades have distinct roles in the up-regulation of P2X4R expression in microglia at transcriptional and post-transcriptional levels, respectively.
Collapse
Affiliation(s)
- Makoto Tsuda
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | | | | | | | | |
Collapse
|
454
|
Aguado L, Camarasa MJ, Pérez-Pérez MJ. Microwave-Assisted Synthesis of 9-Arylpurines. ACTA ACUST UNITED AC 2009; 11:210-2. [DOI: 10.1021/cc800169d] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Leire Aguado
- Instituto de Química Médica (CSIC), Juan de la Cierva 3, E-28006 Madrid, Spain
| | - María-José Camarasa
- Instituto de Química Médica (CSIC), Juan de la Cierva 3, E-28006 Madrid, Spain
| | | |
Collapse
|
455
|
Purinergic signalling in inflammation of the central nervous system. Trends Neurosci 2009; 32:79-87. [PMID: 19135728 DOI: 10.1016/j.tins.2008.11.003] [Citation(s) in RCA: 170] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2008] [Revised: 11/19/2008] [Accepted: 11/19/2008] [Indexed: 12/20/2022]
Abstract
Inflammation is the most fundamental body reaction to noxious stimuli. No vascularized tissue, organ or apparatus is free from this response. Several mediators of inflammation, originating from outside (exogenous) or inside (endogenous) the body, are known. Among the endogenous factors, extracellular nucleotides and nucleosides are attracting interest for their ubiquity and striking ability to modulate diverse immune responses. Until recently, it was doubted that the central nervous system (CNS), reportedly an 'immunoprivileged organ', could be the site of immune reactions. Nowadays, it is acknowledged that inflammation and immunity have a key role in a vast range of CNS diseases. Likewise, it is clear that purinergic signalling profoundly affects neuroinflammation. Here, we provide a brief update of the state of the art in this expanding field.
Collapse
|
456
|
Novak I, Haanes KA, Hansen MR, Krabbe S, Hede SE. Extracellular purinergic signaling in pancreas. THE JOURNAL OF MEDICAL INVESTIGATION 2009; 56 Suppl:355-6. [PMID: 20224224 DOI: 10.2152/jmi.56.355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Ivana Novak
- Department of Biology, August Krogh Building, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
457
|
Abstract
Adenosine acts as a cytoprotective modulator in response to stress to an organ or tissue. Although short-lived in the circulation, it can activate four subtypes of G protein-coupled adenosine receptors (ARs): A(1), A(2A), A(2B), and A(3). The alkylxanthines caffeine and theophylline are the prototypical antagonists of ARs, and their stimulant actions occur primarily through this mechanism. For each of the four AR subtypes, selective agonists and antagonists have been introduced and used to develop new therapeutic drug concepts. ARs are notable among the GPCR family in the number and variety of agonist therapeutic candidates that have been proposed. The selective and potent synthetic AR agonists, which are typically much longer lasting in the body than adenosine, have potential therapeutic applications based on their anti-inflammatory (A(2A) and A(3)), cardioprotective (preconditioning by A(1) and A(3) and postconditioning by A(2B)), cerebroprotective (A(1) and A(3)), and antinociceptive (A(1)) properties. Potent and selective AR antagonists display therapeutic potential as kidney protective (A(1)), antifibrotic (A(2A)), neuroprotective (A(2A)), and antiglaucoma (A(3)) agents. AR agonists for cardiac imaging and positron-emitting AR antagonists are in development for diagnostic applications. Allosteric modulators of A(1) and A(3) ARs have been described. In addition to the use of selective agonists/antagonists as pharmacological tools, mouse strains in which an AR has been genetically deleted have aided in developing novel drug concepts based on the modulation of ARs.
Collapse
Affiliation(s)
- Kenneth A Jacobson
- Molecular Recognition Section, Laboratory of Biooorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0810, USA.
| |
Collapse
|
458
|
Doná F, Ulrich H, Persike DS, Conceição IM, Blini JP, Cavalheiro EA, Fernandes MJS. Alteration of purinergic P2X4 and P2X7 receptor expression in rats with temporal-lobe epilepsy induced by pilocarpine. Epilepsy Res 2008; 83:157-67. [PMID: 19084381 DOI: 10.1016/j.eplepsyres.2008.10.008] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Revised: 10/20/2008] [Accepted: 10/22/2008] [Indexed: 11/29/2022]
Abstract
SUMMARY Although ATP and P2X receptor activity have been lately associated with epilepsy, little is known regarding their exact roles in epileptogenesis. Temporal-lobe epilepsy (TLE) in rat was induced by pilocarpine in order to study changes of hippocampal P2X(2), P2X(4) and P2X(7) receptor expression during acute, latent or chronic phases of epilepsy. During acute and chronic phases increased P2X(7) receptor expression was principally observed in glial cells and glutamatergic nerve terminals, suggesting participation of this receptor in the activation of inflammatory and excitotoxic processes during epileptogenesis. No significant alterations of hippocampal P2X(2) and P2X(4) receptor expression was noted during the acute or latent phase when compared to the control group, indicating that these receptors are not directly involved with the initiation of epilepsy. However, the reduction of hippocampal P2X(4) receptor immunostaining in the chronic phase could reflect neuronal loss or decreased GABAergic signaling.
Collapse
Affiliation(s)
- Flavia Doná
- Departamento Neurologia/Neurocirurgia, Universidade Federal de São Paulo, UNIFESP, São Paulo, Brazil
| | | | | | | | | | | | | |
Collapse
|
459
|
Apolloni S, Montilli C, Finocchi P, Amadio S. Membrane compartments and purinergic signalling: P2X receptors in neurodegenerative and neuroinflammatory events. FEBS J 2008; 276:354-64. [DOI: 10.1111/j.1742-4658.2008.06796.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
460
|
Abbracchio MP, Burnstock G, Verkhratsky A, Zimmermann H. Purinergic signalling in the nervous system: an overview. Trends Neurosci 2008; 32:19-29. [PMID: 19008000 DOI: 10.1016/j.tins.2008.10.001] [Citation(s) in RCA: 612] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2008] [Revised: 10/02/2008] [Accepted: 10/03/2008] [Indexed: 12/15/2022]
Abstract
Purinergic receptors, represented by several families, are arguably the most abundant receptors in living organisms and appeared early in evolution. After slow acceptance, purinergic signalling in both peripheral and central nervous systems is a rapidly expanding field. Here, we emphasize purinergic co-transmission, mechanisms of release and breakdown of ATP, ion channel and G-protein-coupled-receptor subtypes for purines and pyrimidines, the role of purines and pyrimidines in neuron-glial communication and interactions of this system with other transmitter systems. We also highlight recent data involving purinergic signalling in pathological conditions, including pain, trauma, ischaemia, epilepsy, migraine, psychiatric disorders and drug addiction, which we expect will lead to the development of therapeutic strategies for these disorders with novel mechanisms of action.
Collapse
Affiliation(s)
- Maria P Abbracchio
- Department of Pharmacological Sciences, Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, via Balzaretti 9, University of Milan, 20133-Milan, Italy
| | | | | | | |
Collapse
|
461
|
Antipsychotic drugs inhibit nucleotide hydrolysis in zebrafish (Danio rerio) brain membranes. Toxicol In Vitro 2008; 23:78-82. [PMID: 18996465 DOI: 10.1016/j.tiv.2008.10.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Revised: 10/15/2008] [Accepted: 10/16/2008] [Indexed: 11/20/2022]
Abstract
Haloperidol (HAL), olanzapine (OLZ), and sulpiride (SULP) are antipsychotic drugs widely used in the pharmacotherapy of psychopathological symptoms observed in schizophrenia or mood-related psychotic symptoms in affective disorders. Here, we tested the in vitro effects of different concentrations of a typical (HAL) and two atypical (OLZ and SULP) antipsychotic drugs on ectonucleotidase activities from zebrafish brain membranes. HAL inhibited ATP (28.9%) and ADP (26.5%) hydrolysis only at 250 microM. OLZ decreased ATPase activity at all concentrations tested (23.8-60.7%). SULP did not promote significant changes on ATP hydrolysis but inhibited ADP hydrolysis at 250 microM (25.6%). All drugs tested, HAL, OLZ, and SULP, did not promote any significant changes on 5'-nucleotidase activity in the brain membranes of zebrafish. These findings demonstrated that antipsychotic drugs could inhibit NTPDase activities whereas did not change 5'-nucleotidase. Such modulation can alter the adenosine levels, since the ectonucleotidase pathway is an important source of extracellular adenosine. Thus, it is possible to suggest that changes promoted by antipsychotic drugs in the bilayer membrane could alter the NTPDase activities, modulating extracellular ATP and adenosine levels.
Collapse
|
462
|
Burnstock G. Purinergic signalling: past, present and future. ACTA ACUST UNITED AC 2008; 42:3-8. [PMID: 18853040 DOI: 10.1590/s0100-879x2008005000037] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2008] [Accepted: 09/05/2008] [Indexed: 01/09/2023]
Abstract
The discovery of non-adrenergic, non-cholinergic neurotransmission in the gut and bladder in the early 1960's is described as well as the identification of adenosine 5'-triphosphate (ATP) as a transmitter in these nerves in the early 1970's. The concept of purinergic cotransmission was formulated in 1976 and it is now recognized that ATP is a cotransmitter in all nerves in the peripheral and central nervous systems. Two families of receptors to purines were recognized in 1978, P1 (adenosine) receptors and P2 receptors sensitive to ATP and adenosine diphosphate (ADP). Cloning of these receptors in the early 1990's was a turning point in the acceptance of the purinergic signalling hypothesis and there are currently 4 subtypes of P1 receptors, 7 subtypes of P2X ion channel receptors and 8 subtypes of G protein-coupled receptors. Both short-term purinergic signalling in neurotransmission, neuromodulation and neurosecretion and long-term (trophic) purinergic signalling of cell proliferation, differentiation, motility, death in development and regeneration are recognized. There is now much known about the mechanisms underlying ATP release and extracellular breakdown by ecto-nucleotidases. The recent emphasis on purinergic neuropathology is discussed, including changes in purinergic cotransmission in development and ageing and in bladder diseases and hypertension. The involvement of neuron-glial cell interactions in various diseases of the central nervous system, including neuropathic pain, trauma and ischemia, neurodegenerative diseases, neuropsychiatric disorders and epilepsy are also considered.
Collapse
Affiliation(s)
- G Burnstock
- Autonomic Neuroscience Centre, Royal Free and University College Medical School, London, UK.
| |
Collapse
|