451
|
Wettstein R, Erba P, Itin P, Schaefer D, Kalbermatten D. Treatment of basal cell carcinoma with surgical excision and perilesional interferon-α. J Plast Reconstr Aesthet Surg 2013; 66:912-6. [DOI: 10.1016/j.bjps.2013.03.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 03/02/2013] [Indexed: 12/15/2022]
|
452
|
Stegh AH. Toward personalized cancer nanomedicine - past, present, and future. Integr Biol (Camb) 2013; 5:48-65. [PMID: 22858688 DOI: 10.1039/c2ib20104f] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Tumors are composed of highly proliferate, migratory, invasive, and therapy-evading cells. These characteristics are conferred by an enormously complex landscape of genomic, (epi-)genetic, and proteomic aberrations. Recent efforts to comprehensively catalogue these reversible and irreversible modifications have began to identify molecular mechanisms that contribute to cancer pathophysiology, serve as novel therapeutic targets, and may constitute biomarkers for early diagnosis and prediction of therapy responses. With constantly evolving technologies that will ultimately enable a complete survey of cancer genomes, the challenges for discovery cancer science and drug development are daunting. Bioinformatic and functional studies must differentiate cancer-driving and -contributing mutations from mere bystanders or 'noise', and have to delineate their molecular mechanisms of action as a function of collaborating oncogenic and tumor suppressive signatures. In addition, the translation of these genomic discoveries into meaningful clinical endpoints requires the development of co-extinction strategies to therapeutically target multiple cancer genes, to robustly deliver therapeutics to tumor sites, and to enable widespread dissemination of therapies within tumor tissue. In this perspective, I will describe the most current paradigms to study and validate cancer gene function. I will highlight advances in the area of nanotechnology, in particular, the development of RNA interference (RNAi)-based platforms to more effectively deliver therapeutic agents to tumor sites, and to modulate critical cancer genes that are difficult to target using conventional small-molecule- or antibody-based approaches. I will conclude with an outlook on the deluge of challenges that genomic and bioengineering sciences must overcome to make the long-awaited era of personalized nano-medicine a clinical reality for cancer patients.
Collapse
Affiliation(s)
- Alexander H Stegh
- Ken and Ruth Davee Department of Neurology, The Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
453
|
Duggal R, Geissinger U, Zhang Q, Aguilar J, Chen NG, Binda E, Vescovi AL, Szalay AA. Vaccinia virus expressing bone morphogenetic protein-4 in novel glioblastoma orthotopic models facilitates enhanced tumor regression and long-term survival. J Transl Med 2013; 11:155. [PMID: 23800258 PMCID: PMC3706280 DOI: 10.1186/1479-5876-11-155] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 06/20/2013] [Indexed: 01/06/2023] Open
Abstract
Background Glioblastoma multiforme (GBM) is one of the most aggressive forms of cancer with a high rate of recurrence. We propose a novel oncolytic vaccinia virus (VACV)-based therapy using expression of the bone morphogenetic protein (BMP)-4 for treating GBM and preventing recurrence. Methods We have utilized clinically relevant, orthotopic xenograft models of GBM based on tumor-biopsy derived, primary cancer stem cell (CSC) lines. One of the cell lines, after being transduced with a cDNA encoding firefly luciferase, could be used for real time tumor imaging. A VACV that expresses BMP-4 was constructed and utilized for infecting several primary glioma cultures besides conventional serum-grown glioma cell lines. This virus was also delivered intracranially upon implantation of the GBM CSCs in mice to determine effects on tumor growth. Results We found that the VACV that overexpresses BMP-4 demonstrated heightened replication and cytotoxic activity in GBM CSC cultures with a broad spectrum of activity across several different patient-biopsy cultures. Intracranial inoculation of mice with this virus resulted in a tumor size equal to or below that at the time of injection. This resulted in survival of 100% of the treated mice up to 84 days post inoculation, significantly superior to that of a VACV lacking BMP-4 expression. When mice with a higher tumor burden were injected with the VACV lacking BMP-4, 80% of the mice showed tumor recurrence. In contrast, no recurrence was seen when mice were injected with the VACV expressing BMP-4, possibly due to induction of differentiation in the CSC population and subsequently serving as a better host for VACV infection and oncolysis. This lack of recurrence resulted in superior survival in the BMP-4 VACV treated group. Conclusions Based on these findings we propose a novel VACV therapy for treating GBM, which would allow tumor specific production of drugs in the future in combination with BMPs which would simultaneously control tumor maintenance and facilitate CSC differentiation, respectively, thereby causing sustained tumor regression without recurrence.
Collapse
|
454
|
Daily dosing of vismodegib to steady state does not prolong the QTc interval in healthy volunteers. J Cardiovasc Pharmacol 2013; 61:83-9. [PMID: 23107871 DOI: 10.1097/fjc.0b013e3182793ac9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Vismodegib was assessed as being of low risk for QT interval prolongation based on prior nonclinical and clinical experience. A dedicated study was conducted to further assess the potential for vismodegib to prolong the QTc interval. METHODS AND RESULTS Given the nonlinear pharmacokinetics of vismodegib, a thorough QTc study as is typically designed was not possible, and an innovative design was employed. This dedicated QTc study was powered to exclude a 20-millisecond change from the baseline QTc interval. The subjects were administered daily oral 150 mg of vismodegib for 7 days, or a single dose of 400 mg of moxifloxacin, with corresponding matching placebos. The upper limits of the 90% confidence intervals for the difference in ΔQTcF between vismodegib and placebo at steady state were <20 milliseconds at all timepoints with a maximum of 10 milliseconds at 12 hours postdose. Exposure-response analysis yielded an estimated slope equal to 0.11 ms/μM, which was not statistically significant. After a single dose of moxifloxacin was administered, the lower limits of the 90% confidence interval of the difference in ΔQTcF between moxifloxacin and placebo were >5 milliseconds from 1-12 hours postdose, thereby establishing assay sensitivity. CONCLUSIONS There was no effect of vismodegib on the QTc interval when dosed daily at 150 mg to steady state.
Collapse
|
455
|
Abstract
PURPOSE OF REVIEW This article provides an update on basal cell carcinoma (BCC), with a focus on the advanced BCC (aBCC), and the recent progress with targeted hedgehog signaling pathway inhibition for treatment of aBCC. RECENT FINDINGS The hedgehog signaling pathway is aberrantly activated in most BCC tumors providing an attractive therapeutic target in this cancer. Recently developed targeted hedgehog pathway inhibitors have demonstrated remarkable efficacy in the treatment of aBCC and the first oral hedgehog pathway inhibitor vismodegib was granted the US Food and Drug Administration (FDA) approval. Toxicities of the current hedgehog pathway inhibitors are mostly mild to moderate, but with prolonged treatment can pose a therapeutic challenge. SUMMARY Hedgehog pathway inhibition is a novel and powerful approach for treatment of aBCC. Current research efforts aim to enhance the activity and minimize toxicity of this promising new therapy.
Collapse
|
456
|
Gajjar A, Packer RJ, Foreman N, Cohen K, Haas-Kogan D, Merchant TE, on behalf of the COG Brain Tumor Committee. Children's Oncology Group's 2013 blueprint for research: central nervous system tumors. Pediatr Blood Cancer 2013; 60:1022-6. [PMID: 23255213 PMCID: PMC4184243 DOI: 10.1002/pbc.24427] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 11/09/2012] [Indexed: 12/29/2022]
Abstract
In the US, approximately 2,500 children are diagnosed annually with brain tumors. Their survival ranges from >90% to <10%. For children with medulloblastoma, the most common malignant brain tumor, 5-year survival ranges from >80% (standard-risk) to 60% (high-risk). For those with high-grade gliomas (HGGs) including diffuse intrinsic pontine gliomas, 5-year survival remains <10%. Sixty-five percent patients with ependymoma are cured after surgery and radiation therapy depending on the degree of resection and histopathology of the tumor. Phase II trials for brain tumors will investigate agents that act on cMET, PDGFRA, or EZH2 in HGG, DIPG, or medulloblastoma, respectively. Phase III trials will explore risk-based therapy stratification guided by molecular and clinical traits of children with medulloblastoma or ependymoma.
Collapse
Affiliation(s)
- Amar Gajjar
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| | - Roger J. Packer
- Brain Tumor Institute, Children's National, Washington, District of Columbia
| | - N.K. Foreman
- Department of Pediatrics, University of Colorado, Denver
| | - Kenneth Cohen
- Oncology and Pediatrics, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
| | - Daphne Haas-Kogan
- Department of Radiation Oncology, Helen Diller Comprehensive Cancer Center, San Francisco, California
| | - Thomas E. Merchant
- Department of Radiological Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee
| | | |
Collapse
|
457
|
Samela P, Tosi V, Cervini A, Bocian M, Buján M, Pierini A. Síndrome del nevo basocelular: experiencia en un hospital pediátrico. ACTAS DERMO-SIFILIOGRAFICAS 2013. [DOI: 10.1016/j.ad.2012.04.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
458
|
Cho EA, Moloney FJ, Cai H, Au-Yeung A, China C, Scolyer RA, Yosufi B, Raftery MJ, Deng JZ, Morton SW, Hammond PT, Arkenau HT, Damian DL, Francis DJ, Chesterman CN, Barnetson RS, Halliday GM, Khachigian LM. Safety and tolerability of an intratumorally injected DNAzyme, Dz13, in patients with nodular basal-cell carcinoma: a phase 1 first-in-human trial (DISCOVER). Lancet 2013; 381:1835-43. [PMID: 23660123 PMCID: PMC3951714 DOI: 10.1016/s0140-6736(12)62166-7] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND The nuclear transcription factor c-Jun is preferentially expressed in basal-cell carcinoma. Dz13 is a deoxyribozyme that targets JUN messenger RNA and has inhibited the growth of a range of tumours in mice. We did a phase 1 study to assess safety and tolerability in human beings. METHODS Adults with nodular basal-cell carcinoma were recruited from Royal Prince Alfred Hospital, Sydney, Australia, between September, 2010, and October, 2011. Patients were assigned to receive one intratumoral injected dose of 10, 30, or 100 μg Dz13, in a 50 μL volume of lipid carrier, and were assessed for adverse effects in the first 24 h then at 7, 14, and 28 days after injection. Treated tumours were surgically excised 14 days after injection and compared with the baseline biopsy samples for expression of c-Jun and tumorigenesis markers. FINDINGS Nine patients were recruited, of whom three received each dose of Dz13. All patients completed the study with no drug-related serious adverse events. No systemic Dz13 exposure was detected. c-Jun expression was reduced in the excised tumours of all nine (100%) patients, compared with baseline, and histological tumour depth had decreased in five (56%) of nine. Proportions of cells positive for caspases 3, 8, and 9 and P53 were increased, but those of cells positive for Bcl-2 and MMP-9 were decreased. Infiltration by inflammatory and immune cells was stimulated. INTERPRETATION Dz13 was safe and well tolerated after single intratumoral injections at all doses. FUNDING Cancer Institute NSW, Cancer Council Australia, and National Health and Medical Research Council.
Collapse
Affiliation(s)
- Eun-Ae Cho
- Dermatology, Sydney Medical School, Bosch Institute, Royal Prince Alfred Hospital at University of Sydney, Sydney NSW, Australia
| | - Fergal J. Moloney
- Dermatology, Sydney Medical School, Bosch Institute, Royal Prince Alfred Hospital at University of Sydney, Sydney NSW, Australia
| | - Hong Cai
- Centre for Vascular Research, University of New South Wales, Sydney NSW, Australia
| | - Annie Au-Yeung
- Centre for Vascular Research, University of New South Wales, Sydney NSW, Australia
| | - Carlos China
- Woolcock Institute of Medical Research, Sydney NSW, Australia
| | - Richard A. Scolyer
- Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Sydney NSW, Australia
| | | | - Mark J. Raftery
- Mark Wainwright Analytical Centre, University of New South Wales, Sydney NSW, Australia
| | - Jason Z. Deng
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge MA, USA
| | - Stephen W. Morton
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge MA, USA
| | - Paula T. Hammond
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge MA, USA
| | | | - Diona L. Damian
- Dermatology, Sydney Medical School, Bosch Institute, Royal Prince Alfred Hospital at University of Sydney, Sydney NSW, Australia
| | | | - Colin N. Chesterman
- Centre for Vascular Research, University of New South Wales, Sydney NSW, Australia
| | - Ross St.C Barnetson
- Dermatology, Sydney Medical School, Bosch Institute, Royal Prince Alfred Hospital at University of Sydney, Sydney NSW, Australia
| | - Gary M. Halliday
- Dermatology, Sydney Medical School, Bosch Institute, Royal Prince Alfred Hospital at University of Sydney, Sydney NSW, Australia
| | - Levon M. Khachigian
- Centre for Vascular Research, University of New South Wales, Sydney NSW, Australia
| |
Collapse
|
459
|
Ando K, Heymann MF, Stresing V, Mori K, Rédini F, Heymann D. Current therapeutic strategies and novel approaches in osteosarcoma. Cancers (Basel) 2013; 5:591-616. [PMID: 24216993 PMCID: PMC3730336 DOI: 10.3390/cancers5020591] [Citation(s) in RCA: 172] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 04/28/2013] [Accepted: 05/09/2013] [Indexed: 12/14/2022] Open
Abstract
Osteosarcoma is the most frequent malignant primary bone tumor and a main cause of cancer-related death in children and adolescents. Although long-term survival in localized osteosarcoma has improved to about 60% during the 1960s and 1970s, long-term survival in both localized and metastatic osteosarcoma has stagnated in the past several decades. Thus, current conventional therapy consists of multi-agent chemotherapy, surgery and radiation, which is not fully adequate for osteosarcoma treatment. Innovative drugs and approaches are needed to further improve outcome in osteosarcoma patients. This review describes the current management of osteosarcoma as well as potential new therapies.
Collapse
Affiliation(s)
- Kosei Ando
- INSERM, UMR 957, 1 Rue Gaston Veil, 44035 Nantes, France; E-Mails: (M.-F.H.); (V.S.); (F.R.); (D.H.)
- Physiopathologie de la Résorption Osseuse et Therapie des Tumeurs Osseuses Primitives, Université de Nantes, Nantes Atlantique Universités, 1 Rue Gaston Veil, 44035 Nantes, France
- Equipe Labellisee Ligue 2012, Nantes, 44035 France
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +33-(0)-240-412-895; Fax: +33-(0)-272-641-132
| | - Marie-Françoise Heymann
- INSERM, UMR 957, 1 Rue Gaston Veil, 44035 Nantes, France; E-Mails: (M.-F.H.); (V.S.); (F.R.); (D.H.)
- Physiopathologie de la Résorption Osseuse et Therapie des Tumeurs Osseuses Primitives, Université de Nantes, Nantes Atlantique Universités, 1 Rue Gaston Veil, 44035 Nantes, France
- Equipe Labellisee Ligue 2012, Nantes, 44035 France
- Nantes University Hospital, Nantes 44035, France
| | - Verena Stresing
- INSERM, UMR 957, 1 Rue Gaston Veil, 44035 Nantes, France; E-Mails: (M.-F.H.); (V.S.); (F.R.); (D.H.)
- Physiopathologie de la Résorption Osseuse et Therapie des Tumeurs Osseuses Primitives, Université de Nantes, Nantes Atlantique Universités, 1 Rue Gaston Veil, 44035 Nantes, France
- Nantes University Hospital, Nantes 44035, France
| | - Kanji Mori
- Department of Orthopaedic Surgery, Shiga University of Medical Science, Tsukinowa-cho, Seta, Otsu, Shiga 520-2192, Japan; E-Mail:
| | - Françoise Rédini
- INSERM, UMR 957, 1 Rue Gaston Veil, 44035 Nantes, France; E-Mails: (M.-F.H.); (V.S.); (F.R.); (D.H.)
- Physiopathologie de la Résorption Osseuse et Therapie des Tumeurs Osseuses Primitives, Université de Nantes, Nantes Atlantique Universités, 1 Rue Gaston Veil, 44035 Nantes, France
- Equipe Labellisee Ligue 2012, Nantes, 44035 France
- Nantes University Hospital, Nantes 44035, France
| | - Dominique Heymann
- INSERM, UMR 957, 1 Rue Gaston Veil, 44035 Nantes, France; E-Mails: (M.-F.H.); (V.S.); (F.R.); (D.H.)
- Physiopathologie de la Résorption Osseuse et Therapie des Tumeurs Osseuses Primitives, Université de Nantes, Nantes Atlantique Universités, 1 Rue Gaston Veil, 44035 Nantes, France
- Equipe Labellisee Ligue 2012, Nantes, 44035 France
- Nantes University Hospital, Nantes 44035, France
| |
Collapse
|
460
|
Samela PC, Tosi V, Cervini AB, Bocian M, Buján MM, Pierini AM. Nevoid basal cell carcinoma syndrome: our experience in a pediatric hospital. ACTAS DERMO-SIFILIOGRAFICAS 2013; 104:426-33. [PMID: 23669591 DOI: 10.1016/j.adengl.2013.04.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Accepted: 04/20/2012] [Indexed: 10/26/2022] Open
Abstract
Nevoid basal cell carcinoma (BCC) syndrome, or Gorlin syndrome, is a rare autosomal dominant disorder associated with mutations in the patched 1 gene, PTCH1. It is characterized by the presence of multiple BCCs in association with disorders affecting the bones, the skin, the eyes, and the nervous system. We describe 6 cases of nevoid BCC syndrome evaluated in our department. Palmoplantar pitting was observed in all 6 patients, multiple BCCs in 5 patients (83%), skeletal anomalies in 3 patients (50%), and odontogenic keratocysts in 1 patient (17%). We would like to stress the importance of early diagnosis and treatment in nevoid BCC syndrome and the need for continuous, long-term follow-up by a multidisciplinary team.
Collapse
Affiliation(s)
- P C Samela
- Servicio de Dermatología, Hospital de Pediatría Dr. Prof. Juan P. Garrahan, Buenos Aires, Argentina.
| | | | | | | | | | | |
Collapse
|
461
|
Abstract
Cancer, one of the leading causes of death worldwide is estimated to increase to approximately 13.1 million by 2030. This has amplified the research in oncology towards the exploration of novel targets. Recently there has been lots of interest regarding the hedgehog (Hh) pathway, which plays a significant role in the development of organs and tissues during embryonic and postnatal periods. In a normal person, the Hh signaling pathway is under inhibition and gets activated upon the binding of Hh ligand to a transmembrane receptor called Patched (PTCH1) thus allowing the transmembrane protein, smoothened (SMO) to transfer signals through various proteins. One of the newer drugs namely vismodegib involves the inhibition of Hh pathway and has shown promising results in the treatment of advanced basal-cell carcinoma as well as medulloblastoma. It has been granted approval by US Food and Drug Administration's (US FDA) priority review program on January 30, 2012 for the treatment of advanced basal-cell carcinoma. The drug is also being evaluated in malignancies like medulloblastoma, pancreatic cancer, multiple myeloma, chondrosarcoma and prostate cancer. Moreover various Hh inhibitors namely LDE 225, saridegib, BMS 833923, LEQ 506, PF- 04449913 and TAK-441 are also undergoing phase I and II trials for different neoplasms. Hence this review will describe briefly the Hh pathway and the novel drug vismodegib.
Collapse
Affiliation(s)
- Selvarajan Sandhiya
- Division of Clinical Pharmacology, Jawaharlal Institute of Postgradute Medical Education and Research, Puducherry, India
| | | | | | | |
Collapse
|
462
|
Dreier J, Felderer L, Barysch M, Rozati S, Dummer R. Basal cell carcinoma: a paradigm for targeted therapies. Expert Opin Pharmacother 2013; 14:1307-18. [DOI: 10.1517/14656566.2013.798644] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
463
|
Ibuki N, Ghaffari M, Pandey M, Iu I, Fazli L, Kashiwagi M, Tojo H, Nakanishi O, Gleave ME, Cox ME. TAK-441, a novel investigational smoothened antagonist, delays castration-resistant progression in prostate cancer by disrupting paracrine hedgehog signaling. Int J Cancer 2013; 133:1955-66. [PMID: 23564295 DOI: 10.1002/ijc.28193] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 03/20/2013] [Indexed: 01/04/2023]
Abstract
Hedgehog (Hh) signaling is a highly conserved intercellular and intracellular communication mechanism that governs organogenesis and is dysregulated in cancers of numerous tissues, including prostate. Up-regulated expression of the Hh ligands, Sonic (Shh) and Desert (Dhh), has been reported in androgen-deprived and castration-resistant prostate cancer (CRPC). In a cohort of therapy naive, short- and long-term neoadjuvant hormone therapy-treated (NHT), and CRPC specimens, we observed elevated Dhh expression predominantly in long-term NHT specimens and elevated Shh expression predominantly in CRPC specimens. Together with previously demonstrated reciprocal signaling between Shh-producing prostate cancer (PCa) cells and urogenital mesenchymal fibroblasts, these results suggest that castration-induced Hh expression promotes CRPC progression through reciprocal paracrine signaling within the tumor microenvironment. We tested whether the orally available Smoothened (Smo) antagonist, TAK-441, could impair castration-resistant progression of LNCaP PCa xenografts by disrupting paracrine Hh signaling. Although TAK-441 or cyclopamine did not affect androgen withdrawal-induced Shh up-regulation or viability of LNCaP cells, castration-resistant progression of LNCaP xenografts was significantly delayed in animals treated with TAK-441. In TAK-441-treated xenografts, expression of murine orthologs of the Hh-activated genes, Gli1, Gli2 and Ptch1, was substantially suppressed, while expression of the corresponding human orthologs was unaffected. As androgen-deprived LNCaP cells up-regulate Shh expression, but are not sensitive to Smo antagonists, these studies indicate that TAK-441 leads to delayed castration-resistant progression of LNCaP xenografts by disrupting paracrine Hh signaling with the tumor stroma. Thus, paracrine Hh signaling may offer unique opportunities for prognostic biomarker development, drug targeting and therapeutic response monitoring of PCa progression.
Collapse
Affiliation(s)
- Naokazu Ibuki
- The Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, British Columbia, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
464
|
Pimentel A, Velez M, Barahona LJ, Swords R, Lekakis L. New prospects for drug development: the hedgehog pathway revealed. Focus on hematologic malignancies. Future Oncol 2013; 9:681-97. [PMID: 23647297 DOI: 10.2217/fon.13.10] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The hedgehog (Hh) pathway is a critical regulator of vertebrate embryonic development and is involved in the function of processes such as stem cell maintenance and differentiation, tissue polarity and cell proliferation. Given how critical these functions are, it is not surprising that mutations in Hh pathway components are often implicated in the tumorigenesis of a variety of human cancers. Promotion of tumor growth has recently been shown by activated Hh signaling in the tumor itself, as well as by pathway activation within surrounding cells comprising the tumor microenvironment. Targeted disruption of various Hh pathway proteins has been successfully employed as an anticancer strategy with several synthetic Hh antagonists now available. Here, the molecular basis of Hh signaling, the therapeutic rationales for targeting this pathway and the current status of Hh pathway inhibitors in the clinic are reviewed.
Collapse
Affiliation(s)
- Agustin Pimentel
- Hematology & Medical Oncology, Department of Internal Medicine, University of Miami, 1475 North West 12th Avenue, Suite 3300, Miami, FL 33136, USA
| | - Michel Velez
- Hematology & Medical Oncology, Department of Internal Medicine, University of Miami, 1475 North West 12th Avenue, Suite 3300, Miami, FL 33136, USA
| | - Luz J Barahona
- University of Miami/Jackson Memorial Hospital, 1611 North West 12th Avenue, Miami, FL 33136, USA
| | - Ronan Swords
- Hematology & Medical Oncology, Department of Internal Medicine, University of Miami, 1475 North West 12th Avenue, Suite 3300, Miami, FL 33136, USA
| | - Lazaros Lekakis
- Hematology & Medical Oncology, Department of Internal Medicine, University of Miami, 1475 North West 12th Avenue, Suite 3300, Miami, FL 33136, USA.
| |
Collapse
|
465
|
Spivak-Kroizman TR, Hostetter G, Posner R, Aziz M, Hu C, Demeure MJ, Von Hoff D, Hingorani SR, Palculict TB, Izzo J, Kiriakova GM, Abdelmelek M, Bartholomeusz G, James BP, Powis G. Hypoxia triggers hedgehog-mediated tumor-stromal interactions in pancreatic cancer. Cancer Res 2013; 73:3235-47. [PMID: 23633488 DOI: 10.1158/0008-5472.can-11-1433] [Citation(s) in RCA: 158] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Pancreatic cancer is characterized by a desmoplastic reaction that creates a dense fibroinflammatory microenvironment, promoting hypoxia and limiting cancer drug delivery due to decreased blood perfusion. Here, we describe a novel tumor-stroma interaction that may help explain the prevalence of desmoplasia in this cancer. Specifically, we found that activation of hypoxia-inducible factor-1α (HIF-1α) by tumor hypoxia strongly activates secretion of the sonic hedgehog (SHH) ligand by cancer cells, which in turn causes stromal fibroblasts to increase fibrous tissue deposition. In support of this finding, elevated levels of HIF-1α and SHH in pancreatic tumors were determined to be markers of decreased patient survival. Repeated cycles of hypoxia and desmoplasia amplified each other in a feed forward loop that made tumors more aggressive and resistant to therapy. This loop could be blocked by HIF-1α inhibition, which was sufficient to block SHH production and hedgehog signaling. Taken together, our findings suggest that increased HIF-1α produced by hypoxic tumors triggers the desmoplasic reaction in pancreatic cancer, which is then amplified by a feed forward loop involving cycles of decreased blood flow and increased hypoxia. Our findings strengthen the rationale for testing HIF inhibitors and may therefore represent a novel therapeutic option for pancreatic cancer.
Collapse
|
466
|
Peng Z, Ji Z, Mei F, Lu M, Ou Y, Cheng X. Lithium inhibits tumorigenic potential of PDA cells through targeting hedgehog-GLI signaling pathway. PLoS One 2013; 8:e61457. [PMID: 23626687 PMCID: PMC3634073 DOI: 10.1371/journal.pone.0061457] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2013] [Accepted: 03/09/2013] [Indexed: 12/31/2022] Open
Abstract
Hedgehog signaling pathway plays a critical role in the initiation and development of pancreatic ductal adenocarcinoma (PDA) and represents an attractive target for PDA treatment. Lithium, a clinical mood stabilizer for mental disorders, potently inhibits the activity of glycogen synthase kinase 3β (GSK3β) that promotes the ubiquitin-dependent proteasome degradation of GLI1, an important downstream component of hedgehog signaling. Herein, we report that lithium inhibits cell proliferation, blocks G1/S cell-cycle progression, induces cell apoptosis and suppresses tumorigenic potential of PDA cells through down-regulation of the expression and activity of GLI1. Moreover, lithium synergistically enhances the anti-cancer effect of gemcitabine. These findings further our knowledge of mechanisms of action for lithium and provide a potentially new therapeutic strategy for PDA through targeting GLI1.
Collapse
Affiliation(s)
- Zhonglu Peng
- State Key Laboratory of Natural Medicines and School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Zhengyu Ji
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Fang Mei
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Meiling Lu
- State Key Laboratory of Natural Medicines and School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Yu Ou
- State Key Laboratory of Natural Medicines and School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
- * E-mail: (XC); (YO)
| | - Xiaodong Cheng
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Galveston, Texas, United States of America
- * E-mail: (XC); (YO)
| |
Collapse
|
467
|
Maybury CM, Craythorne E, Martin B. An ulcerated nodule on the nose. BMJ Case Rep 2013; 2013:bcr2012008296. [PMID: 23595174 PMCID: PMC3644923 DOI: 10.1136/bcr-2012-008296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
A 75-year-old retired nurse, originally from Barbados, presented to her general practitioner (GP) with a scaling ulcerated nodule on the left side of her nose. She was taking medication for type 2 diabetes, hypertension and glaucoma, but was otherwise well with no systemic symptoms. Her GP diagnosed a patch of eczema; however, a trial of topical steroids was not effective and she was referred to dermatology. A skin biopsy confirmed the clinical suspicion that this patient had a nodular basal cell carcinoma (BCC). BCCs account for 75% of all skin cancers; they very rarely metastasise, but can spread to invade local structures. Our patient has type VI skin. Skin cancer is rare in patients with skin type VI; however, in this group, morbidity and mortality are disproportionately high in relation to cancer incidence.
Collapse
Affiliation(s)
- Catriona M Maybury
- Department of Dermatology, Guys and St Thomas' Hospital Trust, London, UK.
| | | | | |
Collapse
|
468
|
Abstract
Basal cell carcinoma (BCC) is the most common skin malignancy worldwide. Ultraviolet light exposure is the best known exogenous factor in BCC development. This is also the target for primary prevention. Advanced BCC include locally advanced tumors and metastatic tumors. Prognosis is worse compared to stage I and II BCCs. Mohs or micrographically controlled surgery is the gold standard of treatment. In patients with tumors that cannot be completely removed radiotherapy was the only alternative in the past. More recently new drugs for targeted therapy of signaling pathways like sonic hedgehog or epidermal growth factor receptor became available. More small molecules are under investigation. Since the complete response rates are limited, future research has to evaluate their combination with surgery.
Collapse
|
469
|
Carney TJ, Ingham PW. Drugging Hedgehog: signaling the pathway to translation. BMC Biol 2013; 11:37. [PMID: 23587183 PMCID: PMC3626896 DOI: 10.1186/1741-7007-11-37] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 04/11/2013] [Indexed: 11/18/2022] Open
Abstract
First discovered in Drosophila, the Hedgehog signaling pathway controls a wide range of developmental processes and is implicated in a variety of cancers. The success of a screen for chemical modulators of this pathway, published in 2002, opened a new chapter in the quest to translate the results of basic developmental biology research into therapeutic applications. Small molecule pathway agonists are now used to program stem cells, whilst antagonists are proving effective as anti-cancer therapies.
Collapse
Affiliation(s)
- Tom J Carney
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore 138673
| | | |
Collapse
|
470
|
Agarwal NK, Qu C, Kunkalla K, Kunkulla K, Liu Y, Vega F. Transcriptional regulation of serine/threonine protein kinase (AKT) genes by glioma-associated oncogene homolog 1. J Biol Chem 2013; 288:15390-401. [PMID: 23580656 DOI: 10.1074/jbc.m112.425249] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Aberrant activation of Hedgehog signaling has been described in a growing number of cancers, including malignant lymphomas. Here, we report that canonical Hedgehog signaling modulates the transcriptional expression of AKT genes and that AKT1 is a direct transcriptional target of GLI1. We identified two putative binding sites for GLI1 in the AKT1 promoter region and confirmed their functionality using chromatin immunoprecipitation, luciferase reporter, and site-directed mutagenesis assays. Moreover, we provide evidence that GLI1 contributes to the survival of diffuse large B-cell lymphoma (DLBCL) cells and that this effect occurs in part through promotion of the transcription of AKT genes. This finding is of interest as constitutive activation of AKT has been described in DLBCL, but causative factors that explain AKT expression in this lymphoma type are not completely known. In summary, we demonstrated the existence of a novel cross-talk at the transcriptional level between Hedgehog signaling and AKT with biological significance in DLBCL.
Collapse
Affiliation(s)
- Nitin K Agarwal
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | | | |
Collapse
|
471
|
Jimeno A, Weiss GJ, Miller WH, Gettinger S, Eigl BJC, Chang ALS, Dunbar J, Devens S, Faia K, Skliris G, Kutok J, Lewis KD, Tibes R, Sharfman WH, Ross RW, Rudin CM. Phase I study of the Hedgehog pathway inhibitor IPI-926 in adult patients with solid tumors. Clin Cancer Res 2013; 19:2766-74. [PMID: 23575478 DOI: 10.1158/1078-0432.ccr-12-3654] [Citation(s) in RCA: 136] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE To conduct a first-in-human phase I study to determine the dose-limiting toxicities (DLT), characterize the pharmacokinetic profile, and document the antitumor activity of IPI-926, a new chemical entity that inhibits the Hedgehog pathway (HhP). EXPERIMENTAL DESIGN Patients with solid tumors refractory to standard therapy were given IPI-926 once daily (QD) by mouth in 28-day cycles. The starting dose was 20 mg, and an accelerated titration schedule was used until standard 3 + 3 dose-escalation cohorts were implemented. Pharmacokinetics were evaluated on day -7 and day 22 of cycle 1. RESULTS Ninety-four patients (32F, 62M; ages, 39-87) received doses ranging from 20 to 210 mg QD. Dose levels up to and including 160 mg administered QD were well tolerated. Toxicities consisted of reversible elevations in aspartate aminotransferase (AST), alanine aminotransferase (ALT) and bilirubin, fatigue, nausea, alopecia, and muscle spasms. IPI-926 was not associated with hematologic toxicity. IPI-926 pharmacokinetics were characterized by a slow absorption (T(max) = 2-8 hours) and a terminal half-life (t(1/2)) between 20 and 40 hours, supporting QD dosing. Of those HhP inhibitor-naïve patients with basal cell carcinoma (BCC) who received more than one dose of IPI-926 and had a follow-up clinical or Response Evaluation Criteria in Solid Tumors (RECIST) assessment, nearly a third (8 of 28 patients) showed a response to IPI-926 at doses ≥130 mg. CONCLUSIONS IPI-926 was well tolerated up to 160 mg QD within 28-day cycles, which was established as the recommended phase II dose and schedule for this agent. Single-agent activity of IPI-926 was observed in HhP inhibitor-naïve patients with BCC.
Collapse
Affiliation(s)
- Antonio Jimeno
- University of Colorado Cancer Center, University of Colorado School of Medicine, Aurora, Colorado 80045, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
472
|
|
473
|
Makinodan E, Marneros AG. Protein kinase A activation inhibits oncogenic Sonic hedgehog signalling and suppresses basal cell carcinoma of the skin. Exp Dermatol 2013; 21:847-52. [PMID: 23163650 DOI: 10.1111/exd.12016] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Basal cell carcinoma of the skin (BCC) is caused by constitutive activation of the Sonic hedgehog (Shh) pathway, mainly through mutations either in the Shh receptor Patched (PTCH) or in its co-receptor Smoothened (Smo). Inhibitors of this pathway that are currently in clinical trials inhibit Smo. However, mutations in Smo can result in resistance to these inhibitors. To target most BCCs and avoid acquired resistance because of Smo mutations, inhibiting the Shh-pathway downstream of Smo is critical. Attractive downstream targets would be at the level of Gli proteins, the transcriptional activators of this pathway in BCCs. Previously it has been shown that Gli1 and Gli2, when phosphorylated by protein kinase A (PKA), are targeted for proteosomal degradation. Here we show that PKA activation via the cAMP agonist forskolin is sufficient to completely abolish oncogenic Smo activity in vitro. In an inducible BCC mouse model due to a Smo mutation that confers resistance to current Smo inhibitors, topical forskolin treatment significantly reduced Gli1 mRNA levels and resulted in strongly suppressed BCC tumor growth. Our data show that forskolin inhibits the growth of even those BCCs that are resistant to Smo inhibitors and provide a proof-of-principle framework for the development of topically applied human skin-permeable novel pharmacologic inhibitors of oncogenic Shh-signaling through PKA activation.
Collapse
Affiliation(s)
- Eri Makinodan
- Department of Dermatology, Harvard Medical School, Cutaneous Biology Research Center, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | | |
Collapse
|
474
|
Smith S, Hoyt J, Whitebread N, Manna J, Peluso M, Faia K, Campbell V, Tremblay M, Nair S, Grogan M, Castro A, Campbell M, Ferguson J, Arsenault B, Nevejans J, Carter B, Lee J, Dunbar J, McGovern K, Read M, Adams J, Constan A, Loewen G, Sydor J, Palombella V, Soglia J. The pre-clinical absorption, distribution, metabolism and excretion properties of IPI-926, an orally bioavailable antagonist of the hedgehog signal transduction pathway. Xenobiotica 2013; 43:875-85. [PMID: 23527529 DOI: 10.3109/00498254.2013.780671] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
1. IPI-926 is a novel semisynthetic cyclopamine derivative that is a potent and selective Smoothened inhibitor that blocks the hedgehog signal transduction pathway. 2. The in vivo clearance of IPI-926 is low in mouse and dog and moderate in monkey. The volume of distribution is high across species. Oral bioavailability ranges from moderate in monkey to high in mouse and dog. Predicted human clearance using simple allometry is low (24 L h(-1)), predicted volume of distribution is high (469 L) and predicted half-life is long (20 h). 3. IPI-926 is highly bound to plasma proteins and has minimal interaction with human α-1-acid glycoprotein. 4. In vitro metabolic stability ranges from stable to moderately stable. Twelve oxidative metabolites were detected in mouse, rat, dog, monkey and human liver microsome incubations and none were unique to human. 5. IPI-926 is not a potent reversible inhibitor of CYP1A2, 2C8, 2C9 or 3A4 (testosterone). IPI-926 is a moderate inhibitor of CYP2C19, 2D6 and 3A4 (midazolam) with KI values of 19, 16 and 4.5 µM, respectively. IPI-926 is both a substrate and inhibitor (IC50 = 1.9 µM) of P-glycoprotein. 6. In summary, IPI-926 has desirable pre-clinical absorption, distribution, metabolism and excretion properties.
Collapse
Affiliation(s)
- Sherri Smith
- Infinity Pharmaceuticals, Inc. , Cambridge, MA , USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
475
|
Expression of Gli1 in the hedgehog signaling pathway and breast cancer recurrence. Chin J Cancer Res 2013. [DOI: 10.1007/s11670-012-0260-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
476
|
Graham RA, Hop CECA, Borin MT, Lum BL, Colburn D, Chang I, Shin YG, Malhi V, Low JA, Dresser MJ. Single and multiple dose intravenous and oral pharmacokinetics of the hedgehog pathway inhibitor vismodegib in healthy female subjects. Br J Clin Pharmacol 2013; 74:788-96. [PMID: 22458643 DOI: 10.1111/j.1365-2125.2012.04281.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
WHAT IS ALREADY KNOWN ABOUT THIS SUBJECT While recent publications have suggested the pharmacokinetics (PK) of vismodegib appear to be non-linear, there has not been a report describing the mechanisms of non-linearity. WHAT THIS STUDY ADDS This study provides evidence that two separate processes, namely, solubility-limited absorption and concentration-dependent plasma protein binding, can explain the non-linear PK of vismodegib. This study provides quantitative results which can account for the lower than expected accumulation of vismodegib with continuous daily dosing. AIM Vismodegib has demonstrated clinical activity in patients with advanced basal cell carcinoma. The pharmacokinetics (PK) of vismodegib are non-linear. The objective of this study was to determine whether vismodegib PK change following repeated dosing by administering a tracer intravenous (i.v.) dose of (14) C-vismodegib with single and multiple oral doses. METHODS Healthy post menopausal female subjects (n= 6/group) received either a single or daily 150 mg vismodegib oral dose with a (14) C-labelled 10 µg i.v. bolus dose administered 2 h after the single or last oral dose (day 7). Plasma samples were assayed for vismodegib by LC-MS/MS and for (14) C-vismodegib by accelerator mass spectrometry. RESULTS Following a single i.v. dose, mean clearance, volume of distribution and absolute bioavailability were 43.4 ml h(-1) , 16.4 l and 31.8%, respectively. Parallel concentration-time profiles following single oral and i.v. administration of vismodegib indicated elimination rate limited PK. Following i.v. administration at steady-state, mean clearance and volume of distribution were 78.5 ml h(-1) and 26.8 l, respectively. Comparison of i.v. PK parameters after single and multiple oral dosing showed similar half-life, increased clearance and volume of distribution (81% and 63% higher, respectively) and decreased bioavailability (77% lower) after repeated dosing. Relative to single dose, the unbound fraction of vismodegib increased 2.4-fold with continuous daily dosing. CONCLUSION Vismodegib exhibited a long terminal half-life after oral and i.v. administration, moderate absolute bioavailability and non-linear PK after repeated dosing. Results from this study suggest that the non-linear PK of vismodegib result from two separate, non-linear processes, namely solubility limited absorption and high affinity, saturable plasma protein binding.
Collapse
|
477
|
Targeted therapy for advanced Basal-cell carcinoma: vismodegib and beyond. Dermatol Ther (Heidelb) 2013; 3:17-31. [PMID: 23888252 PMCID: PMC3680638 DOI: 10.1007/s13555-013-0019-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Indexed: 11/16/2022] Open
Abstract
Basal-cell carcinoma is a commonly occurring skin malignancy that has the potential to progress into locally invasive or resistant disease, as well as spread distantly. Due to advances in the molecular understanding of the disease over the last two decades, it has been discovered that the Hedgehog pathway plays an important role in the pathogenesis of this disease and can be exploited as a treatment target. Several agents that inhibit the Hedgehog pathway have reached clinical studies and one drug, vismodegib, has recently been US Food and Drug Administration (FDA) approved based on clinical activity and tolerability in patients with advanced basal-cell carcinoma. This review will describe the clinical development of vismodegib, as well as the proper application of the drug in clinical practice. Other important clinical questions, such as mechanisms of resistance to vismodegib and the role of other Hedgehog pathway inhibitors currently in development will also be discussed.
Collapse
|
478
|
Vassal G, Zwaan CM, Ashley D, Le Deley MC, Hargrave D, Blanc P, Adamson PC. New drugs for children and adolescents with cancer: the need for novel development pathways. Lancet Oncol 2013; 14:e117-24. [PMID: 23434337 DOI: 10.1016/s1470-2045(13)70013-5] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Despite major progress in the past 40 years, 20% of children with cancer die from the disease, and 40% of survivors have late adverse effects. Innovative, safe, and effective medicines are needed. Although regulatory initiatives in the past 15 years in the USA and Europe have been introduced, new drug development for children with cancer is insufficient. Children and families face major inequity between countries in terms of access to innovative drugs in development. Hurdles and bottlenecks are well known-eg, small numbers of patients, the complexity of developing targeted agents and their biomarkers for selected patients, limitations of US and EU regulations for paediatric medicines, insufficient return on investment, and the global economic crisis facing drug companies. New drug development pathways could efficiently address the challenges with innovative methods and trial designs, investment in biology and preclinical research, new models of partnership and funding including public-private partnerships and precompetitive research consortia, improved regulatory requirements, initiatives and incentives that better address these needs, and increased collaboration between paediatric oncology cooperative groups worldwide. Increased cooperation between all stakeholders-academia, parents' organisations and advocacy groups, regulatory bodies, pharmaceutical companies, philanthropic organisations, and government-will be essential.
Collapse
Affiliation(s)
- Gilles Vassal
- Division of Clinical Research, Institut Gustave Roussy, Paris-Sud University, Paris, France.
| | | | | | | | | | | | | |
Collapse
|
479
|
Chang ALS, Oro AE. Initial assessment of tumor regrowth after vismodegib in advanced Basal cell carcinoma. ACTA ACUST UNITED AC 2013; 148:1324-5. [PMID: 22910979 DOI: 10.1001/archdermatol.2012.2354] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
480
|
Gastric cancer (GC) patients with hedgehog pathway activation: PTCH1 and GLI2 as independent prognostic factors. Target Oncol 2013; 8:271-80. [PMID: 23371028 DOI: 10.1007/s11523-013-0253-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 01/02/2013] [Indexed: 12/21/2022]
Abstract
Activation of sonic hedgehog (HH) signaling pathway has been implicated in aggressiveness and progression of gastrointestinal tumors. We planned this study to identify a subgroup of gastric cancer (GC) patients with HH activation and to assess the effect of a HH inhibitor in HH activated GC in vitro. We surveyed HH pathway activation among 512 GC specimens for protein expression of various target genes involved in HH pathway: Indian hedgehog (IHH), patched-1 (PTCH1), smoothened (SMO), GLI2, and FOXA2. We analyzed the correlations between the expression of these factors and clinicopathological features and prognosis. In vitro, ten gastric cancer cell lines were screened for anti-tumoractivity of an HH inhibitor, GDC-0449. Among the 512 specimens, 105 (20.0 %), 83 (16.3 %), 130 (25.5 %), 61 (12.0 %), and 206 (40.8 %) were positive for IHH, PTCH1, GLI2, SMO, and FOXA2 expression, respectively. PTCH1 expression was more frequently observed in well- or moderately differentiated tubular adenocarcinoma, intestinal type and low stage GC. GLI2 was correlated with lymphovascular invasion and intestinal type GC. A high-stage and negative PTCH1 staining were identified as unfavorable independent risk factors for overall survival in multivariate analysis (P < 0.001, 0.045, respectively). For IHH, SMO, and FOXA2, there was no statistical difference in clinicopathologic variables and survival outcome. An HH inhibitor had particularly potent effects on GC cell lines with SMO mRNA overexpression. This is the largest report to analyze the hedgehog pathway in GC. PTCH1 overexpression was an independent prognostic factor for survival and SMO overexpression which was found in 12.0 % of GC patients might be the potential predictive marker of HH inhibitor.
Collapse
|
481
|
Lyseng-Williamson KA, Keating GM. Vismodegib: a guide to its use in locally advanced or metastatic basal cell carcinoma. Am J Clin Dermatol 2013; 14:61-4. [PMID: 23329081 DOI: 10.1007/s40257-012-0004-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Vismodegib is the first Hedgehog pathway inhibitor to be approved in the USA, where it is indicated for the treatment of adults with metastatic basal cell carcinoma (BCC), or with locally advanced BCC that has recurred following surgery or who are not candidates for surgery, and who are not candidates for radiation. In an ongoing, noncomparative, phase II trial, oral vismodegib was effective in and had an acceptable tolerability profile in the treatment of patients with locally advanced or metastatic BCC.
Collapse
|
482
|
Thérapies ciblées et carcinomes basocellulaires. ONCOLOGIE 2013. [DOI: 10.1007/s10269-013-2259-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
483
|
Takebe N, Hunsberger S, Yang SX. Expression of Gli1 in the hedgehog signaling pathway and breast cancer recurrence. Chin J Cancer Res 2013; 24:257-8. [PMID: 23358885 DOI: 10.3978/j.issn.1000-9604.2012.09.07] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Accepted: 09/28/2012] [Indexed: 11/14/2022] Open
Affiliation(s)
- Naoko Takebe
- Cancer Therapy Evaluation Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, USA
| | | | | |
Collapse
|
484
|
Zhang D, Cao L, Li Y, Lu H, Yang X, Xue P. Expression of glioma-associated oncogene 2 (Gli 2) is correlated with poor prognosis in patients with hepatocellular carcinoma undergoing hepatectomy. World J Surg Oncol 2013; 11:25. [PMID: 23356443 PMCID: PMC3565946 DOI: 10.1186/1477-7819-11-25] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2012] [Accepted: 01/06/2013] [Indexed: 02/04/2023] Open
Abstract
Background Our previous studies showed that glioma-associated oncogene (Gli)2 plays an important role in the proliferation and apoptosis resistance of hepatocellular carcinoma (HCC) cells. The aim of this study was to explore the clinical significance of Gli2 expression in HCC. Methods Expression of Gli2 protein was detected in samples from 68 paired HCC samples, the corresponding paraneoplastic liver tissues, and 20 normal liver tissues using immunohistochemistry. Correlation of the immunohistochemistry results with clinicopathologic parameters, prognosis, and the expression of E-cadherin, N-cadherin, and vimentin were analyzed. Results Immunohistochemical staining showed high levels of Gli2 protein expression in HCC, compared with paraneoplastic and normal liver tissues (P < 0.05). This high expression level of Gli2 was significantly associated with tumor differentiation, encapsulation, vascular invasion, early recurrence, and intra-hepatic metastasis (P < 0.05). There was a significantly negative correlation between Gli2 and E-cadherin expression (r = −0.302, P < 0.05) and a significantly positive correlation between expression of Gli2 and expression of vimentin (r = −0.468, P < 0.05) and N-cadherin (r = −0.505, P < 0.05). Kaplan-Meier analysis showed that patients with overexpressed Gli2 had significantly shorter overall survival and disease-free survival times (P < 0.05). Multivariate analysis suggested that the level of Gli2 expression was an independent prognostic factor for HCC. Conclusions Expression of Gli2 is high in HCC tissue, and is associated with poor prognosis in patients with HCC after hepatectomy.
Collapse
Affiliation(s)
- Dawei Zhang
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Guangzhou Medical College, No, 250, East Changgang Road, Guangzhou 510260, China
| | | | | | | | | | | |
Collapse
|
485
|
Maugeri-Saccà M, Di Martino S, De Maria R. Biological and clinical implications of cancer stem cells in primary brain tumors. Front Oncol 2013; 3:6. [PMID: 23355974 PMCID: PMC3555082 DOI: 10.3389/fonc.2013.00006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 01/07/2013] [Indexed: 12/25/2022] Open
Abstract
Despite therapeutic advances, glioblastoma multiforme (GBM) remains a lethal disease. The infiltrative nature of this disease and the presence of a cellular population resistant to current medical treatments account for the poor prognosis of these patients. Growing evidence indicates the existence of a fraction of cancer cells sharing the functional properties of adult stem cells, including self-renewal and a greater ability to escape chemo-radiotherapy-induced death stimuli. Therefore, these cells are commonly defined as cancer stem cells (GBM-SCs). The initial GBM-SC concept has been challenged, and refined according to the emerging molecular taxonomy of GBM. This allowed to postulate the existence of multiple CSC types, each one driving a given molecular entity. Furthermore, it is becoming increasingly clear that GBM-SCs thrive through a dynamic and bidirectional interaction with the surrounding microenvironment. In this article, we discuss recent advances in GBM-SC biology, mechanisms through which these cells adapt to hostile conditions, pharmacological strategies for selectively killing GBM-SCs, and how novel CSC-associated endpoints have been investigated in the clinical setting.
Collapse
|
486
|
Brastianos PK, Horowitz PM, Santagata S, Jones RT, McKenna A, Getz G, Ligon KL, Palescandolo E, Van Hummelen P, Ducar MD, Raza A, Sunkavalli A, Macconaill LE, Stemmer-Rachamimov AO, Louis DN, Hahn WC, Dunn IF, Beroukhim R. Genomic sequencing of meningiomas identifies oncogenic SMO and AKT1 mutations. Nat Genet 2013; 45:285-9. [PMID: 23334667 PMCID: PMC3739288 DOI: 10.1038/ng.2526] [Citation(s) in RCA: 478] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 12/19/2012] [Indexed: 12/14/2022]
Abstract
Meningiomas are the most common primary nervous system tumor. The tumor suppressor NF2 is disrupted in approximately half of meningiomas1 but the complete spectrum of genetic changes remains undefined. We performed whole-genome or whole-exome sequencing on 17 meningiomas and focused sequencing on an additional 48 tumors to identify and validate somatic genetic alterations. Most meningiomas exhibited simple genomes, with fewer mutations, rearrangements, and copy-number alterations than reported in other adult tumors. However, several meningiomas harbored more complex patterns of copy-number changes and rearrangements including one tumor with chromothripsis. We confirmed focal NF2 inactivation in 43% of tumors and found alterations in epigenetic modifiers among an additional 8% of tumors. A subset of meningiomas lacking NF2 alterations harbored recurrent oncogenic mutations in AKT1 (E17K) and SMO (W535L) and exhibited immunohistochemical evidence of activation of their pathways. These mutations were present in therapeutically challenging tumors of the skull base and higher grade. These results begin to define the spectrum of genetic alterations in meningiomas and identify potential therapeutic targets.
Collapse
Affiliation(s)
- Priscilla K Brastianos
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
487
|
Wang XD, Inzunza H, Chang H, Qi Z, Hu B, Malone D, Cogswell J. Mutations in the hedgehog pathway genes SMO and PTCH1 in human gastric tumors. PLoS One 2013; 8:e54415. [PMID: 23349881 PMCID: PMC3548780 DOI: 10.1371/journal.pone.0054415] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 12/11/2012] [Indexed: 02/02/2023] Open
Abstract
The causal role of the hedgehog pathway in cancer has been best documented in basal cell carcinoma of the skin. To assess potential DNA alterations of the hedgehog pathway in gastric cancer, we sequenced SMO and PTCH1 genes in a set of 39 gastric tumors. Tumors were classified by histology based on the Lauren classification and Sanger sequencing was performed to obtain full length coding sequences. Genomic instability was evident in these tumors as a number of silent or missense mutations were found. In addition to those that are potential germline polymorphisms, we found three SMO missense mutations, and one PTCH1 frameshift mutation that are novel and have not been documented in basal cell carcinoma. Mutations were found in both intestinal and diffuse type gastric tumors as well as in tumors that exhibit both intestinal and diffuse features. mRNA expression of hedgehog pathway genes was also examined and their levels do not indicate unequivocal higher pathway activity in tumors with mutations than those without. In summary, SMO and/or PTCH1 mutations are present at low frequency in different histologic subtypes of gastric tumors and these do not appear to be driver mutations.
Collapse
Affiliation(s)
- Xi-De Wang
- Bristol-Myers Squibb, Princeton, New Jersey, USA.
| | | | | | | | | | | | | |
Collapse
|
488
|
Katagiri S, Tauchi T, Okabe S, Minami Y, Kimura S, Maekawa T, Naoe T, Ohyashiki K. Combination of ponatinib with Hedgehog antagonist vismodegib for therapy-resistant BCR-ABL1-positive leukemia. Clin Cancer Res 2013; 19:1422-32. [PMID: 23319824 DOI: 10.1158/1078-0432.ccr-12-1777] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The Hedgehog signaling pathway is a key regulator of cell growth and differentiation during development. Whereas the Hedgehog pathway is inactive in most normal adult tissues, Hedgehog pathway reactivation has been implicated in the pathogenesis of several neoplasms including BCR-ABL1-positive leukemia. The clear link between the Hedgehog pathway and BCR-ABL1-positive leukemia led to an effort to identify small molecules to block the pathway. EXPERIMENTAL DESIGN We investigated the combined effects of vismodegib and ponatinib, a pan-ABL1 kinase inhibitor, in nonobese diabetic/severe-combined immunodeficiency (NOD/SCID) repopulating T315I BCR-ABL1-positive cells in vitro and in vivo. RESULTS We observed that combination with vismodegib and ponatinib helps to eliminate therapy-resistant NOD/SCID repopulating T315I BCR-ABL1-positive cells. The percentage of CD19-positive leukemia cells in peripheral blood was significantly lower in vismodegib + ponatinib-treated mice than that of the vehicle or ponatinib alone (P < 0.001). Spleen weights were also lower in vismodegib + ponatinib-treated mice than in ponatinib alone (P < 0.05). Overall tumor burden, as assessed by BCR-ABL mRNA from bone marrow cells, was significantly lower in vismodegib + ponatinib-treated mice than in ponatinib alone (P < 0.005). We also found that vismodegib significantly reduced BCR-ABL1-positive leukemia cell self-renewal in vitro as well as during serial transplantation in vivo. CONCLUSIONS The combination with a Smo inhibitor and ABL1 tyrosine kinase inhibitors may help eliminate therapy-resistant T315I BCR-ABL1-positive leukemia cells. Our preclinical results indicate that vismodegib has potential as an important option for controlling minimal residual cells in BCR-ABL1-positive leukemia.
Collapse
Affiliation(s)
- Seiichiro Katagiri
- First Department of Internal Medicine, Tokyo Medical University, Shinjuku-ku, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
489
|
Szkandera J, Kiesslich T, Haybaeck J, Gerger A, Pichler M. Hedgehog signaling pathway in ovarian cancer. Int J Mol Sci 2013; 14:1179-96. [PMID: 23303278 PMCID: PMC3565315 DOI: 10.3390/ijms14011179] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 12/30/2012] [Accepted: 01/05/2013] [Indexed: 12/11/2022] Open
Abstract
Despite advances in surgical and chemotherapeutic treatment options, less than 50% of patients with advanced-stage ovarian cancer survive five years after initial diagnosis. In this regard, novel treatment approaches are warranted utilizing molecularly targeted therapies directed against particular components of specific signaling pathways which are required for tumor development and progression. One molecular pathway of interest is the hedgehog (Hh) signaling pathway. Activation of the Hh pathway has been observed in several cancer types, including ovarian cancer. This review highlights the crucial role of Hh signaling in the development and progression of ovarian cancer and might lead to a better understanding of the Hh signaling in ovarian tumorigenesis, thus encouraging the investigation of novel targeted therapies.
Collapse
Affiliation(s)
- Joanna Szkandera
- Division of Clinical Oncology, Department of Medicine, Medical University of Graz, 8036 Graz, Austria; E-Mails: (J.S.); (A.G.)
| | - Tobias Kiesslich
- Department of Internal Medicine I, Paracelsus Medical University/Salzburger Landeskliniken (SALK), 5020 Salzburg, Austria; E-Mail:
| | - Johannes Haybaeck
- Institute of Pathology, Medical University of Graz, 8036 Graz, Austria; E-Mail:
| | - Armin Gerger
- Division of Clinical Oncology, Department of Medicine, Medical University of Graz, 8036 Graz, Austria; E-Mails: (J.S.); (A.G.)
| | - Martin Pichler
- Division of Clinical Oncology, Department of Medicine, Medical University of Graz, 8036 Graz, Austria; E-Mails: (J.S.); (A.G.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +43-316-385-81320; Fax: +43-316-385-13355
| |
Collapse
|
490
|
Atwood SX, Chang ALS, Oro AE. Hedgehog pathway inhibition and the race against tumor evolution. ACTA ACUST UNITED AC 2013; 199:193-7. [PMID: 23071148 PMCID: PMC3471227 DOI: 10.1083/jcb.201207140] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Dependence of basal cell carcinomas and medulloblastomas on the Hedgehog pathway provides an opportunity for targeted or "personalized" therapy. The recent effectiveness and FDA approval of the first Smoothened inhibitors validates this class of agents, but has revealed drug-resistant tumor variants that bypass Smoothened inhibition. Here, we summarize the effectiveness of Hedgehog pathway inhibitors and highlight promising areas for the development of next generation drug antagonists for Hedgehog-dependent cancers.
Collapse
Affiliation(s)
- Scott X Atwood
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | |
Collapse
|
491
|
Manousaridis I, Leverkus M. Malignant epithelial tumors: Part II. Therapy and prevention. J Dtsch Dermatol Ges 2013; 11:9-25; quiz 26-7. [PMID: 23286911 DOI: 10.1111/ddg.12001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A multitude of surgical and non-surgical therapies are available to treat malignant epithelial tumors of the skin. The article summarizes the current treatment options for basal cell carcinoma, squamous cell carcinoma and keratoacanthoma. Moreover, the possibilities of primary and secondary prevention for high-risk patients are reviewed. The decision about the best therapeutic option depends on location, age, and general health of the patient as well as the risk of tumor recurrence.
Collapse
Affiliation(s)
- Ioannis Manousaridis
- Department of Dermatology, Venereology and Allergology of the Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | | |
Collapse
|
492
|
CD200-expressing human basal cell carcinoma cells initiate tumor growth. Proc Natl Acad Sci U S A 2013; 110:1434-9. [PMID: 23292936 DOI: 10.1073/pnas.1211655110] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Smoothened antagonists directly target the genetic basis of human basal cell carcinoma (BCC), the most common of all cancers. These drugs inhibit BCC growth, but they are not curative. Although BCC cells are monomorphic, immunofluorescence microscopy reveals a complex hierarchical pattern of growth with inward differentiation along hair follicle lineages. Most BCC cells express the transcription factor KLF4 and are committed to terminal differentiation. A small CD200(+) CD45(-) BCC subpopulation that represents 1.63 ± 1.11% of all BCC cells resides in small clusters at the tumor periphery. By using reproducible in vivo xenograft growth assays, we determined that tumor initiating cell frequencies approximate one per 1.5 million unsorted BCC cells. The CD200(+) CD45(-) BCC subpopulation recreated BCC tumor growth in vivo with typical histological architecture and expression of sonic hedgehog-regulated genes. Reproducible in vivo BCC growth was achieved with as few as 10,000 CD200(+) CD45(-) cells, representing ~1,500-fold enrichment. CD200(-) CD45(-) BCC cells were unable to form tumors. These findings establish a platform to study the effects of Smoothened antagonists on BCC tumor initiating cell and also suggest that currently available anti-CD200 therapy be considered, either as monotherapy or an adjunct to Smoothened antagonists, in the treatment of inoperable BCC.
Collapse
|
493
|
Pelczar P, Zibat A, van Dop WA, Heijmans J, Bleckmann A, Gruber W, Nitzki F, Uhmann A, Guijarro MV, Hernando E, Dittmann K, Wienands J, Dressel R, Wojnowski L, Binder C, Taguchi T, Beissbarth T, Hogendoorn PC, Antonescu CR, Rubin BP, Schulz-Schaeffer W, Aberger F, van den Brink GR, Hahn H. Inactivation of Patched1 in mice leads to development of gastrointestinal stromal-like tumors that express Pdgfrα but not kit. Gastroenterology 2013; 144:134-144.e6. [PMID: 23041331 PMCID: PMC4231777 DOI: 10.1053/j.gastro.2012.09.061] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 09/25/2012] [Accepted: 09/27/2012] [Indexed: 12/30/2022]
Abstract
BACKGROUND & AIMS A fraction of gastrointestinal stromal tumor (GIST) cells overexpress the platelet-derived growth factor receptor (PDGFR)A, although most overexpress KIT. It is not known if this is because these receptor tyrosine kinases have complementary oncogenic potential, or because of heterogeneity in the cellular origin of GIST. Little also is known about why Hedgehog (HH) signaling is activated in some GIST. HH binds to and inactivates the receptor protein patched homolog (PTCH). METHODS Ptch was conditionally inactivated in mice (to achieve constitutive HH signaling) using a Cre recombinase regulated by the lysozyme M promoter. Cre-expressing cells were traced using R26R-LacZ reporter mice. Tumors were characterized by in situ hybridization, immunohistochemistry, immunoblot, and quantitative reverse-transcriptase polymerase chain reaction analyses. Cell transformation was assessed by soft agar assay. RESULTS Loss of Ptch from lysozyme M-expressing cells resulted in the development of tumors of GIST-like localization and histology; these were reduced when mice were given imatinib, a drug that targets KIT and PDGFRA. The Hh signaling pathway was activated in the tumor cells, and Pdgfrα, but not Kit, was overexpressed and activated. Lineage tracing revealed that Cre-expressing intestinal cells were Kit-negative. These cells sometimes expressed Pdgfrα and were located near Kit-positive interstitial cells of Cajal. In contrast to KIT, activation of PDGFRA increased anchorage-independent proliferation and was required for tumor formation in mice by cells with activated HH signaling. CONCLUSIONS Inactivation of Ptch in mice leads to formation of GIST-like tumors that express Pdgfrα, but not Kit. Activation of Pdgfrα signaling appears to facilitate tumorigenesis.
Collapse
Affiliation(s)
- Penelope Pelczar
- Department of Human Genetics, University Medical Center, Göttingen, Germany
| | - Arne Zibat
- Department of Human Genetics, University Medical Center, Göttingen, Germany
| | - Willemijn A. van Dop
- Tytgat Institute for Liver and Intestinal Research and Department of Gastroenterology & Hepatology, Academic Medical Center, Amsterdam, The Netherlands
| | - Jarom Heijmans
- Tytgat Institute for Liver and Intestinal Research and Department of Gastroenterology & Hepatology, Academic Medical Center, Amsterdam, The Netherlands
| | - Annalen Bleckmann
- Department of Hematology and Oncology, University Medical Center, Göttingen, Germany,Department of Medical Statistics, University Medical Center, Göttingen, Germany
| | - Wolfgang Gruber
- Department of Molecular Biology, University Salzburg, Austria
| | - Frauke Nitzki
- Department of Human Genetics, University Medical Center, Göttingen, Germany
| | - Anja Uhmann
- Department of Human Genetics, University Medical Center, Göttingen, Germany
| | - Maria V. Guijarro
- Department of Pathology, New York University School of Medicine, New York, USA
| | - Eva Hernando
- Department of Pathology, New York University School of Medicine, New York, USA
| | - Kai Dittmann
- Department of Cellular and Molecular Immunology, University Medical Center, Göttingen, Germany
| | - Jürgen Wienands
- Department of Cellular and Molecular Immunology, University Medical Center, Göttingen, Germany
| | - Ralf Dressel
- Department of Cellular and Molecular Immunology, University Medical Center, Göttingen, Germany
| | | | - Claudia Binder
- Department of Hematology and Oncology, University Medical Center, Göttingen, Germany
| | - Takahiro Taguchi
- Division of Human Health and Medical Science, Graduate School of Kuroshio Science, Kochi University, Nankoku, Japan
| | - Tim Beissbarth
- Department of Medical Statistics, University Medical Center, Göttingen, Germany
| | | | | | - Brian P. Rubin
- Departments of Anatomic Pathology and Molecular Genetics, Cleveland Clinic, Lerner Research Institute and Taussig Cancer Center, Cleveland, USA
| | | | - Fritz Aberger
- Department of Molecular Biology, University Salzburg, Austria
| | - Gijs R. van den Brink
- Tytgat Institute for Liver and Intestinal Research and Department of Gastroenterology & Hepatology, Academic Medical Center, Amsterdam, The Netherlands
| | - Heidi Hahn
- Department of Human Genetics, University Medical Center, Göttingen, Germany
| |
Collapse
|
494
|
Abstract
Groundbreaking advances on the molecular and cellular physiological and physiopathological skin processes, including the complete sequencing of the genome of several species and the increased availability of gene-modified organisms, paved the way to firmly establishing molecular approaches and methods in experimental, translational, and clinical dermatology. As a result, newly developed experimental ex vivo assays and animal models prove exquisite tools for addressing fundamental physiological cutaneous processes and pathogenic mechanisms of skin diseases. A plethora of new findings that were generated using these experimental tools serve as a strong basis for intense translational research efforts aiming at developing new, specific, and sensitive diagnostic tests and efficient "personalized" therapies with less side-effects. Consequently, a broad array of molecular diagnostic tests and therapies for a wide spectrum of skin diseases ranging from genodermatoses through skin neoplasms, allergy, inflammatory and autoimmune diseases, are already routinely used in the clinical dermatology practice. This article highlights several major developments in molecular experimental and clinical dermatology.
Collapse
Affiliation(s)
- Cristina Has
- Department of Molecular Dermatology, University of Freiburg, Freiburg, Germany.
| | | |
Collapse
|
495
|
Yee NS. Toward the goal of personalized therapy in pancreatic cancer by targeting the molecular phenotype. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 779:91-143. [PMID: 23288637 DOI: 10.1007/978-1-4614-6176-0_5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The purpose of this article is to provide a critical review of the molecular alterations in pancreatic cancer that are clinically investigated as therapeutic targets and their potential impact on clinical outcomes. Adenocarcinoma of exocrine pancreas is generally associated with poor prognosis and the conventional therapies are marginally effective. Advances in understanding the genetic regulation of normal and neoplastic development of pancreas have led to development and clinical evaluation of new therapeutic strategies that target the signaling pathways and molecular alterations in pancreatic cancer. Applications have begun to utilize the genetic targets as biomarkers for prediction of therapeutic responses and selection of treatment options. The goal of accomplishing personalized tumor-specific therapy with tolerable side effects for patients with pancreatic cancer is hopefully within reach in the foreseeable future.
Collapse
Affiliation(s)
- Nelson S Yee
- Division of Hematology-Oncology, Department of Medicine, Penn State College of Medicine, Penn State Hershey Cancer Institute, Milton S. Hershey Medical Center, Pennsylvania State University, Hershey, PA 17033-0850, USA.
| |
Collapse
|
496
|
Gold KA, Kim ES, Wistuba II, Hong WK. Personalizing lung cancer prevention through a reverse migration strategy. Top Curr Chem (Cham) 2013; 329:221-40. [PMID: 22752582 PMCID: PMC3737590 DOI: 10.1007/128_2012_338] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Lung cancer is the deadliest cancer in the United States and worldwide. Tobacco use is the one of the primary causes of lung cancer and smoking cessation is an important step towards prevention, but patients who have quit smoking remain at risk for lung cancer. Finding pharmacologic agents to prevent lung cancer could potentially save many lives. Unfortunately, despite extensive research, there are no known effective chemoprevention agents for lung cancer. Clinical trials in the past, using agents without a clear target in an unselected population, have shown pharmacologic interventions to be ineffective or even harmful. We propose a new approach to drug development in the chemoprevention setting: reverse migration, that is, drawing on our experience in the treatment of advanced cancer to bring agents, biomarkers, and study designs into the prevention setting. By identifying molecular drivers of lung neoplasia and using matched targeted agents, we hope to personalize therapy to each individual to develop more effective, tolerable chemoprevention. Also, advances in risk modeling, using not only clinical characteristics but also biomarkers, may help us to select patients better for chemoprevention efforts, thus sparing patients at low risk for cancer the potential toxicities of treatment. Our institution has experience with biomarker-driven clinical trials, as in the recently reported Biomarker-integrated Approaches of Targeted Therapy for Lung Cancer Elimination (BATTLE) trial, and we now propose to bring this trial design into the prevention setting.
Collapse
Affiliation(s)
- Kathryn A Gold
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA.
| | | | | | | |
Collapse
|
497
|
Abstract
OBJECTIVE Most incidences of basal cell carcinoma are cured by a number of surgical or non-surgical treatments. However, a few patients have lesions which have metastasized or progressed to an extent that surgery or other treatment options are not possible. The lesions associated with advanced basal cell carcinoma (aBCC) can be disfiguring, affecting patients' psychological state, general quality-of-life (QoL), and potentially life expectancy. The objective of this study was to capture societal utility values for health states related to aBCC, using the time trade-off (TTO) methodology. METHODS Nine health states were developed with input from expert clinicians and literature. States included: complete response (CR), post-surgical, partial response (PR) (with differing sized lesions [2 or 6 cm]), stable disease (SD) (with differing size and number of lesions [2 or 6 cm, or multiple 2 cm]) and progressive disease (PD) (with differing sized lesions [2 or 6 cm]). A representative sample of 100 members of the UK general public participated in the valuation exercise. The TTO method was used to derive utility values based upon subjects' responses to decision scenarios; between living in the health state for 10 years or living in a state of full health for 10-x years. RESULTS Mean utility scores were calculated for each state. The least burdensome state as valued by subjects was CR (mean = 0.94; SD = 0.08), suggesting only a minimal impact on QoL. The state valued as having a greatest impact on QoL was PD, with a 6 cm lesion (mean = 0.67, SD = 0.25). LIMITATIONS AND CONCLUSIONS Not all possible presentations of aBCC were included; the disease is a challenging condition to characterise given its rarity, the nature of the patients affected, and its variable progression. Findings suggest that aBCC is associated with significant burden for individuals, even when their disease is stable or where surgical treatment has been successful.
Collapse
Affiliation(s)
- S L Shingler
- Oxford Outcomes, An ICON plc Company, Oxford, Oxfordshire, UK.
| | | | | | | | | | | |
Collapse
|
498
|
Teperino R, Amann S, Bayer M, McGee SL, Loipetzberger A, Connor T, Jaeger C, Kammerer B, Winter L, Wiche G, Dalgaard K, Selvaraj M, Gaster M, Lee-Young RS, Febbraio MA, Knauf C, Cani PD, Aberger F, Penninger JM, Pospisilik JA, Esterbauer H. Hedgehog partial agonism drives Warburg-like metabolism in muscle and brown fat. Cell 2012; 151:414-26. [PMID: 23063129 DOI: 10.1016/j.cell.2012.09.021] [Citation(s) in RCA: 212] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Revised: 06/18/2012] [Accepted: 09/17/2012] [Indexed: 02/04/2023]
Abstract
Diabetes, obesity, and cancer affect upward of 15% of the world's population. Interestingly, all three diseases juxtapose dysregulated intracellular signaling with altered metabolic state. Exactly which genetic factors define stable metabolic set points in vivo remains poorly understood. Here, we show that hedgehog signaling rewires cellular metabolism. We identify a cilium-dependent Smo-Ca(2+)-Ampk axis that triggers rapid Warburg-like metabolic reprogramming within minutes of activation and is required for proper metabolic selectivity and flexibility. We show that Smo modulators can uncouple the Smo-Ampk axis from canonical signaling and identify cyclopamine as one of a new class of "selective partial agonists," capable of concomitant inhibition of canonical and activation of noncanonical hedgehog signaling. Intriguingly, activation of the Smo-Ampk axis in vivo drives robust insulin-independent glucose uptake in muscle and brown adipose tissue. These data identify multiple noncanonical endpoints that are pivotal for rational design of hedgehog modulators and provide a new therapeutic avenue for obesity and diabetes.
Collapse
Affiliation(s)
- Raffaele Teperino
- Max Planck Institute of Immunobiology and Epigenetics, Stuebeweg 51, D-79108 Freiburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
499
|
Harvey DT, Taylor RS, Itani KM, Loewinger RJ. Mohs micrographic surgery of the eyelid: an overview of anatomy, pathophysiology, and reconstruction options. Dermatol Surg 2012; 39:673-97. [PMID: 23279119 DOI: 10.1111/dsu.12084] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Mohs micrographic surgery (MMS) is the ideal treatment for skin cancer removal. The advantages of MMS in the eyelid area include its high cure rate, tissue-sparing effects, and overall cost effectiveness. OBJECTIVE To review eyelid anatomy, detail ocular tumors that are amenable to MMS, and examine the surgical repair options commonly used in this area. MATERIALS AND METHODS A review of the literature on MMS of the eyelid was performed with specific reference to ocular anatomy, eyelid malignancy types, and surgical reconstruction. CONCLUSION Eyelid function is critical for the maintenance of ocular health and vision. MMS is an ideal skin cancer treatment for the delicate structure of the eyelid, where maximal tissue preservation is critical. There are a plethora of reconstruction options to consider after MMS has been performed in this area. The choice of repair and surgical outcome depend, in part, on the surgeon's knowledge of eyelid anatomy and his or her ability to assess the repair requirements of the post-MMS defect. Dermatologic surgeons can effectively work with other specialists to help ensure that their patients receive a cure with restored ocular function and optimal cosmesis.
Collapse
Affiliation(s)
- David T Harvey
- Department of Dermatology, Dermatologic Surgery, University of Texas Southwestern, Dallas, Texas, USA.
| | | | | | | |
Collapse
|
500
|
Dirix L, Rutten A. Vismodegib: a promising drug in the treatment of basal cell carcinomas. Future Oncol 2012; 8:915-28. [PMID: 22894666 DOI: 10.2217/fon.12.82] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Hedgehog pathway signaling is important for embryonic development; however, inappropriate reactivation of this pathway in adults has been linked to several forms of cancer. Vismodegib (Erivedge™), a first-in-class hedgehog pathway inhibitor, blocks the pathway by inhibiting the activity of the signaling protein SMO. Preclinical studies have provided promising indications of potential tumor-reducing activity in several cancers. Thus far, clinical pharmacology and Phase I studies have demonstrated the unique pharmacokinetic profile of vismodegib, its efficacy in certain types of tumors and a generally tolerable adverse-event profile. A pivotal Phase II clinical trial confirmed the favorable benefit:risk profile of vismodegib in advanced basal cell carcinoma.
Collapse
Affiliation(s)
- Luc Dirix
- Sint-Augustinus Hospital, Oosterveldlaan 24, Antwerp, Belgium.
| | | |
Collapse
|