451
|
Abstract
Hepatic fibrosis is a common consequence in patients with chronic liver damage. To date, no agent has been approved for the treatment of hepatic fibrosis. RNA interference (RNAi) is known to be a powerful tool for post-transcriptional gene silencing and has opened new avenues in gene therapy. The problems of lack of cell specificity in vivo and subsequently the occurrence of side effects has hampered the development of hepatic fibrosis treatment. To overcome these shortcomings, several targeted strategies have been developed, such as hydrodynamics-based approaches, local administration, cell-type-selective ligands and cell-type-specific promoters or enhancers, etc. Here, we provide an overview of targeted strategies for the treatment of hepatic fibrosis, and particularly, targeted RNAi for hepatic fibrosis.
Collapse
Affiliation(s)
- Ping-Fang Hu
- Department of Gastroenterology, Changzheng Hospital, Second Military Medical University, Shanghai 20003, China
| | | |
Collapse
|
452
|
Efficient siRNA delivery to mammalian cells using layered double hydroxide nanoparticles. Biomaterials 2009; 31:1821-9. [PMID: 19922997 DOI: 10.1016/j.biomaterials.2009.10.058] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Accepted: 10/26/2009] [Indexed: 11/23/2022]
Abstract
Although siRNAs have surpassed expectations in experiments to alter gene expression in vitro, the lack of an efficient in vivo delivery system still remains a challenge in siRNA therapeutics development and has been recognized as a major hurdle for clinical applications. In this paper we describe an inorganic nanoparticle-based delivery system that is readily adaptable for in vivo systems. Layered double hydroxide (LDH) nanoparticles, a family of inorganic crystals, tightly bind, protect, and release siRNA molecules and deliver them efficiently to mammalian cells in vitro. The uptake of siRNA-loaded LDH nanoparticles occurs via endocytosis, whereby the nanoparticles dissolve due to the low pH in the endosome, thereby aiding endosomal escape into the cytoplasm. The influence of LDH nanoparticles on cell viability and proliferation is negligible at concentrations <or=0.050 mg mL(-1), and a pronounced down-regulation of protein expression upon LDH mediated siRNA transfection of HEK293T cells is observed.
Collapse
|
453
|
Philipp A, Zhao X, Tarcha P, Wagner E, Zintchenko A. Hydrophobically Modified Oligoethylenimines as Highly Efficient Transfection Agents for siRNA Delivery. Bioconjug Chem 2009; 20:2055-61. [DOI: 10.1021/bc9001536] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Alexander Philipp
- Center for Drug Research, Department of Pharmacy, Pharmaceutical Biology-Biotechnology, and Center for NanoScience (CeNS), Ludwig-Maximilians-University, Butenandstr. 5-13, D-81377 Munich, Germany, and Department of Advanced Drug Delivery, Abbott Laboratories, D-R43D, AP31-2, 200 Abbott Park Road, Abbott Park, North Chicago, Illinois 60064
| | - Xiaobin Zhao
- Center for Drug Research, Department of Pharmacy, Pharmaceutical Biology-Biotechnology, and Center for NanoScience (CeNS), Ludwig-Maximilians-University, Butenandstr. 5-13, D-81377 Munich, Germany, and Department of Advanced Drug Delivery, Abbott Laboratories, D-R43D, AP31-2, 200 Abbott Park Road, Abbott Park, North Chicago, Illinois 60064
| | - Peter Tarcha
- Center for Drug Research, Department of Pharmacy, Pharmaceutical Biology-Biotechnology, and Center for NanoScience (CeNS), Ludwig-Maximilians-University, Butenandstr. 5-13, D-81377 Munich, Germany, and Department of Advanced Drug Delivery, Abbott Laboratories, D-R43D, AP31-2, 200 Abbott Park Road, Abbott Park, North Chicago, Illinois 60064
| | - Ernst Wagner
- Center for Drug Research, Department of Pharmacy, Pharmaceutical Biology-Biotechnology, and Center for NanoScience (CeNS), Ludwig-Maximilians-University, Butenandstr. 5-13, D-81377 Munich, Germany, and Department of Advanced Drug Delivery, Abbott Laboratories, D-R43D, AP31-2, 200 Abbott Park Road, Abbott Park, North Chicago, Illinois 60064
| | - Arkadi Zintchenko
- Center for Drug Research, Department of Pharmacy, Pharmaceutical Biology-Biotechnology, and Center for NanoScience (CeNS), Ludwig-Maximilians-University, Butenandstr. 5-13, D-81377 Munich, Germany, and Department of Advanced Drug Delivery, Abbott Laboratories, D-R43D, AP31-2, 200 Abbott Park Road, Abbott Park, North Chicago, Illinois 60064
| |
Collapse
|
454
|
Boyer C, Bulmus V, Davis TP, Ladmiral V, Liu J, Perrier S. Bioapplications of RAFT Polymerization. Chem Rev 2009; 109:5402-36. [DOI: 10.1021/cr9001403] [Citation(s) in RCA: 829] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Cyrille Boyer
- Centre for Advanced Macromolecular Design (CAMD), School of Chemical Sciences & Engineering, UNSW, Sydney, NSW 2052, Australia, Centre for Advanced Macromolecular Design (CAMD), School of Biotechnology & Biomolecular Sciences, UNSW, Sydney, NSW 2052, Australia, and Key Centre for Polymers & Colloids, School of Chemistry, Building F11, Eastern Avenue, The University of Sydney, NSW 2006, Australia
| | - Volga Bulmus
- Centre for Advanced Macromolecular Design (CAMD), School of Chemical Sciences & Engineering, UNSW, Sydney, NSW 2052, Australia, Centre for Advanced Macromolecular Design (CAMD), School of Biotechnology & Biomolecular Sciences, UNSW, Sydney, NSW 2052, Australia, and Key Centre for Polymers & Colloids, School of Chemistry, Building F11, Eastern Avenue, The University of Sydney, NSW 2006, Australia
| | - Thomas P. Davis
- Centre for Advanced Macromolecular Design (CAMD), School of Chemical Sciences & Engineering, UNSW, Sydney, NSW 2052, Australia, Centre for Advanced Macromolecular Design (CAMD), School of Biotechnology & Biomolecular Sciences, UNSW, Sydney, NSW 2052, Australia, and Key Centre for Polymers & Colloids, School of Chemistry, Building F11, Eastern Avenue, The University of Sydney, NSW 2006, Australia
| | - Vincent Ladmiral
- Centre for Advanced Macromolecular Design (CAMD), School of Chemical Sciences & Engineering, UNSW, Sydney, NSW 2052, Australia, Centre for Advanced Macromolecular Design (CAMD), School of Biotechnology & Biomolecular Sciences, UNSW, Sydney, NSW 2052, Australia, and Key Centre for Polymers & Colloids, School of Chemistry, Building F11, Eastern Avenue, The University of Sydney, NSW 2006, Australia
| | - Jingquan Liu
- Centre for Advanced Macromolecular Design (CAMD), School of Chemical Sciences & Engineering, UNSW, Sydney, NSW 2052, Australia, Centre for Advanced Macromolecular Design (CAMD), School of Biotechnology & Biomolecular Sciences, UNSW, Sydney, NSW 2052, Australia, and Key Centre for Polymers & Colloids, School of Chemistry, Building F11, Eastern Avenue, The University of Sydney, NSW 2006, Australia
| | - Sébastien Perrier
- Centre for Advanced Macromolecular Design (CAMD), School of Chemical Sciences & Engineering, UNSW, Sydney, NSW 2052, Australia, Centre for Advanced Macromolecular Design (CAMD), School of Biotechnology & Biomolecular Sciences, UNSW, Sydney, NSW 2052, Australia, and Key Centre for Polymers & Colloids, School of Chemistry, Building F11, Eastern Avenue, The University of Sydney, NSW 2006, Australia
| |
Collapse
|
455
|
Evaluation of efficacy, biodistribution, and inflammation for a potent siRNA nanoparticle: effect of dexamethasone co-treatment. Mol Ther 2009; 18:171-80. [PMID: 19738601 DOI: 10.1038/mt.2009.208] [Citation(s) in RCA: 150] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Despite recent progress, systemic delivery remains the major hurdle for development of safe and effective small inhibitory RNA (siRNA)-based therapeutics. Encapsulation of siRNA into liposomes is a promising option to overcome obstacles such as low stability in serum and inefficient internalization by target cells. However, a major liability of liposomes is the potential to induce an acute inflammatory response, thereby increasing the risk of numerous adverse effects. In this study, we characterized a liposomal siRNA delivery vehicle, LNP201, which is capable of silencing an mRNA target in mouse liver by over 80%. The biodistribution profile, efficacy after single and multiple doses, mechanism of action, and inflammatory toxicity are characterized for LNP201. Furthermore, we demonstrate that the glucocorticoid receptor (GR) agonist dexamethasone (Dex) inhibits LNP201-induced cytokine release, inflammatory gene induction, and mitogen-activated protein kinase (MAPK) phosphorylation in multiple tissues. These data present a possible clinical strategy for increasing the safety profile of siRNA-based drugs while maintaining the potency of gene silencing.
Collapse
|
456
|
Dassie JP, Liu XY, Thomas GS, Whitaker RM, Thiel KW, Stockdale KR, Meyerholz DK, McCaffrey AP, McNamara JO, Giangrande PH. Systemic administration of optimized aptamer-siRNA chimeras promotes regression of PSMA-expressing tumors. Nat Biotechnol 2009; 27:839-49. [PMID: 19701187 PMCID: PMC2791695 DOI: 10.1038/nbt.1560] [Citation(s) in RCA: 432] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2009] [Accepted: 07/31/2009] [Indexed: 01/23/2023]
Abstract
Prostate cancer cells expressing prostate-specific membrane antigen (PSMA) have been targeted with RNA aptamer-small interfering (si)RNA chimeras, but therapeutic efficacy in vivo was demonstrated only with intratumoral injection. Clinical translation of this approach will require chimeras that are effective when administered systemically and are amenable to chemical synthesis. To these ends, we enhanced the silencing activity and specificity of aptamer-siRNA chimeras by incorporating modifications that enable more efficient processing of the siRNA by the cellular machinery. These included adding 2-nucleotide 3'-overhangs and optimizing the thermodynamic profile and structure of the duplex to favor processing of the siRNA guide strand. We also truncated the aptamer portion of the chimeras to facilitate large-scale chemical synthesis. The optimized chimeras resulted in pronounced regression of PSMA-expressing tumors in athymic mice after systemic administration. Anti-tumor activity was further enhanced by appending a polyethylene glycol moiety, which increased the chimeras' circulating half-life.
Collapse
Affiliation(s)
- Justin P Dassie
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
457
|
Watanabe K, Harada-Shiba M, Suzuki A, Gokuden R, Kurihara R, Sugao Y, Mori T, Katayama Y, Niidome T. In vivo siRNA delivery with dendritic poly(L-lysine) for the treatment of hypercholesterolemia. MOLECULAR BIOSYSTEMS 2009; 5:1306-10. [PMID: 19823746 DOI: 10.1039/b900880b] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Intravenous delivery of apolipoprotein B-specific siRNA with a sixth-generation of dendritic poly(L-lysine) (KG6) resulted in siRNA-mediated knockdown of ApoB in healthy C57BL/6 mice without hepatotoxicity, and with a significant reduction of serum low-density lipoprotein cholesterol in apolipoprotein E-deficient mice.
Collapse
Affiliation(s)
- Kazuto Watanabe
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
458
|
Longmuir KJ, Haynes SM, Baratta JL, Kasabwalla N, Robertson RT. Liposomal delivery of doxorubicin to hepatocytes in vivo by targeting heparan sulfate. Int J Pharm 2009; 382:222-33. [PMID: 19664697 DOI: 10.1016/j.ijpharm.2009.07.030] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Revised: 07/25/2009] [Accepted: 07/28/2009] [Indexed: 11/27/2022]
Abstract
Previous work demonstrated that liposomes, containing an amino acid sequence that binds to hepatic heparan sulfate glycosaminoglycan, show effective targeting to liver hepatocytes. These liposomes were tested to determine whether they can deliver doxorubicin selectively to liver and hepatocytes in vivo. Fluid-phase liposomes contained a lipid-anchored 19-amino acid glycosaminoglycan targeting peptide. Liposomes were loaded with doxorubicin and were non-leaky in the presence of serum. After intravenous administration to mice, organs were harvested and the doxorubicin content extracted and measured by fluorescence intensity and by fluorescence microscopy. The liposomal doxorubicin was recovered almost entirely from liver, with only trace amounts detectable in heart, lung, and kidney. Fluorescence microscopy demonstrated doxorubicin preferentially in hepatocytes, also in non-parenchymal cells of the liver, but not in cells of heart, lung or kidney. The doxorubicin was localized within liver cell nuclei within 5 min after intravenous injection. These studies demonstrated that liposomal doxorubicin can be effectively delivered to hepatocytes by targeting the heparan sulfate glycosaminoglycan of liver tissue. With the composition described here, the doxorubicin was rapidly released from the liposomes without the need for an externally supplied stimulus.
Collapse
Affiliation(s)
- Kenneth J Longmuir
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA 92697, USA
| | | | | | | | | |
Collapse
|
459
|
Li J, Liang Z. The consideration of synthetic short interfering RNA for therapeutic use. Basic Clin Pharmacol Toxicol 2009; 106:22-9. [PMID: 19663819 DOI: 10.1111/j.1742-7843.2009.00464.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Small RNA molecules can act as regulators of post-transcriptional gene silencing and can target any given protein via the RNA interference pathway. This leads to the high expectation of small interference RNA (siRNA) as a therapeutic platform. Many companies and organisations are active in this development, which consequently forces siRNA's pharmacokinetic studies because pharmacokinetics plays an important role in elucidating the pharmacodynamic and toxicological mechanism of test articles. In particular, pharmacokinetics is mandatory in investigational new drug application in many countries. Some pre-clinical and clinical pharmacokinetic results have already been published and the fate of siRNA compounds in biological matrices has been explored in depth. The elucidation of the siRNA's metabolism improves the rational design of siRNA for disease control. This review focuses on the study of synthetic siRNA pharmacokinetics, the challenges of siRNA as a therapeutic agent and the strategies involved for improving siRNA bioavailability from the view of siRNA metabolism.
Collapse
Affiliation(s)
- Jun Li
- Laboratory of Nucleic Acid Technology, Institute of Molecular Medicine, PKU, Beijing, China.
| | | |
Collapse
|
460
|
Shrey K, Suchit A, Nishant M, Vibha R. RNA interference: Emerging diagnostics and therapeutics tool. Biochem Biophys Res Commun 2009; 386:273-7. [DOI: 10.1016/j.bbrc.2009.06.018] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2009] [Accepted: 06/05/2009] [Indexed: 11/15/2022]
|
461
|
Schipper HM, Song W, Zukor H, Hascalovici JR, Zeligman D. Heme oxygenase-1 and neurodegeneration: expanding frontiers of engagement. J Neurochem 2009; 110:469-85. [DOI: 10.1111/j.1471-4159.2009.06160.x] [Citation(s) in RCA: 205] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
462
|
Shi ML, Zhao ZH, Wang Y, Chen HP. [In vivo delivery of siRNA]. YI CHUAN = HEREDITAS 2009; 31:683-688. [PMID: 19586872 DOI: 10.3724/sp.j.1005.2009.00683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
RNA interference (RNAi) is a mechanism of posttranscriptional gene silencing mediated by small interfering RNA (siRNA). The ability of synthetic siRNA to silence genes in vivo has made it well suited as therapeutic drug, but the instability and polarity of siRNA and the complexity of in vivo circumstances retarded rapid development of RNAi-based therapies. In this review, a summary of the advances on in vivo siRNA delivery is presented and discussed.
Collapse
Affiliation(s)
- Ming-Lei Shi
- Beijing Institute of Biotechnology, Beijing 100071, China.
| | | | | | | |
Collapse
|
463
|
Gondi CS, Rao JS. Concepts in in vivo siRNA delivery for cancer therapy. J Cell Physiol 2009; 220:285-91. [PMID: 19391103 DOI: 10.1002/jcp.21790] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In vivo gene silencing using RNAi plays an important role in target validation and is advancing towards the development of RNAi-based therapeutics. RNAs were thought to have just two broad functions in cells as messenger RNAs (mRNAs) and ribosomal RNAs, but recently the relevance of microRNAs is becoming more clearly understood. mRNA molecules transmit information between DNA and protein and, as such, are vital intermediaries for gene expression. Ribosomal and transfer RNAs have structural, catalytic, and information-decoding roles in the process of protein synthesis, whereas microRNAs are regulators of gene expression. This review presents the early and intriguing successes of using siRNAs for in vivo gene silencing and its use as a possible cancer therapeutics.
Collapse
Affiliation(s)
- Christopher S Gondi
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, IL 61605, USA
| | | |
Collapse
|
464
|
Lee JS, Green JJ, Love KT, Sunshine J, Langer R, Anderson DG. Gold, poly(beta-amino ester) nanoparticles for small interfering RNA delivery. NANO LETTERS 2009; 9:2402-6. [PMID: 19422265 PMCID: PMC2728206 DOI: 10.1021/nl9009793] [Citation(s) in RCA: 226] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The safe and effective delivery of RNA therapeutics remains the major barrier to their broad clinical application. Here we develop a new nanoparticulate delivery system based on inorganic particles and biodegradable polycations. First, gold nanoparticles were modified with the hydrophilic polymer poly(ethylene glycol) (PEG), and then small interfering RNA (siRNA) was conjugated to the nanoparticles via biodegradable disulfide linkages, with approximately 30 strands of siRNA per nanoparticle. The particles were then coated with a library of end-modified poly(beta-amino ester)s (PBAEs), previously identified as capable of facilitating intracellular DNA delivery. Nanoparticulate formulations developed here facilitate high levels of in vitro siRNA delivery, facilitating delivery as good or better than the commercially available lipid reagent, Lipofectamine 2000.
Collapse
|
465
|
Lee JH, Lee K, Moon S, Lee Y, Park T, Cheon J. All-in-One Target-Cell-Specific Magnetic Nanoparticles for Simultaneous Molecular Imaging and siRNA Delivery. Angew Chem Int Ed Engl 2009. [DOI: 10.1002/ange.200805998] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
466
|
Lee JH, Lee K, Moon S, Lee Y, Park T, Cheon J. All-in-One Target-Cell-Specific Magnetic Nanoparticles for Simultaneous Molecular Imaging and siRNA Delivery. Angew Chem Int Ed Engl 2009; 48:4174-9. [DOI: 10.1002/anie.200805998] [Citation(s) in RCA: 302] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
467
|
Buyens K, Demeester J, De Smedt SS, Sanders NN. Elucidating the encapsulation of short interfering RNA in PEGylated cationic liposomes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2009; 25:4886-4891. [PMID: 19341292 DOI: 10.1021/la803973p] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Short interfering RNA (siRNA) holds great potential for the treatment of hard-to-cure diseases. One of the major challenges to translate siRNA into drugs is its efficient delivery to its site-of-action, namely the cytoplasm of the target cells. Cationic liposomes have been shown to do the trick, but their short circulation lifetime and potential aggregation in blood limit their applicability for intravenous administration. These hurdles might be overcome by attaching poly(ethylene glycol) (PEG) at the surface of the cationic liposomes through the use of PEGylated lipids. However, this paper reveals that the classical mixing of siRNA with preformed PEGylated cationic liposomes, as frequently done to load PEGylated liposomes with siRNA, prevents an efficient encapsulation of the siRNA in the liposomes. We show that only a minor fraction of the siRNA becomes encapsulated in the core of the PEGylated liposomes, whereas a major part of the siRNA becomes bound at the liposome's outer surface. In serum, the surface-bound siRNA is immediately released and becomes degraded by serum nucleases. By contrast, hydrating a lipid film (containing PEGylated and cationic lipids) directly with a concentrated solution of siRNA (so-called HYDRA protocol), instead of mixing the siRNA with preformed PEGylated liposomes, encapsulates almost 50% of the siRNA in the core of the PEGylated liposomes, which is the maximal encapsulation efficiency for this type of complexes. We show that the siRNA encapsulated in the core of the thus obtained "HYDRA siPLexes" remains fully encapsulated upon dispersing the PEGylated liposomes in human serum.
Collapse
Affiliation(s)
- Kevin Buyens
- Ghent Research Centre on Nanopharmacy, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Harelbekestraat 72, 9000 Gent, Belgium
| | | | | | | |
Collapse
|
468
|
Li L, Shen Y. Overcoming obstacles to develop effective and safe siRNA therapeutics. Expert Opin Biol Ther 2009; 9:609-19. [DOI: 10.1517/14712590902911420] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Leiming Li
- siRNA Therapeutics, Abbott Laboratories, 100 Abbott Park Road, Abbott Park, IL 60031, USA
| | - Yu Shen
- siRNA Therapeutics, Abbott Laboratories, 100 Abbott Park Road, Abbott Park, IL 60031, USA
| |
Collapse
|
469
|
Kasuya T, Kuroda S. Nanoparticles for human liver-specific drug and gene delivery systems: in vitro and in vivo advances. Expert Opin Drug Deliv 2009; 6:39-52. [PMID: 19236207 DOI: 10.1517/17425240802622096] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A wide variety of nanoparticles (NPs) that can deliver incorporated therapeutic materials such as compounds, proteins, genes and siRNAs to the human liver have been developed to treat liver-related diseases. This review describes NP-based drug and gene delivery systems such as liposomes (including lipoplex), polymer micelles, polymers (including polyplex) and viral vectors. It focuses upon the modification of these NPs to enhance liver specificity or delivery efficiency in vitro and in vivo. We discuss recent advances in drug and gene delivery systems specific to the human liver utilizing bio-nanocapsules comprising hepatitis B virus (HBV) envelope L protein, which has a pivotal role in HBV infection. These NP-based medicines may offer novel strategies for the treatment of liver-related diseases and contribute to the development of nanomedicines targeting other tissues.
Collapse
Affiliation(s)
- Takeshi Kasuya
- Osaka University, Institute of Scientific and Industrial Research, Department of Structural Molecular Biology, Ibaraki, Japan
| | | |
Collapse
|
470
|
Meyer M, Dohmen C, Philipp A, Kiener D, Maiwald G, Scheu C, Ogris M, Wagner E. Synthesis and Biological Evaluation of a Bioresponsive and Endosomolytic siRNA−Polymer Conjugate. Mol Pharm 2009; 6:752-62. [DOI: 10.1021/mp9000124] [Citation(s) in RCA: 151] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Martin Meyer
- Pharmaceutical Biotechnology, Center for Drug Research, Department of Pharmacy, Department of Chemistry and Biochemistry, and Center for Nanoscience, Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, 81377 Munich, Germany
| | - Christian Dohmen
- Pharmaceutical Biotechnology, Center for Drug Research, Department of Pharmacy, Department of Chemistry and Biochemistry, and Center for Nanoscience, Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, 81377 Munich, Germany
| | - Alexander Philipp
- Pharmaceutical Biotechnology, Center for Drug Research, Department of Pharmacy, Department of Chemistry and Biochemistry, and Center for Nanoscience, Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, 81377 Munich, Germany
| | - Daniel Kiener
- Pharmaceutical Biotechnology, Center for Drug Research, Department of Pharmacy, Department of Chemistry and Biochemistry, and Center for Nanoscience, Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, 81377 Munich, Germany
| | - Gelja Maiwald
- Pharmaceutical Biotechnology, Center for Drug Research, Department of Pharmacy, Department of Chemistry and Biochemistry, and Center for Nanoscience, Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, 81377 Munich, Germany
| | - Christina Scheu
- Pharmaceutical Biotechnology, Center for Drug Research, Department of Pharmacy, Department of Chemistry and Biochemistry, and Center for Nanoscience, Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, 81377 Munich, Germany
| | - Manfred Ogris
- Pharmaceutical Biotechnology, Center for Drug Research, Department of Pharmacy, Department of Chemistry and Biochemistry, and Center for Nanoscience, Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, 81377 Munich, Germany
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Center for Drug Research, Department of Pharmacy, Department of Chemistry and Biochemistry, and Center for Nanoscience, Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, 81377 Munich, Germany
| |
Collapse
|
471
|
Jere D, Arote R, Jiang HL, Kim YK, Cho MH, Cho CS. Bioreducible polymers for efficient gene and siRNA delivery. Biomed Mater 2009; 4:025020. [DOI: 10.1088/1748-6041/4/2/025020] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
472
|
Amphoteric liposomes enable systemic antigen-presenting cell-directed delivery of CD40 antisense and are therapeutically effective in experimental arthritis. ACTA ACUST UNITED AC 2009; 60:994-1005. [DOI: 10.1002/art.24434] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
473
|
Subcellular neuropharmacology: the importance of intracellular targeting. Trends Pharmacol Sci 2009; 30:203-11. [DOI: 10.1016/j.tips.2009.01.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2008] [Revised: 01/09/2009] [Accepted: 01/21/2009] [Indexed: 01/03/2023]
|
474
|
Abstract
Antisense oligonucleotides as a therapeutic platform have been slow to progress since the approval of the first antisense drug in 1998. Recently, there have been several examples of convincing antisense interventions in animal models and promising clinical trial data. This review considers the factors determining the success of antisense oligonucleotides as therapeutic agents. In order to produce target knockdown after systemic delivery, antisense oligonucleotides must avoid nuclease degradation, reticuloendothelial-system uptake and rapid renal excretion, and extravasate to the target cell type outside the vasculature. They then must enter the target cell, and escape the endosome-lysosome pathway so as to be free to interact with the target mRNA. We consider the significance of these limiting factors based on the literature and our own experience using systemic administration of antisense oligonucleotides.
Collapse
|
475
|
Mammalian cell penetration, siRNA transfection, and DNA transfection by supercharged proteins. Proc Natl Acad Sci U S A 2009; 106:6111-6. [PMID: 19307578 DOI: 10.1073/pnas.0807883106] [Citation(s) in RCA: 216] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nucleic acid reagents, including small interfering RNA (siRNA) and plasmid DNA, are important tools for the study of mammalian cells and are promising starting points for the development of new therapeutic agents. Realizing their full potential, however, requires nucleic acid delivery reagents that are simple to prepare, effective across many mammalian cell lines, and nontoxic. We recently described the extensive surface mutagenesis of proteins in a manner that dramatically increases their net charge. Here, we report that superpositively charged green fluorescent proteins, including a variant with a theoretical net charge of +36 (+36 GFP), can penetrate a variety of mammalian cell lines. Internalization of +36 GFP depends on nonspecific electrostatic interactions with sulfated proteoglycans present on the surface of most mammalian cells. When +36 GFP is mixed with siRNA, protein-siRNA complexes approximately 1.7 mum in diameter are formed. Addition of these complexes to five mammalian cell lines, including four that are resistant to cationic lipid-mediated siRNA transfection, results in potent siRNA delivery. In four of these five cell lines, siRNA transfected by +36 GFP suppresses target gene expression. We show that +36 GFP is resistant to proteolysis, is stable in the presence of serum, and extends the serum half-life of siRNA and plasmid DNA with which it is complexed. A variant of +36 GFP can mediate DNA transfection, enabling plasmid-based gene expression. These findings indicate that superpositively charged proteins can overcome some of the key limitations of currently used transfection agents.
Collapse
|
476
|
Akinc A, Goldberg M, Qin J, Dorkin JR, Gamba-Vitalo C, Maier M, Jayaprakash KN, Jayaraman M, Rajeev KG, Manoharan M, Koteliansky V, Röhl I, Leshchiner ES, Langer R, Anderson DG. Development of lipidoid-siRNA formulations for systemic delivery to the liver. Mol Ther 2009; 17:872-9. [PMID: 19259063 DOI: 10.1038/mt.2009.36] [Citation(s) in RCA: 271] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
RNA interference therapeutics afford the potential to silence target gene expression specifically, thereby blocking production of disease-causing proteins. The development of safe and effective systemic small interfering RNA (siRNA) delivery systems is of central importance to the therapeutic application of siRNA. Lipid and lipid-like materials are currently the most well-studied siRNA delivery systems for liver delivery, having been utilized in several animal models, including nonhuman primates. Here, we describe the development of a multicomponent, systemic siRNA delivery system, based on the novel lipid-like material 98N(12)-5(1). We show that in vivo delivery efficacy is affected by many parameters, including the formulation composition, nature of particle PEGylation, degree of drug loading, and biophysical parameters such as particle size. In particular, small changes in the anchor chain length of poly(ethylene glycol) (PEG) lipids can result in significant effects on in vivo efficacy. The lead formulation developed is liver targeted (>90% injected dose distributes to liver) and can induce fully reversible, long-duration gene silencing without loss of activity following repeat administration.
Collapse
Affiliation(s)
- Akin Akinc
- Alnylam Pharmaceuticals, Inc., Cambridge, Massachusetts 02142, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
477
|
Castanotto D, Rossi JJ. The promises and pitfalls of RNA-interference-based therapeutics. Nature 2009; 457:426-33. [PMID: 19158789 DOI: 10.1038/nature07758] [Citation(s) in RCA: 936] [Impact Index Per Article: 58.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The discovery that gene expression can be controlled by the Watson-Crick base-pairing of small RNAs with messenger RNAs containing complementary sequence - a process known as RNA interference - has markedly advanced our understanding of eukaryotic gene regulation and function. The ability of short RNA sequences to modulate gene expression has provided a powerful tool with which to study gene function and is set to revolutionize the treatment of disease. Remarkably, despite being just one decade from its discovery, the phenomenon is already being used therapeutically in human clinical trials, and biotechnology companies that focus on RNA-interference-based therapeutics are already publicly traded.
Collapse
Affiliation(s)
- Daniela Castanotto
- Department of Molecular Biology and City of Hope Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, Duarte, California 91010, USA
| | | |
Collapse
|
478
|
Castanotto D, Rossi JJ. The promises and pitfalls of RNA-interference-based therapeutics. Nature 2009. [PMID: 19158789 DOI: 10.1038/nature07758.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The discovery that gene expression can be controlled by the Watson-Crick base-pairing of small RNAs with messenger RNAs containing complementary sequence - a process known as RNA interference - has markedly advanced our understanding of eukaryotic gene regulation and function. The ability of short RNA sequences to modulate gene expression has provided a powerful tool with which to study gene function and is set to revolutionize the treatment of disease. Remarkably, despite being just one decade from its discovery, the phenomenon is already being used therapeutically in human clinical trials, and biotechnology companies that focus on RNA-interference-based therapeutics are already publicly traded.
Collapse
Affiliation(s)
- Daniela Castanotto
- Department of Molecular Biology and City of Hope Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, Duarte, California 91010, USA
| | | |
Collapse
|
479
|
Chen Y, Huang L. Tumor-targeted delivery of siRNA by non-viral vector: safe and effective cancer therapy. Expert Opin Drug Deliv 2009; 5:1301-11. [PMID: 19040393 DOI: 10.1517/17425240802568505] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
RNA interference technology has been developed as a potential therapeutic agent for many indications, including cancer. Silencing a specific oncogene in tumor cells brings about cell death both in vitro and in vivo. However, there is a great need for powerful delivery strategies to enhance the therapeutic effect of small interfering RNA (siRNA). This review summarizes different signaling pathways inhibited by siRNA and the advantages of targeted siRNA as a delivery system.
Collapse
Affiliation(s)
- Yunching Chen
- University of North Carolina at Chapel Hill, Eshelman School of Pharmacy, Division of Molecular Pharmaceutics, Campus Box 7360 Kerr Hall, Chapel Hill, NC 27599, USA
| | | |
Collapse
|
480
|
Whitehead KA, Langer R, Anderson DG. Knocking down barriers: advances in siRNA delivery. Nat Rev Drug Discov 2009. [PMID: 19180106 DOI: 10.1038/nrd3182] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In the 10 years that have passed since the Nobel prize-winning discovery of RNA interference (RNAi), billions of dollars have been invested in the therapeutic application of gene silencing in humans. Today, there are promising data from ongoing clinical trials for the treatment of age-related macular degeneration and respiratory syncytial virus. Despite these early successes, however, the widespread use of RNAi therapeutics for disease prevention and treatment requires the development of clinically suitable, safe and effective drug delivery vehicles. Here, we provide an update on the progress of RNAi therapeutics and highlight novel synthetic materials for the encapsulation and intracellular delivery of nucleic acids.
Collapse
Affiliation(s)
- Kathryn A Whitehead
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | | | | |
Collapse
|
481
|
Abstract
RNA interference (RNAi) is a fundamental pathway in eukaryotic cells by which sequence-specific small interfering RNA (siRNA) is able to silence genes through the destruction of complementary mRNA. RNAi is an important therapeutic tool that can be used to silence aberrant endogenous genes or to knockdown genes essential to the proliferation of infectious organisms. Delivery remains the central challenge to the therapeutic application of RNAi technology. Before siRNA can take effect in the cytoplasm of a target cell, it must be transported through the body to the target site without undergoing clearance or degradation. Currently, the most effective synthetic, non-viral delivery agents of siRNA are lipids, lipid-like materials and polymers. Various cationic agents including stable nucleic acid–lipid particles, lipidoids, cyclodextrin polymers and polyethyleneimine polymers have been used to achieve the successful systemic delivery of siRNA in mammals without inducing significant toxicity. Direct conjugation of delivery agents to siRNA can facilitate delivery. For example, cholesterol-modified siRNA enables targeting to the liver. RNAi therapeutics have progressed to the clinic, where studies are being conducted to determine siRNA efficacy in treating several diseases, including age-related macular degeneration and respiratory syncytial virus. Moving forward, it will be important to pay close attention to the potential nonspecific immunostimulatory effects of siRNA. Modifications to siRNA can be used to minimize stimulation of the immune system, and an increased emphasis must be placed on performing proper controls to ensure that therapeutic effects are sequence-specific.
RNA interference holds vast potential as a therapeutic strategy for both disease prevention and treatment, but its use has so far been hampered by a lack of safe and effective delivery techniques. In their Review, Anderson and colleagues discuss the challenges associated with small interfering RNA delivery and highlight promising novel synthetic delivery agents. In the 10 years that have passed since the Nobel prize-winning discovery of RNA interference (RNAi), billions of dollars have been invested in the therapeutic application of gene silencing in humans. Today, there are promising data from ongoing clinical trials for the treatment of age-related macular degeneration and respiratory syncytial virus. Despite these early successes, however, the widespread use of RNAi therapeutics for disease prevention and treatment requires the development of clinically suitable, safe and effective drug delivery vehicles. Here, we provide an update on the progress of RNAi therapeutics and highlight novel synthetic materials for the encapsulation and intracellular delivery of nucleic acids.
Collapse
Affiliation(s)
- Kathryn A Whitehead
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | | | | |
Collapse
|
482
|
Valade D, Boyer C, Davis TP, Bulmus V. Synthesis of siRNA Polyplexes Adopting a Combination of RAFT Polymerization and Thiol-ene Chemistry. Aust J Chem 2009. [DOI: 10.1071/ch09208] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Block copolymers of allyl methacrylate and N-(2-hydroxypropyl)methacrylamide (HPMA) with different block lengths have been synthesized by reversible addition–fragmentation chain transfer polymerization. Allyl groups were modified with cysteamine, via a thiol-ene photoreaction, with a high efficiency (~100%) as evidenced by NMR spectroscopy, yielding cationic copolymers of HPMA. Polyelectrolyte complexes of small interfering RNAs (siRNA) and the cationic block copolymers were then formed at an N/P ratio between 1 and 4 depending on the block length of the copolymers. Increasing the length of the hydrophilic block was found to decrease the efficiency of siRNA complexation. The hydrodynamic diameter of the polyplexes in 130 mM buffer solution was less than 100 nm.
Collapse
|
483
|
Abstract
The transcription factor glioma-associated antigen-1 (Gli-1) mediates activation of the sonic hedgehog (Shh) pathway, a process that precedes the transformation of tissue stem cells into cancerous stem cells and that is involved in early and late epithelial tumorigenesis. Hypothesizing that targeting the 3'-untranslated region (3'-UTR) of Gli-1 mRNA would effectively inhibit epithelial tumor cell proliferation, we evaluated several complementary miRNA molecules for their ability to do so. The synthetic miRNAs and corresponding duplex/small temporal RNAs were introduced as 3-nucleotide (nt) loops into GU-rich portions of the 3'UTR Gli-1 sequence. One particular miRNA (miRNA Gli-1-3548) and its corresponding duplex (Duplex 3548) significantly inhibited proliferation of Gli-1+ ovarian (SK-OV-3) and pancreatic (MiaPaCa-2) tumor cells by delaying cell division and activating late apoptosis in MiaPaCa-2 cells. Here, we describe the design of effective miRNA sequences and their applications as anti-gene agents.
Collapse
|
484
|
Lee H, Kim SI, Shin D, Yoon Y, Choi TH, Cheon GJ, Kim M. Hepatic siRNA delivery using recombinant human apolipoprotein A-I in mice. Biochem Biophys Res Commun 2008; 378:192-6. [PMID: 19017527 DOI: 10.1016/j.bbrc.2008.11.029] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2008] [Accepted: 11/04/2008] [Indexed: 10/21/2022]
Abstract
Apolipoprotein A-I (apo A-I), the major protein component of high density lipoprotein (HDL), plays a key role in reverse cholesterol transport from peripheral tissues to liver or steroidogenic organs. Class B, type 1 scavenger receptor (SR-BI) is abundantly expressed in these target tissues and recognizes apo A-I of HDL for selective cholesteryl ester uptake. Recently, we reported the liver-targeting potential of plasma-derived apo A-I and the efficient delivery of therapeutic small interfering RNAs (siRNA) assembled with cationic liposome and apo A-I. In this study, we expressed and purified recombinant human apo A-I (rhapo A-I), low endotoxin grade, from an Escherichia coli expression system. The liver-targeting property of rhapo A-I was compared to that of plasma-derived apo A-I. Using a hepatitis C virus mouse model, intravenous administration of virus-specific siRNA with liposome and rhapo A-I significantly inhibited viral protein expression, demonstrating great promise for its use in clinical applications.
Collapse
Affiliation(s)
- Hyeon Lee
- Virus Research Laboratory, Mogam Biotechnology Research Institute, 341 Bojeong-dong, Giheung-gu, Yongin-si, Gyeonggi-do 449-913, South Korea
| | | | | | | | | | | | | |
Collapse
|
485
|
Syapin PJ. Regulation of haeme oxygenase-1 for treatment of neuroinflammation and brain disorders. Br J Pharmacol 2008; 155:623-40. [PMID: 18794892 DOI: 10.1038/bjp.2008.342] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Injury to the CNS elicits a host defense reaction that utilizes astrocytes, microglia, neurons and oligodendrocytes. Neuroinflammation is a major host defense mechanism designed to restore normal structure and function after CNS insult, but like other forms of inflammation, chronic neuroinflammation may contribute to pathogenesis. The inducible haeme oxygenase isoform, haeme oxygenase-1 (HO-1), is a phase 2 enzyme upregulated in response to electrophilic xenobiotics, oxidative stress, cellular injury and disease. There is emerging evidence that HO-1 expression helps mediate the resolution of inflammation, including neuroinflammation. Whether this is solely because of the catabolism of haeme or includes additional mechanisms is unclear. This review provides a brief background on the molecular biology and biochemistry of haeme oxygenases and the actions of haeme, bilirubin, iron and carbon monoxide in the CNS. It then presents our current state of knowledge regarding HO-1 expression in the CNS, regulation of HO-1 induction in neural cells and discusses the prospect of pharmacological manipulation of HO-1 as therapy for CNS disorders. Because of recognized species and cellular differences in HO-1 regulation, a major objective of this review is to draw attention to areas where gaps exist in the experimental record regarding regulation of HO-1 in neural cells. The results indicate the HO-1 system to be an important therapeutic target in CNS disorders, but our understanding of HO-1 expression in human neural cells is severely lacking.
Collapse
Affiliation(s)
- P J Syapin
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430-6592, USA.
| |
Collapse
|
486
|
Knorr V, Ogris M, Wagner E. An acid sensitive ketal-based polyethylene glycol-oligoethylenimine copolymer mediates improved transfection efficiency at reduced toxicity. Pharm Res 2008; 25:2937-45. [PMID: 18751876 DOI: 10.1007/s11095-008-9700-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2008] [Accepted: 07/30/2008] [Indexed: 11/26/2022]
Abstract
PURPOSE Dynamic PEG-polycation copolymers that release PEG and degrade into small fragments after cell entry might present efficient and biocompatible gene carriers. METHODS PEG-OEI-MK was synthesized by copolymerization of 5 kDa polyethyleneglycol (PEG) and 800 Da oligoethylenimines through acid-degradable acetone-bis-(N-maleimidoethyl)ketal linkers (MK). To evaluate any benefit of the reversible over stable linkage, also the corresponding pH-stable analog, PEG-OEI-BM, was synthesized via ether linkages. Luciferase and GFP expression plasmids were used for transfections, in vivo biocompatibility was evaluated by intravenous application of polymers in Balb/c mice. RESULTS PEG-OEI-MK showed efficient DNA binding as analyzed by ethidium bromide exclusion, resulting in formation of polyplexes with sizes around 100 nm and surface charges of below 5 mV zeta potential. This surface shielding of PEG-OEI-MK polyplexes remained stable at neutral pH 7.4, while polyplexes deshielded and aggregated at pH 5 within 15-30 min. Cell culture experiments demonstrated reduced polymer toxicity compared to the non-PEGylated OEI-MK. Transfection experiments demonstrated reduced gene expression of PEG-OEI-BM compared with the non-PEGylated analog OEI-BM, whereas the pH-reversible polymer PEG-OEI-MK mediated a significant increased transfection efficiency over the non-PEGylated OEI-MK. CONCLUSIONS PEG-OEI-MK mediated the highest gene transfer at lowest cytotoxicity levels and also best in vivo biocompatibility.
Collapse
Affiliation(s)
- Veronika Knorr
- Pharmaceutical Biology-Biotechnology, Center for Drug Research and Center for NanoScience, Ludwig-Maximilians-Universität München, Munich, Germany
| | | | | |
Collapse
|
487
|
Bogdanov AA. Merging molecular imaging and RNA interference: early experience in live animals. J Cell Biochem 2008; 104:1113-23. [PMID: 18247325 DOI: 10.1002/jcb.21689] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The rapid development of non-invasive imaging techniques and imaging reporters coincided with the enthusiastic response that the introduction of RNA interference (RNAi) techniques created in the research community. Imaging in experimental animals provides quantitative or semi-quantitative information regarding the biodistribution of small interfering RNAs and the levels of gene interference (i.e., knockdown of the target mRNA) in living animals. In this review we give a brief summary of the first imaging findings that have potential for accelerating the development and testing of new approaches that explore RNAi as a method for achieving loss-of-function effects in vivo and as a promising therapeutic tool.
Collapse
Affiliation(s)
- Alexei A Bogdanov
- Department of Radiology, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA.
| |
Collapse
|
488
|
Raemdonck K, Vandenbroucke RE, Demeester J, Sanders NN, De Smedt SC. Maintaining the silence: reflections on long-term RNAi. Drug Discov Today 2008; 13:917-31. [PMID: 18620073 PMCID: PMC7108305 DOI: 10.1016/j.drudis.2008.06.008] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Revised: 05/16/2008] [Accepted: 06/06/2008] [Indexed: 10/26/2022]
Abstract
Since the demonstration of RNA interference (RNAi) in mammalian cells, considerable research and financial effort has gone towards implementing RNAi as a viable therapeutic platform. RNAi is, without doubt, the most promising strategy for the treatment of human genetic disorders. Because many of the targets proposed for RNAi therapy require chronic treatment, researchers agree that the emphasis must now be placed on the safe and long-term application of RNAi drugs to reap the benefits at last.
Collapse
Affiliation(s)
- Koen Raemdonck
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Harelbekestraat 72, B-9000 Ghent, Belgium
| | | | | | | | | |
Collapse
|
489
|
The silent (R)evolution of polymeric nucleic acid therapeutics. Pharm Res 2008; 25:2920-3. [PMID: 18679773 DOI: 10.1007/s11095-008-9689-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2008] [Accepted: 07/14/2008] [Indexed: 10/21/2022]
|
490
|
Knorr V, Russ V, Allmendinger L, Ogris M, Wagner E. Acetal Linked Oligoethylenimines for Use As pH-Sensitive Gene Carriers. Bioconjug Chem 2008; 19:1625-34. [DOI: 10.1021/bc8001858] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Veronika Knorr
- Pharmaceutical Biology - Biotechnology and Pharmaceutical Chemistry, Department of Pharmacy Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, D-81377 Munich, Germany
| | - Verena Russ
- Pharmaceutical Biology - Biotechnology and Pharmaceutical Chemistry, Department of Pharmacy Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, D-81377 Munich, Germany
| | - Lars Allmendinger
- Pharmaceutical Biology - Biotechnology and Pharmaceutical Chemistry, Department of Pharmacy Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, D-81377 Munich, Germany
| | - Manfred Ogris
- Pharmaceutical Biology - Biotechnology and Pharmaceutical Chemistry, Department of Pharmacy Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, D-81377 Munich, Germany
| | - Ernst Wagner
- Pharmaceutical Biology - Biotechnology and Pharmaceutical Chemistry, Department of Pharmacy Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, D-81377 Munich, Germany
| |
Collapse
|
491
|
Abstract
The Keystone Symposium on RNAi, microRNA and non-coding RNA convened on March 25-30 at Whistler Resort in Whistler, British Columbia, Canada. Researchers with backgrounds in different biochemical disciplines came together to exchange ideas on short RNAs and their roles in a host of biological processes.
Collapse
Affiliation(s)
- Amy C Seila
- Koch Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
| | | |
Collapse
|
492
|
Lee Y, Miyata K, Oba M, Ishii T, Fukushima S, Han M, Koyama H, Nishiyama N, Kataoka K. Charge‐Conversion Ternary Polyplex with Endosome Disruption Moiety: A Technique for Efficient and Safe Gene Delivery. Angew Chem Int Ed Engl 2008; 47:5163-6. [DOI: 10.1002/anie.200800963] [Citation(s) in RCA: 195] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
493
|
Lee Y, Miyata K, Oba M, Ishii T, Fukushima S, Han M, Koyama H, Nishiyama N, Kataoka K. Charge‐Conversion Ternary Polyplex with Endosome Disruption Moiety: A Technique for Efficient and Safe Gene Delivery. Angew Chem Int Ed Engl 2008. [DOI: 10.1002/ange.200800963] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
494
|
Yezhelyev MV, Qi L, O'Regan RM, Nie S, Gao X. Proton-sponge coated quantum dots for siRNA delivery and intracellular imaging. J Am Chem Soc 2008; 130:9006-12. [PMID: 18570415 DOI: 10.1021/ja800086u] [Citation(s) in RCA: 296] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We report the rational design of multifunctional nanoparticles for short-interfering RNA (siRNA) delivery and imaging based on the use of semiconductor quantum dots (QDs) and proton-absorbing polymeric coatings (proton sponges). With a balanced composition of tertiary amine and carboxylic acid groups, these nanoparticles are specifically designed to address longstanding barriers in siRNA delivery such as cellular penetration, endosomal release, carrier unpacking, and intracellular transport. The results demonstrate dramatic improvement in gene silencing efficiency by 10-20-fold and simultaneous reduction in cellular toxicity by 5-6-fold, when compared directly with existing transfection agents for MDA-MB-231 cells. The QD-siRNA nanoparticles are also dual-modality optical and electron-microscopy probes, allowing real-time tracking and ultrastructural localization of QDs during delivery and transfection. These new insights and capabilities represent a major step toward nanoparticle engineering for imaging and therapeutic applications.
Collapse
|
495
|
White PJ. Barriers to successful delivery of short interfering RNA after systemic administration. Clin Exp Pharmacol Physiol 2008; 35:1371-6. [PMID: 18565190 DOI: 10.1111/j.1440-1681.2008.04992.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
1. RNA interference in vivo has tremendous potential, both with respect to the elucidation of protein function in animals and as a therapeutic platform in humans. In vitro, short interfering RNA (siRNA) has been shown to completely silence gene expression in mammalian cells at low picomolar concentrations. 2. Although many good publications have shown specific silencing to occur in vivo, there are few that have transferred the combination of maximal efficacy and high potency to this setting. The present review considers the biological barriers that limit the movement of siRNA from vascular lumen to target cell cytoplasm and the strategies that have been used to overcome them. 3. Intravenous administration of siRNA results in rapid, extensive removal of siRNA from the blood via renal excretion, tissue distribution and nuclease degradation. Movement across vascular capillaries appears to be a limiting factor in some cases; few examples of silencing have been reported in organs with a conventional capillary endothelium. 4. Cellular uptake and endosomal trapping are significant barriers, but can be overcome using strategies such as antibody mediated cellular uptake or polyethyleneimine-mediated endosomal escape.
Collapse
Affiliation(s)
- Paul J White
- Medicinal Chemistry and Drug Action, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria, Australia.
| |
Collapse
|
496
|
Juliano R, Alam MR, Dixit V, Kang H. Mechanisms and strategies for effective delivery of antisense and siRNA oligonucleotides. Nucleic Acids Res 2008; 36:4158-71. [PMID: 18558618 PMCID: PMC2475625 DOI: 10.1093/nar/gkn342] [Citation(s) in RCA: 294] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The potential use of antisense and siRNA oligonucleotides as therapeutic agents has elicited a great deal of interest. However, a major issue for oligonucleotide-based therapeutics involves effective intracellular delivery of the active molecules. In this Survey and Summary, we review recent reports on delivery strategies, including conjugates of oligonucleotides with various ligands, as well as use of nanocarrier approaches. These are discussed in the context of intracellular trafficking pathways and issues regarding in vivo biodistribution of molecules and nanoparticles. Molecular-sized chemical conjugates and supramolecular nanocarriers each display advantages and disadvantages in terms of effective and nontoxic delivery. Thus, choice of an optimal delivery modality will likely depend on the therapeutic context.
Collapse
Affiliation(s)
- Rudy Juliano
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599, USA.
| | | | | | | |
Collapse
|
497
|
Goldberg M, Mahon K, Anderson D. Combinatorial and rational approaches to polymer synthesis for medicine. Adv Drug Deliv Rev 2008; 60:971-8. [PMID: 18423930 DOI: 10.1016/j.addr.2008.02.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2007] [Accepted: 02/14/2008] [Indexed: 12/16/2022]
Abstract
High-throughput, combinatorial methods have revolutionized small molecule synthesis and drug discovery. By combining automation, miniaturization, and parallel synthesis techniques, large collections of new compounds have been synthesized and screened. It is becoming increasingly clear that these same approaches can also assist the discovery and development of novel biomaterials for medicine. This review examines combinatorial and rational polymer synthesis for medical applications, including stem cell engineering and nucleic acid drug delivery.
Collapse
|
498
|
Abstract
Low efficiency, significant toxicity, polymer polydispersity and poorly understood delivery mechanisms have initially plagued the field of polymer-based gene therapy. Numerous strategies have helped to improve polyplexes, including the development of biodegradable polymers with reduced toxicity, incorporation of cell targeting, surface shielding and additional transport domains for effective and specific delivery, or improved chemistry for syntheses of polymers with uniform size and topology. Combined biooptical imaging and bioinformatics, providing insights into transfer bottlenecks, have helped to design improved polyplexes. Bioresponsive multifunctional polymers adapt in a dynamic manner to delivery barriers for efficient transfer of pDNA or siRNA to the target site.
Collapse
|
499
|
Fella C, Walker GF, Ogris M, Wagner E. Amine-reactive pyridylhydrazone-based PEG reagents for pH-reversible PEI polyplex shielding. Eur J Pharm Sci 2008; 34:309-20. [PMID: 18586470 DOI: 10.1016/j.ejps.2008.05.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2008] [Revised: 05/09/2008] [Accepted: 05/20/2008] [Indexed: 12/17/2022]
Abstract
PEGylation which is reversed after the therapeutic agent reaches the target cell presents an attractive feature for drug, protein or nucleic acid delivery. Amine-reactive, endosomal pH cleavable polyethylene glycol aldehyde-carboxypyridylhydrazone, N-hydroxysuccinimide esters (PEG-HZN-NHS) were synthesized and applied for bioreversible surface shielding of DNA polyplexes. Monofunctional mPEG-HZN-NHS was synthesized by reacting succinimidyl hydraziniumnicotinate with mPEG-butyraldehyde (20 kDa). Bifunctional OPSS-PEG-HZN-NHS was synthesized analogously via a omega-2-pyridyldithio-PEG (10 kDa) propionaldehyde intermediate. Polyethylenimine (PEI) polyplexes were reacted with the pH-sensitive (mPEG-HZN-NHS) or the corresponding stable (mPEG-NHS) reagent. Both types of polyplexes remained shielded at pH 7.4 as demonstrated by particle size and zeta potential measurements after 4h of incubation at 37 degrees C. Polyplex deshielding at endosomal pH 5 was observed only with the mPEG-HZN-NHS shielded particles. This was confirmed by fluorescence correlation spectroscopy using the analogous Alexa-488 fluorescently labeled bifunctional PEGylation reagents. Luciferase gene transfections with epidermal growth factor (EGF) containing polyplexes using EGF-receptor overexpressing hepatoma HUH7 cells showed an up to 16-fold enhancement in gene expression with the reversibly shielded polyplexes as compared to stably shielded polyplexes. Consistently, the reversibly shielded polyplexes mediated also an enhanced tumor specific in vivo transgene expression after intravenous administration in a subcutaneous HUH7 tumor model in SCID mice.
Collapse
Affiliation(s)
- Carolin Fella
- Pharmaceutical Biology-Biotechnology, Center for Drug Research, and Center for Nanoscience, Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, D-81377 Munich, Germany
| | | | | | | |
Collapse
|
500
|
Arbuthnot P, Thompson LJ. Harnessing the RNA interference pathway to advance treatment and prevention of hepatocellular carcinoma. World J Gastroenterol 2008; 14:1670-81. [PMID: 18350598 PMCID: PMC2695907 DOI: 10.3748/wjg.14.1670] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2007] [Revised: 01/27/2008] [Indexed: 02/06/2023] Open
Abstract
Primary liver cancer is the fifth most common malignancy in the world and is a leading cause of cancer-related mortality. Available treatment for hepatocellular carcinoma (HCC), the commonest primary liver cancer, is rarely curative and there is a need to develop therapy that is more effective. Specific and powerful gene silencing that can be achieved by activating RNA interference (RNAi) has generated enthusiasm for exploiting this pathway for HCC therapy. Many studies have been carried out with the aim of silencing HCC-related cellular oncogenes or the hepatocarcinogenic hepatitis B virus (HBV) and hepatitis C virus (HCV). Proof of principle studies have demonstrated promising results, and an early clinical trial assessing RNAi-based HBV therapy is currently in progress. Although the data augur well, there are several significant hurdles that need to be overcome before the goal of RNAi-based therapy for HCC is realized. Particularly important are the efficient and safe delivery of RNAi effecters to target malignant tissue and the limitation of unintended harmful non-specific effects.
Collapse
|