451
|
miR-29 and miR-30 regulate B-Myb expression during cellular senescence. Proc Natl Acad Sci U S A 2010; 108:522-7. [PMID: 21187425 DOI: 10.1073/pnas.1017346108] [Citation(s) in RCA: 163] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Cellular senescence is a form of irreversible growth arrest and a major tumor suppressor mechanism. We show here that the miR-29 and miR-30 microRNA families are up-regulated during induced and replicative senescence and that up-regulation requires activation of the Rb pathway. Expression of a reporter construct containing the 3'UTR of the B-Myb oncogene is repressed during senescence, and repression is blocked by mutations in conserved miR-29 and miR-30 binding sites in the B-Myb 3'UTR. In proliferating cells, transfection of miR-29 and miR-30 represses a reporter construct containing the wild-type but not the mutant B-Myb 3'UTR, and repression of the mutant 3'UTR is reinstituted by compensatory mutations in miR-29 and miR-30 that restore binding to the mutant sites. miR-29 and miR-30 introduction also represses expression of endogenous B-Myb and inhibits cellular DNA synthesis. Finally, interference with miR-29 and miR-30 expression inhibits senescence. These findings demonstrate that miR-29 and miR-30 regulate B-Myb expression by binding to its 3'UTR and suggest that these microRNAs play an important role in Rb-driven cellular senescence.
Collapse
|
452
|
MicroRNA regulation of core apoptosis pathways in cancer. Eur J Cancer 2010; 47:163-74. [PMID: 21145728 DOI: 10.1016/j.ejca.2010.11.005] [Citation(s) in RCA: 204] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Revised: 10/22/2010] [Accepted: 11/03/2010] [Indexed: 12/13/2022]
Abstract
Recent research has demonstrated that microRNAs (miRNAs) are key regulators of many cell processes often deregulated in cancer, including apoptosis. Indeed, it is becoming clear that many miRNAs are anti-apoptotic and mediate this effect by targeting pro-apoptotic mRNAs or positive regulators of pro-apoptotic mRNAs. Conversely, many pro-apoptotic miRNAs target anti-apoptotic mRNAs or their positive regulators. We have reviewed the current knowledge in this area including evidence of miRNA involvement in cancer drug resistance.
Collapse
|
453
|
Abstract
Breast cancer is a heterogeneous disease. Different subgroups can be recognized on the basis of the steroid receptors, HER-2, cytokeratin expression and proliferation patterns. As a result of mRNA-profiling studies, five major groups can be recognized, of which the triple-negative and basal-like tumors have the worst prognosis. Many of these tumors have a high proliferation that has the strongest prognostic value in node negative breast cancer. In the current study we analyzed the microRNA pattern in 103 lymph node negative breast cancers and compared these profiles with different biological characteristics and clinicopathological features. Unsupervised hierarchical cluster analysis divides the patients into four main groups, of which the basal-like/triple-negative group is the most prominent (11% of all cases), the luminal A cancers containing the Her2 negative and estrogen receptor/progesterone receptor-positive tumors is the largest group (57%), and the group of luminal B (32%) is more heterogeneous and contains the Her2 positive/estrogen receptor-negative patients as well. The highest overall classification values by analysis of variance followed by cross validation (leave one sample out and reselect genes) were found for cytokeratin 5 and 6, triple-negative and estrogen receptor, with 97, 90 and 90% accuracy, respectively. MiR-106b gene is prominent in all of these signatures and correlates strongest with high proliferation. Other interesting observations are the presence of several microRNAs (miR532-5p, miR-500, miR362-5p, and miR502-3p) located at Xp11.23 in cancers with a triple-negative signature, and the upregulation of several miR-17 cluster members in estrogen receptor-negative tumors. The current study shows that estrogen receptor negativity and cytokeratin 5 and 6 expression are important, and specific biological processes in lymph node negative breast cancer, as microRNA signatures are strongest in these subgroups.
Collapse
|
454
|
Mott JL, Kurita S, Cazanave SC, Bronk SF, Werneburg NW, Fernandez-Zapico ME. Transcriptional suppression of mir-29b-1/mir-29a promoter by c-Myc, hedgehog, and NF-kappaB. J Cell Biochem 2010; 110:1155-64. [PMID: 20564213 DOI: 10.1002/jcb.22630] [Citation(s) in RCA: 235] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
MicroRNAs regulate pathways contributing to oncogenesis, and thus the mechanisms causing dysregulation of microRNA expression in cancer are of significant interest. Mature mir-29b levels are decreased in malignant cells, and this alteration promotes the malignant phenotype, including apoptosis resistance. However, the mechanism responsible for mir-29b suppression is unknown. Here, we examined mir-29 expression from chromosome 7q32 using cholangiocarcinoma cells as a model for mir-29b downregulation. Using 5' rapid amplification of cDNA ends, the transcriptional start site was identified for this microRNA locus. Computational analysis revealed the presence of two putative E-box (Myc-binding) sites, a Gli-binding site, and four NF-kappaB-binding sites in the region flanking the transcriptional start site. Promoter activity in cholangiocarcinoma cells was repressed by transfection with c-Myc, consistent with reports in other cell types. Treatment with the hedgehog inhibitor cyclopamine, which blocks smoothened signaling, increased the activity of the promoter and expression of mature mir-29b. Mutagenesis analysis and gel shift data are consistent with a direct binding of Gli to the mir-29 promoter. Finally, activation of NF-kappaB signaling, via ligation of Toll-like receptors, also repressed mir-29b expression and promoter function. Of note, activation of hedgehog, Toll-like receptor, and c-Myc signaling protected cholangiocytes from TRAIL-induced apoptosis. Thus, in addition to c-Myc, mir-29 expression can be suppressed by hedgehog signaling and inflammatory pathways, both commonly activated in the genesis of human malignancies.
Collapse
Affiliation(s)
- Justin L Mott
- Division of Gastroenterology and Hepatology, College of Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA.
| | | | | | | | | | | |
Collapse
|
455
|
Lee ST, Chu K, Im WS, Yoon HJ, Im JY, Park JE, Park KH, Jung KH, Lee SK, Kim M, Roh JK. Altered microRNA regulation in Huntington's disease models. Exp Neurol 2010; 227:172-9. [PMID: 21035445 DOI: 10.1016/j.expneurol.2010.10.012] [Citation(s) in RCA: 222] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Revised: 10/16/2010] [Accepted: 10/21/2010] [Indexed: 02/01/2023]
Abstract
Huntington's disease (HD) is a genetic neurodegenerative disease caused by abnormal CAG expansion. MicroRNAs (miRNAs) are short RNA molecules regulating gene expression, and are implicated in a variety of diseases including HD. However, the profiles and regulation of miRNAs in HD are not fully understood. Here, we analyzed the miRNA expression and miRNA regulators in two transgenic models of HD, YAC128 and R6/2 mice, and in a 3-nitropropionic acid (3NP)-induced striatal degeneration rat model. After characterizing the phenotypes by behavioral tests and histological analyses, we profiled striatal miRNAs using a miRNA microarray and we measured the key molecules involved in miRNA biogenesis and function. YAC128 mice showed upregulation-dominant miRNA expressions at 5 months and downregulation-dominant expressions at 12 months. Concomitantly, the expressions of Drosha-DGCR8, Exportin-5, and Dcp1 were increased at 5months, and the expression of Dicer was decreased at 12 months. In 10-week-old R6/2 mice, downregulation was dominant in the miRNA expressions and the level of Drosha decreased concomitantly. Nine miRNAs (miR-22, miR-29c, miR-128, miR-132, miR-138, miR-218, miR-222, miR-344, and miR-674*) were commonly down-regulated in both the 12-month-old YAC128 and 10-week-old R6/2 mice. Meanwhile, 3NP rats showed dynamic changes in the miRNA profiles during disease development and a few miRNAs with altered expression. Our results show that transgenic HD mice have abnormal miRNA biogenesis. This information should aid in future studies on therapeutic application of miRNAs in HD.
Collapse
Affiliation(s)
- Soon-Tae Lee
- Neurodegeneration Research Laboratory, Department of Neurology, Clinical Research Institute, Seoul National University Hospital, Seoul, South Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
456
|
Ye Y, Perez-Polo JR, Qian J, Birnbaum Y. The role of microRNA in modulating myocardial ischemia-reperfusion injury. Physiol Genomics 2010; 43:534-42. [PMID: 20959496 DOI: 10.1152/physiolgenomics.00130.2010] [Citation(s) in RCA: 163] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
MicroRNAs (miRNAs) are small (∼22 nt) noncoding single-stranded RNA molecules that downregulate gene expression. Studies have shown that miRNAs control diverse aspects of heart disease, including hypertrophy, remodeling, heart failure, and arrhythmia. Recently, several studies have suggested that miRNAs contribute to ischemia-reperfusion injury by altering key signaling elements, thus making them potential therapeutic targets. By altering the expression of various key elements in cell survival and apoptosis [such as phosphoinositide 3-kinase (PI3K), phosphatase and tensin homolog deleted on chromosome 10 (PTEN), Bcl-2, Mcl-1, heat shock protein (HSP)60, HSP70, HSP20, programmed cell death 4 (Pdcd4), LRRFIP1, Fas ligand (FasL), Sirt-1, etc.], miRNAs alter the response to ischemia-reperfusion injury. Studies using various in vivo, ex vivo, and in vitro models have suggested the possible involvement of miR-1, miR-21, miR-29, miR-92a, miR-133, miR-199a, and miR-320 in ischemia-reperfusion injury and/or remodeling after myocardial infarction. Thus miRNAs could be potential therapeutic targets for the treatment of heart disease. Inhibiting miRNAs by antisense strategies or pharmacological approaches is likely to emerge as an alternative and safe method for conferring short- and intermediate-term protection against ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Yumei Ye
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA. yumye@utmb
| | | | | | | |
Collapse
|
457
|
Abstract
Avoiding the inhibitory effects of p53 on cell growth is important for tumor progression. In this issue of Cancer Cell, Picchiorri et al. describe epigenetic silencing of MDM2-targeting microRNAs in multiple myeloma (MM), which generally appears to have intact p53 function. This provides the rationale for microRNA-targeted therapy for MM.
Collapse
Affiliation(s)
- Marta Chesi
- Mayo Clinic in Arizona, Scottsdale, 85259, USA
| | | |
Collapse
|
458
|
Pichiorri F, Suh SS, Rocci A, De Luca L, Taccioli C, Santhanam R, Wenchao Z, Benson DM, Hofmainster C, Alder H, Garofalo M, Di Leva G, Volinia S, Lin HJ, Perrotti D, Kuehl M, Aqeilan RI, Palumbo A, Croce CM. RETRACTED: Downregulation of p53-inducible microRNAs 192, 194, and 215 impairs the p53/MDM2 autoregulatory loop in multiple myeloma development. Cancer Cell 2010; 18:367-81. [PMID: 20951946 PMCID: PMC3561766 DOI: 10.1016/j.ccr.2010.09.005] [Citation(s) in RCA: 347] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Revised: 06/16/2010] [Accepted: 08/09/2010] [Indexed: 01/24/2023]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). This article has been retracted at the request of the editors. This article was published on October 19, 2010, and Figures 4A and 7A were later corrected on August 8, 2016. In January 2021, The Ohio State University notified the Cancer Cell editors that an internal investigation concluded that Figures 1E, 4A, 4D, 5A, and 7A were falsified and that part of Figure 1E of the article is the same as part of Figure 1F in the correction of another article (Pichiorri et al., 2017, J. Exp. Med., 214, 1557, https://doi.org/10.1084/jem.2012095001172017c) and recommended retraction of the article. The editors no longer have confidence in the validity of the data and are retracting the article. S.-S. S. agrees with the retraction, and F.P., C.H., A.P., and C.M.C. disagree with the retraction; all other authors couldn't be reached or didn't respond.
Collapse
Affiliation(s)
- Flavia Pichiorri
- Departments of Molecular Virology, Immunology and Human Genetics, Comprehensive Cancer Center, The Ohio State; University, Columbus, OH 43210
- IMRIC-The Lautenberg Center for Immunology and Cancer Research, Hebrew University-Hadassah Medical School, Jerusalem, Israel 91120
| | - Sung-Suk Suh
- Departments of Molecular Virology, Immunology and Human Genetics, Comprehensive Cancer Center, The Ohio State; University, Columbus, OH 43210
- IMRIC-The Lautenberg Center for Immunology and Cancer Research, Hebrew University-Hadassah Medical School, Jerusalem, Israel 91120
| | - Alberto Rocci
- Division of Hematology, University of Turin, Turin, Italy, 10149
| | - Luciana De Luca
- Departments of Molecular Virology, Immunology and Human Genetics, Comprehensive Cancer Center, The Ohio State; University, Columbus, OH 43210
- Molecular Oncology Unit, IRCCS, Referral Cancer Center of Basilicata –Crob, Rionero in Vulture (PZ), Italy, 85028
| | - Cristian Taccioli
- Departments of Molecular Virology, Immunology and Human Genetics, Comprehensive Cancer Center, The Ohio State; University, Columbus, OH 43210
- Cancer Institute - University College London, London WC1E
| | - Ramasamy Santhanam
- Departments of Molecular Virology, Immunology and Human Genetics, Comprehensive Cancer Center, The Ohio State; University, Columbus, OH 43210
| | - Zhou Wenchao
- Medical Technology Division, School of Allied Medical Professions, The Ohio state University, Columbus, OH 43210
| | - Don M. Benson
- Division of Hematology and Oncology, Department of Medicine, Comprehensive Cancer Center, The Ohio state University, Columbus, OH 43210
| | - Craig Hofmainster
- Division of Hematology and Oncology, Department of Medicine, Comprehensive Cancer Center, The Ohio state University, Columbus, OH 43210
| | - Hansjuerg Alder
- Departments of Molecular Virology, Immunology and Human Genetics, Comprehensive Cancer Center, The Ohio State; University, Columbus, OH 43210
| | - Michela Garofalo
- Departments of Molecular Virology, Immunology and Human Genetics, Comprehensive Cancer Center, The Ohio State; University, Columbus, OH 43210
| | - Gianpiero Di Leva
- Departments of Molecular Virology, Immunology and Human Genetics, Comprehensive Cancer Center, The Ohio State; University, Columbus, OH 43210
| | - Stefano Volinia
- Departments of Molecular Virology, Immunology and Human Genetics, Comprehensive Cancer Center, The Ohio State; University, Columbus, OH 43210
- Telethon Facility-Data Mining for Analysis of DNA Microarrays, Department of Morphology and Embryology, University of Ferrara, Ferrara, Italy
| | - Huey-Jen Lin
- Medical Technology Division, School of Allied Medical Professions, The Ohio state University, Columbus, OH 43210
| | - Danilo Perrotti
- Departments of Molecular Virology, Immunology and Human Genetics, Comprehensive Cancer Center, The Ohio State; University, Columbus, OH 43210
| | - Michael Kuehl
- Genetics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20889-5105
| | - Rami I. Aqeilan
- Departments of Molecular Virology, Immunology and Human Genetics, Comprehensive Cancer Center, The Ohio State; University, Columbus, OH 43210
- IMRIC-The Lautenberg Center for Immunology and Cancer Research, Hebrew University-Hadassah Medical School, Jerusalem, Israel 91120
| | - Antonio Palumbo
- Division of Hematology, University of Turin, Turin, Italy, 10149
| | - Carlo M. Croce
- Departments of Molecular Virology, Immunology and Human Genetics, Comprehensive Cancer Center, The Ohio State; University, Columbus, OH 43210
| |
Collapse
|
459
|
Kumar M, Lu Z, Takwi AAL, Chen W, Callander NS, Ramos KS, Young KH, Li Y. Negative regulation of the tumor suppressor p53 gene by microRNAs. Oncogene 2010; 30:843-53. [PMID: 20935678 PMCID: PMC3021102 DOI: 10.1038/onc.2010.457] [Citation(s) in RCA: 213] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The tumor suppressor p53, encoded by the TP53 gene, is recognized as the guardian of the human genome because it regulates many downstream genes to exercise its function in cell cycle and cell death. Recent reports have revealed that several microRNAs (miRNAs) are important components of the p53 tumor suppressor network with miR-125b and miR-504 directly targeting TP53. In this report, we use a screening method to identify that two miRNAs (miR-25 and miR-30d) directly target the 3'UTR of TP53 to down-regulate p53 protein levels and reduce the expression of genes that are transcriptionally activated by p53. Correspondingly, both miR-25 and miR-30d adversely affect apoptotic cell death, cell cycle arrest, and cellular senescence. Inhibition of either miR-25 or miR-30d expression increases endogenous p53 expression and elevates cellular apoptosis in several cell lines, including one from multiple myeloma that has little TP53 mutations. Thus, beyond miR-125b and miR-504, the human TP53 gene is negatively regulated by two more miRNAs: miR-25 and miR-30d.
Collapse
Affiliation(s)
- M Kumar
- Department of Biochemistry and Molecular Biology, Center for Genetics and Molecular Medicine, School of Medicine, University of Louisville, Louisville, KY, USA
| | | | | | | | | | | | | | | |
Collapse
|
460
|
Fasseu M, Tréton X, Guichard C, Pedruzzi E, Cazals-Hatem D, Richard C, Aparicio T, Daniel F, Soulé JC, Moreau R, Bouhnik Y, Laburthe M, Groyer A, Ogier-Denis E. Identification of restricted subsets of mature microRNA abnormally expressed in inactive colonic mucosa of patients with inflammatory bowel disease. PLoS One 2010; 5. [PMID: 20957151 PMCID: PMC2950152 DOI: 10.1371/journal.pone.0013160] [Citation(s) in RCA: 212] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Accepted: 09/05/2010] [Indexed: 02/07/2023] Open
Abstract
Background Ulcerative Colitis (UC) and Crohn's Disease (CD) are two chronic Inflammatory Bowel Diseases (IBD) affecting the intestinal mucosa. Current understanding of IBD pathogenesis points out the interplay of genetic events and environmental cues in the dysregulated immune response. We hypothesized that dysregulated microRNA (miRNA) expression may contribute to IBD pathogenesis. miRNAs are small, non-coding RNAs which prevent protein synthesis through translational suppression or mRNAs degradation, and regulate several physiological processes. Methodology/Findings Expression of mature miRNAs was studied by Q-PCR in inactive colonic mucosa of patients with UC (8), CD (8) and expressed relative to that observed in healthy controls (10). Only miRNAs with highly altered expression (>5 or <0.2 -fold relative to control) were considered when Q-PCR data were analyzed. Two subsets of 14 (UC) and 23 (CD) miRNAs with highly altered expression (5.2->100 -fold and 0.05–0.19 -fold for over- and under- expression, respectively; 0.001<p≤0.05) were identified in quiescent colonic mucosa, 8 being commonly dysregulated in non-inflamed UC and CD (mir-26a,-29a,-29b,-30c,-126*,-127-3p,-196a,-324-3p). Several miRNA genes with dysregulated expression co-localize with acknowledged IBD-susceptibility loci while others, (eg. clustered on 14q32.31), map on chromosomal regions not previously recognized as IBD-susceptibility loci. In addition, in silico clustering analysis identified 5 miRNAs (mir-26a,-29b,-126*,-127-3p,-324-3p) that share coordinated dysregulation of expression both in quiescent and in inflamed colonic mucosa of IBD patients. Six miRNAs displayed significantly distinct alteration of expression in non-inflamed colonic biopsies of UC and CD patients (mir-196b,-199a-3p,-199b-5p,-320a,-150,-223). Conclusions/Significance Our study supports miRNAs as crucial players in the onset and/or relapse of inflammation from quiescent mucosal tissues in IBD patients. It allows speculating a role for miRNAs as contributors to IBD susceptibility and suggests that some of the miRNA with altered expression in the quiescent mucosa of IBD patients may define miRNA signatures for UC and CD and help develop new diagnostic biomarkers.
Collapse
Affiliation(s)
- Magali Fasseu
- INSERM U773, Centre de Recherche Biomédicale Bichat Beaujon, Paris, France
- Université Paris 7 Denis Diderot, Paris, France
| | - Xavier Tréton
- INSERM U773, Centre de Recherche Biomédicale Bichat Beaujon, Paris, France
- Université Paris 7 Denis Diderot, Paris, France
- Service de Gastroentérologie et d'Assistance Nutritive, Hôpital Beaujon, Clichy, France
| | - Cécile Guichard
- INSERM U773, Centre de Recherche Biomédicale Bichat Beaujon, Paris, France
- Université Paris 7 Denis Diderot, Paris, France
| | - Eric Pedruzzi
- INSERM U773, Centre de Recherche Biomédicale Bichat Beaujon, Paris, France
- Université Paris 7 Denis Diderot, Paris, France
| | - Dominique Cazals-Hatem
- INSERM U773, Centre de Recherche Biomédicale Bichat Beaujon, Paris, France
- Université Paris 7 Denis Diderot, Paris, France
- Service d'Anatomo-Pathologie, Hôpital Beaujon, Clichy, France
| | - Christophe Richard
- INSERM U773, Centre de Recherche Biomédicale Bichat Beaujon, Paris, France
- Université Paris 7 Denis Diderot, Paris, France
| | - Thomas Aparicio
- INSERM U773, Centre de Recherche Biomédicale Bichat Beaujon, Paris, France
- Université Paris 7 Denis Diderot, Paris, France
- Service de Gastroentérologie, Hôpital Xavier Bichat, Paris, France
| | - Fanny Daniel
- INSERM U773, Centre de Recherche Biomédicale Bichat Beaujon, Paris, France
- Université Paris 7 Denis Diderot, Paris, France
| | - Jean-Claude Soulé
- INSERM U773, Centre de Recherche Biomédicale Bichat Beaujon, Paris, France
- Université Paris 7 Denis Diderot, Paris, France
- Service de Gastroentérologie, Hôpital Xavier Bichat, Paris, France
| | - Richard Moreau
- INSERM U773, Centre de Recherche Biomédicale Bichat Beaujon, Paris, France
- Université Paris 7 Denis Diderot, Paris, France
| | - Yoram Bouhnik
- INSERM U773, Centre de Recherche Biomédicale Bichat Beaujon, Paris, France
- Université Paris 7 Denis Diderot, Paris, France
- Service de Gastroentérologie et d'Assistance Nutritive, Hôpital Beaujon, Clichy, France
| | - Marc Laburthe
- INSERM U773, Centre de Recherche Biomédicale Bichat Beaujon, Paris, France
- Université Paris 7 Denis Diderot, Paris, France
| | - André Groyer
- INSERM U773, Centre de Recherche Biomédicale Bichat Beaujon, Paris, France
- Université Paris 7 Denis Diderot, Paris, France
- * E-mail:
| | - Eric Ogier-Denis
- INSERM U773, Centre de Recherche Biomédicale Bichat Beaujon, Paris, France
- Université Paris 7 Denis Diderot, Paris, France
| |
Collapse
|
461
|
Chen Y, Gelfond J, McManus LM, Shireman PK. Temporal microRNA expression during in vitro myogenic progenitor cell proliferation and differentiation: regulation of proliferation by miR-682. Physiol Genomics 2010; 43:621-30. [PMID: 20841498 DOI: 10.1152/physiolgenomics.00136.2010] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
MicroRNAs (miRNAs) regulate gene expression by repressing target genes at the posttranscriptional level. Since miRNAs have unique expression profiles in different tissues, they provide pivotal regulation of many biological processes. The present study defined miRNA expression during murine myogenic progenitor cell (MPC) proliferation and differentiation to identify miRNAs involved in muscle regeneration. Muscle-related gene expression analyses revealed that the time course and expression of myosin heavy chain (MHC) and transcription factors (Myf5, MyoD, myogenin, and Pax7) were similar during in vitro MPC proliferation/differentiation and in vivo muscle regeneration. Comprehensive profiling revealed that 139 or 16 miRNAs were significantly changed more than twofold [false discovery rate (FDR) < 0.05] during MPC differentiation or proliferation, respectively; cluster analyses revealed five distinct patterns of miRNA expression during the time course of MPC differentiation. Not unexpectedly, the largest miRNA changes occurred in muscle-specific miRNAs (miR-1, -133a, and -499), which were upregulated >10-fold during MPC differentiation (FDR < 0.01). However, several previously unreported miRNAs were differentially expressed, including miR-10b, -335-3p, and -682. Interestingly, the temporal patterns of miR-1, -499, and -682 expression during in vitro MPC proliferation/differentiation were remarkably similar to those observed during in vivo muscle regeneration. Moreover, in vitro inhibition of miR-682, the only miRNA upregulated in proliferating compared with quiescent MPC, led to decreased MPC proliferation, further validating our in vitro assay system for the identification of miRNAs involved in muscle regeneration. Thus the differentially expressed miRNAs identified in the present study could represent new regulatory elements in MPC proliferation and differentiation.
Collapse
Affiliation(s)
- Yongxin Chen
- Department of Surgery, University of Texas Health Science Center, San Antonio, TX, USA.
| | | | | | | |
Collapse
|
462
|
Volinia S, Galasso M, Costinean S, Tagliavini L, Gamberoni G, Drusco A, Marchesini J, Mascellani N, Sana ME, Abu Jarour R, Desponts C, Teitell M, Baffa R, Aqeilan R, Iorio MV, Taccioli C, Garzon R, Di Leva G, Fabbri M, Catozzi M, Previati M, Ambs S, Palumbo T, Garofalo M, Veronese A, Bottoni A, Gasparini P, Harris CC, Visone R, Pekarsky Y, de la Chapelle A, Bloomston M, Dillhoff M, Rassenti LZ, Kipps TJ, Huebner K, Pichiorri F, Lenze D, Cairo S, Buendia MA, Pineau P, Dejean A, Zanesi N, Rossi S, Calin GA, Liu CG, Palatini J, Negrini M, Vecchione A, Rosenberg A, Croce CM. Reprogramming of miRNA networks in cancer and leukemia. Genome Res 2010; 20:589-99. [PMID: 20439436 DOI: 10.1101/gr.098046.109] [Citation(s) in RCA: 298] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We studied miRNA profiles in 4419 human samples (3312 neoplastic, 1107 nonmalignant), corresponding to 50 normal tissues and 51 cancer types. The complexity of our database enabled us to perform a detailed analysis of microRNA (miRNA) activities. We inferred genetic networks from miRNA expression in normal tissues and cancer. We also built, for the first time, specialized miRNA networks for solid tumors and leukemias. Nonmalignant tissues and cancer networks displayed a change in hubs, the most connected miRNAs. hsa-miR-103/106 were downgraded in cancer, whereas hsa-miR-30 became most prominent. Cancer networks appeared as built from disjointed subnetworks, as opposed to normal tissues. A comparison of these nets allowed us to identify key miRNA cliques in cancer. We also investigated miRNA copy number alterations in 744 cancer samples, at a resolution of 150 kb. Members of miRNA families should be similarly deleted or amplified, since they repress the same cellular targets and are thus expected to have similar impacts on oncogenesis. We correctly identified hsa-miR-17/92 family as amplified and the hsa-miR-143/145 cluster as deleted. Other miRNAs, such as hsa-miR-30 and hsa-miR-204, were found to be physically altered at the DNA copy number level as well. By combining differential expression, genetic networks, and DNA copy number alterations, we confirmed, or discovered, miRNAs with comprehensive roles in cancer. Finally, we experimentally validated the miRNA network with acute lymphocytic leukemia originated in Mir155 transgenic mice. Most of miRNAs deregulated in these transgenic mice were located close to hsa-miR-155 in the cancer network.
Collapse
Affiliation(s)
- Stefano Volinia
- Data Mining for Analysis of Microarrays, Department of Morphology and Embryology, Università degli Studi, Ferrara 44100, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
463
|
Eyholzer M, Schmid S, Wilkens L, Mueller BU, Pabst T. The tumour-suppressive miR-29a/b1 cluster is regulated by CEBPA and blocked in human AML. Br J Cancer 2010; 103:275-84. [PMID: 20628397 PMCID: PMC2906742 DOI: 10.1038/sj.bjc.6605751] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND CCAAT/enhancer-binding protein-alpha (CEBPA) is crucial for normal granulopoiesis and is frequently disrupted in acute myeloid leukaemia (AML). Increasing evidence suggests that CEBPA exerts its effects, in parts, by regulating specific microRNAs (miRNAs), as previously shown for miR-223. The aim of this study was to investigate the genome-wide pattern of miRNAs regulated by CEBPA in myeloid cells. METHODS In Kasumi-1 cells, conditionally expressing CEBPA, we assessed the expression of 470 human miRNAs by microarray analysis. We further investigated the microarray results by qRT-PCR, luciferase reporter assays, and chromatin immunoprecipitation assays. RESULTS In all, 18 miRNAs were more than two-fold suppressed or induced after CEBPA restoration. Among these 18 miRNAs, we focused on CEBPA-mediated regulation of the tumour-suppressive miR-29b. We observed that miR-29b is suppressed in AML patients with impaired CEBPA function or loss of chromosome 7q. We found that CEBPA selectively regulates miR-29b expression on its miR-29a/b1 locus on chromosome 7q32.3, whereas miR-29b2/c on chromosome 1q32.2 is not affected. CONCLUSION This study reports the activation of the tumour-suppressive miR-29b by the haematopoietic key transcription factor CEBPA. Our data provide a rationale for miR-29b suppression in AML patients with loss of chromosome 7q or CEBPA deficiency.
Collapse
Affiliation(s)
- M Eyholzer
- Department of Clinical Research, University of Bern, Bern, Switzerland
| | | | | | | | | |
Collapse
|
464
|
Yang Y, Li X, Yang Q, Wang X, Zhou Y, Jiang T, Ma Q, Wang YJ. The role of microRNA in human lung squamous cell carcinoma. ACTA ACUST UNITED AC 2010; 200:127-33. [PMID: 20620595 DOI: 10.1016/j.cancergencyto.2010.03.014] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2009] [Revised: 03/22/2010] [Accepted: 03/25/2010] [Indexed: 12/15/2022]
Abstract
MicroRNAs (miRNAs) are a group of small noncoding RNAs with modulator activity of gene expression. Deregulation of miRNA genes was found in several types of cancers. To explore the role of the miRNAs in Chinese lung squamous cell carcinoma (SCC), the expression profile of 711 miRNAs in SCC was analyzed. Total RNAs were used for hybridization on a commercially available array (miRCURY LNA array v.10.0), which contains 1,200 probes in tetramer, corresponding to 711 human miRNA genes. The results of miRNA microarray analysis were confirmed with quantitative real-time polymerase chain reaction. Seven human miRNAs (miR-126, miR-193a-3p, miR-30d, miR-30a, miR-101, let-7i, and miR-15a) were found to be significantly downregulated in lung SCC (P < 0.05), compared with normal lung tissues. The miRNAs miR-185 * and miR-125a-5p were significantly upregulated in lung SCC (P < 0.05), compared with normal lung tissues. The miRNA let-7i was downregulated in 9 of the 20 SCC samples, and miR-126 was downregulated in 16 of 20. The deregulation of some miRNAs in lung SCC suggests their possible involvement in the development and progression of SCC.
Collapse
Affiliation(s)
- Ye Yang
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | | | | | | | | | | | | | | |
Collapse
|
465
|
Suzuki HI, Miyazono K. Dynamics of microRNA biogenesis: crosstalk between p53 network and microRNA processing pathway. J Mol Med (Berl) 2010; 88:1085-94. [PMID: 20614100 DOI: 10.1007/s00109-010-0650-1] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Revised: 06/17/2010] [Accepted: 06/24/2010] [Indexed: 12/12/2022]
Abstract
MicroRNAs (miRNAs) are pivotal regulators involved in various biological functions through the post-transcriptional regulation of gene expression. Alterations of miRNA expression and function contribute to both physiological and pathological processes such as development and cancer. While their roles have been attracting more attention in connection with tumor development, the mechanisms regulating miRNA biogenesis have not been well understood. Accumulating evidences have revealed the dynamic regulation of miRNA biosynthesis by several regulatory factors and demonstrated the complexity of miRNA-mediated gene regulation. In addition, several reports showed the interplay between the p53 tumor suppressor network and the miRNA-mediated gene regulatory system. We recently found that p53 modulates miRNA maturation at the processing step of primary miRNA transcripts, unraveling a novel function of p53. Here, we review the recent understanding of functional links between miRNA biogenesis and intracellular signaling pathways, with particular focus on the crosstalk between the p53 network and the miRNA biogenesis machinery. Further characterization of controlling elements for miRNA production and activity would provide important insights for a comprehensive understanding of the miRNA function in health and disease.
Collapse
Affiliation(s)
- Hiroshi I Suzuki
- Department of Molecular Pathology, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | | |
Collapse
|
466
|
Jung YS, Qian Y, Chen X. Examination of the expanding pathways for the regulation of p21 expression and activity. Cell Signal 2010; 22:1003-12. [PMID: 20100570 PMCID: PMC2860671 DOI: 10.1016/j.cellsig.2010.01.013] [Citation(s) in RCA: 333] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Accepted: 01/16/2010] [Indexed: 02/06/2023]
Abstract
p21(Waf1/Cip1/Sdi1) was originally identified as an inhibitor of cyclin-dependent kinases, a mediator of p53 in growth suppression and a marker of cellular senescence. p21 is required for proper cell cycle progression and plays a role in cell death, DNA repair, senescence and aging, and induced pluripotent stem cell reprogramming. Although transcriptional regulation is considered to be the initial control point for p21 expression, there is growing evidence that post-transcriptional and post-translational regulations play a critical role in p21 expression and activity. This review will briefly discuss the activity of p21 and focus on current knowledge of the determinants that control p21 transcription, mRNA stability and translation, and protein stability and activity.
Collapse
Affiliation(s)
- Yong-Sam Jung
- Center for Comparative Oncology, University of California, Davis, California 95616, USA
| | - Yingjuan Qian
- Center for Comparative Oncology, University of California, Davis, California 95616, USA
| | - Xinbin Chen
- Center for Comparative Oncology, University of California, Davis, California 95616, USA
| |
Collapse
|
467
|
Abstract
Elevated levels of fibrinogen are associated with increased risk of cardiovascular disease, whereas low fibrinogen can lead to a bleeding disorder. We investigated whether microRNAs (miRNAs), known to act as post-transcriptional regulators of gene expression, regulate fibrinogen production. Using transfection of a library of 470 annotated human miRNA precursor molecules in HuH7 hepatoma cells and quantitative measurements of fibrinogen production, we identified 23 miRNAs with down-regulating (up to 64% decrease) and 4 with up-regulating effects (up to 129% increase) on fibrinogen production. Among the down-regulating miRNAs, we investigated the mechanism of action of 3 hsa-miR-29 family members and hsa-miR-409-3p. Overexpression of hsa-miR-29 members led to decreased steady-state levels of all fibrinogen gene (FGA, FGB, and FGG) transcripts in HuH7 cells. Luciferase reporter gene assays demonstrated that this was independent of miRNA-fibrinogen 3'-untranslated region interactions. In contrast, overexpression of hsa-miR-409-3p specifically lowered fibrinogen Bβ mRNA levels, and this effect was dependent on a target site in the fibrinogen Bβ mRNA 3'-untranslated region. This study adds to the known mechanisms that control fibrinogen production, points toward a potential cause of variable circulating fibrinogen levels, and demonstrates that a screening approach can identify miRNAs that regulate clinically important proteins.
Collapse
|
468
|
Izumiya M, Okamoto K, Tsuchiya N, Nakagama H. Functional screening using a microRNA virus library and microarrays: a new high-throughput assay to identify tumor-suppressive microRNAs. Carcinogenesis 2010; 31:1354-9. [PMID: 20525881 DOI: 10.1093/carcin/bgq112] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
MicroRNA (miRNA) is a class of non-coding RNAs that represses expression of target messenger RNAs posttranscriptionally. A growing body of evidence supports their roles in various normal cellular processes, as well as in pathological conditions, such as cancer. We established a functional screening assay that enables high-throughput identification of miRNAs that have a role in cancer phenotypes of interest, via the combination of pooled lentivirus vectors expressing several hundred miRNA precursors and a custom-made microarray. Self versus self-hybridization analysis using pooled polymerase chain reaction products generated highly linear and reproducible results. To test the feasibility of the assay, we focused on miRNAs that control proliferation of pancreatic cancer cells and successfully identified five miRNAs that negatively control cell proliferation, including miRNA-34a that was previously identified as a representative tumor-suppressive miRNA. The results were further validated using lentivirus vectors expressing each of the five miRNAs or synthetic miRNAs. The function-based nature of the assay enabled identification of miRNAs that were strongly linked to cell proliferation, but the relative ease and flexibility of the assay allow for future studies of cancer stem cells, metastasis and other cancer phenotypes of interest.
Collapse
Affiliation(s)
- Masashi Izumiya
- National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan
| | | | | | | |
Collapse
|
469
|
Moussay E, Palissot V, Vallar L, Poirel HA, Wenner T, El Khoury V, Aouali N, Van Moer K, Leners B, Bernardin F, Muller A, Cornillet-Lefebvre P, Delmer A, Duhem C, Ries F, van Dyck E, Berchem G. Determination of genes and microRNAs involved in the resistance to fludarabine in vivo in chronic lymphocytic leukemia. Mol Cancer 2010; 9:115. [PMID: 20487546 PMCID: PMC2881880 DOI: 10.1186/1476-4598-9-115] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Accepted: 05/20/2010] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Chronic lymphocytic leukemia (CLL) cells are often affected by genomic aberrations targeting key regulatory genes. Although fludarabine is the standard first line therapy to treat CLL, only few data are available about the resistance of B cells to this purine nucleoside analog in vivo. Here we sought to increase our understanding of fludarabine action and describe the mechanisms leading to resistance in vivo. We performed an analysis of genomic aberrations, gene expression profiles, and microRNAs expression in CLL blood B lymphocytes isolated during the course of patients' treatment with fludarabine. RESULTS In sensitive patients, the differentially expressed genes we identified were mainly involved in p53 signaling, DNA damage response, cell cycle and cell death. In resistant patients, uncommon genomic abnormalities were observed and the resistance toward fludarabine could be characterized based on the expression profiles of genes implicated in lymphocyte proliferation, DNA repair, and cell growth and survival. Of particular interest in some patients was the amplification of MYC (8q) observed both at the gene and transcript levels, together with alterations of myc-transcriptional targets, including genes and miRNAs involved in the regulation of cell cycle and proliferation. Differential expression of the sulfatase SULF2 and of miR-29a, -181a, and -221 was also observed between resistant and sensitive patients before treatment. These observations were further confirmed on a validation cohort of CLL patients treated with fludarabine in vitro. CONCLUSION In the present study we identified genes and miRNAs that may predict clinical resistance of CLL to fludarabine, and describe an interesting oncogenic mechanism in CLL patients resistant to fludarabine by which the complete MYC-specific regulatory network was altered (DNA and RNA levels, and transcriptional targets). These results should prove useful for understanding and overcoming refractoriness to fludarabine and also for predicting the clinical outcome of CLL patients before or early during their treatment.
Collapse
Affiliation(s)
- Etienne Moussay
- Laboratory of Experimental Hemato-Oncology, CRP-Santé, Luxembourg, Luxembourg.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
470
|
Zhou M, Liu Z, Zhao Y, Ding Y, Liu H, Xi Y, Xiong W, Li G, Lu J, Fodstad O, Riker AI, Tan M. MicroRNA-125b confers the resistance of breast cancer cells to paclitaxel through suppression of pro-apoptotic Bcl-2 antagonist killer 1 (Bak1) expression. J Biol Chem 2010; 285:21496-507. [PMID: 20460378 DOI: 10.1074/jbc.m109.083337] [Citation(s) in RCA: 334] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Paclitaxel (Taxol) is an effective chemotherapeutic agent for treatment of cancer patients. Despite impressive initial clinical responses, the majority of patients eventually develop some degree of resistance to Taxol-based therapy. The mechanisms underlying cancer cells resistance to Taxol are not fully understood. MicroRNA (miRNA) has emerged to play important roles in tumorigenesis and drug resistance. However, the interaction between the development of Taxol resistance and miRNA has not been previously explored. In this study we utilized a miRNA array to compare the differentially expressed miRNAs in Taxol-resistant and their Taxol-sensitive parental cells. We verified that miR-125b, miR-221, miR-222, and miR-923 were up-regulated in Taxol-resistant cancer cells by real-time PCR. We further investigated the role and mechanisms of miR-125b in Taxol resistance. We found that miR-125b was up-regulated in Taxol-resistant cells, causing a marked inhibition of Taxol-induced cytotoxicity and apoptosis and a subsequent increase in the resistance to Taxol in cancer cells. Moreover, we demonstrated that the pro-apoptotic Bcl-2 antagonist killer 1 (Bak1) is a direct target of miR-125b. Down-regulation of Bak1 suppressed Taxol-induced apoptosis and led to an increased resistance to Taxol. Restoring Bak1 expression by either miR-125b inhibitor or re-expression of Bak1 in miR-125b-overexpressing cells recovered Taxol sensitivity, overcoming miR-125-mediated Taxol resistance. Taken together, our data strongly support a central role for miR-125b in conferring Taxol resistance through the suppression of Bak1 expression. This finding has important implications in the development of targeted therapeutics for overcoming Taxol resistance in a number of different tumor histologies.
Collapse
Affiliation(s)
- Ming Zhou
- Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama 36604, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
471
|
MicroRNA-29b regulates the expression level of human progranulin, a secreted glycoprotein implicated in frontotemporal dementia. PLoS One 2010; 5:e10551. [PMID: 20479936 PMCID: PMC2866661 DOI: 10.1371/journal.pone.0010551] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Accepted: 04/18/2010] [Indexed: 01/15/2023] Open
Abstract
Progranulin deficiency is thought to cause some forms of frontotemporal dementia (FTD), a major early-onset age-dependent neurodegenerative disease. How progranulin (PGRN) expression is regulated is largely unknown. We identified an evolutionarily conserved binding site for microRNA-29b (miR-29b) in the 3′ untranslated region (3′UTR) of the human PGRN (hPGRN) mRNA. miR-29b downregulates the expression of luciferase through hPGRN or mouse PGRN (mPGRN) 3′UTRs, and the regulation was abolished by mutations in the miR-29b binding site. To examine the direct effect of manipulating endogenous miR-29b on hPGRN expression, we established a stable NIH3T3 cell line that expresses hPGRN under the control of the cytomegalovirus promoter. Ectopic expression of miR-29b decreased hPGRN expression at the both mRNA and protein levels. Conversely, knockdown of endogenous miR-29b with locked nucleic acid increased the production and secretion of hPGRN in NIH3T3 cells. Endogenous hPGRN in HEK 293 cells was also regulated by miR-29b. These findings identify miR-29b as a novel posttranscriptional regulator of PGRN expression, raising the possibility that miR-29b or other miRNAs might be targeted therapeutically to increase hPGRN levels in some FTD patients.
Collapse
|
472
|
Sauzeau V, Berenjeno IM, Citterio C, Bustelo XR. A transcriptional cross-talk between RhoA and c-Myc inhibits the RhoA/Rock-dependent cytoskeleton. Oncogene 2010; 29:3781-92. [PMID: 20453885 PMCID: PMC2896432 DOI: 10.1038/onc.2010.134] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The GTPase RhoA participates in a number of cellular processes, including cytoskeletal organization, mitogenesis and tumorigenesis. We have previously shown that the transforming activity of an oncogenic version of RhoA (Q63L mutant) was highly dependent on the transcriptional factor c–Myc. In contrast to these positive effects in the RhoA route, we show here that c–Myc affects negatively the F–actin cytoskeleton induced by RhoAQ63L and its downstream effector, the serine/threonine kinase Rock. This effect entails the activation of a transcriptional program that requires synergistic interactions with RhoA–derived signals and that includes the upregulation of the GTPase Cdc42 and its downstream element Pak1 as well as the repression of specific integrin subunits. The negative effects of c–Myc in the F–actin cytoskeleton are eliminated by the establishment of cell–to–cell contacts, an effect associated with the rescue of Pak1 and integrin levels at the post–transcriptional and transcriptional levels, respectively. These results reveal the presence of a hitherto unknown signaling feed–back loop between RhoA and c–Myc oncogenes that can contribute to maintain fluid cytoskeletal dynamics in cancer cells.
Collapse
Affiliation(s)
- V Sauzeau
- Centro de Investigación del Cáncer, CSIC-University of Salamanca, Campus Unamuno, Salamanca, Spain
| | | | | | | |
Collapse
|
473
|
Abstract
Aging is a multifaceted process characterized by genetic and epigenetic changes in the genome. The genetic component of aging received initially all of the attention. Telomere attrition and accumulation of mutations due to a progressive deficiency in the repair of DNA damage with age remain leading causes of genomic instability. However, epigenetic mechanisms have now emerged as key contributors to the alterations of genome structure and function that accompany aging. The three pillars of epigenetic regulation are DNA methylation, histone modifications, and noncoding RNA species. Alterations of these epigenetic mechanisms affect the vast majority of nuclear processes, including gene transcription and silencing, DNA replication and repair, cell cycle progression, and telomere and centromere structure and function. Here, we summarize the lines of evidence indicating that these epigenetic defects might represent a major factor in the pathophysiology of aging and aging-related diseases, especially cancer.
Collapse
Affiliation(s)
- Susana Gonzalo
- Radiation and Cancer Biology Division, Dept. of Radiation Oncology, Washington Univ. School of Medicine, 4511 Forest Park, St. Louis, MO 63108, USA.
| |
Collapse
|
474
|
Abstract
Apoptosis is a well-orchestrated cellular mechanism that balances the effects of cell proliferation and cell death. MicroRNAs (miRNAs) have been shown to control cell growth, differentiation, and apoptosis; and can be significantly deregulated in many cancers types. In fact, the ability to evade apoptosis is a hallmark of tumorigenesis. Although the role of miRNAs in the regulation of apoptosis is not fully understood, the recent influx of data strongly suggests that miRNAs play a significant role in regulating programmed cell death, or apoptosis. The genes involved in apoptotic pathways can be broadly classified as pro-apoptotic and anti-apoptotic. Many of these apoptotic genes, irrespective of their positive or negative functional role in apoptosis, are regulated by miRNAs. In this review, we discuss the emerging role of miRNA-mediated gene networks in the control of apoptosis.
Collapse
Affiliation(s)
- Subbaya Subramanian
- Department of Laboratory Medicine & Pathology, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA.
| | | |
Collapse
|
475
|
Moriarty CH, Pursell B, Mercurio AM. miR-10b targets Tiam1: implications for Rac activation and carcinoma migration. J Biol Chem 2010; 285:20541-6. [PMID: 20444703 DOI: 10.1074/jbc.m110.121012] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Understanding the mechanisms by which specific microRNAs regulate cell migration and invasion is a timely and significant problem in cancer cell biology. miR-10b is of interest in this regard because its expression is altered in breast and other cancers. Our analysis of potential miR-10b targets identified Tiam1 (T lymphoma invasion and metastasis 1), a guanidine exchange factor for Rac. We demonstrate, using an miR-10b synthetic precursor, expression vector, and antisense oligonucleotide, that miR-10b represses Tiam1 expression in breast carcinoma cells and that it interacts with the 3'-UTR of Tiam1. Consistent with the involvement of Tiam1 in cell motility, we observed that miR-10b suppresses the ability of breast carcinoma cells to migrate and invade. Importantly, we demonstrate that miR-10b also inhibits Tiam1-mediated Rac activation. These data provide a mechanism for the regulation of Tiam1-mediated Rac activation in breast cancer cells and need to be considered in the context of other reported functions for miR-10b.
Collapse
Affiliation(s)
- Charlotte H Moriarty
- Department of Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | | |
Collapse
|
476
|
Small-molecule p21-activated kinase inhibitor PF-3758309 is a potent inhibitor of oncogenic signaling and tumor growth. Proc Natl Acad Sci U S A 2010; 107:9446-51. [PMID: 20439741 DOI: 10.1073/pnas.0911863107] [Citation(s) in RCA: 244] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Despite abundant evidence that aberrant Rho-family GTPase activation contributes to most steps of cancer initiation and progression, there is a dearth of inhibitors of their effectors (e.g., p21-activated kinases). Through high-throughput screening and structure-based design, we identify PF-3758309, a potent (K(d) = 2.7 nM), ATP-competitive, pyrrolopyrazole inhibitor of PAK4. In cells, PF-3758309 inhibits phosphorylation of the PAK4 substrate GEF-H1 (IC(50) = 1.3 nM) and anchorage-independent growth of a panel of tumor cell lines (IC(50) = 4.7 +/- 3 nM). The molecular underpinnings of PF-3758309 biological effects were characterized using an integration of traditional and emerging technologies. Crystallographic characterization of the PF-3758309/PAK4 complex defined determinants of potency and kinase selectivity. Global high-content cellular analysis confirms that PF-3758309 modulates known PAK4-dependent signaling nodes and identifies unexpected links to additional pathways (e.g., p53). In tumor models, PF-3758309 inhibits PAK4-dependent pathways in proteomic studies and regulates functional activities related to cell proliferation and survival. PF-3758309 blocks the growth of multiple human tumor xenografts, with a plasma EC(50) value of 0.4 nM in the most sensitive model. This study defines PAK4-related pathways, provides additional support for PAK4 as a therapeutic target with a unique combination of functions (apoptotic, cytoskeletal, cell-cycle), and identifies a potent, orally available small-molecule PAK inhibitor with significant promise for the treatment of human cancers.
Collapse
|
477
|
Li M, Li J, Ding X, He M, Cheng SY. microRNA and cancer. AAPS JOURNAL 2010; 12:309-17. [PMID: 20422339 DOI: 10.1208/s12248-010-9194-0] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 08/20/2009] [Accepted: 11/20/2009] [Indexed: 12/15/2022]
Abstract
MicroRNAs (miRNAs), a class of small, regulatory, non-coding RNA molecules, display aberrant expression patterns and functional abnormalities in human diseases including cancers. This review summarizes the abnormally expressed miRNAs in various types of human cancers, possible mechanisms underlying such abnormalities, and miRNA-modulated molecular pathways critical for cancer development. Practical implications of miRNAs as biomarkers, novel drug targets and therapeutic tools for diagnosis, prognosis, and treatments of human cancers are also discussed.
Collapse
Affiliation(s)
- Mengfeng Li
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, 74 Zhongshan Road II, Guangzhou 510080, China.
| | | | | | | | | |
Collapse
|
478
|
Li Y, Kong D, Wang Z, Sarkar FH. Regulation of microRNAs by natural agents: an emerging field in chemoprevention and chemotherapy research. Pharm Res 2010; 27:1027-41. [PMID: 20306121 DOI: 10.1007/s11095-010-0105-y] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2009] [Accepted: 02/25/2010] [Indexed: 12/11/2022]
Abstract
In recent years, microRNAs have received greater attention in cancer research. These small, non-coding RNAs could inhibit target gene expression by binding to the 3' untranslated region of target mRNA, resulting in either mRNA degradation or inhibition of translation. miRNAs play important roles in many normal biological processes; however, studies have also shown that aberrant miRNA expression is correlated with the development and progression of cancers. The miRNAs could have oncogenic or tumor suppressor activities. Moreover, some miRNAs could regulate formation of cancer stem cells and epithelial-mesenchymal transition phenotype of cancer cells which are typically drug resistant. Furthermore, miRNAs could be used as biomarkers for diagnosis and prognosis, and thus miRNAs are becoming emerging targets for cancer therapy. Recent studies have shown that natural agents including curcumin, isoflavone, indole-3-carbinol, 3,3'-diindolylmethane, (-)-epigallocatechin-3-gallate, resveratrol, etc. could alter miRNA expression profiles, leading to the inhibition of cancer cell growth, induction of apoptosis, reversal of epithelial-mesenchymal transition, or enhancement of efficacy of conventional cancer therapeutics. These emerging results clearly suggest that specific targeting of miRNAs by natural agents could open newer avenues for complete eradication of tumors by killing the drug-resistant cells to improve survival outcome in patients diagnosed with malignancies.
Collapse
Affiliation(s)
- Yiwei Li
- Department of Pathology, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | | | | | |
Collapse
|
479
|
Implication of microRNAs in drug resistance for designing novel cancer therapy. Drug Resist Updat 2010; 13:57-66. [PMID: 20236855 DOI: 10.1016/j.drup.2010.02.001] [Citation(s) in RCA: 162] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2010] [Revised: 02/21/2010] [Accepted: 02/22/2010] [Indexed: 12/19/2022]
Abstract
Recently, microRNAs (miRNAs) have received increasing attention in the field of cancer research. miRNAs play important roles in many normal biological processes; however, the aberrant miRNA expression and its correlation with the development and progression of cancers is an emerging field. Therefore, miRNAs could be used as biomarkers for diagnosis of cancer and prediction of prognosis. Importantly, some miRNAs could regulate the formation of cancer stem cells and the acquisition of epithelial-mesenchymal transition, which are critically associated with drug resistance. Moreover, some miRNAs could target genes related to drug sensitivity, resulting in the altered sensitivity of cancer cells to anti-cancer drugs. Emerging evidences have also shown that knock-down or re-expression of specific miRNAs by synthetic anti-sense oligonucleotides or pre-miRNAs could induce drug sensitivity, leading to increased inhibition of cancer cell growth, invasion, and metastasis. More importantly, recent studies have shown that natural agents including isoflavone, 3,3'-diindolylmethane, and (-)-epigallocatechin-3-gallate altered miRNA expression profiles, leading to an increased sensitivity of cancer cells to conventional therapeutics. These emerging results suggest that specific targeting of miRNAs by different approaches could open new avenues for cancer treatment through overcoming drug resistance and thereby improve the outcome of cancer therapy.
Collapse
|
480
|
Tsukamoto Y, Nakada C, Noguchi T, Tanigawa M, Nguyen LT, Uchida T, Hijiya N, Matsuura K, Fujioka T, Seto M, Moriyama M. MicroRNA-375 Is Downregulated in Gastric Carcinomas and Regulates Cell Survival by Targeting PDK1 and 14-3-3ζ. Cancer Res 2010; 70:2339-49. [PMID: 20215506 DOI: 10.1158/0008-5472.can-09-2777] [Citation(s) in RCA: 341] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Yoshiyuki Tsukamoto
- Department of Molecular Pathology, Faculty of Medicine and Institute of Scientific Research, Oita University, Oita, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
481
|
Smibert P, Lai EC. A view from Drosophila: multiple biological functions for individual microRNAs. Semin Cell Dev Biol 2010; 21:745-53. [PMID: 20211749 DOI: 10.1016/j.semcdb.2010.03.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Accepted: 03/01/2010] [Indexed: 12/19/2022]
Abstract
microRNAs (miRNAs) comprise an extensive class of post-transcriptional regulatory molecules in higher eukaryotes. Intensive research in Drosophila has revealed that miRNAs control myriad developmental and physiological processes. Interestingly, several of the best-studied miRNAs impact multiple biological processes, often by regulating distinct key target genes in each setting. Here we discuss the roles of some of these pleiotropic miRNAs, and their implications for studying and interpreting the roles of miRNAs in gene regulatory networks.
Collapse
Affiliation(s)
- Peter Smibert
- Department of Developmental Biology, Sloan-Kettering Institute, 1275 York Ave, Box 252, New York, NY 10065, USA
| | | |
Collapse
|
482
|
Xiong Y, Fang JH, Yun JP, Yang J, Zhang Y, Jia WH, Zhuang SM. Effects of microRNA-29 on apoptosis, tumorigenicity, and prognosis of hepatocellular carcinoma. Hepatology 2010; 51:836-45. [PMID: 20041405 DOI: 10.1002/hep.23380] [Citation(s) in RCA: 290] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
UNLABELLED Based on microarray data, we have previously shown a significant down-regulation of miR-29 in hepatocellular carcinoma (HCC) tissues. To date, the role of miR-29 deregulation in hepatocarcinogenesis and the signaling pathways by which miR-29 exerts its function and modulates the malignant phenotypes of HCC cells remain largely unknown. In this study, we confirmed that reduced expression of miR-29 was a frequent event in HCC tissues using both Northern blot and real-time quantitative reverse-transcription polymerase chain reaction. More interestingly, we found that miR-29 down-regulation was significantly associated with worse disease-free survival of HCC patients. Both gain- and loss-of-function studies revealed that miR-29 could sensitize HCC cells to apoptosis that was triggered by either serum starvation and hypoxia or chemotherapeutic drugs, which mimicked the tumor growth environment in vivo and the clinical treatment. Moreover, introduction of miR-29 dramatically repressed the ability of HCC cells to form tumor in nude mice. Subsequent investigation characterized two antiapoptotic molecules, Bcl-2 and Mcl-1, as direct targets of miR-29. Furthermore, silencing of Bcl-2 and Mcl-1 phenocopied the proapoptotic effect of miR-29, whereas overexpression of these proteins attenuated the effect of miR-29. In addition, enhanced expression of miR-29 resulted in the loss of mitochondrial potential and the release of cytochrome c to cytoplasm, suggesting that miR-29 may promote apoptosis through a mitochondrial pathway that involves Mcl-1 and Bcl-2. CONCLUSION Our data highlight an important role of miR-29 in the regulation of apoptosis and in the molecular etiology of HCC, and implicate the potential application of miR-29 in prognosis prediction and in cancer therapy.
Collapse
Affiliation(s)
- Yujuan Xiong
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, China
| | | | | | | | | | | | | |
Collapse
|
483
|
Shioya M, Obayashi S, Tabunoki H, Arima K, Saito Y, Ishida T, Satoh J. Aberrant microRNA expression in the brains of neurodegenerative diseases: miR-29a decreased in Alzheimer disease brains targets neurone navigator 3. Neuropathol Appl Neurobiol 2010; 36:320-30. [PMID: 20202123 DOI: 10.1111/j.1365-2990.2010.01076.x] [Citation(s) in RCA: 232] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
AIMS MicroRNAs (miRNAs) are small non-coding RNAs that regulate translational repression of target mRNAs. Accumulating evidence indicates that various miRNAs, expressed in a spatially and temporally controlled that manner in the brain plays a key role in neuronal development. However, at present, the pathological implication of aberrant miRNA expression in neurodegenerative events remains largely unknown. To identify miRNAs closely associated with neurodegeneration, we performed miRNA expression profiling of brain tissues of various neurodegenerative diseases. METHODS We initially studied the frontal cortex derived from three amyotrophic lateral sclerosis patients by using a microarray of 723 human miRNAs. This was followed by enlargement of study population with quantitative RT-PCR analysis (n = 21). RESULTS By microarray analysis, we identified up-regulation of miR-29a, miR-29b and miR-338-3p in amyotrophic lateral sclerosis brains, but due to a great interindividual variation, we could not validate these results by quantitative RT-PCR. However, we found significant down-regulation of miR-29a in Alzheimer disease (AD) brains. The database search on TargetScan, PicTar and miRBase Target identified neurone navigator 3 (NAV3), a regulator of axon guidance, as a principal target of miR-29a, and actually NAV3 mRNA levels were elevated in AD brains. MiR-29a-mediated down-regulation of NAV3 was verified by the luciferase reporter assay. By immunohistochemistry, NAV3 expression was most evidently enhanced in degenerating pyramidal neurones in the cerebral cortex of AD. CONCLUSIONS These observations suggest the hypothesis that underexpression of miR-29a affects neurodegenerative processes by enhancing neuronal NAV3 expression in AD brains.
Collapse
Affiliation(s)
- M Shioya
- Department of Bioinformatics and Molecular Neuropathology, Meiji Pharmaceutical University, Kiyose, Tokyo 204-8588, Japan
| | | | | | | | | | | | | |
Collapse
|
484
|
Subramanian S, Thayanithy V, West RB, Lee CH, Beck AH, Zhu S, Downs-Kelly E, Montgomery K, Goldblum JR, Hogendoorn PCW, Corless CL, Oliveira AM, Dry SM, Nielsen TO, Rubin BP, Fletcher JA, Fletcher CDM, van de Rijn M. Genome-wide transcriptome analyses reveal p53 inactivation mediated loss of miR-34a expression in malignant peripheral nerve sheath tumours. J Pathol 2010; 220:58-70. [PMID: 19890883 DOI: 10.1002/path.2633] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Malignant peripheral nerve sheath tumours (MPNSTs) are aggressive soft tissue tumours that occur either sporadically or in patients with neurofibromatosis type 1. The malignant transformation of the benign neurofibroma to MPNST is incompletely understood at the molecular level. We have determined the gene expression signature for benign and malignant PNSTs and found that the major trend in malignant transformation from neurofibroma to MPNST consists of the loss of expression of a large number of genes, rather than widespread increase in gene expression. Relatively few genes are expressed at higher levels in MPNSTs and these include genes involved in cell proliferation and genes implicated in tumour metastasis. In addition, a gene expression signature indicating p53 inactivation is seen in the majority of MPNSTs. Subsequent microRNA profiling of benign and malignant PNSTs indicated a relative down-regulation of miR-34a in most MPNSTs compared to neurofibromas. In vitro studies using the cell lines MPNST-14 (NF1 mutant) and MPNST-724 (from a non-NF1 individual) show that exogenous expression of p53 or miR-34a promotes apoptotic cell death. In addition, exogenous expression of p53 in MPNST cells induces miR-34a and other miRNAs. Our data show that p53 inactivation and subsequent loss of expression of miR-34a may significantly contribute to the MPNST development. Collectively, our findings suggest that deregulation of miRNAs has a potential role in the malignant transformation process in peripheral nerve sheath tumours.
Collapse
Affiliation(s)
- Subbaya Subramanian
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
485
|
Ye Y, Hu Z, Lin Y, Zhang C, Perez-Polo JR. Downregulation of microRNA-29 by antisense inhibitors and a PPAR-gamma agonist protects against myocardial ischaemia-reperfusion injury. Cardiovasc Res 2010; 87:535-44. [PMID: 20164119 DOI: 10.1093/cvr/cvq053] [Citation(s) in RCA: 170] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
AIMS MicroRNAs (miRNAs) regulate various cardiac processes including cell proliferation and apoptosis. Pioglitazone (PIO), a peroxisome proliferator-activated receptor (PPAR)-gamma agonist, protects against myocardial ischaemia-reperfusion (IR) injury. We assessed the effects of PPAR-gamma activation on myocardial miRNA levels and the role of miRNAs in IR injury. METHODS AND RESULTS We evaluated the expression changes of miRNAs in the rat heart after PIO administration using miRNA arrays and then confirmed the result by northern blot. miR-29a and c levels decreased remarkably after 7-day treatment with PIO. In H9c2 cells, the effects of PIO and rosiglitazone on miR-29 expression levels were blocked by a selective PPAR-gamma inhibitor GW9662. Downregulation of miR-29 by antisense inhibitor or by PIO protected H9c2 cells from simulated IR injury, indicated as increased cell survival and decreased caspase-3 activity. In contrast, overexpressing miR-29 promoted apoptosis and completely blocked the protective effect of PIO. Antagomirs against miR-29a or -29c significantly reduced myocardial infarct size and apoptosis in hearts subjected to IR injury. Western blot analyses demonstrated that Mcl-2, an anti-apoptotic Bcl-2 family member, was increased by miR-29 inhibition. CONCLUSION Downregulation of miR-29 protected hearts against IR injury. The modulation of miRNAs can be achieved by pharmacological intervention. These findings provide a rationale for the development of miRNA-based strategies for the attenuation of IR injury.
Collapse
Affiliation(s)
- Yumei Ye
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, MRB 5:108, 301 University Boulevard, Galveston, TX 77555, USA.
| | | | | | | | | |
Collapse
|
486
|
Regulation of PI3-kinase/Akt signaling by muscle-enriched microRNA-486. Proc Natl Acad Sci U S A 2010; 107:4218-23. [PMID: 20142475 DOI: 10.1073/pnas.1000300107] [Citation(s) in RCA: 320] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
microRNAs (miRNAs) play key roles in modulating a variety of cellular processes through repression of mRNA targets. In a screen for miRNAs regulated by myocardin-related transcription factor-A (MRTF-A), a coactivator of serum response factor (SRF), we discovered a muscle-enriched miRNA, miR-486, controlled by an alternative promoter within intron 40 of the Ankyrin-1 gene. Transcription of miR-486 is directly controlled by SRF and MRTF-A, as well as by MyoD. Among the most strongly predicted targets of miR-486 are phosphatase and tensin homolog (PTEN) and Foxo1a, which negatively affect phosphoinositide-3-kinase (PI3K)/Akt signaling. Accordingly, PTEN and Foxo1a protein levels are reduced by miR-486 overexpression, which, in turn, enhances PI3K/Akt signaling. Similarly, we show that MRTF-A promotes PI3K/Akt signaling by up-regulating miR-486 expression. Conversely, inhibition of miR-486 expression enhances the expression of PTEN and Foxo1a and dampens signaling through the PI3K/Akt-signaling pathway. Our findings implicate miR-486 as a downstream mediator of the actions of SRF/MRTF-A and MyoD in muscle cells and as a potential modulator of PI3K/Akt signaling.
Collapse
|
487
|
microRNA expression profile and identification of miR-29 as a prognostic marker and pathogenetic factor by targeting CDK6 in mantle cell lymphoma. Blood 2010; 115:2630-9. [PMID: 20086245 DOI: 10.1182/blood-2009-09-243147] [Citation(s) in RCA: 271] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Mantle cell lymphoma (MCL) is one of the most aggressive B-cell lymphomas. Although several protein-coding genes are altered, expression signature and importance of microRNA (miRNA) have not been well documented in this malignancy. Here, we performed miRNA expression profile in 30 patients with MCL using a platform containing 515 human miRNAs. Eighteen miRNAs were down-regulated and 21 were up-regulated in MCL compared with normal B lymphocytes. The most frequently altered miRNAs are decrease of miR-29a/b/c, miR-142-3p/5p, and miR-150 and increase of miR-124a and miR-155. Notably, expression levels of miR-29 family are associated with prognosis. The patients with significant down-regulated miR-29 had short survival compared with those who express relatively high levels of miR-29. The prognostic value of miR-29 is comparable with the Mantle Cell Lymphoma International Prognostic Index. Furthermore, we demonstrate miR-29 inhibition of CDK6 protein and mRNA levels by direct binding to 3'-untranslated region. Inverse correlation between miR-29 and CDK6 was observed in MCL. Because cyclin D1 overexpression is a primary event and exerts its function through activation of CDK4/CDK6, our results in primary MCL cells indicate that down-regulation of miR-29 could cooperate with cyclin D1 in MCL pathogenesis. Thus, our findings provide not only miRNA expression signature but also a novel prognostic marker and pathogenetic factor for this malignancy.
Collapse
|
488
|
Landi MT, Zhao Y, Rotunno M, Koshiol J, Liu H, Bergen AW, Rubagotti M, Goldstein AM, Linnoila I, Marincola FM, Tucker MA, Bertazzi PA, Pesatori AC, Caporaso NE, McShane LM, Wang E. MicroRNA expression differentiates histology and predicts survival of lung cancer. Clin Cancer Res 2010; 16:430-41. [PMID: 20068076 DOI: 10.1158/1078-0432.ccr-09-1736] [Citation(s) in RCA: 262] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
PURPOSE The molecular drivers that determine histology in lung cancer are largely unknown. We investigated whether microRNA (miR) expression profiles can differentiate histologic subtypes and predict survival for non-small cell lung cancer. EXPERIMENTAL DESIGN We analyzed miR expression in 165 adenocarcinoma and 125 squamous cell carcinoma (SQ) tissue samples from the Environment And Genetics in Lung cancer Etiology (EAGLE) study using a custom oligo array with 440 human mature antisense miRs. We compared miR expression profiles using t tests and F tests and accounted for multiple testing using global permutation tests. We assessed the association of miR expression with tobacco smoking using Spearman correlation coefficients and linear regression models, and with clinical outcome using log-rank tests, Cox proportional hazards, and survival risk prediction models, accounting for demographic and tumor characteristics. RESULTS MiR expression profiles strongly differed between adenocarcinoma and SQ (P(global) < 0.0001), particularly in the early stages, and included miRs located on chromosome loci most often altered in lung cancer (e.g., 3p21-22). Most miRs, including all members of the let-7 family, were downregulated in SQ. Major findings were confirmed by quantitative real time-polymerase chain reaction (qRT-PCR) in EAGLE samples and in an independent set of lung cancer cases. In SQ, the low expression of miRs that are downregulated in the histology comparison was associated with 1.2- to 3.6-fold increased mortality risk. A five-miR signature significantly predicted survival for SQ. CONCLUSIONS We identified a miR expression profile that strongly differentiated adenocarcinoma from SQ and had prognostic implications. These findings may lead to histology-based therapeutic approaches.
Collapse
Affiliation(s)
- Maria Teresa Landi
- Genetic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Department of Health and Human Services, Bethesda, Maryland 20892-7236, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
489
|
Hyun S, Lee JH, Jin H, Nam J, Namkoong B, Lee G, Chung J, Kim VN. Conserved MicroRNA miR-8/miR-200 and its target USH/FOG2 control growth by regulating PI3K. Cell 2010; 139:1096-108. [PMID: 20005803 DOI: 10.1016/j.cell.2009.11.020] [Citation(s) in RCA: 243] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2009] [Revised: 09/21/2009] [Accepted: 11/10/2009] [Indexed: 02/01/2023]
Abstract
How body size is determined is a long-standing question in biology, yet its regulatory mechanisms remain largely unknown. Here, we find that a conserved microRNA miR-8 and its target, USH, regulate body size in Drosophila. miR-8 null flies are smaller in size and defective in insulin signaling in fat body that is the fly counterpart of liver and adipose tissue. Fat body-specific expression and clonal analyses reveal that miR-8 activates PI3K, thereby promoting fat cell growth cell-autonomously and enhancing organismal growth non-cell-autonomously. Comparative analyses identify USH and its human homolog, FOG2, as the targets of fly miR-8 and human miR-200, respectively. USH/FOG2 inhibits PI3K activity, suppressing cell growth in both flies and humans. FOG2 directly binds to p85alpha, the regulatory subunit of PI3K, and interferes with the formation of a PI3K complex. Our study identifies two novel regulators of insulin signaling, miR-8/miR-200 and USH/FOG2, and suggests their roles in adolescent growth, aging, and cancer.
Collapse
Affiliation(s)
- Seogang Hyun
- School of Biological Sciences and National Creative Research Center, Seoul National University, Seoul, 151-742, Korea
| | | | | | | | | | | | | | | |
Collapse
|
490
|
Hiroki E, Akahira JI, Suzuki F, Nagase S, Ito K, Suzuki T, Sasano H, Yaegashi N. Changes in microRNA expression levels correlate with clinicopathological features and prognoses in endometrial serous adenocarcinomas. Cancer Sci 2010; 101:241-9. [PMID: 19891660 PMCID: PMC11159282 DOI: 10.1111/j.1349-7006.2009.01385.x] [Citation(s) in RCA: 177] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
This study aimed to determine the expression profiles of microRNAs (miRNAs) in endometrial serous adenocarcinoma and to examine the association between miRNA expression and clinical outcomes. Twenty-one patients diagnosed with endometrial serous adenocarcinoma between January 2001 and December 2006 were enrolled. miRNA expression profiles were examined using miRNA microarray and qRT-PCR. miRNA expression levels were correlated with clinicopathological variables and survival rates. A total of 120 miRNAs were differentially expressed in endometrial serous adenocarcinoma compared to normal endometria. Of these, 54 miRNAs were down-regulated (>2-fold), including miR-101, miR-10b*, miR-152, and miR-29b, and the remainder were up-regulated (>2-fold), including miR-200a, miR-200b, and miR-205. Decreased expression of miR-10b*, miR-29b, and miR-455-5p was correlated with vascular invasion (P = 0.048, P = 0.013, and P = 0.032, respectively). Univariate analysis revealed that lower expression of miR-101, miR-10b*, miR-139-5p, miR-152, miR-29b, and miR-455-5p was significantly correlated with poor overall survival (P < 0.05), and reduced expression of miR-152, miR-29b, and miR-455-5p was significantly correlated with poor disease-free survival (P < 0.05). Multivariate analysis demonstrated that decreased expression of miR-152 (P = 0.021) was a statistically independent risk factor for overall survival, and decreased expression levels of miR-101 (P = 0.016) and miR-152 (P = 0.010) were statistically independent risk factors for disease-free survival. In addition, transfection of miR-101 or miR-152 precursors into an endometrial serous carcinoma cell line inhibited cell growth (P < 0.0001 and P = 0.01, respectively). Moreover, strong positive immunoreactivity of cyclooxygenase-2 (COX-2) was significantly correlated with down-regulation of miR-101 (P = 0.035). These findings suggest that the dysregulation of miRNAs is associated with the poor prognosis in endometrial serous adenocarcinoma patients.
Collapse
Affiliation(s)
- Eri Hiroki
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
491
|
|
492
|
Liu X, Wang T, Wakita T, Yang W. Systematic identification of microRNA and messenger RNA profiles in hepatitis C virus-infected human hepatoma cells. Virology 2009; 398:57-67. [PMID: 20006370 DOI: 10.1016/j.virol.2009.11.036] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2009] [Revised: 11/02/2009] [Accepted: 11/20/2009] [Indexed: 02/06/2023]
Abstract
In order to investigate the global and dynamic host microRNAs (miRNAs)/messenger RNAs (mRNAs) expression alteration during in vitro acute HCV infection, a comprehensive microarray analysis was performed using human hepatoma cells. Totally, 108 human miRNAs and 1247 mRNAs were identified whose expression levels changed for more than 2.0-fold in response to HCV infection. Upon HCV infection, signature from the unique miRNA expression pattern reflected the involvement of miRNA-regulated host cellular physiology and antiviral mechanism, whereas a preponderance of differentially regulated genes associated with metabolism, cell growth, apoptosis and cytokine/chemokine pathways. Furthermore, a reverse regulatory association of differentially expressed miRNAs and their predicted targets was constructed. Finally, the differentially expressed miRNAs such as miR-24, miR-149, miR-638 and miR-1181 were identified to be involved in HCV entry, replication and propagation. These results suggest that combined miRNA and mRNA profiling may have superior potential as a diagnostic and mechanistic feature in HCV infection.
Collapse
Affiliation(s)
- Xiuying Liu
- State Key Laboratory for Molecular Virology and Genetic Engineering, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 6 Rong Jing Dong Jie, Beijing 100176, China
| | | | | | | |
Collapse
|
493
|
MicroRNAs: novel therapeutic targets in neurodegenerative diseases. Drug Discov Today 2009; 14:1123-9. [DOI: 10.1016/j.drudis.2009.09.009] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Revised: 09/11/2009] [Accepted: 09/15/2009] [Indexed: 12/16/2022]
|
494
|
|
495
|
Muniyappa MK, Dowling P, Henry M, Meleady P, Doolan P, Gammell P, Clynes M, Barron N. MiRNA-29a regulates the expression of numerous proteins and reduces the invasiveness and proliferation of human carcinoma cell lines. Eur J Cancer 2009; 45:3104-18. [PMID: 19818597 DOI: 10.1016/j.ejca.2009.09.014] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Revised: 08/31/2009] [Accepted: 09/11/2009] [Indexed: 12/13/2022]
Abstract
In this study we have identified a functional role for miR-29a in cancer cell invasion and proliferation. MiRNA expression profiling of human NSCLC cell lines indicated that miR-29a levels were reduced in more invasive cell lines. Exogenous overexpression of miR-29a in both lung and pancreatic cancer cell lines resulted in a significant reduction in the invasion phenotype, as well as in proliferation. 2D DIGE proteomic profiling of cells transfected with pre-miR-29a or anti-miR-29a resulted in the identification of over 100 differentially regulated proteins. The fold change of protein expression was generally modest--in the range 1.2-1.7-fold. Only 14 were predicted computationally to have miR-29a seed sequences in their 3' UTR region. Subsequent studies using siRNA to knock down several candidate proteins from the 2D DIGE experiment identified RAN (a member of the RAS oncogene family) which significantly reduced the invasive capability of a model lung cancer cell line. We conclude that miR-29a has a significant anti-invasive and anti-proliferative effect on lung cancer cells in vitro and functions as an anti-oncomir. This function is likely mediated through the post-transcriptional fine tuning of the cellular levels of several proteins, both directly and indirectly, and in particular we provide some evidence that RAN represents one of these.
Collapse
Affiliation(s)
- M K Muniyappa
- National Institute for Cellular Biotechnology, Dublin City University, Dublin 9, Ireland
| | | | | | | | | | | | | | | |
Collapse
|
496
|
Chen CZC, Peng YX, Wang ZB, Fish PV, Kaar JL, Koepsel RR, Russell AJ, Lareu RR, Raghunath M. The Scar-in-a-Jar: studying potential antifibrotic compounds from the epigenetic to extracellular level in a single well. Br J Pharmacol 2009; 158:1196-209. [PMID: 19785660 DOI: 10.1111/j.1476-5381.2009.00387.x] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Fibrosis, a pathological accumulation of collagen in tissues, represents a major global disease burden. Effective characterization of potential antifibrotic drugs has been constrained by poor formation of the extracellular matrix in vitro, due to tardy procollagen processing by collagen C-proteinase/BMP-1, and difficulties in relating this matrix to cell numbers in experimental samples. EXPERIMENTAL APPROACH The Scar-in-a-Jar model provided, in vitro, the complete biosynthetic cascade of collagen matrix formation including complete conversion of procollagen by C-proteinase/BMP-1, its subsequent extracellular deposition and lysyl oxidase-mediated cross-linking, achieved by applying the biophysical principle of macromolecular 'crowding'. Collagen matrix deposition, velocity and morphology can be controlled using negatively charged 'crowders' in a rapid (2 days) mode or a mixture of neutral 'crowders' in an accelerated (6 days) mode. Combined with quantitative optical bioimaging, this novel system allows for in situ assessment of the area of deposited collagen(s) per cell. KEY RESULTS Optical evaluation of known and novel antifibrotic compounds effective at the epigenetic, post-transcriptional/translational/secretional level correlated excellently with corresponding biochemical analyses. Focusing on quantitation of deposited collagen, the Scar-in-a-Jar was most effective in assessing novel inhibitors that may have multiple targets, such as microRNA29c, found to be a promising antifibrotic agent. CONCLUSIONS AND IMPLICATIONS This novel screening system supersedes current in vitro fibroplasia models, as a fast, quantitative and non-destructive technique. This method distinguishes a reduction in collagen I deposition, excluding collagen cross-linking, and allows full evaluation of inhibitors of C-proteinase/BMP-1 and other matrix metalloproteinases.
Collapse
Affiliation(s)
- C Z C Chen
- Division of Bioengineering, Faculty of Engineering, National University of Singapore, Singapore
| | | | | | | | | | | | | | | | | |
Collapse
|
497
|
Ohlsson Teague EMC, Print CG, Hull ML. The role of microRNAs in endometriosis and associated reproductive conditions. Hum Reprod Update 2009; 16:142-65. [DOI: 10.1093/humupd/dmp034] [Citation(s) in RCA: 216] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
498
|
Tsai LM, Yu D. MicroRNAs in common diseases and potential therapeutic applications. Clin Exp Pharmacol Physiol 2009; 37:102-7. [PMID: 19671070 DOI: 10.1111/j.1440-1681.2009.05269.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
1. Evidence gathered in recent years has revealed microRNAs (miRNAs) fine-tune gene expression and play an important role in various cellular processes, including cell growth, differentiation, proliferation and apoptosis. 2. The present review summarizes current knowledge of miRNA pathways in the pathogenesis of cancer, cardiac diseases, neurodegenerative diseases, diabetes, autoimmune/inflammatory diseases and infection. 3. There is considerable potential to target miRNAs as a novel approach in the treatment of human diseases. Currently, miRNA-based therapies are being examined in both animal models and human clinical trials.
Collapse
Affiliation(s)
- Louis M Tsai
- Immunology and Inflammation Research Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | | |
Collapse
|
499
|
Abstract
MicroRNAs are a class of small regulatory RNAs that function to modulate protein expression. This control allows for fine-tuning of the cellular phenotype, including regulation of proliferation, cell signaling, and apoptosis; not surprisingly, microRNAs contribute to liver cancer biology. Recent investigations in human liver cancers and tumor-derived cell lines have demonstrated decreased or increased expression of particular microRNAs in hepatobiliary cancer cells. Based on predicted and validated protein targets as well as functional consequences of altered expression, microRNAs with decreased expression in liver tumor cells may normally aid in limiting neoplastic transformation. Conversely, selected microRNAs that are up-regulated in liver tumor cells can promote malignant features, contributing to carcinogenesis. In addition, microRNAs themselves are subject to regulated expression, including regulation by tumor suppressor and oncogene pathways. This review will focus on the expression and function of cancer-related microRNAs, including their intimate involvement in tumor suppressor and oncogene signaling networks relevant to hepatobiliary neoplasia.
Collapse
Affiliation(s)
- Justin L Mott
- Division of Gastroenterology and Hepatology, Miles and Shirley Fiterman Center for Digestive Diseases, College of Medicine, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
500
|
Kok K, Nock GE, Verrall EAG, Mitchell MP, Hommes DW, Peppelenbosch MP, Vanhaesebroeck B. Regulation of p110delta PI 3-kinase gene expression. PLoS One 2009; 4:e5145. [PMID: 19357769 PMCID: PMC2663053 DOI: 10.1371/journal.pone.0005145] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2008] [Accepted: 02/19/2009] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Despite an intense interest in the biological functions of the phosphoinositide 3-kinase (PI3K) signalling enzymes, little is known about the regulation of PI3K gene expression. This also applies to the leukocyte-enriched p110delta catalytic subunit of PI3K, an enzyme that has attracted widespread interest because of its role in immunity and allergy. PRINCIPAL FINDINGS We show that p110delta expression is mainly regulated at the transcriptional level. In fibroblasts, lymphocytes and myeloid cells, p110delta gene transcription appears to be constitutive and not subject to acute stimulation. 5'RACE experiments revealed that p110delta mRNA transcripts contain distinct upstream untranslated exons (named exon -1, -2a, -2b, -2c and -2d), which are located up to 81 kb upstream of the translational start codon in exon 1. The levels of all the different p110delta transcripts are higher in leukocytes compared to non-leukocytes, with the p110delta transcript containing exon -2a most abundantly expressed. We have identified a highly conserved transcription factor (TF) binding cluster in the p110delta gene which has enhanced promoter activity in leukocytes compared to non-leukocytes. In human, this TF cluster is located immediately upstream of exon -2a whilst in mouse, it is located within exon -2a. CONCLUSION This study identifies a conserved PIK3CD promoter region that may account for the predominant leukocyte expression of p110delta.
Collapse
Affiliation(s)
- Klaartje Kok
- Centre for Cell Signalling, Institute of Cancer, Queen Mary University of London, Charterhouse Square, London, United Kingdom
- Department of Cell Biology, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Gemma E. Nock
- Centre for Cell Signalling, Institute of Cancer, Queen Mary University of London, Charterhouse Square, London, United Kingdom
| | - Elizabeth A. G. Verrall
- Centre for Cell Signalling, Institute of Cancer, Queen Mary University of London, Charterhouse Square, London, United Kingdom
| | - Michael P. Mitchell
- Bioinformatics and Biostatistics, Cancer Research UK London Research Institute, London, United Kingdom
| | - Daan W. Hommes
- Department of Gastroenterology and Hepatology; Leiden University Medical Centre, Leiden, The Netherlands
| | - Maikel P. Peppelenbosch
- Department of Cell Biology, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Bart Vanhaesebroeck
- Centre for Cell Signalling, Institute of Cancer, Queen Mary University of London, Charterhouse Square, London, United Kingdom
| |
Collapse
|