451
|
Carpio LE, Sanz Y, Gozalbes R, Barigye SJ. Computational strategies for the discovery of biological functions of health foods, nutraceuticals and cosmeceuticals: a review. Mol Divers 2021; 25:1425-1438. [PMID: 34258685 PMCID: PMC8277569 DOI: 10.1007/s11030-021-10277-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/07/2021] [Indexed: 11/29/2022]
Abstract
Scientific and consumer interest in healthy foods (also known as functional foods), nutraceuticals and cosmeceuticals has increased in the recent years, leading to an increased presence of these products in the market. However, the regulations across different countries that define the type of claims that may be made, and the degree of evidence required to support these claims, are rather inconsistent. Moreover, there is also controversy on the effectiveness and biological mode of action of many of these products, which should undergo an exhaustive approval process to guarantee the consumer rights. Computational approaches constitute invaluable tools to facilitate the discovery of bioactive molecules and provide biological plausibility on the mode of action of these products. Indeed, methodologies like QSAR, docking or molecular dynamics have been used in drug discovery protocols for decades and can now aid in the discovery of bioactive food components. Thanks to these approaches, it is possible to search for new functions in food constituents, which may be part of our daily diet, and help to prevent disorders like diabetes, hypercholesterolemia or obesity. In the present manuscript, computational studies applied to this field are reviewed to illustrate the potential of these approaches to guide the first screening steps and the mechanistic studies of nutraceutical, cosmeceutical and functional foods.
Collapse
Affiliation(s)
- Laureano E Carpio
- ProtoQSAR SL, CEEI (Centro Europeo de Empresas Innovadoras), Parque Tecnológico de Valencia, Valencia, Spain
| | - Yolanda Sanz
- Microbial Ecology, Nutrition and Health Research Unit, Institute of Agrochemistry and Food Technology, National Research Council (IATA-CSIC), Valencia, Spain
| | - Rafael Gozalbes
- ProtoQSAR SL, CEEI (Centro Europeo de Empresas Innovadoras), Parque Tecnológico de Valencia, Valencia, Spain
| | - Stephen J Barigye
- ProtoQSAR SL, CEEI (Centro Europeo de Empresas Innovadoras), Parque Tecnológico de Valencia, Valencia, Spain.
- MolDrug AI Systems SL, Valencia, Spain.
| |
Collapse
|
452
|
Chang WH, Lin HH, Tsai IK, Huang SH, Chung SC, Tu IP, Yu SSF, Chan SI. Copper Centers in the Cryo-EM Structure of Particulate Methane Monooxygenase Reveal the Catalytic Machinery of Methane Oxidation. J Am Chem Soc 2021; 143:9922-9932. [PMID: 34170126 DOI: 10.1021/jacs.1c04082] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The particulate methane monooxygenase (pMMO) is the first enzyme in the C1 metabolic pathway in methanotrophic bacteria. As this enzyme converts methane into methanol efficiently near room temperature, it has become the paradigm for developing an understanding of this difficult C1 chemistry. pMMO is a membrane-bound protein with three subunits (PmoB, PmoA, and PmoC) and 12-14 coppers distributed among different sites. X-ray crystal structures that have revealed only three mononuclear coppers at three sites have neither disclosed the location of the active site nor the catalytic mechanism of the enzyme. Here we report a cyro-EM structure of holo-pMMO from Methylococcus capsulatus (Bath) at 2.5 Å, and develop quantitative electrostatic-potential profiling to scrutinize the nonprotein densities for signatures of the copper cofactors. Our results confirm a mononuclear CuI at the A site, resolve two CuIs at the B site, and uncover additional CuI clusters at the PmoA/PmoC interface within the membrane (D site) and in the water-exposed C-terminal subdomain of the PmoB (E clusters). These findings complete the minimal set of copper factors required for catalytic turnover of pMMO, offering a glimpse of the catalytic machinery for methane oxidation according to the chemical principles underlying the mechanism proposed earlier.
Collapse
Affiliation(s)
- W-H Chang
- Institute of Chemistry, Academia Sinica, Nangang, Taipei 11529, Taiwan
| | - H-H Lin
- Institute of Chemistry, Academia Sinica, Nangang, Taipei 11529, Taiwan
| | - I-K Tsai
- Institute of Chemistry, Academia Sinica, Nangang, Taipei 11529, Taiwan
| | - S-H Huang
- Institute of Chemistry, Academia Sinica, Nangang, Taipei 11529, Taiwan
| | - S-C Chung
- Institute of Statistical Science, Academia Sinica, Nangang, Taipei 11529, Taiwan
| | - I-P Tu
- Institute of Statistical Science, Academia Sinica, Nangang, Taipei 11529, Taiwan
| | - S S-F Yu
- Institute of Chemistry, Academia Sinica, Nangang, Taipei 11529, Taiwan
| | - S I Chan
- Institute of Chemistry, Academia Sinica, Nangang, Taipei 11529, Taiwan
| |
Collapse
|
453
|
Masrati G, Landau M, Ben-Tal N, Lupas A, Kosloff M, Kosinski J. Integrative Structural Biology in the Era of Accurate Structure Prediction. J Mol Biol 2021; 433:167127. [PMID: 34224746 DOI: 10.1016/j.jmb.2021.167127] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/28/2021] [Accepted: 06/28/2021] [Indexed: 11/16/2022]
Abstract
Characterizing the three-dimensional structure of macromolecules is central to understanding their function. Traditionally, structures of proteins and their complexes have been determined using experimental techniques such as X-ray crystallography, NMR, or cryo-electron microscopy-applied individually or in an integrative manner. Meanwhile, however, computational methods for protein structure prediction have been improving their accuracy, gradually, then suddenly, with the breakthrough advance by AlphaFold2, whose models of monomeric proteins are often as accurate as experimental structures. This breakthrough foreshadows a new era of computational methods that can build accurate models for most monomeric proteins. Here, we envision how such accurate modeling methods can combine with experimental structural biology techniques, enhancing integrative structural biology. We highlight the challenges that arise when considering multiple structural conformations, protein complexes, and polymorphic assemblies. These challenges will motivate further developments, both in modeling programs and in methods to solve experimental structures, towards better and quicker investigation of structure-function relationships.
Collapse
Affiliation(s)
- Gal Masrati
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Meytal Landau
- Department of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel; European Molecular Biology Laboratory (EMBL), Hamburg 22607, Germany
| | - Nir Ben-Tal
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Andrei Lupas
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany.
| | - Mickey Kosloff
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, 199 Aba Khoushy Ave., Mt. Carmel, 3498838 Haifa, Israel.
| | - Jan Kosinski
- European Molecular Biology Laboratory (EMBL), Hamburg 22607, Germany; Centre for Structural Systems Biology (CSSB), Hamburg 22607, Germany; Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany.
| |
Collapse
|
454
|
Elephants in the Dark: Insights and Incongruities in Pentameric Ligand-gated Ion Channel Models. J Mol Biol 2021; 433:167128. [PMID: 34224751 DOI: 10.1016/j.jmb.2021.167128] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 06/25/2021] [Accepted: 06/25/2021] [Indexed: 02/06/2023]
Abstract
The superfamily of pentameric ligand-gated ion channels (pLGICs) comprises key players in electrochemical signal transduction across evolution, including historic model systems for receptor allostery and targets for drug development. Accordingly, structural studies of these channels have steadily increased, and now approach 250 depositions in the protein data bank. This review contextualizes currently available structures in the pLGIC family, focusing on morphology, ligand binding, and gating in three model subfamilies: the prokaryotic channel GLIC, the cation-selective nicotinic acetylcholine receptor, and the anion-selective glycine receptor. Common themes include the challenging process of capturing and annotating channels in distinct functional states; partially conserved gating mechanisms, including remodeling at the extracellular/transmembrane-domain interface; and diversity beyond the protein level, arising from posttranslational modifications, ligands, lipids, and signaling partners. Interpreting pLGIC structures can be compared to describing an elephant in the dark, relying on touch alone to comprehend the many parts of a monumental beast: each structure represents a snapshot in time under specific experimental conditions, which must be integrated with further structure, function, and simulations data to build a comprehensive model, and understand how one channel may fundamentally differ from another.
Collapse
|
455
|
Mathie A, Veale EL, Golluscio A, Holden RG, Walsh Y. Pharmacological Approaches to Studying Potassium Channels. Handb Exp Pharmacol 2021; 267:83-111. [PMID: 34195873 DOI: 10.1007/164_2021_502] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this review, we consider the pharmacology of potassium channels from the perspective of these channels as therapeutic targets. Firstly, we describe the three main families of potassium channels in humans and disease states where they are implicated. Secondly, we describe the existing therapeutic agents which act on potassium channels and outline why these channels represent an under-exploited therapeutic target with potential for future drug development. Thirdly, we consider the evidence desired in order to embark on a drug discovery programme targeting a particular potassium channel. We have chosen two "case studies": activators of the two-pore domain potassium (K2P) channel TREK-2 (K2P10.1), for the treatment of pain and inhibitors of the voltage-gated potassium channel KV1.3, for use in autoimmune diseases such as multiple sclerosis. We describe the evidence base to suggest why these are viable therapeutic targets. Finally, we detail the main technical approaches available to characterise the pharmacology of potassium channels and identify novel regulatory compounds. We draw particular attention to the Comprehensive in vitro Proarrhythmia Assay initiative (CiPA, https://cipaproject.org ) project for cardiac safety, as an example of what might be both desirable and possible in the future, for ion channel regulator discovery projects.
Collapse
Affiliation(s)
- Alistair Mathie
- Medway School of Pharmacy, University of Kent, Kent, UK. .,Medway School of Pharmacy, University of Greenwich, London, UK. .,School of Engineering, Arts, Science and Technology, University of Suffolk, Ipswich, UK.
| | - Emma L Veale
- Medway School of Pharmacy, University of Kent, Kent, UK.,Medway School of Pharmacy, University of Greenwich, London, UK
| | - Alessia Golluscio
- Medway School of Pharmacy, University of Kent, Kent, UK.,Medway School of Pharmacy, University of Greenwich, London, UK
| | - Robyn G Holden
- Medway School of Pharmacy, University of Kent, Kent, UK.,Medway School of Pharmacy, University of Greenwich, London, UK
| | - Yvonne Walsh
- Medway School of Pharmacy, University of Kent, Kent, UK.,Medway School of Pharmacy, University of Greenwich, London, UK
| |
Collapse
|
456
|
Coscia F, Taler-Verčič A. Cryo-EM: A new dawn in thyroid biology. Mol Cell Endocrinol 2021; 531:111309. [PMID: 33964321 PMCID: PMC8316605 DOI: 10.1016/j.mce.2021.111309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/25/2021] [Accepted: 04/27/2021] [Indexed: 11/09/2022]
Abstract
The thyroid gland accumulates the rare dietary element iodine and incorporates it into iodinated thyroid hormones, utilising several tightly regulated reactions and molecular mechanisms. Thyroid hormones are essential in vertebrates and play a central role in many biological processes, such as development, thermogenesis and growth. The control of these functions is exerted through the binding of hormones to nuclear thyroid hormone receptors that rule the transcription of numerous metabolic genes. Over the last 50 years, thyroid biology has been studied extensively at the cellular and organismal levels, revealing its multiple clinical implications, yet, a complete molecular understanding is still lacking. This includes the atomic structures of crucial pathway components that would be needed to elucidate molecular mechanisms. Here we review the currently known protein structures involved in thyroid hormone synthesis, regulation, transport, and actions. We also highlight targets for future investigations that will significantly benefit from recent advances in macromolecular structure determination by electron cryo-microscopy (cryo-EM). As an example, we demonstrate how cryo-EM was crucial to obtain the structure of the large thyroid hormone precursor protein, thyroglobulin. We discuss modern cryo-EM compared to other structure determination methods and how an integrated structural and cell biological approach will help filling the molecular knowledge gap in our understanding of thyroid hormone metabolism. Together with clinical, cellular and high-throughput 'omics' studies, atomic structures of thyroid components will provide an important framework to map disease mutations and to interpret and predict thyroid phenotypes.
Collapse
Affiliation(s)
- Francesca Coscia
- MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK; Human Technopole, Via Cristina Belgioioso 171, 20157, Milano, Italy.
| | - Ajda Taler-Verčič
- University of Ljubljana, Faculty of Medicine, Institute of Biochemistry and Molecular Genetics, Vrazov Trg 2, 1000, Ljubljana, Slovenia
| |
Collapse
|
457
|
Cryo-EM structure of SARS-CoV-2 ORF3a in lipid nanodiscs. Nat Struct Mol Biol 2021; 28:573-582. [PMID: 34158638 PMCID: PMC8772433 DOI: 10.1038/s41594-021-00619-0] [Citation(s) in RCA: 167] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/04/2021] [Indexed: 02/06/2023]
Abstract
SARS-CoV-2 ORF3a is a putative viral ion channel implicated in autophagy inhibition, inflammasome activation and apoptosis. 3a protein and anti-3a antibodies are found in infected patient tissues and plasma. Deletion of 3a in SARS-CoV-1 reduces viral titer and morbidity in mice, suggesting it could be an effective target for vaccines or therapeutics. Here, we present structures of SARS-CoV-2 3a determined by cryo-EM to 2.1-Å resolution. 3a adopts a new fold with a polar cavity that opens to the cytosol and membrane through separate water- and lipid-filled openings. Hydrophilic grooves along outer helices could form ion-conduction paths. Using electrophysiology and fluorescent ion imaging of 3a-reconstituted liposomes, we observe Ca2+-permeable, nonselective cation channel activity, identify mutations that alter ion permeability and discover polycationic inhibitors of 3a activity. 3a-like proteins are found across coronavirus lineages that infect bats and humans, suggesting that 3a-targeted approaches could treat COVID-19 and other coronavirus diseases.
Collapse
|
458
|
Giraldo-Barreto J, Ortiz S, Thiede EH, Palacio-Rodriguez K, Carpenter B, Barnett AH, Cossio P. A Bayesian approach to extracting free-energy profiles from cryo-electron microscopy experiments. Sci Rep 2021; 11:13657. [PMID: 34211017 PMCID: PMC8249403 DOI: 10.1038/s41598-021-92621-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 06/01/2021] [Indexed: 11/08/2022] Open
Abstract
Cryo-electron microscopy (cryo-EM) extracts single-particle density projections of individual biomolecules. Although cryo-EM is widely used for 3D reconstruction, due to its single-particle nature it has the potential to provide information about a biomolecule's conformational variability and underlying free-energy landscape. However, treating cryo-EM as a single-molecule technique is challenging because of the low signal-to-noise ratio (SNR) in individual particles. In this work, we propose the cryo-BIFE method (cryo-EM Bayesian Inference of Free-Energy profiles), which uses a path collective variable to extract free-energy profiles and their uncertainties from cryo-EM images. We test the framework on several synthetic systems where the imaging parameters and conditions were controlled. We found that for realistic cryo-EM environments and relevant biomolecular systems, it is possible to recover the underlying free energy, with the pose accuracy and SNR as crucial determinants. We then use the method to study the conformational transitions of a calcium-activated channel with real cryo-EM particles. Interestingly, we recover not only the most probable conformation (used to generate a high-resolution reconstruction of the calcium-bound state) but also a metastable state that corresponds to the calcium-unbound conformation. As expected for turnover transitions within the same sample, the activation barriers are on the order of [Formula: see text]. We expect our tool for extracting free-energy profiles from cryo-EM images to enable more complete characterization of the thermodynamic ensemble of biomolecules.
Collapse
Affiliation(s)
- Julian Giraldo-Barreto
- Biophysics of Tropical Diseases Max Planck Tandem Group, University of Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
- Magnetism and Simulation Group, University of Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
| | - Sebastian Ortiz
- Biophysics of Tropical Diseases Max Planck Tandem Group, University of Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
| | - Erik H Thiede
- Center for Computational Mathematics, Flatiron Institute, New York City, USA
| | - Karen Palacio-Rodriguez
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Sorbonne Université, Paris, France
| | - Bob Carpenter
- Center for Computational Mathematics, Flatiron Institute, New York City, USA
| | - Alex H Barnett
- Center for Computational Mathematics, Flatiron Institute, New York City, USA
| | - Pilar Cossio
- Biophysics of Tropical Diseases Max Planck Tandem Group, University of Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia.
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, 60438, Frankfurt am Main, Germany.
| |
Collapse
|
459
|
Chou LYT. Design Verification as Foundation for Advancing DNA Nanotechnology Applications. ACS NANO 2021; 15:9222-9228. [PMID: 34124882 DOI: 10.1021/acsnano.1c04304] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Advances in the field of structural DNA nanotechnology have produced a growing number of nanostructures that are now being developed for diverse applications. Often, these nanostructures contain not only nucleic acids but also a myriad of other classes of molecules and materials such as proteins, lipids, sugars, and synthetic polymers. Increasing structural and compositional complexity promises new functional capabilities, but also demands new tools for design verification. Systematically verifying the design of DNA-scaffolded nanomaterials is necessary to identify and to refine their design rules, and to enable the field to progress toward "real world" applications. In this issue of ACS Nano, Bertosin et al. used single-particle cryo-electron microscopy to characterize the structure of multilayer DNA origamis following coating with oligolysine-based polymers, a class of material which has previously been shown to stabilize DNA nanostructures in physiological environments for use in biological applications. This Perspective summarizes their findings, discusses the broader challenges of verifying the design of DNA nanotechnologies incorporating complex materials, and highlights future directions for advancing their applications.
Collapse
Affiliation(s)
- Leo Y T Chou
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| |
Collapse
|
460
|
Stanzione F, Giangreco I, Cole JC. Use of molecular docking computational tools in drug discovery. PROGRESS IN MEDICINAL CHEMISTRY 2021; 60:273-343. [PMID: 34147204 DOI: 10.1016/bs.pmch.2021.01.004] [Citation(s) in RCA: 204] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Molecular docking has become an important component of the drug discovery process. Since first being developed in the 1980s, advancements in the power of computer hardware and the increasing number of and ease of access to small molecule and protein structures have contributed to the development of improved methods, making docking more popular in both industrial and academic settings. Over the years, the modalities by which docking is used to assist the different tasks of drug discovery have changed. Although initially developed and used as a standalone method, docking is now mostly employed in combination with other computational approaches within integrated workflows. Despite its invaluable contribution to the drug discovery process, molecular docking is still far from perfect. In this chapter we will provide an introduction to molecular docking and to the different docking procedures with a focus on several considerations and protocols, including protonation states, active site waters and consensus, that can greatly improve the docking results.
Collapse
Affiliation(s)
| | - Ilenia Giangreco
- Cambridge Crystallographic Data Centre, Cambridge, United Kingdom
| | - Jason C Cole
- Cambridge Crystallographic Data Centre, Cambridge, United Kingdom
| |
Collapse
|
461
|
Mori T, Terashi G, Matsuoka D, Kihara D, Sugita Y. Efficient Flexible Fitting Refinement with Automatic Error Fixing for De Novo Structure Modeling from Cryo-EM Density Maps. J Chem Inf Model 2021; 61:3516-3528. [PMID: 34142833 PMCID: PMC9282639 DOI: 10.1021/acs.jcim.1c00230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Structural modeling of proteins from cryo-electron microscopy (cryo-EM) density maps is one of the challenging issues in structural biology. De novo modeling combined with flexible fitting refinement (FFR) has been widely used to build a structure of new proteins. In de novo prediction, artificial conformations containing local structural errors such as chirality errors, cis peptide bonds, and ring penetrations are frequently generated and cannot be easily removed in the subsequent FFR. Moreover, refinement can be significantly suppressed due to the low mobility of atoms inside the protein. To overcome these problems, we propose an efficient scheme for FFR, in which the local structural errors are fixed first, followed by FFR using an iterative simulated annealing (SA) molecular dynamics protocol with the united atom (UA) model in an implicit solvent model; we call this scheme "SAUA-FFR". The best model is selected from multiple flexible fitting runs with various biasing force constants to reduce overfitting. We apply our scheme to the decoys obtained from MAINMAST and demonstrate an improvement of the best model of eight selected proteins in terms of the root-mean-square deviation, MolProbity score, and RWplus score compared to the original scheme of MAINMAST. Fixing the local structural errors can enhance the formation of secondary structures, and the UA model enables progressive refinement compared to the all-atom model owing to its high mobility in the implicit solvent. The SAUA-FFR scheme realizes efficient and accurate protein structure modeling from medium-resolution maps with less overfitting.
Collapse
Affiliation(s)
- Takaharu Mori
- RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Genki Terashi
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, United States
| | - Daisuke Matsuoka
- RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Daisuke Kihara
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, United States.,Department of Computer Science, Purdue University, West Lafayette, Indiana 47907, United States
| | - Yuji Sugita
- RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan.,RIKEN Center for Computational Science, 7-1-26 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.,RIKEN Center for Biosystems Dynamics Research, 7-1-26 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| |
Collapse
|
462
|
Koliopoulos MG, Alfieri C. Cell cycle regulation by complex nanomachines. FEBS J 2021; 289:5100-5120. [PMID: 34143558 DOI: 10.1111/febs.16082] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/05/2021] [Accepted: 05/17/2021] [Indexed: 12/13/2022]
Abstract
The cell cycle is the essential biological process where one cell replicates its genome and segregates the resulting two copies into the daughter cells during mitosis. Several aspects of this process have fascinated humans since the nineteenth century. Today, the cell cycle is exhaustively investigated because of its profound connections with human diseases and cancer. At the heart of the molecular network controlling the cell cycle, we find the cyclin-dependent kinases (CDKs) acting as an oscillator to impose an orderly and highly regulated progression through the different cell cycle phases. This oscillator integrates both internal and external signals via a multitude of signalling pathways involving posttranslational modifications including phosphorylation, protein ubiquitination and mechanisms of transcriptional regulation. These tasks are specifically performed by multi-subunit complexes, which are intensively studied both biochemically and structurally with the aim to unveil mechanistic insights into their molecular function. The scope of this review is to summarise the structural biology of the cell cycle machinery, with specific focus on the core cell cycle machinery involving the CDK-cyclin oscillator. We highlight the contribution of cryo-electron microscopy, which has started to revolutionise our understanding of the molecular function and dynamics of the key players of the cell cycle.
Collapse
Affiliation(s)
- Marios G Koliopoulos
- Chester Beatty Laboratories, Structural Biology Division, Institute of Cancer Research, London, UK
| | - Claudio Alfieri
- Chester Beatty Laboratories, Structural Biology Division, Institute of Cancer Research, London, UK
| |
Collapse
|
463
|
Borgarelli C, Klingl YE, Escamilla-Ayala A, Munck S, Van Den Bosch L, De Borggraeve WM, Ismalaj E. Lighting Up the Plasma Membrane: Development and Applications of Fluorescent Ligands for Transmembrane Proteins. Chemistry 2021; 27:8605-8641. [PMID: 33733502 DOI: 10.1002/chem.202100296] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Indexed: 12/16/2022]
Abstract
Despite the fact that transmembrane proteins represent the main therapeutic targets for decades, complete and in-depth knowledge about their biochemical and pharmacological profiling is not fully available. In this regard, target-tailored small-molecule fluorescent ligands are a viable approach to fill in the missing pieces of the puzzle. Such tools, coupled with the ability of high-precision optical techniques to image with an unprecedented resolution at a single-molecule level, helped unraveling many of the conundrums related to plasma proteins' life-cycle and druggability. Herein, we review the recent progress made during the last two decades in fluorescent ligand design and potential applications in fluorescence microscopy of voltage-gated ion channels, ligand-gated ion channels and G-coupled protein receptors.
Collapse
Affiliation(s)
- Carlotta Borgarelli
- Department of Chemistry, Molecular Design and Synthesis, KU Leuven Campus Arenberg Celestijnenlaan 200F -, box 2404, 3001, Leuven, Belgium
| | - Yvonne E Klingl
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven Campus Gasthuisberg O&N5 -, box 602 Herestraat 49, 3000, Leuven, Belgium.,Laboratory of Neurobiology, VIB, Center for Brain &, Disease Research, VIB-KU Leuven Campus Gasthuisberg O&N5 -, box 602 Herestraat 49, 3000, Leuven, Belgium
| | - Abril Escamilla-Ayala
- Center for Brain & Disease Research, & VIB BioImaging Core, VIB-KU Leuven Campus Gasthuisberg O&N5 -, box 602 Herestraat 49, 3000, Leuven, Belgium.,Department of Neurosciences, Leuven Brain Institute, KU Leuven, Campus Gasthuisberg O&N5 - box 602 Herestraat 49, 3000, Leuven, Belgium
| | - Sebastian Munck
- Center for Brain & Disease Research, & VIB BioImaging Core, VIB-KU Leuven Campus Gasthuisberg O&N5 -, box 602 Herestraat 49, 3000, Leuven, Belgium.,Department of Neurosciences, Leuven Brain Institute, KU Leuven, Campus Gasthuisberg O&N5 - box 602 Herestraat 49, 3000, Leuven, Belgium
| | - Ludo Van Den Bosch
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven Campus Gasthuisberg O&N5 -, box 602 Herestraat 49, 3000, Leuven, Belgium.,Laboratory of Neurobiology, VIB, Center for Brain &, Disease Research, VIB-KU Leuven Campus Gasthuisberg O&N5 -, box 602 Herestraat 49, 3000, Leuven, Belgium
| | - Wim M De Borggraeve
- Department of Chemistry, Molecular Design and Synthesis, KU Leuven Campus Arenberg Celestijnenlaan 200F -, box 2404, 3001, Leuven, Belgium
| | - Ermal Ismalaj
- Department of Chemistry, Molecular Design and Synthesis, KU Leuven Campus Arenberg Celestijnenlaan 200F -, box 2404, 3001, Leuven, Belgium
| |
Collapse
|
464
|
Krell T, Gavira JA, Velando F, Fernández M, Roca A, Monteagudo-Cascales E, Matilla MA. Histamine: A Bacterial Signal Molecule. Int J Mol Sci 2021; 22:6312. [PMID: 34204625 PMCID: PMC8231116 DOI: 10.3390/ijms22126312] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 02/07/2023] Open
Abstract
Bacteria have evolved sophisticated signaling mechanisms to coordinate interactions with organisms of other domains, such as plants, animals and human hosts. Several important signal molecules have been identified that are synthesized by members of different domains and that play important roles in inter-domain communication. In this article, we review recent data supporting that histamine is a signal molecule that may play an important role in inter-domain and inter-species communication. Histamine is a key signal molecule in humans, with multiple functions, such as being a neurotransmitter or modulator of immune responses. More recent studies have shown that bacteria have evolved different mechanisms to sense histamine or histamine metabolites. Histamine sensing in the human pathogen Pseudomonas aeruginosa was found to trigger chemoattraction to histamine and to regulate the expression of many virulence-related genes. Further studies have shown that many bacteria are able to synthesize and secrete histamine. The release of histamine by bacteria in the human gut was found to modulate the host immune responses and, at higher doses, to result in host pathologies. The elucidation of the role of histamine as an inter-domain signaling molecule is an emerging field of research and future investigation is required to assess its potential general nature.
Collapse
Affiliation(s)
- Tino Krell
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Prof. Albareda 1, 18008 Granada, Spain; (F.V.); (E.M.-C.)
| | - José A. Gavira
- Laboratory of Crystallographic Studies, IACT (CSIC-UGR), Avenida de las Palmeras 4, 18100 Armilla, Spain;
| | - Félix Velando
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Prof. Albareda 1, 18008 Granada, Spain; (F.V.); (E.M.-C.)
| | - Matilde Fernández
- Department of Microbiology, Facultad de Farmacia, Campus Universitario de Cartuja, Universidad de Granada, 18071 Granada, Spain; (M.F.); (A.R.)
| | - Amalia Roca
- Department of Microbiology, Facultad de Farmacia, Campus Universitario de Cartuja, Universidad de Granada, 18071 Granada, Spain; (M.F.); (A.R.)
| | - Elizabet Monteagudo-Cascales
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Prof. Albareda 1, 18008 Granada, Spain; (F.V.); (E.M.-C.)
| | - Miguel A. Matilla
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Prof. Albareda 1, 18008 Granada, Spain; (F.V.); (E.M.-C.)
| |
Collapse
|
465
|
Creekmore BC, Chang YW, Lee EB. The Cryo-EM Effect: Structural Biology of Neurodegenerative Disease Aggregates. J Neuropathol Exp Neurol 2021; 80:514-529. [PMID: 33970243 PMCID: PMC8177849 DOI: 10.1093/jnen/nlab039] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Neurogenerative diseases are characterized by diverse protein aggregates with a variety of microscopic morphologic features. Although ultrastructural studies of human neurodegenerative disease tissues have been conducted since the 1960s, only recently have near-atomic resolution structures of neurodegenerative disease aggregates been described. Solid-state nuclear magnetic resonance spectroscopy and X-ray crystallography have provided near-atomic resolution information about in vitro aggregates but pose logistical challenges to resolving the structure of aggregates derived from human tissues. Recent advances in cryo-electron microscopy (cryo-EM) have provided the means for near-atomic resolution structures of tau, amyloid-β (Aβ), α-synuclein (α-syn), and transactive response element DNA-binding protein of 43 kDa (TDP-43) aggregates from a variety of diseases. Importantly, in vitro aggregate structures do not recapitulate ex vivo aggregate structures. Ex vivo tau aggregate structures indicate individual tauopathies have a consistent aggregate structure unique from other tauopathies. α-syn structures show that even within a disease, aggregate heterogeneity may correlate to disease course. Ex vivo structures have also provided insight into how posttranslational modifications may relate to aggregate structure. Though there is less cryo-EM data for human tissue-derived TDP-43 and Aβ, initial structural studies provide a basis for future endeavors. This review highlights structural variations across neurodegenerative diseases and reveals fundamental differences between experimental systems and human tissue derived protein inclusions.
Collapse
Affiliation(s)
- Benjamin C Creekmore
- From the Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Graduate Program in Biochemistry and Molecular Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Yi-Wei Chang
- From the Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Edward B Lee
- Send correspondence to: Edward B. Lee, MD, PhD, Translational Neuropathology Research Laboratory, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, 613A Stellar Chance Laboratories, 422 Curie Blvd., Philadelphia, PA 19104, USA; E-mail:
| |
Collapse
|
466
|
Januliene D, Moeller A. Cryo-EM of ABC transporters: an ice-cold solution to everything? FEBS Lett 2021; 594:3776-3789. [PMID: 33156959 DOI: 10.1002/1873-3468.13989] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/28/2020] [Accepted: 10/27/2020] [Indexed: 01/10/2023]
Abstract
High-resolution cryo-EM has revolutionized how we look at ABC transporters and membrane proteins in general. An ever-increasing number of software tools and faster processing now allow dissecting the molecular details of nanomachines at atomic precision. Considering the further benefits of significantly reduced sample demands and increased speed, cryo-EM will dominate the structure determination of membrane proteins in the near future without compromising on data quality or detail. Moreover, improved and new algorithms make it now possible to resolve the conformational spectrum of macromolecular machines under turnover conditions and to analyze heterogeneous samples at high resolution. The future of cryo-EM is, therefore, bright, and the growing number of imaging facilities and groups active in this field will amplify this trend even further. Nevertheless, expectations have to be managed, as cryo-EM alone cannot provide an ultimate answer to all scientific questions. In this review, we discuss the capabilities and limitations of cryo-EM together with possible solutions for studies of ABC transporters.
Collapse
Affiliation(s)
- Dovile Januliene
- University of Osnabrück, Germany.,Max-Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Arne Moeller
- University of Osnabrück, Germany.,Max-Planck Institute of Biophysics, Frankfurt am Main, Germany
| |
Collapse
|
467
|
Creekmore BC, Chang YW, Lee EB. The Cryo-EM Effect: Structural Biology of Neurodegenerative Disease Proteostasis Factors. J Neuropathol Exp Neurol 2021; 80:494-513. [PMID: 33860329 PMCID: PMC8177850 DOI: 10.1093/jnen/nlab029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Neurodegenerative diseases are characterized by the accumulation of misfolded proteins. This protein aggregation suggests that abnormal proteostasis contributes to aging-related neurodegeneration. A better fundamental understanding of proteins that regulate proteostasis may provide insight into the pathophysiology of neurodegenerative disease and may perhaps reveal novel therapeutic opportunities. The 26S proteasome is the key effector of the ubiquitin-proteasome system responsible for degrading polyubiquitinated proteins. However, additional factors, such as valosin-containing protein (VCP/p97/Cdc48) and C9orf72, play a role in regulation and trafficking of substrates through the normal proteostasis systems of a cell. Nonhuman AAA+ ATPases, such as the disaggregase Hsp104, also provide insights into the biochemical processes that regulate protein aggregation. X-ray crystallography and cryo-electron microscopy (cryo-EM) structures not bound to substrate have provided meaningful information about the 26S proteasome, VCP, and Hsp104. However, recent cryo-EM structures bound to substrate have provided new information about the function and mechanism of these proteostasis factors. Cryo-EM and cryo-electron tomography data combined with biochemical data have also increased the understanding of C9orf72 and its role in maintaining proteostasis. These structural insights provide a foundation for understanding proteostasis mechanisms with near-atomic resolution upon which insights can be gleaned regarding the pathophysiology of neurodegenerative diseases.
Collapse
Affiliation(s)
- Benjamin C Creekmore
- From the Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Graduate Program in Biochemistry and Molecular Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Translational Neuropathology Research Laboratory, Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Yi-Wei Chang
- From the Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Edward B Lee
- Translational Neuropathology Research Laboratory, Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
468
|
Structure and function at the lipid-protein interface of a pentameric ligand-gated ion channel. Proc Natl Acad Sci U S A 2021; 118:2100164118. [PMID: 34083441 DOI: 10.1073/pnas.2100164118] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Although it has long been proposed that membrane proteins may contain tightly bound lipids, their identity, the structure of their binding sites, and their functional and structural relevance have remained elusive. To some extent, this is because tightly bound lipids are often located at the periphery of proteins, where the quality of density maps is usually poorer, and because they may be outcompeted by detergent molecules used during standard purification procedures. As a step toward characterizing natively bound lipids in the superfamily of pentameric ligand-gated ion channels (pLGICs), we applied single-particle cryogenic electron microscopy to fragments of native membrane obtained in the complete absence of detergent-solubilization steps. Because of the heterogeneous lipid composition of membranes in the secretory pathway of eukaryotic cells, we chose to study a bacterial pLGIC (ELIC) expressed in Escherichia coli's inner membrane. We obtained a three-dimensional reconstruction of unliganded ELIC (2.5-Å resolution) that shows clear evidence for two types of tightly bound lipid at the protein-bulk-membrane interface. One of them was consistent with a "regular" diacylated phospholipid, in the cytoplasmic leaflet, whereas the other one was consistent with the tetra-acylated structure of cardiolipin, in the periplasmic leaflet. Upon reconstitution in E. coli polar-lipid bilayers, ELIC retained the functional properties characteristic of members of this superfamily, and thus, the fitted atomic model is expected to represent the (long-debated) unliganded-closed, "resting" conformation of this ion channel. Notably, the addition of cardiolipin to phosphatidylcholine membranes restored the ion-channel activity that is largely lost in phosphatidylcholine-only bilayers.
Collapse
|
469
|
Jagota M, Townshend RJL, Kang LW, Bushnell DA, Dror RO, Kornberg RD, Azubel M. Gold nanoparticles and tilt pairs to assess protein flexibility by cryo-electron microscopy. Ultramicroscopy 2021; 227:113302. [PMID: 34062386 DOI: 10.1016/j.ultramic.2021.113302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 04/23/2021] [Accepted: 04/28/2021] [Indexed: 01/24/2023]
Abstract
A computational method was developed to recover the three-dimensional coordinates of gold nanoparticles specifically attached to a protein complex from tilt-pair images collected by electron microscopy. The program was tested on a simulated dataset and applied to a real dataset comprising tilt-pair images recorded by cryo electron microscopy of RNA polymerase II in a complex with four gold-labeled single-chain antibody fragments. The positions of the gold nanoparticles were determined, and comparison of the coordinates among the tetrameric particles revealed the range of motion within the protein complexes.
Collapse
Affiliation(s)
- Milind Jagota
- Department of Computer Science, Stanford University, Stanford, CA, USA; Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | | | - Lin-Woo Kang
- Department of Biological Sciences, Konkuk University, Seoul, Korea
| | - David A Bushnell
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Ron O Dror
- Department of Computer Science, Stanford University, Stanford, CA, USA; Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA; Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA; Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA, USA
| | - Roger D Kornberg
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Maia Azubel
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
470
|
Leiz J, Rutkiewicz M, Birchmeier C, Heinemann U, Schmidt-Ott KM. Technologies for profiling the impact of genomic variants on transcription factor binding. MED GENET-BERLIN 2021; 33:147-155. [PMID: 38836027 PMCID: PMC11006259 DOI: 10.1515/medgen-2021-2073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 06/24/2021] [Indexed: 06/06/2024]
Abstract
Transcription factors (TFs) bind DNA in a sequence-specific manner and thereby regulate target gene expression. TF binding and its regulatory activity is highly context dependent, and is not only determined by specific cell types or differentiation stages but also relies on other regulatory mechanisms, such as DNA and chromatin modifications. Interactions between TFs and their DNA binding sites are critical mediators of phenotypic variation and play important roles in the onset of disease. A continuously growing number of studies therefore attempts to elucidate TF:DNA interactions to gain knowledge about regulatory mechanisms and disease-causing variants. Here we summarize how TF-binding characteristics and the impact of variants can be investigated, how bioinformatic tools can be used to analyze and predict TF:DNA binding, and what additional information can be obtained from the TF protein structure.
Collapse
Affiliation(s)
- Janna Leiz
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Nephrology and Intensive Care Medicine, Hindenburgdamm 30, 12203 Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Molecular and Translational Kidney Research, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Maria Rutkiewicz
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Macromolecular Structure and Interaction, Berlin, Germany
| | - Carmen Birchmeier
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Developmental Biology and Signal Transduction, Berlin, Germany
| | - Udo Heinemann
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Macromolecular Structure and Interaction, Berlin, Germany
| | - Kai M Schmidt-Ott
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Nephrology and Intensive Care Medicine, Hindenburgdamm 30, 12203 Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Molecular and Translational Kidney Research, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| |
Collapse
|
471
|
Bai L, Li H. Protein N-glycosylation and O-mannosylation are catalyzed by two evolutionarily related GT-C glycosyltransferases. Curr Opin Struct Biol 2021; 68:66-73. [PMID: 33445129 PMCID: PMC8222153 DOI: 10.1016/j.sbi.2020.12.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/14/2020] [Accepted: 12/23/2020] [Indexed: 11/30/2022]
Abstract
The structural folds of glycosyltransferases are categorized into three superfamilies: GT-A, GT-B, and GT-C. Few structures of GT-C fold existed in the Protein Data Bank prior to the recent advent of high-resolution cryo-EM, because the glycosyltransferases are large membrane proteins that are difficult to crystallize. The use of cryo-EM has resulted in the structures of several key GT-C glycosyltransferases. Here we summarize the latest structural features of and mechanistic insights into these membrane enzyme complexes.
Collapse
Affiliation(s)
- Lin Bai
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University, Beijing 100083, PR China.
| | - Huilin Li
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI 49503, United States.
| |
Collapse
|
472
|
Zumbado-Corrales M, Esquivel-Rodríguez J. EvoSeg: Automated Electron Microscopy Segmentation through Random Forests and Evolutionary Optimization. Biomimetics (Basel) 2021; 6:biomimetics6020037. [PMID: 34206006 PMCID: PMC8293153 DOI: 10.3390/biomimetics6020037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/17/2021] [Accepted: 05/28/2021] [Indexed: 11/30/2022] Open
Abstract
Electron Microscopy Maps are key in the study of bio-molecular structures, ranging from borderline atomic level to the sub-cellular range. These maps describe the envelopes that cover possibly a very large number of proteins that form molecular machines within the cell. Within those envelopes, we are interested to find what regions correspond to specific proteins so that we can understand how they function, and design drugs that can enhance or suppress a process that they are involved in, along with other experimental purposes. A classic approach by which we can begin the exploration of map regions is to apply a segmentation algorithm. This yields a mask where each voxel in 3D space is assigned an identifier that maps it to a segment; an ideal segmentation would map each segment to one protein unit, which is rarely the case. In this work, we present a method that uses bio-inspired optimization, through an Evolutionary-Optimized Segmentation algorithm, to iteratively improve upon baseline segments obtained from a classical approach, called watershed segmentation. The cost function used by the evolutionary optimization is based on an ideal segmentation classifier trained as part of this development, which uses basic structural information available to scientists, such as the number of expected units, volume and topology. We show that a basic initial segmentation with the additional information allows our evolutionary method to find better segmentation results, compared to the baseline generated by the watershed.
Collapse
|
473
|
Pyle E, Zanetti G. Current data processing strategies for cryo-electron tomography and subtomogram averaging. Biochem J 2021; 478:1827-1845. [PMID: 34003255 PMCID: PMC8133831 DOI: 10.1042/bcj20200715] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/19/2021] [Accepted: 04/26/2021] [Indexed: 12/25/2022]
Abstract
Cryo-electron tomography (cryo-ET) can be used to reconstruct three-dimensional (3D) volumes, or tomograms, from a series of tilted two-dimensional images of biological objects in their near-native states in situ or in vitro. 3D subvolumes, or subtomograms, containing particles of interest can be extracted from tomograms, aligned, and averaged in a process called subtomogram averaging (STA). STA overcomes the low signal to noise ratio within the individual subtomograms to generate structures of the particle(s) of interest. In recent years, cryo-ET with STA has increasingly been capable of reaching subnanometer resolution due to improvements in microscope hardware and data processing strategies. There has also been an increase in the number and quality of software packages available to process cryo-ET data with STA. In this review, we describe and assess the data processing strategies available for cryo-ET data and highlight the recent software developments which have enabled the extraction of high-resolution information from cryo-ET datasets.
Collapse
Affiliation(s)
- Euan Pyle
- Institute of Structural and Molecular Biology, Birkbeck College, Malet St., London WC1E 7HX, U.K
| | - Giulia Zanetti
- Institute of Structural and Molecular Biology, Birkbeck College, Malet St., London WC1E 7HX, U.K
| |
Collapse
|
474
|
Suzuki T. Spiers Memorial Lecture: Introduction to ultrafast spectroscopy and imaging of photochemical reactions. Faraday Discuss 2021; 228:11-38. [PMID: 33876168 DOI: 10.1039/d1fd00015b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A brief overview is presented on ultrafast spectroscopy and imaging of photochemical reactions by highlighting several experimental studies reported in the last five years. A particular focus is placed on new experiments performed using high-order harmonic generation, X-ray free electron lasers, and relativistic electron beams. Exploration of fundamental chemical reaction dynamics using these advanced experimental methodologies is in an early stage, and exciting new research opportunities await in this rapidly expanding and advancing research field. At the same time, there is no experimental methodology that provides all aspects of the electronic and structural dynamics in a single experiment, and investigations using different methodologies with various perspectives need to be considered in a comprehensive manner.
Collapse
Affiliation(s)
- Toshinori Suzuki
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan.
| |
Collapse
|
475
|
Abstract
Critical to viral infection are the multiple interactions between viral proteins and host-cell counterparts. The first such interaction is the recognition of viral envelope proteins by surface receptors that normally fulfil other physiological roles, a hijacking mechanism perfected over the course of evolution. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiological agent of coronavirus disease 2019 (COVID-19), has successfully adopted this strategy using its spike glycoprotein to dock on the membrane-bound metalloprotease angiotensin-converting enzyme 2 (ACE2). The crystal structures of several SARS-CoV-2 proteins alone or in complex with their receptors or other ligands were recently solved at an unprecedented pace. This accomplishment is partly due to the increasing availability of data on other coronaviruses and ACE2 over the past 18 years. Likewise, other key intervening actors and mechanisms of viral infection were elucidated with the aid of biophysical approaches. An understanding of the various structurally important motifs of the interacting partners provides key mechanistic information for the development of structure-based designer drugs able to inhibit various steps of the infective cycle, including neutralizing antibodies, small organic drugs, and vaccines. This review analyzes current progress and the outlook for future structural studies.
Collapse
Affiliation(s)
- Francisco J Barrantes
- Biomedical Research Institute (BIOMED), Catholic University of Argentina (UCA)-National Scientific and Technical Research Council, Argentina (CONICET), C1107AFF Buenos Aires, Argentina;
| |
Collapse
|
476
|
Bücker R, Hogan-Lamarre P, Miller RJD. Serial Electron Diffraction Data Processing With diffractem and CrystFEL. Front Mol Biosci 2021; 8:624264. [PMID: 34095217 PMCID: PMC8171297 DOI: 10.3389/fmolb.2021.624264] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 04/28/2021] [Indexed: 12/03/2022] Open
Abstract
Serial electron diffraction (SerialED) is an emerging technique, which applies the snapshot data-collection mode of serial X-ray crystallography to three-dimensional electron diffraction (3D Electron Diffraction), forgoing the conventional rotation method. Similarly to serial X-ray crystallography, this approach leads to almost complete absence of radiation damage effects even for the most sensitive samples, and allows for a high level of automation. However, SerialED also necessitates new techniques of data processing, which combine existing pipelines for rotation electron diffraction and serial X-ray crystallography with some more particular solutions for challenges arising in SerialED specifically. Here, we introduce our analysis pipeline for SerialED data, and its implementation using the CrystFEL and diffractem program packages. Detailed examples are provided in extensive supplementary code.
Collapse
Affiliation(s)
- Robert Bücker
- Max Planck Institute for the Structure and Dynamics of Matter, Center for Free-Electron Laser Science, Hamburg, Germany.,Centre for Structural Systems Biology, Department of Chemistry, University of Hamburg, Hamburg, Germany
| | - Pascal Hogan-Lamarre
- Max Planck Institute for the Structure and Dynamics of Matter, Center for Free-Electron Laser Science, Hamburg, Germany.,Department of Physics, University of Toronto, Toronto, ON, Canada.,Department of Chemistry, University of Toronto, Toronto, ON, Canada
| | - R J Dwayne Miller
- Department of Physics, University of Toronto, Toronto, ON, Canada.,Department of Chemistry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
477
|
Tang S, Tang J, Uzuhashi J, Ohkubo T, Hayami W, Yuan J, Takeguchi M, Mitome M, Qin LC. A stable LaB 6 nanoneedle field-emission point electron source. NANOSCALE ADVANCES 2021; 3:2787-2792. [PMID: 36134182 PMCID: PMC9419243 DOI: 10.1039/d1na00167a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 04/06/2021] [Indexed: 05/22/2023]
Abstract
A material with a low work function exhibiting field-emission of electrons has long been sought as an ideal point electron source to generate a coherent electron beam with high brightness, long service life, low energy spread, and especially stable emission current. The quality and performance of the electron source are now becoming limiting factors for further improving the spatial resolution and analytical capabilities of the electron microscope. While tungsten (W) is still the only material of choice as a practically usable field emission filament since it was identified more than six decades ago, its electron optical performance remains unsatisfactory, especially the poor emission stability (>5% per hour), rapid current decay (20% in 10 hours), and relatively large energy spread (0.4 eV), even in an extremely high vacuum (10-9 Pa). Herein, we report a LaB6 nanoneedle structure having a sharpened tip apex with a radius of curvature of about 10 nm that is fabricated and finished using a focused ion beam (FIB) and show that it can produce a field emission electron beam meeting the application criteria with a high reduced brightness (1010 A m-2 sr-1 V-1), small energy spread (0.2 eV), and especially high emission stability (<1% fluctuation in 16 hours without decay). It can now be used practically as a next-generation field-emission point electron source.
Collapse
Affiliation(s)
- Shuai Tang
- National Institute for Materials Science Tsukuba Ibaraki 305-0047 Japan
| | - Jie Tang
- National Institute for Materials Science Tsukuba Ibaraki 305-0047 Japan
- Graduate School of Pure and Applied Science, University of Tsukuba Tsukuba Ibaraki 305-8857 Japan
| | - Jun Uzuhashi
- National Institute for Materials Science Tsukuba Ibaraki 305-0047 Japan
| | - Tadakatsu Ohkubo
- National Institute for Materials Science Tsukuba Ibaraki 305-0047 Japan
| | - Wataru Hayami
- National Institute for Materials Science Tsukuba Ibaraki 305-0047 Japan
| | - Jinshi Yuan
- College of Physics, Qingdao University Qingdao 266071 China
| | - Masaki Takeguchi
- National Institute for Materials Science Tsukuba Ibaraki 305-0047 Japan
| | - Masanori Mitome
- National Institute for Materials Science Tsukuba Ibaraki 305-0047 Japan
| | - Lu-Chang Qin
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill Chapel Hill NC 27599-3255 USA
| |
Collapse
|
478
|
An overview of the recent advances in cryo-electron microscopy for life sciences. Emerg Top Life Sci 2021; 5:151-168. [PMID: 33760078 DOI: 10.1042/etls20200295] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/26/2021] [Accepted: 03/09/2021] [Indexed: 01/18/2023]
Abstract
Cryo-electron microscopy (CryoEM) has superseded X-ray crystallography and NMR to emerge as a popular and effective tool for structure determination in recent times. It has become indispensable for the characterization of large macromolecular assemblies, membrane proteins, or samples that are limited, conformationally heterogeneous, and recalcitrant to crystallization. Besides, it is the only tool capable of elucidating high-resolution structures of macromolecules and biological assemblies in situ. A state-of-the-art electron microscope operable at cryo-temperature helps preserve high-resolution details of the biological sample. The structures can be determined, either in isolation via single-particle analysis (SPA) or helical reconstruction, electron diffraction (ED) or within the cellular environment via cryo-electron tomography (cryoET). All the three streams of SPA, ED, and cryoET (along with subtomogram averaging) have undergone significant advancements in recent times. This has resulted in breaking the boundaries with respect to both the size of the macromolecules/assemblies whose structures could be determined along with the visualization of atomic details at resolutions unprecedented for cryoEM. In addition, the collection of larger datasets combined with the ability to sort and process multiple conformational states from the same sample are providing the much-needed link between the protein structures and their functions. In overview, these developments are helping scientists decipher the molecular mechanism of critical cellular processes, solve structures of macromolecules that were challenging targets for structure determination until now, propelling forward the fields of biology and biomedicine. Here, we summarize recent advances and key contributions of the three cryo-electron microscopy streams of SPA, ED, and cryoET.
Collapse
|
479
|
Affiliation(s)
- Nikolai Slavov
- Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States.,Barnett Institute, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
480
|
Danev R, Yanagisawa H, Kikkawa M. Cryo-EM Performance Testing of Hardware and Data Acquisition Strategies. Microscopy (Oxf) 2021; 70:487-497. [PMID: 33969878 DOI: 10.1093/jmicro/dfab016] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/13/2021] [Accepted: 05/10/2021] [Indexed: 11/14/2022] Open
Abstract
The increasing popularity and adoption rate of cryo-electron microscopy is evidenced by a growing number of new microscope installations around the world. The quality and reliability of the instruments improved dramatically in recent years, but site-specific issues or unnoticed problems during installation could undermine productivity. Newcomers to the field may also have limited experience and/or low confidence in the capabilities of the equipment or their own skills. Therefore, it is recommended to perform an initial test of the complete cryo-EM workflow with an 'easy' test sample, such as apoferritin, before starting work with real and challenging samples. Analogous test experiments are also recommended for quantification of new data acquisition approaches or imaging hardware. Here, we present the results from our initial tests of a recently installed Krios G4 electron microscope equipped with two latest generation direct electron detector cameras-Gatan K3 and Falcon 4. Three beam-image shift-based data acquisition strategies were also tested. We detail the methodology and discuss the critical parameters and steps for performance testing. The two cameras performed equally, and the single and multi-shot per-hole acquisition schemes produced comparable results. We also evaluated the effects of environmental factors and optical flaws on data quality. Our results reaffirmed the exceptional performance of the software aberration correction in Relion in dealing with severe coma aberration. We hope that this work will help cryo-EM teams in their testing and troubleshooting of hardware and data collection approaches.
Collapse
Affiliation(s)
- Radostin Danev
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan
| | | | - Masahide Kikkawa
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan
| |
Collapse
|
481
|
Gureyev TE, Quiney HM, Kozlov A, Paganin DM, Schmalz G, Brown HG, Allen LJ. Relative roles of multiple scattering and Fresnel diffraction in the imaging of small molecules using electrons, Part II: Differential Holographic Tomography. Ultramicroscopy 2021; 230:113311. [PMID: 34011462 DOI: 10.1016/j.ultramic.2021.113311] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 04/29/2021] [Accepted: 05/02/2021] [Indexed: 11/30/2022]
Abstract
It has been argued that in atomic-resolution transmission electron microscopy (TEM) of sparse weakly scattering structures, such as small biological molecules, multiple electron scattering usually has only a small effect, while the in-molecule Fresnel diffraction can be significant due to the intrinsically shallow depth of focus. These facts suggest that the three-dimensional reconstruction of such structures from defocus image series collected at multiple rotational orientations of a molecule can be effectively performed for each atom separately, using the incoherent first Born approximation. The corresponding reconstruction method, termed here Differential Holographic Tomography, is developed theoretically and demonstrated computationally on several numerical models of biological molecules. It is shown that the method is capable of accurate reconstruction of the locations of atoms in a molecule from TEM data collected at a small number of random orientations of the molecule, with one or more defocus images per orientation. Possible applications to cryogenic electron microscopy and other areas are briefly discussed.
Collapse
Affiliation(s)
- T E Gureyev
- ARC Centre in Advanced Molecular Imaging, School of Physics, The University of Melbourne, Parkville 3010, Australia; School of Physics and Astronomy, Monash University, Clayton 3800, Australia; School of Science and Technology, University of New England, Armidale 2351, Australia; Faculty of Health Science, The University of Sydney, Sydney 2006, Australia.
| | - H M Quiney
- ARC Centre in Advanced Molecular Imaging, School of Physics, The University of Melbourne, Parkville 3010, Australia
| | - A Kozlov
- ARC Centre in Advanced Molecular Imaging, School of Physics, The University of Melbourne, Parkville 3010, Australia
| | - D M Paganin
- School of Physics and Astronomy, Monash University, Clayton 3800, Australia
| | - G Schmalz
- School of Science and Technology, University of New England, Armidale 2351, Australia
| | - H G Brown
- ARC Centre in Advanced Molecular Imaging, School of Physics, The University of Melbourne, Parkville 3010, Australia
| | - L J Allen
- ARC Centre in Advanced Molecular Imaging, School of Physics, The University of Melbourne, Parkville 3010, Australia
| |
Collapse
|
482
|
Kubota R, Tanaka W, Hamachi I. Microscopic Imaging Techniques for Molecular Assemblies: Electron, Atomic Force, and Confocal Microscopies. Chem Rev 2021; 121:14281-14347. [DOI: 10.1021/acs.chemrev.0c01334] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Ryou Kubota
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Wataru Tanaka
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Itaru Hamachi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- JST-ERATO, Hamachi Innovative Molecular Technology for Neuroscience, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8530, Japan
| |
Collapse
|
483
|
Lynch ML, Snell EH, Bowman SEJ. Structural biology in the time of COVID-19: perspectives on methods and milestones. IUCRJ 2021; 8:335-341. [PMID: 33953920 PMCID: PMC8086156 DOI: 10.1107/s2052252521003948] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 04/13/2021] [Indexed: 06/12/2023]
Abstract
The global COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has wreaked unprecedented havoc on global society, in terms of a huge loss of life and burden of morbidity, economic upheaval and social disruption. Yet the sheer magnitude and uniqueness of this event has also spawned a massive mobilization of effort in the scientific community to investigate the virus, to develop therapeutics and vaccines, and to understand the public health impacts. Structural biology has been at the center of these efforts, and so it is advantageous to take an opportunity to reflect on the status of structural science vis-à-vis its role in the fight against COVID-19, to register the unprecedented response and to contemplate the role of structural biology in addressing future outbreak threats. As the one-year anniversary of the World Health Organization declaration that COVID-19 is a pandemic has just passed, over 1000 structures of SARS-CoV-2 biomolecules have been deposited in the Worldwide Protein Data Bank (PDB). It is rare to obtain a snapshot of such intense effort in the structural biology arena and is of special interest as the 50th anniversary of the PDB is celebrated in 2021. It is additionally timely as it overlaps with a period that has been termed the 'resolution revolution' in cryoelectron microscopy (CryoEM). CryoEM has recently become capable of producing biomolecular structures at similar resolutions to those traditionally associated with macromolecular X-ray crystallo-graphy. Examining SARS-CoV-2 protein structures that have been deposited in the PDB since the virus was first identified allows a unique window into the power of structural biology and a snapshot of the advantages of the different techniques available, as well as insight into the complementarity of the structural methods.
Collapse
Affiliation(s)
- Miranda L. Lynch
- Hauptman–Woodward Medical Research Institute, 700 Ellicott Street, Buffalo, NY 14203, USA
| | - Edward H. Snell
- Hauptman–Woodward Medical Research Institute, 700 Ellicott Street, Buffalo, NY 14203, USA
- Department of Materials Design and Innovation, The State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Sarah E. J. Bowman
- Hauptman–Woodward Medical Research Institute, 700 Ellicott Street, Buffalo, NY 14203, USA
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences at The State University of New York at Buffalo, Buffalo, NY 14023, USA
| |
Collapse
|
484
|
Efremov RG, Stroobants A. Coma-corrected rapid single-particle cryo-EM data collection on the CRYO ARM 300. Acta Crystallogr D Struct Biol 2021; 77:555-564. [PMID: 33950012 PMCID: PMC8098478 DOI: 10.1107/s2059798321002151] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 02/23/2021] [Indexed: 01/22/2023] Open
Abstract
Single-particle cryogenic electron microscopy has recently become a major method for determining the structures of proteins and protein complexes. This has markedly increased the demand for throughput of high-resolution electron microscopes, which are required to produce high-resolution images at high rates. An increase in data-collection throughput can be achieved by using large beam-image shifts combined with off-axis coma correction, enabling the acquisition of multiple images from a large area of the EM grid without moving the microscope stage. Here, the optical properties of the JEOL CRYO ARM 300 electron microscope equipped with a K3 camera were characterized under off-axis illumination conditions. It is shown that efficient coma correction can be achieved for beam-image shifts with an amplitude of at least 10 µm, enabling a routine throughput for data collection of between 6000 and 9000 images per day. Use of the benchmark for the rapid data-collection procedure (with beam-image shifts of up to 7 µm) on apoferritin resulted in a reconstruction at a resolution of 1.7 Å. This demonstrates that the rapid automated acquisition of high-resolution micrographs is possible using a CRYO ARM 300.
Collapse
Affiliation(s)
- Rouslan G. Efremov
- Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Pleinlaan 2, 1050 Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Annelore Stroobants
- Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Pleinlaan 2, 1050 Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| |
Collapse
|
485
|
Prischi F, Filippakopoulos P. Editorial: Structural Studies of Protein Complexes in Signaling Pathways. Front Mol Biosci 2021; 8:641932. [PMID: 33996897 PMCID: PMC8119893 DOI: 10.3389/fmolb.2021.641932] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/05/2021] [Indexed: 11/25/2022] Open
Affiliation(s)
- Filippo Prischi
- School of Life Sciences, University of Essex, Colchester, United Kingdom
| | | |
Collapse
|
486
|
Casasanta MA, Jonaid GM, Kaylor L, Luqiu WY, Solares MJ, Schroen ML, Dearnaley WJ, Wilson J, Dukes MJ, Kelly DF. Microchip-based structure determination of low-molecular weight proteins using cryo-electron microscopy. NANOSCALE 2021; 13:7285-7293. [PMID: 33889923 PMCID: PMC8135184 DOI: 10.1039/d1nr00388g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Interest in cryo-Electron Microscopy (EM) imaging has skyrocketed in recent years due to its pristine views of macromolecules and materials. As advances in instrumentation and computing algorithms spurred this progress, there is renewed focus to address specimen-related challenges. Here we contribute a microchip-based toolkit to perform complementary structural and biochemical analysis on low-molecular weight proteins. As a model system, we used the SARS-CoV-2 nucleocapsid (N) protein (48 kDa) due to its stability and important role in therapeutic development. Cryo-EM structures of the N protein monomer revealed a flexible N-terminal "top hat" motif and a helical-rich C-terminal domain. To complement our structural findings, we engineered microchip-based immunoprecipitation assays that led to the discovery of the first antibody binding site on the N protein. The data also facilitated molecular modeling of a variety of pandemic and common cold-related coronavirus proteins. Such insights may guide future pandemic-preparedness protocols through immuno-engineering strategies to mitigate viral outbreaks.
Collapse
Affiliation(s)
- Michael A Casasanta
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
487
|
Mironenko A, Zachariae U, de Groot BL, Kopec W. The Persistent Question of Potassium Channel Permeation Mechanisms. J Mol Biol 2021; 433:167002. [PMID: 33891905 DOI: 10.1016/j.jmb.2021.167002] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 02/09/2023]
Abstract
Potassium channels play critical roles in many physiological processes, providing a selective permeation route for K+ ions in and out of a cell, by employing a carefully designed selectivity filter, evolutionarily conserved from viruses to mammals. The structure of the selectivity filter was determined at atomic resolution by x-ray crystallography, showing a tight coordination of desolvated K+ ions by the channel. However, the molecular mechanism of K+ ions permeation through potassium channels remains unclear, with structural, functional and computational studies often providing conflicting data and interpretations. In this review, we will present the proposed mechanisms, discuss their origins, and will critically assess them against all available data. General properties shared by all potassium channels are introduced first, followed by the introduction of two main mechanisms of ion permeation: soft and direct knock-on. Then, we will discuss critical computational and experimental studies that shaped the field. We will especially focus on molecular dynamics (MD) simulations, that provided mechanistic and energetic aspects of K+ permeation, but at the same time created long-standing controversies. Further challenges and possible solutions are presented as well.
Collapse
Affiliation(s)
- Andrei Mironenko
- Computational Biomolecular Dynamics Group, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Ulrich Zachariae
- Computational Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Bert L de Groot
- Computational Biomolecular Dynamics Group, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Wojciech Kopec
- Computational Biomolecular Dynamics Group, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany.
| |
Collapse
|
488
|
Below 3 Å structure of apoferritin using a multipurpose TEM with a side entry cryoholder. Sci Rep 2021; 11:8395. [PMID: 33863933 PMCID: PMC8052451 DOI: 10.1038/s41598-021-87183-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 03/22/2021] [Indexed: 12/22/2022] Open
Abstract
Recently, the structural analysis of protein complexes by cryo-electron microscopy (cryo-EM) single particle analysis (SPA) has had great impact as a biophysical method. Many results of cryo-EM SPA are based on data acquired on state-of-the-art cryo-electron microscopes customized for SPA. These are currently only available in limited locations around the world, where securing machine time is highly competitive. One potential solution for this time-competitive situation is to reuse existing multi-purpose equipment, although this comes with performance limitations. Here, a multi-purpose TEM with a side entry cryo-holder was used to evaluate the potential of high-resolution SPA, resulting in a 3 Å resolution map of apoferritin with local resolution extending to 2.6 Å. This map clearly showed two positions of an aromatic side chain. Further, examination of optimal imaging conditions depending on two different multi-purpose electron microscope and camera combinations was carried out, demonstrating that higher magnifications are not always necessary or desirable. Since automation is effectively a requirement for large-scale data collection, and augmenting the multi-purpose equipment is possible, we expanded testing by acquiring data with SerialEM using a β-galactosidase test sample. This study demonstrates the possibilities of more widely available and established electron microscopes, and their applications for cryo-EM SPA.
Collapse
|
489
|
Mendonça L, Sun D, Ning J, Liu J, Kotecha A, Olek M, Frosio T, Fu X, Himes BA, Kleinpeter AB, Freed EO, Zhou J, Aiken C, Zhang P. CryoET structures of immature HIV Gag reveal six-helix bundle. Commun Biol 2021; 4:481. [PMID: 33863979 PMCID: PMC8052356 DOI: 10.1038/s42003-021-01999-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 03/18/2021] [Indexed: 11/09/2022] Open
Abstract
Gag is the HIV structural precursor protein which is cleaved by viral protease to produce mature infectious viruses. Gag is a polyprotein composed of MA (matrix), CA (capsid), SP1, NC (nucleocapsid), SP2 and p6 domains. SP1, together with the last eight residues of CA, have been hypothesized to form a six-helix bundle responsible for the higher-order multimerization of Gag necessary for HIV particle assembly. However, the structure of the complete six-helix bundle has been elusive. Here, we determined the structures of both Gag in vitro assemblies and Gag viral-like particles (VLPs) to 4.2 Å and 4.5 Å resolutions using cryo-electron tomography and subtomogram averaging by emClarity. A single amino acid mutation (T8I) in SP1 stabilizes the six-helix bundle, allowing to discern the entire CA-SP1 helix connecting to the NC domain. These structures provide a blueprint for future development of small molecule inhibitors that can lock SP1 in a stable helical conformation, interfere with virus maturation, and thus block HIV-1 infection.
Collapse
Affiliation(s)
- Luiza Mendonça
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Dapeng Sun
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jiying Ning
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jiwei Liu
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Abhay Kotecha
- Thermo Fisher Scientific, Eindhoven, The Netherlands
| | - Mateusz Olek
- Electron Bio-Imaging Centre, Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK
- Department of Chemistry, University of York, York, UK
| | - Thomas Frosio
- Electron Bio-Imaging Centre, Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK
| | - Xiaofeng Fu
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Benjamin A Himes
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Alex B Kleinpeter
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Eric O Freed
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Jing Zhou
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Christopher Aiken
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Peijun Zhang
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK.
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- Electron Bio-Imaging Centre, Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK.
| |
Collapse
|
490
|
Chiu YH, Ko KT, Yang TJ, Wu KP, Ho MR, Draczkowski P, Hsu STD. Direct Visualization of a 26 kDa Protein by Cryo-Electron Microscopy Aided by a Small Scaffold Protein. Biochemistry 2021; 60:1075-1079. [PMID: 33719392 DOI: 10.1021/acs.biochem.0c00961] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cryo-electron microscopy (cryo-EM)-based structure determination of small proteins is hindered by the technical challenges associated with low signal-to-noise ratios of their particle images in intrinsically noisy micrographs. One solution is to attach the target protein to a large protein scaffold to increase its apparent size and, therefore, image contrast. Here we report a novel scaffold design based on a trimeric helical protein, E. coli ornithine transcarbamylase (OTC), fused to human ubiquitin. As a proof of principle, we demonstrated the ability to resolve a cryo-EM map of a 26 kDa human ubiquitin C-terminal hydrolase (UCHL1) attached to the C-terminus of ubiquitin as part of the trimeric assembly. The results revealed conformational changes in UCHL1 upon binding to ubiquitin, namely, a significant displacement of α-helix 2, which was also observed by X-ray crystallography. Our findings demonstrated the potential of the trimeric OTC scaffold design for studying a large number of ubiquitin interacting proteins by cryo-EM.
Collapse
Affiliation(s)
- Yi-Hsiang Chiu
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
- Institute of Biochemical Sciences, National Taiwan University, Taipei 10617, Taiwan
| | - Kuang-Ting Ko
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Tzu-Jing Yang
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
- Institute of Biochemical Sciences, National Taiwan University, Taipei 10617, Taiwan
| | - Kuen-Phon Wu
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
- Institute of Biochemical Sciences, National Taiwan University, Taipei 10617, Taiwan
| | - Meng-Ru Ho
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Piotr Draczkowski
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
- Faculty of Pharmacy, Medical University of Lublin, ul. W. Chodzki 4a, 20-093 Lublin, Poland
| | - Shang-Te Danny Hsu
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
- Institute of Biochemical Sciences, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
491
|
Atherton J, Moores CA. Cryo-EM of kinesin-binding protein: challenges and opportunities from protein-surface interactions. Acta Crystallogr D Struct Biol 2021; 77:411-423. [PMID: 33825702 PMCID: PMC8025885 DOI: 10.1107/s2059798321001935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/17/2021] [Indexed: 11/10/2022] Open
Abstract
Kinesin-binding protein (KBP) is an important selective inhibitor of specific kinesin family members and its genetic disruption causes Goldberg-Shprintzen syndrome. Cryo-electron microscopy (cryo-EM) has recently been used to reveal the structure of KBP alone (72 kDa) and in complex with the motor domain of the mitotic kinesin-12 KIF15 (110 kDa). KBP is an α-solenoid, tetratricopeptide-repeat protein that interacts with the microtubule-binding region of the kinesin motor domain and blocks microtubule attachment. Numerous challenges arose relating to the behavior of KBP and KBP-kinesin complexes during cryo-EM sample preparation. These included the partial denaturation of KBP by air-water interfaces, protein aggregation resulting from carbon interaction and preferential orientation. Sample preparation with a graphene oxide substrate enabled the eventual structure determination. Here, experiences with preparing these samples are detailed, bringing attention to some of the challenges and opportunities that are likely to arise from protein-surface interactions.
Collapse
Affiliation(s)
- Joseph Atherton
- Randall Centre for Cell and Molecular Biophysics, King’s College London, London, United Kingdom
- Institute of Structural and Molecular Biology, Birkbeck, University of London, London, United Kingdom
| | - Carolyn A. Moores
- Institute of Structural and Molecular Biology, Birkbeck, University of London, London, United Kingdom
| |
Collapse
|
492
|
Bai XC. Seeing Atoms by Single-Particle Cryo-EM. Trends Biochem Sci 2021; 46:253-254. [PMID: 33487509 DOI: 10.1016/j.tibs.2021.01.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 12/01/2022]
Abstract
Nakane et al. and Yip et al., for the first time, demonstrate that, with recent technological advances, atomic-resolution structure determination can be achieved by single-particle cryo-electron microscopy (cryo-EM). This breakthrough opens the door for researchers to apply single-particle cryo-EM to obtain atomic structural information for a wide range of protein complexes.
Collapse
Affiliation(s)
- Xiao-Chen Bai
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
493
|
Ishida T, Ciulli A. E3 Ligase Ligands for PROTACs: How They Were Found and How to Discover New Ones. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2021; 26:484-502. [PMID: 33143537 PMCID: PMC8013866 DOI: 10.1177/2472555220965528] [Citation(s) in RCA: 194] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/14/2020] [Accepted: 09/21/2020] [Indexed: 12/19/2022]
Abstract
Bifunctional degrader molecules, also called proteolysis-targeting chimeras (PROTACs), are a new modality of chemical tools and potential therapeutics to understand and treat human disease. A required PROTAC component is a ligand binding to an E3 ubiquitin ligase, which is then joined to another ligand binding to a protein to be degraded via the ubiquitin-proteasome system. The advent of nonpeptidic small-molecule E3 ligase ligands, notably for von Hippel-Lindau (VHL) and cereblon (CRBN), revolutionized the field and ushered in the design of drug-like PROTACs with potent and selective degradation activity. A first wave of PROTAC drugs are now undergoing clinical development in cancer, and the field is seeking to extend the repertoire of chemistries that allow hijacking new E3 ligases to improve the scope of targeted protein degradation.Here, we briefly review how traditional E3 ligase ligands were discovered, and then outline approaches and ligands that have been recently used to discover new E3 ligases for PROTACs. We will then take an outlook at current and future strategies undertaken that invoke either target-based screening or phenotypic-based approaches, including the use of DNA-encoded libraries (DELs), display technologies and cyclic peptides, smaller molecular glue degraders, and covalent warhead ligands. These approaches are ripe for expanding the chemical space of PROTACs and usher in the advent of other emerging bifunctional modalities of proximity-based pharmacology.
Collapse
Affiliation(s)
- Tasuku Ishida
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, UK
| | - Alessio Ciulli
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, UK
| |
Collapse
|
494
|
Amphipathic environments for determining the structure of membrane proteins by single-particle electron cryo-microscopy. Q Rev Biophys 2021; 54:e6. [PMID: 33785082 DOI: 10.1017/s0033583521000044] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Over the past decade, the structural biology of membrane proteins (MPs) has taken a new turn thanks to epoch-making technical progress in single-particle electron cryo-microscopy (cryo-EM) as well as to improvements in sample preparation. The present analysis provides an overview of the extent and modes of usage of the various types of surfactants for cryo-EM studies. Digitonin, dodecylmaltoside, protein-based nanodiscs, lauryl maltoside-neopentyl glycol, glyco-diosgenin, and amphipols (APols) are the most popular surfactants at the vitrification step. Surfactant exchange is frequently used between MP purification and grid preparation, requiring extensive optimization each time the study of a new MP is undertaken. The variety of both the surfactants and experimental approaches used over the past few years bears witness to the need to continue developing innovative surfactants and optimizing conditions for sample preparation. The possibilities offered by novel APols for EM applications are discussed.
Collapse
|
495
|
Titarenko V, Roseman AM. Theoretical and practical approaches to improve the performance of local correlation algorithms for volume data analysis and shape recognition. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2021; 77:447-456. [PMID: 33825705 PMCID: PMC8025886 DOI: 10.1107/s2059798321001212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 02/02/2021] [Indexed: 12/04/2022]
Abstract
Several approaches are presented to improve the performance of local correlation algorithms based on prior information about 3D search and target maps. In this paper, several approaches to be used to accelerate algorithms for fitting an atomic structure into a given 3D density map determined by cryo-EM are discussed. Rotation and translation of the atomic structure to find similarity scores are used and implemented with discrete Fourier transforms. Several rotations can be combined into groups to accelerate processing. The finite resolution of experimental and simulated maps allows a reduction in the number of rotations and translations needed in order to estimate similarity-score values.
Collapse
Affiliation(s)
- Valeriy Titarenko
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, United Kingdom
| | - Alan M Roseman
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, United Kingdom
| |
Collapse
|
496
|
Probing Structural Dynamics of Membrane Proteins Using Electron Paramagnetic Resonance Spectroscopic Techniques. BIOPHYSICA 2021. [DOI: 10.3390/biophysica1020009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Membrane proteins are essential for the survival of living organisms. They are involved in important biological functions including transportation of ions and molecules across the cell membrane and triggering the signaling pathways. They are targets of more than half of the modern medical drugs. Despite their biological significance, information about the structural dynamics of membrane proteins is lagging when compared to that of globular proteins. The major challenges with these systems are low expression yields and lack of appropriate solubilizing medium required for biophysical techniques. Electron paramagnetic resonance (EPR) spectroscopy coupled with site directed spin labeling (SDSL) is a rapidly growing powerful biophysical technique that can be used to obtain pertinent structural and dynamic information on membrane proteins. In this brief review, we will focus on the overview of the widely used EPR approaches and their emerging applications to answer structural and conformational dynamics related questions on important membrane protein systems.
Collapse
|
497
|
Egelman EH, Wang F. Cryo-EM is a powerful tool, but helical applications can have pitfalls. SOFT MATTER 2021; 17:3291-3293. [PMID: 33729271 PMCID: PMC8086904 DOI: 10.1039/d1sm00282a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
In structural biology, cryo-electron microscopy (cryo-EM) has emerged as the main technique for determining the atomic structures of macromolecular complexes. This has largely been due to the introduction of direct electron detectors, which have allowed for routinely reaching a near-atomic resolution when imaging such complexes. In chemistry and materials science, the applications of cryo-EM have been much more limited. A recent paper (Z. Li et al., Chemically Controlled Helical Polymorphism In Protein Tubes By Selective Modulation Of Supramolecular Interactions, J. Am. Chem. Soc. 2019, 141, 19448-19457) has used low resolution cryo-EM to analyze polymorphic helical tubes formed by a tetrameric protein, and has made detailed models for the interfaces between the tetramers in these assemblies. Due to intrinsic ambiguities in determining the correct helical symmetry, we show that many of the models are likely to be wrong. This note highlights both the enormous potential for using cryo-EM, and also the pitfalls possible for helical assemblies when a near-atomic level of resolution is not reached.
Collapse
Affiliation(s)
- Edward H Egelman
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22903, USA.
| | | |
Collapse
|
498
|
Schmidpeter PAM, Nimigean CM. Correlating ion channel structure and function. Methods Enzymol 2021; 652:3-30. [PMID: 34059287 DOI: 10.1016/bs.mie.2021.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Recent developments in cryogenic electron microscopy (cryo-EM) led to an exponential increase in high-resolution structures of membrane proteins, and in particular ion channels. However, structures alone can only provide limited information about the workings of these proteins. In order to understand ion channel function and regulation in molecular detail, the obtained structural data need to be correlated to functional states of the same protein. Here, we describe several techniques that can be employed to study ion channel structure and function in vitro and under defined, similar conditions. Lipid nanodiscs provide a native-like environment for membrane proteins and have become a valuable tool in membrane protein structural biology and biophysics. Combined with liposome-based flux assays for the kinetic analysis of ion channel activity as well as electrophysiological recordings, researchers now have access to an array of experimental techniques allowing for detailed structure-function correlations using purified components. Two examples are presented where we put emphasis on the lipid environment and time-resolved techniques together with mutations and protein engineering to interpret structural data obtained from single particle cryo-EM on cyclic nucleotide-gated or Ca2+-gated K+ channels. Furthermore, we provide short protocols for all the assays used in our work so that others can adapt these techniques to their experimental needs. Comprehensive structure-function correlations are essential in order to pharmacologically target channelopathies.
Collapse
Affiliation(s)
| | - Crina M Nimigean
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, United States.
| |
Collapse
|
499
|
Kato K, Miyazaki N, Hamaguchi T, Nakajima Y, Akita F, Yonekura K, Shen JR. High-resolution cryo-EM structure of photosystem II reveals damage from high-dose electron beams. Commun Biol 2021; 4:382. [PMID: 33753866 PMCID: PMC7985191 DOI: 10.1038/s42003-021-01919-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 02/26/2021] [Indexed: 12/03/2022] Open
Abstract
Photosystem II (PSII) plays a key role in water-splitting and oxygen evolution. X-ray crystallography has revealed its atomic structure and some intermediate structures. However, these structures are in the crystalline state and its final state structure has not been solved. Here we analyzed the structure of PSII in solution at 1.95 Å resolution by single-particle cryo-electron microscopy (cryo-EM). The structure obtained is similar to the crystal structure, but a PsbY subunit was visible in the cryo-EM structure, indicating that it represents its physiological state more closely. Electron beam damage was observed at a high-dose in the regions that were easily affected by redox states, and reducing the beam dosage by reducing frames from 50 to 2 yielded a similar resolution but reduced the damage remarkably. This study will serve as a good indicator for determining damage-free cryo-EM structures of not only PSII but also all biological samples, especially redox-active metalloproteins.
Collapse
Affiliation(s)
- Koji Kato
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Naoyuki Miyazaki
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Ibaraki, Japan
| | - Tasuku Hamaguchi
- Biostructural Mechanism Laboratory, RIKEN Spring-8 Center, Hyogo, Japan
| | - Yoshiki Nakajima
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Fusamichi Akita
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan.
| | - Koji Yonekura
- Biostructural Mechanism Laboratory, RIKEN Spring-8 Center, Hyogo, Japan.
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Aoba-ku, Sendai, Japan.
| | - Jian-Ren Shen
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan.
| |
Collapse
|
500
|
Chiu W, Schmid MF, Pintilie GD, Lawson CL. Evolution of standardization and dissemination of cryo-EM structures and data jointly by the community, PDB, and EMDB. J Biol Chem 2021; 296:100560. [PMID: 33744287 PMCID: PMC8050867 DOI: 10.1016/j.jbc.2021.100560] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/08/2021] [Accepted: 03/16/2021] [Indexed: 01/04/2023] Open
Abstract
Cryogenic electron microscopy (cryo-EM) methods began to be used in the mid-1970s to study thin and periodic arrays of proteins. Following a half-century of development in cryo-specimen preparation, instrumentation, data collection, data processing, and modeling software, cryo-EM has become a routine method for solving structures from large biological assemblies to small biomolecules at near to true atomic resolution. This review explores the critical roles played by the Protein Data Bank (PDB) and Electron Microscopy Data Bank (EMDB) in partnership with the community to develop the necessary infrastructure to archive cryo-EM maps and associated models. Public access to cryo-EM structure data has in turn facilitated better understanding of structure–function relationships and advancement of image processing and modeling tool development. The partnership between the global cryo-EM community and PDB and EMDB leadership has synergistically shaped the standards for metadata, one-stop deposition of maps and models, and validation metrics to assess the quality of cryo-EM structures. The advent of cryo-electron tomography (cryo-ET) for in situ molecular cell structures at a broad resolution range and their correlations with other imaging data introduce new data archival challenges in terms of data size and complexity in the years to come.
Collapse
Affiliation(s)
- Wah Chiu
- Department of Bioengineering, Stanford University, Stanford, California, USA; Division of CryoEM and Bioimaging, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California, USA.
| | - Michael F Schmid
- Division of CryoEM and Bioimaging, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California, USA
| | - Grigore D Pintilie
- Department of Bioengineering, Stanford University, Stanford, California, USA
| | - Catherine L Lawson
- Institute for Quantitative Biomedicine and Research Collaboratory for Structural Bioinformatics, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| |
Collapse
|