451
|
Luo BY, Chen XM, Tang M, Chen F, Chen Z. Construction of a eukaryotic expression plasmid of Humanin. J Zhejiang Univ Sci B 2005; 6:11-3. [PMID: 15593385 PMCID: PMC1390752 DOI: 10.1631/jzus.2005.b0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE To construct a eukaryotic expression plasmid pcDNA3.1(-)-Humanin. METHODS The recombinant plasmid pGEMEX-1-Humanin was digested with restriction endonucleases BamH I and Hind III and the Humanin gene fragments, about 100 bp length, were obtained. Then the Humanin gene fragments were inserted into eukaryotic expression vector pcDNA3.1(-) and the recombinant plasmids pcDNA3.1(-)-Humanin were identified by sequencing. RESULTS Recombinant plasmid DNA successfully produced a band which had the same size as that of the Humanin positive control. The sequence of recombinant plasmids accorded with the Humnain gene sequence. CONCLUSIONS A eukaryotic expression plasmid of Humanin was successfully constructed.
Collapse
Affiliation(s)
- Ben-yan Luo
- Department of Neurology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
- †E-mail:
| | - Xiang-ming Chen
- Department of Anesthesiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Min Tang
- Department of Neurology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Feng Chen
- Institute of Infectious Diseases, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Zhi Chen
- Institute of Infectious Diseases, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| |
Collapse
|
452
|
Tajima H, Kawasumi M, Chiba T, Yamada M, Yamashita K, Nawa M, Kita Y, Kouyama K, Aiso S, Matsuoka M, Niikura T, Nishimoto I. A humanin derivative, S14G-HN, prevents amyloid-?-induced memory impairment in mice. J Neurosci Res 2005; 79:714-23. [PMID: 15678515 DOI: 10.1002/jnr.20391] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Humanin (HN) is a 24-amino acid peptide that protects neuronal cells from death caused by Alzheimer's disease (AD)-related genes and amyloid-beta (Abeta). Multiple studies have revealed its biochemical and neuroprotective characteristics in vitro; however, little has been known regarding whether HN is effective in vivo in AD model systems. We examined the effect of S14G-HN, a 1,000-fold more potent derivative of HN in vitro, on amnesia induced by Abeta25-35 in mice. The Y-maze test revealed that at least 50 pmol of S14G-HN by intracerebroventricular injection prevented Abeta-induced impairment of short-term/spatial working memory; however, 5 nmol of S14A-HN, a neuroprotection-defective mutant in vitro, did not prevent Abeta-induced amnesia. These results are in agreement with the structure-function correlation shown previously in vitro. In the water-finding task, S14G-HN prevented prolongation of finding latency (the time to find water) observed in Abeta-amnesic mice, indicating that S14G-HN also blocked Abeta-induced impairment of latent learning. In accordance with these observations, immunohistochemical analysis showed that S14G-HN sustained the number of cholinergic neurons in the basal forebrain and the striata nearly to the normal level. Furthermore, genistein, a specific inhibitor of tyrosine kinases, blocked recovery from scopolamine-induced amnesia by S14G-HN, suggesting that certain tyrosine kinase(s) are involved in the inhibitory function of S14G-HN in vivo. Taking these findings together, we conclude that S14G-HN has rescue activity against memory impairment caused by AD-related insults in vivo by activating the same intracellular neuroprotective machinery as elucidated previously in vitro.
Collapse
Affiliation(s)
- Hirohisa Tajima
- Department of Pharmacology and Neurosciences, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
453
|
N-Formylated humanin activates both formyl peptide receptor-like 1 and 2. Biochem Biophys Res Commun 2004; 324:255-61. [PMID: 15465011 DOI: 10.1016/j.bbrc.2004.09.046] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2004] [Indexed: 11/25/2022]
Abstract
We have discovered that humanin (HN) acts as a ligand for formyl peptide receptor-like 1 (FPRL1) and 2 (FPRL2). This discovery was based on our finding that HN suppressed forskolin-induced cAMP production in Chinese hamster ovary (CHO) cells expressing human FPRL1 (CHO-hFPRL1) or human FPRL2 (CHO-hFPRL2). In addition, we found that N-formylated HN (fHN) performed more potently as a ligand for FPRL1 than HN: in CHO-hFPRL1 cells, the effective concentration for the half-maximal response (EC(50)) value of HN was 3.5nM, while that of fHN was 0.012nM. We demonstrated by binding experiments using [(125)I]-W peptide that HN and fHN directly interacted with hFPRL1 on the membrane. In addition, we found that HN and fHN showed strong chemotactic activity for CHO-hFPRL1 and CHO-hFPRL2 cells. HN is known to have a protective effect against neuronal cell death. Our findings contribute to the understanding of the mechanism behind HN's function.
Collapse
|
454
|
Ijiri K, Tsuruga H, Sakakima H, Tomita K, Taniguchi N, Shimoonoda K, Komiya S, Goldring MB, Majima HJ, Matsuyama T. Increased expression of humanin peptide in diffuse-type pigmented villonodular synovitis: implication of its mitochondrial abnormality. Ann Rheum Dis 2004; 64:816-23. [PMID: 15567815 PMCID: PMC1755539 DOI: 10.1136/ard.2004.025445] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
OBJECTIVES To define the pathogenesis of pigmented villonodular synovitis (PVNS), by searching for highly expressed genes in primary synovial cells from patients with PVNS. METHODS A combination of subtraction cloning and Southern colony hybridisation was used to detect highly expressed genes in PVNS in comparison with rheumatoid synovial cells. Northern hybridisation was performed to confirm the differential expression of the humanin gene in PVNS. Expression of the humanin peptide was analysed by western blotting and immunohistochemistry. Electron microscopic immunohistochemistry was performed to investigate the distribution of this peptide within the cell. RESULTS 68 highly expressed genes were identified in PVNS. Humanin genes were strongly expressed in diffuse-type PVNS, but were barely detected in nodular-type PVNS, rheumatoid arthritis, or osteoarthritis. Humanin peptide was identified in synovium from diffuse-type PVNS, and most of the positive cells were distributed in the deep layer of the synovial tissue. Double staining with anti-humanin and anti-heat shock protein 60 showed that humanin was expressed mainly in mitochondria. Electron microscopy disclosed immunolocalisation of this peptide, predominantly around dense iron deposits within the siderosome. CONCLUSIONS Increased expression of the humanin peptide in mitochondria and siderosomes is characteristic of synovial cells from diffuse-type PVNS. Humanin is an anti-apoptotic peptide which is encoded in the mitochondrial genome. Present findings suggest that mitochondrial dysfunction may be the principal factor in pathogenesis of diffuse-type PVNS and that humanin peptide may play a part in the neoplastic process in this form of PVNS.
Collapse
Affiliation(s)
- K Ijiri
- Beth Israel Deaconess Medical Center, Harvard Institutes of Medicine, Room 237, 4 Blackfan Circle, Boston, MA 02115, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
455
|
Abstract
Humanin (HN), a recently identified neuroprotective factor against Alzheimer's disease-related insults, has been reported to function as an anti cell-death factor through multiple mechanisms. One mechanism, revealed in a glioblastoma cell line, involves the apoptosis-inducing protein Bax. This, in addition to the fact that HN is produced in certain normal tissues, such as testis, implies a potential role of HN in oncogenesis. A second mechanism, in neuronal cells, is via a putative cell-surface receptor. It is through this mechanism that HN exhibits its neuroprotective activity.
Collapse
Affiliation(s)
- Ikuo Nishimoto
- Department of Pharmacology, KEIO University School of Medicine, Shinanomachi, Tokyo, Japan
| | | | | |
Collapse
|
456
|
Chan SL, Yu VC. Proteins of the bcl-2 family in apoptosis signalling: from mechanistic insights to therapeutic opportunities. Clin Exp Pharmacol Physiol 2004; 31:119-28. [PMID: 15008953 DOI: 10.1111/j.1440-1681.2004.03975.x] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
1. Proteins of the Bcl-2 family are central regulators of apoptosis and are thought to act primarily on the mitochondria. 2. Members of the Bcl-2 family possess either anti-apoptotic or pro-apoptotic function. They are characterized by the presence of conserved sequence motifs, known as Bcl-2 homology (BH) domains. Anti-apoptotic members share all four BH domains, designated as BH1-4; the multidomain pro-apoptotic members contain BH1-3 domains, whereas another subgroup of pro-apoptotic members only have a BH3 domain. 3. The BH3-only proteins act as sensors for distinct apoptosis pathways, whereas multidomain pro-apoptotic Bax and Bak are executioners of death orders relayed by the BH3-only proteins. 4. Anti-apoptotic Bcl-2 family members appear to function, at least in part, by interacting with and antagonizing pro-apoptotic family members. The BH1-3 domains of BclXL form an elongated hydrophobic groove, which is the docking site for the BH3 domains of pro-apoptotic binding partners. 5. The deregulation of the various Bcl-2 proteins has been implicated in many pathological conditions. 6. Knowledge derived from the understanding of the function and regulation of the Bcl-2 family of proteins has allowed us to contemplate new therapeutic strategies for diseases where apoptosis signalling mechanisms can potentially be manipulated. 7. The anti-apoptotic Bcl-2 members have been targeted successfully using an antisense approach, BH3-peptides and small molecular weight chemicals that are inhibitors of their anti-apoptotic function.
Collapse
Affiliation(s)
- Shing-Leng Chan
- Institute of Molecular and Cell Biology and Department of Pharmacology, National University of Singapore, Singapore
| | | |
Collapse
|
457
|
Abe Y, Hashimoto Y, Tomita Y, Terashita K, Aiso S, Tajima H, Niikura T, Matsuoka M, Nishimoto I. Cytotoxic mechanisms by M239V presenilin 2, a little-analyzed Alzheimer's disease-causative mutant. J Neurosci Res 2004; 77:583-95. [PMID: 15264228 DOI: 10.1002/jnr.20163] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Although neurotoxic functions are well characterized in familial Alzheimer's disease (FAD)-linked N141I mutant of presenilin (PS)2, little has been known about M239V-PS2, another established FAD-causative mutant. We found that expression of M239V-PS2 caused neuronal cytotoxicity. M239V-PS2 exerted three forms of cytotoxicity: one was sensitive to both an antioxidant glutathione-ethyl-ester (GEE) and a caspase inhibitor Ac-DEVD-CHO (DEVD); the second was sensitive to GEE but resistant to DEVD; and the third was resistant to both. The GEE/DEVD-sensitive cytotoxicity by M239V-PS2 was likely through NADPH oxidase and the GEE-sensitive/DEVD-resistant cytotoxicity through xanthine oxidase (XO). Both mechanisms by M239V-PS2 were suppressed by pertussis toxin (PTX) and were mediated by Galpha(o), but not by Galpha(i). Although Abeta1-43 itself induced no cytotoxicity, Abeta1-43 potentiated all three components of M239V-PS2 cytotoxicity. As these cytotoxic mechanisms by M239V-PS2 are fully shared with N141I-PS2, they are most likely implicated in the pathomechanism of FAD by PS2 mutations. Notably, cytotoxicity by M239V-PS2 could be inhibited by the combination of two clinically usable inhibitors of superoxide-generating enzymes, apocynin and oxypurinol.
Collapse
Affiliation(s)
- Yoichiro Abe
- Department of Pharmacology, KEIO University School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
458
|
Ying G, Iribarren P, Zhou Y, Gong W, Zhang N, Yu ZX, Le Y, Cui Y, Wang JM. Humanin, a newly identified neuroprotective factor, uses the G protein-coupled formylpeptide receptor-like-1 as a functional receptor. THE JOURNAL OF IMMUNOLOGY 2004; 172:7078-85. [PMID: 15153530 DOI: 10.4049/jimmunol.172.11.7078] [Citation(s) in RCA: 168] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Alzheimer's disease (AD) is characterized by overproduction of beta amyloid peptides in the brain with progressive loss of neuronal cells. The 42-aa form of the beta amyloid peptide (Abeta(42)) is implied as a major causative factor, because it is toxic to neurons and elicits inflammatory responses in the brain by activating microglial cells. Despite the overproduction of Abeta(42), AD brain tissue also generates protective factor(s) that may antagonize the neurodestructive effect of Abeta(42). Humanin is a gene cloned from an apparently normal region of an AD brain and encodes a 24-aa peptide. Both secreted and synthetic Humanin peptides protect neuronal cells from damage by Abeta(42), and the effect of Humanin may involve putative cellular receptor(s). To elucidate the molecular identity of such receptor(s), we examined the activity of synthetic Humanin on various cells and found that Humanin induced chemotaxis of mononuclear phagocytes by using a human G protein-coupled formylpeptide receptor-like-1 (FPRL1) and its murine counterpart FPR2. Coincidentally, FPRL1 and FPR2 are also functional receptors used by Abeta(42) to chemoattract and activate phagocytic cells. Humanin reduced the aggregation and fibrillary formation by suppressing the effect of Abeta(42) on mononuclear phagocytes. In neuroblast cells, Humanin and Abeta(42) both activated FPRL1; however, only Abeta(42) caused apoptotic death of the cells, and its cytopathic effect was blocked by Humanin. We conclude that Humanin shares human FPRL1 and mouse FPR2 with Abeta(42) and suggest that Humanin may exert its neuroprotective effects by competitively inhibiting the access of FPRL1 to Abeta(42).
Collapse
Affiliation(s)
- Guoguang Ying
- Laboratory of Molecular Immunoregulation and. Basic Research Program, SAIC-Frederick, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
459
|
Kariya S, Takahashi N, Hirano M, Ueno S. Humanin improves impaired metabolic activity and prolongs survival of serum-deprived human lymphocytes. Mol Cell Biochem 2004; 254:83-9. [PMID: 14674685 DOI: 10.1023/a:1027372519726] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Humanin (HN) has been reported to be an endogenous peptide that exerts highly selective neuroprotection against cell death induced by various types of Alzheimer's disease-related insults. We previously proposed the much broader cytoprotective potential of HN from the result that HN suppressed serum-deprivation-induced death of rat pheochromocytoma cells. In this study, we showed that HN also suppressed death of human lymphocytes cultured under serum-deprived condition. Further, we revealed, by assaying metabolic activity and survival rate, that HN was a potent factor capable of increasing the metabolic activity of individual serum-deprived lymphocytes. To our knowledge, there is no report described about a rescue factor that increases the metabolic activity of individual serum-deprived cells and prolongs their survival. This novel feature of HN may enable us to apply this peptide for the management of diseases involving poor metabolic activity, such as mitochondria-related disorders and brain ischemia.
Collapse
Affiliation(s)
- Shingo Kariya
- Department of Neurology, Nara Medical University, Kashihara, Nara, Japan.
| | | | | | | |
Collapse
|
460
|
Vila M. Interfering with programmed cell death in neurodegenerative diseases: insights from experimental animal models. Drug Discov Today 2004; 9:513-4. [PMID: 15183156 DOI: 10.1016/s1359-6446(04)03100-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
461
|
Sponne I, Fifre A, Koziel V, Kriem B, Oster T, Pillot T. Humanin rescues cortical neurons from prion-peptide-induced apoptosis. Mol Cell Neurosci 2004; 25:95-102. [PMID: 14962743 DOI: 10.1016/j.mcn.2003.09.017] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2003] [Revised: 09/03/2003] [Accepted: 09/29/2003] [Indexed: 11/23/2022] Open
Abstract
We recently demonstrated that a soluble oligomeric prion peptide, the putative 118-135 transmembrane domain of prion protein (PrP), exhibited membrane fusogenic properties and induced apoptotic cell death both in vitro and in vivo. A recently discovered rescue factor humanin (HN) was shown to protect neuronal cells from various insults involved in human neurodegenerative diseases. We thus addressed the question of whether HN might modulate the apoptosis induced by the soluble PrP(118-135) fragment. We found that the incubation of rat cortical neurons with 10 microM HN prevented soluble PrP(118-135) fragment-induced cell death concomitantly with inhibition of apoptotic events. An HN variant, termed HNG, exhibited a 500-fold increase in the protective activity in cortical neurons, whereas the HNA variant displayed no protective effect. The effects of HN and HNG peptides did not require a preincubation with the PrP(118-135) fragment, strongly suggesting that these peptides rescue cells independently of a direct interaction with the prion peptide. By contrast, and in agreement with a previous study, HN had no effect on the fibrillar PrP(106-126) peptide-induced cell death. This protective effect for neurons from PrP(118-135)-induced cell death strongly suggests that PrP(118-135) and PrP(106-126) peptides may trigger different pathways leading to neuronal apoptosis.
Collapse
Affiliation(s)
- Isabelle Sponne
- INSERM EMI 0014, Université de Nancy I, 54505 Vandoeuvre, France
| | | | | | | | | | | |
Collapse
|
462
|
Hashimoto Y, Terashita K, Niikura T, Yamagishi Y, Ishizaka M, Kanekura K, Chiba T, Yamada M, Kita Y, Aiso S, Matsuoka M, Nishimoto I. Humanin antagonists: mutants that interfere with dimerization inhibit neuroprotection by Humanin. Eur J Neurosci 2004; 19:2356-64. [PMID: 15128389 DOI: 10.1111/j.0953-816x.2004.03298.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The 24-residue peptide Humanin (HN) protects neuronal cells from insults of various Alzheimer's disease (AD) genes and Abeta by forming a homodimer. We have previously shown that P3A, S7A, C8A, L9A, L12A, T13A, S14A and P19A mutations nullify the neuroprotective function of HN [Yamagishi, Y., Hashimoto, Y., Niikura, T. & Nishimoto, I. (2003) Peptides, 24, 585-595]. Here we examined whether any of these 'null' mutants could function as dominant-negative mutants. Homodimerization-defective mutants, P3A-, L12A-, S14A- and P19A-HN, specifically blocked neuroprotection by HN, but not by activity-dependent neurotrophic factor. Furthermore, insertion of S7A, the mutation that blocks the homodimerization of HN, but not insertion of G5A abolished the antagonizing function of L12A-HN. While L12A-HN and G5A/L12A-HN actually inhibited HN homodimerization, S7A/L12A-HN had no effect. These data indicate that P3A-, L12A-, S14A- and P19A-HN function as HN antagonists by forming an inactive dimer with HN. This study provides a novel insight into the understanding of the in vivo function of HN, as well as into the development of clinically applicable HN neutralizers.
Collapse
Affiliation(s)
- Yuichi Hashimoto
- Departments of Pharmacology and Anatomy, KEIO University School of Medicine, General Research Building, 3rd and 6th Floors, 35 Shinanomachi, Tokyo 160-8582, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
463
|
Kanekura K, Hashimoto Y, Niikura T, Aiso S, Matsuoka M, Nishimoto I. Alsin, the Product of ALS2 Gene, Suppresses SOD1 Mutant Neurotoxicity through RhoGEF Domain by Interacting with SOD1 Mutants. J Biol Chem 2004; 279:19247-56. [PMID: 14970233 DOI: 10.1074/jbc.m313236200] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Mutation of the ALS2 gene encoding alsin is linked to the onset of autosomal recessive motor neuron diseases, including juvenile-onset amyotrophic lateral sclerosis (ALS). Alsin long form (LF) belongs to the family of the guanine nucleotide exchanging factor (GEF) for small GTPases. Expression of alsin LF, but not alsin short form, protected motor neuronal cells from toxicity induced by mutants of the Cu/Zn-superoxide dismutase (SOD1) gene, which cause autosomal dominant ALS. In contrast, expression of alsin did not suppress neurotoxicity by other neurodegenerative insults such as Alzheimer's disease-related genes. Deletion analysis of alsin LF demonstrated that the RhoGEF domain is essential for alsin-mediated neuroprotection. Furthermore, we found that alsin LF bound to SOD1 mutants, but not to wtSOD1, via the RhoGEF domain. Such functional and physical interaction between two ALS-related genes will become a promising clue to clarify the pathogenesis of ALS and other motor neuron diseases.
Collapse
Affiliation(s)
- Kohsuke Kanekura
- Departments of Pharmacology and Anatomy, KEIO University School of Medicine, Life Science Research Building, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | | | | | | | | | | |
Collapse
|
464
|
Hashimoto Y, Tsuji O, Kanekura K, Aiso S, Niikura T, Matsuoka M, Nishimoto I. The Gtx Homeodomain Transcription Factor Exerts Neuroprotection Using Its Homeodomain. J Biol Chem 2004; 279:16767-77. [PMID: 14754886 DOI: 10.1074/jbc.m313630200] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Certain cases of familial Alzheimer's disease are caused by mutants of amyloid-beta precursor protein (AbetaPP), including V642I-AbetaPP, K595N/M596L-AbetaPP (NL-AbetaPP), A617G-AbetaPP, and L648P-AbetaPP. By using an unbiased functional screening with transfection and expression of a human brain cDNA library, we searched for genes that protect neuronal cells from toxicity by V642I-AbetaPP. One protective clone was identical to the human GTX, a neuronal homeobox gene. Human Gtx (hGtx) inhibited caspase inhibitor-sensitive neuronal cell death not only by V642I-AbetaPP but also by L648P-, NL-, A617G-AbetaPP, apolipoprotein E4, and Abeta. The region of hGtx responsible for this rescue function was specified to be its homeodomain (Lys148-His207). The rescue function was shared by DLX4, a distal-less family gene with a homeodomain only 38.3% homologous to that of hGtx, suggesting that this function would be generally shared by homeodomains. The neuroprotective function of hGtx was attributable to hGtx-stimulated production and secretion of insulin-like growth factor-I. This study provides molecular clues to understand how neuronal cells developmentally regulate themselves against cell death as well as to develop reagents effective in curative therapeutics of Alzheimer's disease.
Collapse
Affiliation(s)
- Yuichi Hashimoto
- Departments of Pharmacology and Anatomy, KEIO University School of Medicine, 35 Shinanomachi, Tokyo 160-8582, Japan
| | | | | | | | | | | | | |
Collapse
|
465
|
Niikura T, Yamada M, Chiba T, Aiso S, Matsuoka M, Nishimoto I. Characterization of V642I-A?PP-induced cytotoxicity in primary neurons. J Neurosci Res 2004; 77:54-62. [PMID: 15197738 DOI: 10.1002/jnr.20139] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Amyloid precursor protein (AbetaPP), a precursor of amyloid beta (Abeta) peptide, is one of the molecules involved in the pathogenesis of Alzheimer's disease (AD). Specific mutations in AbetaPP have been found in patients inheriting familial AD (FAD). These mutant AbetaPP proteins cause cell death in neuronal cell lines in vitro, but the molecular mechanism of cytotoxicity has not yet been clarified completely. We analyzed the cytotoxic mechanisms of the London-type AbetaPP mutant, V642I-AbetaPP, in primary cortical neurons utilizing an adenovirus-mediated gene transfer system. Expression of V642I-AbetaPP protein induced degeneration of the primary neurons. This cytotoxicity was blocked by pertussis toxin, a specific inhibitor for heterotrimeric G proteins, Go/i, and was suppressed by an inhibitor of caspase-3/7 and an antioxidant, glutathione ethyl ester. A specific inhibitor for NADPH oxidase, apocynin, but not a xanthine oxidase inhibitor or a nitric oxide inhibitor, blocked V642I-AbetaPP-induced cytotoxicity. Among mitogen-activated protein kinase (MAPK) family proteins, c-Jun N-terminal kinase (JNK) and p38MAPK, but not extracellular regulated kinase (ERK), were involved in this cytotoxic pathway. The V642I-AbetaPP-induced cytotoxicity was not suppressed by two secretase inhibitors, suggesting that Abeta does not play a major role in this cytotoxicity. Two neuroprotective factors, insulin-like growth factor I (IGF-I) and Humanin, protected these primary neurons from V642I-AbetaPP-induced cytotoxicity. Furthermore, interleukin-6 and -11 also attenuated this cytotoxicity. This study demonstrated that the signaling pathway activated by mutated AbetaPP in the primary neurons is the same as that by the other artificial insults such as antibody binding to AbetaPP and the artificial dimerization of cytoplasmic domain of AbetaPP. The potential of neurotrophic factors and cytokines in AD therapy is also indicated.
Collapse
Affiliation(s)
- Takako Niikura
- Department of Pharmacology, KEIO University School of Medicine, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
466
|
Hashimoto Y, Tsukamoto E, Niikura T, Yamagishi Y, Ishizaka M, Aiso S, Takashima A, Nishimoto I. Amino- and carboxyl-terminal mutants of presenilin 1 cause neuronal cell death through distinct toxic mechanisms: Study of 27 different presenilin 1 mutants. J Neurosci Res 2004; 75:417-28. [PMID: 14743455 DOI: 10.1002/jnr.10861] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Presenilin (PS)1 and its mutants, which consist of the N-terminal and C-terminal fragments, cause certain familial forms of Alzheimer's disease (FAD). Our earlier studies found that FAD-linked M146L-PS1 causes neuronal cell death through nitrogen oxide synthase (NOS) and that FAD-linked N141I-PS2, another member of the PS family, causes neuronal cell death through NADPH oxidase. In this study, we examined 27 different FAD-linked mutants of PS1, and found that PS1 mutants with mutations in the N-terminal fragment caused NOS inhibitor (NOSI)-sensitive neuronal cell death; in contrast, the PS1 mutants with mutations in the C-terminal fragment caused NOSI-resistant neuronal cell death. The former toxicity was resistant to the specific NADPH oxidase inhibitor apocynin and was inhibited by Humanin (HN), a newly identified neuroprotective factor against Alzheimer's disease (AD)-relevant insults, but not by insulin-like growth factor-I (IGF-I). In contrast, the latter toxicity was sensitive to apocynin and inhibited by both IGF-I and HN. This study indicates for the first time that N- and C-terminal fragment PS1 mutants can generate distinct neurotoxic signals, which will provide an important clue to the understanding of the entire array of neurotoxic signals generated by FAD-causative mutations of PS1.
Collapse
Affiliation(s)
- Yuichi Hashimoto
- Department of Pharmacology, KEIO University School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
467
|
Tabira T. Alzheimer's disease: Mechanisms and development of therapeutic strategies. Geriatr Gerontol Int 2003. [DOI: 10.1111/j.1444-1586.2003.00082.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
468
|
Analysis of neurons created from wild-type and Alzheimer's mutation knock-in embryonic stem cells by a highly efficient differentiation protocol. J Neurosci 2003. [PMID: 13679420 DOI: 10.1523/jneurosci.23-24-08513.2003] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
It is impossible to obtain and amplify live neurons from Alzheimer's disease (AD) patients. To establish the neurons harboring AD abnormality, we constructed mouse embryonic stem (ES) cells, in which the AD-causative V642I mutation was introduced to the endogenous amyloid precursor protein (APP) gene, in combination with a protocol to efficiently differentiate ES cells into postmitotic neurons without using a cell sorter. By this protocol, ES cells differentiated into >90% of the central type of adult postmitotic neurons. Neurons derived from V642I-APP knock-in ES cells were indistinguishable from wild-type ES-derived neurons, as determined by the expression of various markers for neuronal differentiation. Notably, V642I-APP knock-in ES cell-derived neurons exhibited significantly increased secretion of Abeta42 without AD-related hyperphosphorylation of tau, indicating that the direct output of the AD-causative mutation is increased Abeta42 secretion. In this study, we analyze created neurons with wild-type and AD genotypes and propose a new strategy for generating neurons for any dominantly inherited neurodegenerative diseases. The strategy can be applied to create human neurons with AD or any other neurodegenerative disease by using human ES cells.
Collapse
|
469
|
Ikonen M, Liu B, Hashimoto Y, Ma L, Lee KW, Niikura T, Nishimoto I, Cohen P. Interaction between the Alzheimer's survival peptide humanin and insulin-like growth factor-binding protein 3 regulates cell survival and apoptosis. Proc Natl Acad Sci U S A 2003; 100:13042-7. [PMID: 14561895 PMCID: PMC240741 DOI: 10.1073/pnas.2135111100] [Citation(s) in RCA: 217] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Insulin-like growth factor-binding protein-3 (IGFBP-3) regulates IGF bioactivity and also independently modulates cell growth and survival. By using a yeast two-hybrid screen to identify IGFBP-3-interacting proteins, we cloned humanin (HN) as an IGFBP-3-binding partner. HN is a 24-aa peptide that has been shown to specifically inhibit neuronal cell death induced by familial Alzheimer's disease mutant genes and amyloid-beta (Abeta). The physical interaction of HN with IGFBP-3 was determined to be of high affinity and specificity and was confirmed by yeast mating, displaceable pull-down experiments with (His)-6-tagged HN, and ligand blot experiments. Co-immunoprecipitation of IGFBP-3 and HN from mouse testes confirmed the interaction in vivo. In cross-linking experiments, HN bound IGFBP-3 but did not compete with IGF-I-IGFBP-3 binding; competitive ligand dot blot experiments revealed the 18-aa heparin-binding domain of IGFBP-3 as the binding site for HN. Alanine scanning determined that F6A-HN mutant does not bind IGFBP-3. HN but not F6A-HN inhibited IGFBP-3-induced apoptosis in human glioblastoma-A172. In contrast, HN did not suppress IGFBP-3 response in SH-SY5Y neuroblastoma and mouse cortical primary neurons. In primary neurons, IGFBP-3 markedly potentiated HN rescue ability from Abeta1-43 toxicity. In summary, we have identified an interaction between the survival peptide HN and IGFBP-3 that is pleiotrophic in nature and is capable of both synergistic and antagonistic interaction. This interaction may prove to be important in neurological disease processes and could provide important targets for drug development.
Collapse
Affiliation(s)
- Maaria Ikonen
- Department of Pediatrics, Mattel Children's Hospital, and Division of Endocrinology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095; Department of Neuroscience and Neurology, University of Kuopio, 70211 Kuopio, Finland; and Department of Pharmacology and Neurosciences, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Bingrong Liu
- Department of Pediatrics, Mattel Children's Hospital, and Division of Endocrinology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095; Department of Neuroscience and Neurology, University of Kuopio, 70211 Kuopio, Finland; and Department of Pharmacology and Neurosciences, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Yuichi Hashimoto
- Department of Pediatrics, Mattel Children's Hospital, and Division of Endocrinology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095; Department of Neuroscience and Neurology, University of Kuopio, 70211 Kuopio, Finland; and Department of Pharmacology and Neurosciences, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Liqun Ma
- Department of Pediatrics, Mattel Children's Hospital, and Division of Endocrinology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095; Department of Neuroscience and Neurology, University of Kuopio, 70211 Kuopio, Finland; and Department of Pharmacology and Neurosciences, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Kuk-Wha Lee
- Department of Pediatrics, Mattel Children's Hospital, and Division of Endocrinology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095; Department of Neuroscience and Neurology, University of Kuopio, 70211 Kuopio, Finland; and Department of Pharmacology and Neurosciences, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Takako Niikura
- Department of Pediatrics, Mattel Children's Hospital, and Division of Endocrinology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095; Department of Neuroscience and Neurology, University of Kuopio, 70211 Kuopio, Finland; and Department of Pharmacology and Neurosciences, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Ikuo Nishimoto
- Department of Pediatrics, Mattel Children's Hospital, and Division of Endocrinology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095; Department of Neuroscience and Neurology, University of Kuopio, 70211 Kuopio, Finland; and Department of Pharmacology and Neurosciences, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Pinchas Cohen
- Department of Pediatrics, Mattel Children's Hospital, and Division of Endocrinology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095; Department of Neuroscience and Neurology, University of Kuopio, 70211 Kuopio, Finland; and Department of Pharmacology and Neurosciences, Keio University School of Medicine, Tokyo 160-8582, Japan
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
470
|
Abe Y, Kouyama K, Tomita T, Tomita Y, Ban N, Nawa M, Matsuoka M, Niikura T, Aiso S, Kita Y, Iwatsubo T, Nishimoto I. Analysis of neurons created from wild-type and Alzheimer's mutation knock-in embryonic stem cells by a highly efficient differentiation protocol. J Neurosci 2003; 23:8513-25. [PMID: 13679420 PMCID: PMC6740361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2023] Open
Abstract
It is impossible to obtain and amplify live neurons from Alzheimer's disease (AD) patients. To establish the neurons harboring AD abnormality, we constructed mouse embryonic stem (ES) cells, in which the AD-causative V642I mutation was introduced to the endogenous amyloid precursor protein (APP) gene, in combination with a protocol to efficiently differentiate ES cells into postmitotic neurons without using a cell sorter. By this protocol, ES cells differentiated into >90% of the central type of adult postmitotic neurons. Neurons derived from V642I-APP knock-in ES cells were indistinguishable from wild-type ES-derived neurons, as determined by the expression of various markers for neuronal differentiation. Notably, V642I-APP knock-in ES cell-derived neurons exhibited significantly increased secretion of Abeta42 without AD-related hyperphosphorylation of tau, indicating that the direct output of the AD-causative mutation is increased Abeta42 secretion. In this study, we analyze created neurons with wild-type and AD genotypes and propose a new strategy for generating neurons for any dominantly inherited neurodegenerative diseases. The strategy can be applied to create human neurons with AD or any other neurodegenerative disease by using human ES cells.
Collapse
Affiliation(s)
- Yoichiro Abe
- Department of Pharmacology, KEIO University School of Medicine, Tokyo 160-8582, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
471
|
Tsukamoto E, Hashimoto Y, Kanekura K, Niikura T, Aiso S, Nishimoto I. Characterization of the toxic mechanism triggered by Alzheimer's amyloid-beta peptides via p75 neurotrophin receptor in neuronal hybrid cells. J Neurosci Res 2003; 73:627-36. [PMID: 12929130 DOI: 10.1002/jnr.10703] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Neuronal pathology of the brain with Alzheimer's disease (AD) is characterized by numerous depositions of amyloid-beta peptides (Abeta). Abeta binding to the 75-kDa neurotrophin receptor (p75NTR) causes neuronal cell death. Here we report that Abeta causes cell death in neuronal hybrid cells transfected with p75NTR, but not in nontransfected cells, and that p75NTR(L401K) cannot mediate Abeta neurotoxicity. We analyzed the cytotoxic pathway by transfecting pertussis toxin (PTX)-resistant G protein alpha subunits in the presence of PTX and identified that Galpha(o), but not Galpha(i), proteins are involved in p75NTR-mediated Abeta neurotoxicity. Further investigation suggested that Abeta neurotoxicity via p75NTR involved JNK, NADPH oxidase, and caspases-9/3 and was inhibited by activity-dependent neurotrophic factor, insulin-like growth factor-I, basic fibroblast growth factor, and Humanin, as observed in primary neuron cultures. Understanding the Abeta neurotoxic mechanism would contribute significantly to the development of anti-AD therapies.
Collapse
Affiliation(s)
- Emi Tsukamoto
- Departments of Pharmacology and Anatomy, KEIO University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
472
|
Shackel NA, McGuinness PH, Abbott CA, Gorrell MD, McCaughan GW. Novel differential gene expression in human cirrhosis detected by suppression subtractive hybridization. Hepatology 2003; 38:577-88. [PMID: 12939584 DOI: 10.1053/jhep.2003.50376] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Pathogenic molecular pathways in cirrhotic liver diseases such as hepatitis C virus (HCV), autoimmune hepatitis (AIH) and primary biliary cirrhosis (PBC) are poorly characterized. Differentially expressed genes are often important in disease pathogenesis. Suppression subtractive hybridization (SSH) is a genome-wide approach that enriches for differentially expressed mRNA transcripts. We aimed to make novel observations of differential gene expression in cirrhosis using SSH combined with quantitative real-time reverse transcriptase polymerase chain reaction (RT-PCR). Liver transcriptomes in HCV cirrhosis, AIH cirrhosis, PBC, and nondiseased liver tissue were examined by SSH. Resulting complementary DNA (cDNA) clones were rescreened for differential expression by dot-blot hybridization and then sequenced. Selected gene expression was quantified by real-time RT-PCR. Following SSH, 694 clones were rescreened for differential gene expression, of which 145 were sequenced and found to derive from 89 different genes. Seven clones were homologous only with expressed sequence tag (EST) sequences encoding genes having no known function. Up-regulated expression of four genes was confirmed by real-time RT-PCR: transmembrane 4 superfamily member 3 (tetraspanin CO-029) in all forms of cirrhosis, hedgehog interacting protein (HIP) in AIH cirrhosis and chitinase 3-like-1 (HC gp-39 or ykl-40) and arginine-glutamic acid repeat (RERE) in HCV cirrhosis. RERE gene polymorphisms and splice variants were observed in all tissues examined. Tetraspanin CO-029 up-regulation was primarily localized to bile ductular cells. In conclusion, novel observations of differential gene expression in human cirrhosis were made using SSH as the primary discovery tool. In particular, further studies of the RERE gene and its products in HCV associated liver disease are warranted.
Collapse
Affiliation(s)
- Nicholas A Shackel
- A.W. Morrow Gastroenterology and Liver Centre, Centenary Institute of Cancer Medicine and Cell Biology, Royal Prince Alfred Hospital, Sydney, Australia
| | | | | | | | | |
Collapse
|
473
|
Hashimoto Y, Niikura T, Chiba T, Tsukamoto E, Kadowaki H, Nishitoh H, Yamagishi Y, Ishizaka M, Yamada M, Nawa M, Terashita K, Aiso S, Ichijo H, Nishimoto I. The cytoplasmic domain of Alzheimer's amyloid-beta protein precursor causes sustained apoptosis signal-regulating kinase 1/c-Jun NH2-terminal kinase-mediated neurotoxic signal via dimerization. J Pharmacol Exp Ther 2003; 306:889-902. [PMID: 12829723 DOI: 10.1124/jpet.103.051383] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The biological function of full-length amyloid-beta protein precursor (AbetaPP), the precursor of Abeta, is not fully understood. Multiple laboratories have reported that antibody binding to cell surface AbetaPP causes neuronal cell death. Here we examined whether induced dimerization of the cytoplasmic domain of AbetaPP (AbetaPPCD) triggers neuronal cell death. In neurohybrid cells expressing fusion constructs of the epidermal growth factor (EGF) receptor with AbetaPPCD (EGFR/AbetaPP hybrids), EGF drastically enhanced neuronal cell death in a manner sensitive to acetyl-l-aspartyl-l-glutamyl-l-valyl-l-aspartyl-aldehyde (Ac-DEVD-CHO; DEVD), GSH-ethyl ester (GEE), and pertussis toxin (PTX). Dominant-negative apoptosis signal-regulating kinase 1 (ASK1) blocked this neuronal cell death, but not alpha-synuclein-induced cell death. Constitutively active ASK1 (caASK1) caused DEVD/GEE-sensitive cell death in a manner resistant to PTX and sensitive to Humanin, which also suppressed neuronal cell death by EGFR/AbetaPP hybrid. ASK1 formed a complex with AbetaPPCD via JIP-1b, the c-Jun N-terminal kinase (JNK)-interacting protein. EGFR/AbetaPP hybrid-induced and caASK1-induced neuronal cell deaths were specifically blocked by SP600125 (anthra[1,9-cd]pyrazol-6(2H)-one), a specific JNK inhibitor. Combined with our earlier study, these data indicate that dimerization of AbetaPPCD triggers ASK1/JNK-mediated neuronal cell death. We also noticed a potential role of ASK1/JNK in sustaining the activity of this mechanism after initial activation by AbetaPP, which allows for the achievement of cell death by short-term anti-AbetaPP antibody treatment. Understanding the function of AbetaPPCD and its downstream pathway should lead to effective anti-Alzheimer's disease therapeutics.
Collapse
Affiliation(s)
- Yuichi Hashimoto
- Department of Pharmacology, KEIO University School of Medicine, Medical Research Center, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
474
|
Allain H, Bentué-Ferrer D, Tribut O, Gauthier S, Michel BF, Drieu-La Rochelle C. Alzheimer's disease: the pharmacological pathway. Fundam Clin Pharmacol 2003; 17:419-28. [PMID: 12914543 DOI: 10.1046/j.1472-8206.2003.00153.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The current pharmacological treatment of Alzheimer's disease (AD) comes down to four marketed drugs (tacrine, donepezil, rivastigmine and galantamine) all of which are cholinesterase inhibitors, conforming to the cholinergic hypothesis. The future is clearly directed at new biological targets closely linked to the pathophysiology of the disease and more precisely, the pathological hallmark of AD which includes widespread neuronal degeneration, neuritic plaques containing beta-amyloid and tau-rich neurofibrillary tangles. For clinicians, this means that new curative drugs will have to be prescribed early in the course of the disease. This review describes the main entry pathways for drug discovery in AD: (1) supplementation therapy, (2) anti-apoptotic compounds, (3) substances with a mitochondrial impact, (4) anti-amyloid substances, (5) anti-protein aggregation and (6) lipid-lowering drugs. The rapidity at which these compounds will be at our disposal is highly dependent on the policy of the pharmaceutical companies.
Collapse
Affiliation(s)
- Hervé Allain
- Laboratoire de Pharmacologie Expérimentale et Clinique, Faculté de Médecine, Université de Rennes I, CS 34317, 35043 Rennes cedex, France.
| | | | | | | | | | | |
Collapse
|
475
|
Terashita K, Hashimoto Y, Niikura T, Tajima H, Yamagishi Y, Ishizaka M, Kawasumi M, Chiba T, Kanekura K, Yamada M, Nawa M, Kita Y, Aiso S, Nishimoto I. Two serine residues distinctly regulate the rescue function of Humanin, an inhibiting factor of Alzheimer's disease-related neurotoxicity: functional potentiation by isomerization and dimerization. J Neurochem 2003; 85:1521-38. [PMID: 12787071 DOI: 10.1046/j.1471-4159.2003.01797.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The 24-residue peptide Humanin (HN), containing two Ser residues at positions 7 and 14, protects neuronal cells from insults of various Alzheimer's disease (AD) genes and A beta. It was not known why the rescue function of (S14G)HN is more potent than HN by two to three orders of magnitude. Investigating the possibility that the post-translational modification of Ser14 might play a role, we found that HN with D-Ser at position 14 exerts neuroprotection more potently than HN by two to three orders of magnitude, whereas D-Ser7 substitution does not affect the rescue function of HN. On the other hand, S7A substitution nullified the HN function. Multiple series of experiments indicated that Ser7 is necessary for self-dimerization of HN, which is essential for neuroprotection by this factor. These findings indicate that the rescue function of HN is quantitatively modulated by d-isomerization of Ser14 and Ser7-relevant dimerization, allowing for the construction of a very potent HN derivative that was fully neuroprotective at 10 pM against 25 microM A beta1-43. This study provides important clues to the understanding of the neuroprotective mechanism of HN, as well as to the development of novel AD therapeutics.
Collapse
Affiliation(s)
- Kenzo Terashita
- Department of Pharmacology, KEIO University School of Medicine, Medical Research Center, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
476
|
Guo B, Zhai D, Cabezas E, Welsh K, Nouraini S, Satterthwait AC, Reed JC. Humanin peptide suppresses apoptosis by interfering with Bax activation. Nature 2003; 423:456-61. [PMID: 12732850 DOI: 10.1038/nature01627] [Citation(s) in RCA: 470] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2003] [Accepted: 03/31/2003] [Indexed: 12/20/2022]
Abstract
Bax (Bcl2-associated X protein) is an apoptosis-inducing protein that participates in cell death during normal development and in various diseases. Bax resides in an inactive state in the cytosol of many cells. In response to death stimuli, Bax protein undergoes conformational changes that expose membrane-targeting domains, resulting in its translocation to mitochondrial membranes, where Bax inserts and causes release of cytochrome c and other apoptogenic proteins. It is unknown what controls conversion of Bax from the inactive to active conformation. Here we show that Bax interacts with humanin (HN), an anti-apoptotic peptide of 24 amino acids encoded in mammalian genomes. HN prevents the translocation of Bax from cytosol to mitochondria. Conversely, reducing HN expression by small interfering RNAs sensitizes cells to Bax and increases Bax translocation to membranes. HN peptides also block Bax association with isolated mitochondria, and suppress cytochrome c release in vitro. Notably, the mitochondrial genome contains an identical open reading frame, and the mitochondrial version of HN can also bind and suppress Bax. We speculate therefore that HN arose from mitochondria and transferred to the nuclear genome, providing a mechanism for protecting these organelles from Bax.
Collapse
Affiliation(s)
- Bin Guo
- The Burnham Institute, 10901 North Torrey Pines Road, La Jolla, California 92037, USA
| | | | | | | | | | | | | |
Collapse
|
477
|
Zou P, Ding Y, Sha Y, Hu B, Nie S. Humanin peptides block calcium influx of rat hippocampal neurons by altering fibrogenesis of Abeta(1-40). Peptides 2003; 24:679-85. [PMID: 12895653 DOI: 10.1016/s0196-9781(03)00131-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Humanin peptides (including HN, HNG and other mutants) were reported previously that antagonize neurotoxicity caused by various familial Alzheimer's disease (FAD) genes and Abeta derivatives. Herein, we describe the aggregation dynamics and the representative morphological characteristics of Abeta(1-40) after different time of addition humanin peptides, which revealed that (a) the interactions of both HN and HNG with Abeta(1-40) induced quick and significant increase of light-scattering intensity, and (b) HNG also caused obvious morphological alteration from fibrillary to amorphous. In the meantime, the experiments also revealed that the interaction of HNG with Abeta(1-40) could decrease Abeta(1-40)-induced calcium rise, an initial event accompanying Abeta(1-40)-induced apoptosis of cultured neurons. Our results indicate that HNG can protect neurons by altering Abeta(1-40) morphology.
Collapse
Affiliation(s)
- Ping Zou
- Single Molecule and Nano-biomedicine Laboratory, Department of Biophysics, Peking University School of Basic Medical Sciences, 100083 Beijing, China
| | | | | | | | | |
Collapse
|
478
|
Yamagishi Y, Hashimoto Y, Niikura T, Nishimoto I. Identification of essential amino acids in Humanin, a neuroprotective factor against Alzheimer's disease-relevant insults. Peptides 2003; 24:585-95. [PMID: 12860203 DOI: 10.1016/s0196-9781(03)00106-2] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Humanin (HN) is a secretory peptide that inhibits neurotoxicity by various Alzheimer's disease-relevant insults. We have so far identified that the substitution of Leu9 for Arg nullifies the extracellular secretion of HN. Here we comprehensively investigate the amino acid requirement of HN essential for its secretion and for its neuroprotective function. Intracellulary expressed HN-EGFP (EGFP N-terminally fused with HN) was extracellularly secreted, whereas neither EGFP nor (L9R)HN-EGFP was secreted at all. While Ala substitution of neither residue affected HN secretion, Arg substitution revealed that the two structures-Leu9-Leu11 and Pro19-Va120-were essential for the secretion of full-length HN. In the Leu9-Leu11 domain, the Leu10 residue turned out to play a central role in this function, because the Asp substitution of Leu10, but not Leu9 or Leu11, nullified the secretion of HN. Utilizing Ala-scanned HN constructs, we also investigated a comprehensive structure-function relationship for the neuroprotective function of full-length HN, which revealed (i) that Pro3, Ser7, Cys8, Leu9, Leu12, Thr13, Ser14, and Pro19 were essential for this function and (ii) that Ser7 and Leu9 were essential for self-dimerization of HN. These findings indicate that HN has activity similar to a signal peptide, for which the Leu9-Leu11 region, particularly Leu10, functions as a core domain, and suggest that self-dimerization of HN is a process essential for its neuroprotective function.
Collapse
Affiliation(s)
- Yohichi Yamagishi
- Department of Pharmacology, KEIO University School of Medicine, Life Science Research Building, 6th Floor, Shinanomachi, Shinjuku-ku, Tokyo, Japan
| | | | | | | |
Collapse
|
479
|
Niikura T, Hashimoto Y, Tajima H, Ishizaka M, Yamagishi Y, Kawasumi M, Nawa M, Terashita K, Aiso S, Nishimoto I. A tripartite motif protein TRIM11 binds and destabilizes Humanin, a neuroprotective peptide against Alzheimer's disease-relevant insults. Eur J Neurosci 2003; 17:1150-8. [PMID: 12670303 DOI: 10.1046/j.1460-9568.2003.02553.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Humanin (HN) is a newly identified neuroprotective peptide that specifically suppresses Alzheimer's disease (AD)-related neurotoxicity. HN peptide has been detected in the human AD brain as well as in mouse testis and colon by immunoblot and immunohistochemical analyses. By means of yeast two-hybrid screening, we identified TRIM11 as a novel HN-interacting protein. TRIM11, which is a member of protein family containing a tripartite motif (TRIM), is composed of a RING finger domain, which is a putative E3 ubiquitin ligase, a B-box domain, a coiled-coil domain and a B30.2 domain. Deletion of the B30.2 domain in TRIM11 abolished the interaction with HN, whereas the B30.2 domain alone did not interact with HN. For their interaction, at least the coiled-coil domain was indispensable together with the B30.2 domain. The intracellular level of glutathione S-transferase-fused or EGFP-fused HN peptides or plain HN was drastically reduced by the coexpression of TRIM11. Disruption of the RING finger domain by deleting the first consensus cysteine or proteasome inhibitor treatment significantly diminished the effect of TRIM11 on the intracellular level of HN. These results suggest that TRIM11 plays a role in the regulation of intracellular HN level through ubiquitin-mediated protein degradation pathways.
Collapse
Affiliation(s)
- Takako Niikura
- Department of Pharmacology, Keio University School of Medicine, General Research Building, 3rd and 6th Floor, 35 Shinanomachi, Tokyo 160-8582, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
480
|
Meireles SI, Carvalho AF, Hirata R, Montagnini AL, Martins WK, Runza FB, Stolf BS, Termini L, Neto CEM, Silva RLA, Soares FA, Neves EJ, Reis LFL. Differentially expressed genes in gastric tumors identified by cDNA array. Cancer Lett 2003; 190:199-211. [PMID: 12565175 DOI: 10.1016/s0304-3835(02)00587-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Using cDNA fragments from the FAPESP/lICR Cancer Genome Project, we constructed a cDNA array having 4512 elements and determined gene expression in six normal and six tumor gastric tissues. Using t-statistics, we identified 80 cDNAs whose expression in normal and tumor samples differed more than 3.5 sample standard deviations. Using Self-Organizing Map, the expression profile of these cDNAs allowed perfect separation of malignant and non-malignant samples. Using the supervised learning procedure Support Vector Machine, we identified trios of cDNAs that could be used to classify samples as normal or tumor, based on single-array analysis. Finally, we identified genes with altered linear correlation when their expression in normal and tumor samples were compared. Further investigation concerning the function of these genes could contribute to the understanding of gastric carcinogenesis and may prove useful in molecular diagnostics.
Collapse
Affiliation(s)
- Sibele I Meireles
- Hospital do Câncer A.C. Camargo, Rua Professor Antonio Prudente 109, 01509-010, São Paulo, SP, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
481
|
Hashimoto Y, Tsuji O, Niikura T, Yamagishi Y, Ishizaka M, Kawasumi M, Chiba T, Kanekura K, Yamada M, Tsukamoto E, Kouyama K, Terashita K, Aiso S, Lin A, Nishimoto I. Involvement of c-Jun N-terminal kinase in amyloid precursor protein-mediated neuronal cell death. J Neurochem 2003; 84:864-77. [PMID: 12562529 DOI: 10.1046/j.1471-4159.2003.01585.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Amyloid precursor protein (APP), the precursor of Abeta, has been shown to function as a cell surface receptor that mediates neuronal cell death by anti-APP antibody. The c-Jun N-terminal kinase (JNK) can mediate various neurotoxic signals, including Abeta neurotoxicity. However, the relationship of APP-mediated neurotoxicity to JNK is not clear, partly because APP cytotoxicity is Abeta independent. Here we examined whether JNK is involved in APP-mediated neuronal cell death and found that: (i) neuronal cell death by antibody-bound APP was inhibited by dominant-negative JNK, JIP-1b and SP600125, the specific inhibitor of JNK, but not by SB203580 or PD98059; (ii) constitutively active (ca) JNK caused neuronal cell death and (iii) the pharmacological profile of caJNK-mediated cell death closely coincided with that of APP-mediated cell death. Pertussis toxin (PTX) suppressed APP-mediated cell death but not caJNK-induced cell death, which was suppressed by Humanin, a newly identified neuroprotective factor which inhibits APP-mediated cytotoxicity. In the presence of PTX, the PTX-resistant mutant of Galphao, but not that of Galphai, recovered the cytotoxic action of APP. These findings demonstrate that JNK is involved in APP-mediated neuronal cell death as a downstream signal transducer of Go.
Collapse
Affiliation(s)
- Yuichi Hashimoto
- Departments of Pharmacology and Anatomy, KEIO University School of Medicine, 35 Shinanomachi, Tokyo 160-8582, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
482
|
Abstract
Treatment of neurodegenerative diseases, such as Alzheimer's disease, multiple sclerosis, Parkinson's disease and amyotrophic lateral sclerosis (ALS), represents a major challenge for the pharmaceutical industry. These disorders have common and unique molecular pathological characteristics that result in serious reductions in nervous-system functionality. Key to developing novel and efficacious therapeutics is the discovery of new gene targets. Genomic, proteomics and bioinformatic analyses are identifying vast amounts of genes whose expression is associated with the pathology of a specific disease. Extensive validation studies performed in parallel with drug development are crucial for the selection of appropriate target genes. This review outlines some of the current progress in gene discovery for neurodegenerative disease.
Collapse
|
483
|
Niikura T, Hashimoto Y, Tajima H, Ito Y, Nishimoto I. [Neuronal cell death by Alzheimer's disease-relevant insults and its rescue]. Nihon Ronen Igakkai Zasshi 2003; 40:36-40. [PMID: 12649845 DOI: 10.3143/geriatrics.40.36] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Neuronal cell death accounts for the clinical manifestations in Alzheimer's disease (AD). To establish the curative therapy of AD, neuroprotection is one of the primary therapeutic targets, and the elucidation of the mechanism of neuronal cell death is mandatory. Detailed characterization of neuronal cell death caused by familial AD (FAD)-linked mutant genes revealed that different cell death pathways are evoked by different types of mutants. Humanin (HN), a newly identified neuroprotective peptide, suppresses neuronal cell death caused by all known FAD mutants and A beta, while it has no effect on neuronal cell death caused by AD-irrelevant insults. The functional target of HN is the antagonism to neuronal death, not the modulation of A beta production, suggesting that HN-based medication can be combined with other remedies targeting A beta. HN is a promising seed for a novel therapy aiming at complete cure of AD through the suppression of neuronal loss.
Collapse
Affiliation(s)
- Takako Niikura
- Department of Pharmacology, KEIO University School of Medicine
| | | | | | | | | |
Collapse
|
484
|
Jung SS, Van Nostrand WE. Humanin rescues human cerebrovascular smooth muscle cells from Abeta-induced toxicity. J Neurochem 2003; 84:266-72. [PMID: 12558989 DOI: 10.1046/j.1471-4159.2003.01524.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cerebral amyloid beta-protein (Abeta) angiopathy (CAA) is a key pathological feature of Alzheimer's disease (AD) and related disorders. We have used human cerebrovascular smooth muscle (HCSM) cells as an in vitro model system to investigate the pathogenic mechanisms of the pathology of CAA. It was previously demonstrated that certain pathogenic forms of Abeta induce several pathologic responses in these cells, including fibril assembly at the cell surface, increased levels of Abeta precursor, degradation of HCSM cell alpha-actin and cell death. The recently discovered novel rescue factor humanin (HN) was shown to protect neuronal cells in culture from various AD-relevant insults including treatment with Abeta. In this report we investigated whether the HN peptide could rescue HCSM cells from Abeta-induced toxicity. We found that treatment of HCSM cells with 10 microm HN prevented pathogenic Abeta-induced HCSM cell death using a fluorescent cell viability assay, and degradation of HCSM alpha-actin was diminished shown by quantitative immunoblotting. However, Abeta deposition and fibril formation at the cell surface and increased levels of cell-associated AbetaPP were not affected by treatment with HN as demonstrated by a thioflavin T fluorescence assay and immunochemical methods, respectively. These results suggest that the protective effects of HN occur downstream of these cell surface molecular events. This is the first demonstration of a rescue factor for HCSM cells from Abeta-mediated cell death as well as being the first report to show that neuronal cells and HCSM cells may share a common downstream mechanism in the Abeta-induced cell death pathway.
Collapse
Affiliation(s)
- Sonia S Jung
- Department of Medicine, Stony Brook University, New York 11794, USA
| | | |
Collapse
|
485
|
Maximov V, Martynenko A, Hunsmann G, Tarantul V. Mitochondrial 16S rRNA gene encodes a functional peptide, a potential drug for Alzheimer's disease and target for cancer therapy. Med Hypotheses 2002; 59:670-3. [PMID: 12445508 DOI: 10.1016/s0306-9877(02)00223-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
New functions of well-known genes have been revealed frequently. A new example is described in this report. Earlier we have detected an up-regulation of expression of the mitochondrial 16S rRNA gene in non-Hodgkin's lymphomas. Here we demonstrate that the human mitochondrial 16S rRNA gene encodes a potential oncopeptide, Humanin described recently. This peptide suppresses neuronal cell death induced by mutant genes responsible for familial Alzheimer's disease (AD). Analysis of the gene coding site structure showed that Humanin mRNA is translated most likely in the cytosol, but not in the mitochondrion in vivo. This led us to suppose that AD could be caused by a block of Humanin mRNA transport from mitochondria into the cytosol. Moreover, our data and reports by others an mitochondrial 16S rRNA transcription and characteristic of transcript structure suggests that Humanin is a potential oncopeptide. Thus, the use of Humanin for the treatment of AD may increase the risk for the development of malignant diseases.
Collapse
Affiliation(s)
- V Maximov
- Institute of Molecular Genetics, Russian Academy of Science, Moscow, Russia
| | | | | | | |
Collapse
|
486
|
Niikura T, Hashimoto Y, Tajima H, Nishimoto I. Death and survival of neuronal cells exposed to Alzheimer's insults. J Neurosci Res 2002; 70:380-91. [PMID: 12391601 DOI: 10.1002/jnr.10354] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Neuronal cell death is the central abnormality occurring in brains suffering from Alzheimer's disease (AD). The notion that AD is a disease caused by loss of neurons points toward suppression of neuronal death as the most important therapeutic target. Nevertheless, the mechanisms for neuronal death in AD are still relatively unclear. Three known mutant genes cause familial AD (FAD): amyloid precursor protein, presenilin 1, and presenilin 2. Detailed analysis of cytotoxic mechanisms of the FAD-linked mutant genes reveals that they cause neuronal cell death at physiologically low expression levels. Unexpectedly, cytotoxic mechanisms vary depending on the type of mutations and genes, suggesting that various mechanisms for neuronal cell death are involved in AD patients. In support of this, activity-dependent neurotrophic factor, basic fibroblast growth factor, and insulin-like growth factor-I can completely protect neurons from beta-amyloid (A beta) cytotoxicity but exhibit incomplete or little effect on cytotoxicity by FAD mutant genes. By contrast, Humanin, a newly identified 24-residue peptide, suppresses neuronal cell death by various FAD mutants and A beta, whereas this factor has no effect on cytotoxicity from AD-irrelevant insults. Studies investigating death and survival of neuronal cells exposed to AD insults will open a new horizon in developing therapy aimed at neuroprotection.
Collapse
Affiliation(s)
- Takako Niikura
- Department of Pharmacology and Neurosciences, Keio University School of Medicine, Shinanomachi, Tokyo, Japan
| | | | | | | |
Collapse
|
487
|
Caricasole A, Bruno V, Cappuccio I, Melchiorri D, Copani A, Nicoletti F. A novel rat gene encoding a Humanin-like peptide endowed with broad neuroprotective activity. FASEB J 2002; 16:1331-3. [PMID: 12154011 DOI: 10.1096/fj.02-0018fje] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We report the identification of a novel rat cDNA encoding a peptide homologous to Humanin, a secreted peptide that specifically protects against neuronal cell death induced by beta-amyloid peptide (Ab) or by mutations causing early-onset familial Alzheimer's disease. The rat gene, which we termed Rattin, encodes a peptide of 38 residues (15 residues longer than Humanin) showing 73% identity in the conserved region to Humanin. The expression profile of the 1.6-kb Rattin transcript is comparable to that displayed by Humanin, with significant expression levels in the central nervous system and in cardiac and skeletal muscle. The full-length Rattin peptide and its 1-25 fragment were equally effective as Humanin in protecting rat- and mouse-cultured cortical neurons against Ab-induced toxicity. However, Rattin was much more effective than Humanin against excitotoxic neuronal death induced by a toxic pulse with NMDA. Rattin and its short fragment were protective against excitotoxic death not only when coapplied with NMDA, but also when added to the cultures after the NMDA pulse. Neither Rattin not Humanin could affect neuronal apoptosis by trophic deprivation induced in cultured cerebellar granule cells depleted of extracellular potassium. This suggests that Rattin is the prototype of a novel class of peptides, phylogenetically related to Humanin, endowed with protective activity not only against Ab but also toward excitotoxic neuronal death. The identification of Rattin may be instrumental for the development of novel pharmacological strategies aimed at enhancing the production of endogenous Humanin-like peptides.
Collapse
Affiliation(s)
- Andrea Caricasole
- Institute of Human Physiology and Pharmacology Vittorio Erspamer, Department of Human Physiology and Pharmacology, University of Rome La Sapienza, 00185, Rome, Italy.
| | | | | | | | | | | |
Collapse
|
488
|
Tajima H, Niikura T, Hashimoto Y, Ito Y, Kita Y, Terashita K, Yamazaki K, Koto A, Aiso S, Nishimoto I. Evidence for in vivo production of Humanin peptide, a neuroprotective factor against Alzheimer's disease-related insults. Neurosci Lett 2002; 324:227-31. [PMID: 12009529 DOI: 10.1016/s0304-3940(02)00199-4] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
An unbiased functional screening with brain cDNA library from an Alzheimer's disease (AD) brain identified a novel 24-residue peptide Humanin (HN), which suppresses AD-related neurotoxicity. As the 1567-base cDNA containing the open reading frame (ORF) of HN is 99% identical to mitochondrial 16S ribosomal RNA as well as registered human mRNA, it was elusive whether HN is produced in vivo. Here, we raised anti-HN antibody and found that long cDNAs containing the ORF of HN (HN-ORF) produced the HN peptide in mammalian cells, dependent on the presence of full-length HN-ORF. Immunoblot analysis detected a 3-kDa protein with HN immunoreactivity in the testis and the colon in 3-week-old mice and in the testis in 12-week-old mice. HN immunoreactivity was also detected in an AD brain, but little in normal brains. This study suggests that HN peptide could be produced in vivo, and would provide a novel insight into the pathophysiology of AD.
Collapse
Affiliation(s)
- Hirohisa Tajima
- Department of Pharmacology and Neurosciences, KEIO University School of Medicine, Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
489
|
Kariya S, Takahashi N, Ooba N, Kawahara M, Nakayama H, Ueno S. Humanin inhibits cell death of serum-deprived PC12h cells. Neuroreport 2002; 13:903-7. [PMID: 11997711 DOI: 10.1097/00001756-200205070-00034] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Humanin (HN) and S14G HN (HNG) are recently discovered polypeptides that rescue cells from death induced by multiple different types of familial Alzheimer's disease genes and by amyloid-beta. However, the cytoprotective activity of these peptides against other cell death-inducing stimuli remains unclear. In this study, we demonstrated, using three different methods (MTS assay, caspase-3 assay, and detection of DNA fragmentation), that both HN and HNG protect PC12 cells from death elicited by serum deprivation. This implies the potential of the peptides to rescue cells from a broad spectrum, if not all, of cell death-inducing factors. Further investigations on HN may lead the possible application of this peptide as therapeutic agent for the treatment of other neurodegenerative diseases.
Collapse
Affiliation(s)
- Shingo Kariya
- Department of Neurology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8522, Japan
| | | | | | | | | | | |
Collapse
|
490
|
Hashimoto Y, Niikura T, Ito Y, Kita Y, Terashita K, Nishimoto I. Neurotoxic mechanisms by Alzheimer's disease-linked N141I mutant presenilin 2. J Pharmacol Exp Ther 2002; 300:736-45. [PMID: 11861776 DOI: 10.1124/jpet.300.3.736] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Although it has been established that oxidative stress mediates cytotoxicity by familial Alzheimer's disease (FAD)-linked mutants of presenilin (PS)1 and that pertussis toxin inhibits cytotoxicity by FAD-linked N141I-PS2, it has not been determined whether oxidative stress is involved in cytotoxicity by N141I-PS2 or which pertussis toxin-sensitive proteins mediate the cytotoxicity. Here we report that low expression of N141I-PS2 caused neuronal cell death, whereas low expression of wild-type PS2 did not. Cytotoxicities by low and high expression of N141I-PS2 occurred through dissimilar mechanisms: the former cytotoxicity was blocked by a cell-permeable caspase inhibitor, and the latter was not. Since both mechanisms were sensitive to a cell-permeable antioxidant, we examined potential sources of reactive oxygen species in each mechanism, and found that the caspase inhibitor-sensitive neurotoxicity by N141I-PS2 was likely through NADPH oxidase and the caspase inhibitor-resistant neurotoxicity by N141I-PS2 through xanthine oxidase. Pertussis toxin greatly suppressed both toxic mechanisms by N141I-PS2, and only Galpha(o), a neuron-enriched pertussis toxin-sensitive G protein, was involved in both mechanisms. We therefore conclude that N141I-PS2 is capable of triggering multiple neurotoxic mechanisms, which can be inhibited by the combination of clinically usable inhibitors of NADPH oxidase and xanthine oxidase. This study thus provides a novel insight into the therapeutic intervention of PS2 mutant-associated FAD.
Collapse
Affiliation(s)
- Yuichi Hashimoto
- Department of Pharmacology and Neurosciences, KEIO University School of Medicine, Shinanomachi, Shinjuku-ku, Tokyo Japan
| | | | | | | | | | | |
Collapse
|
491
|
Detailed characterization of neuroprotection by a rescue factor humanin against various Alzheimer's disease-relevant insults. J Neurosci 2002. [PMID: 11717357 DOI: 10.1523/jneurosci.21-23-09235.2001] [Citation(s) in RCA: 154] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A novel factor, termed Humanin (HN), antagonizes against neurotoxicity by various types of familial Alzheimer's disease (AD) genes [V642I and K595N/M596L (NL) mutants of amyloid precursor protein (APP), M146L-presenilin (PS) 1, and N141I-PS2] and by Abeta1-43 with clear action specificity ineffective on neurotoxicity by polyglutamine repeat Q79 or superoxide dismutase 1 mutants. Here we report that HN can also inhibit neurotoxicity by other AD-relevant insults: other familial AD genes (A617G-APP, L648P-APP, A246E-PS1, L286V-PS1, C410Y-PS1, and H163R-PS1), APP stimulation by anti-APP antibody, and other Abeta peptides (Abeta1-42 and Abeta25-35). The action specificity was further indicated by the finding that HN could not suppress neurotoxicity by glutamate or prion fragment. Against the AD-relevant insults, essential roles of Cys(8) and Ser(14) were commonly indicated, and the domain from Pro(3) to Pro(19) was responsible for the rescue action of HN, in which seven residues turned out to be essential. We also compared the neuroprotective action of S14G HN (HNG) with that of activity-dependent neurotrophic factor, IGF-I, or basic FGF for the antagonism against various AD-relevant insults (V642I-APP, NL-APP, M146L-PS1, N141I-PS2, and Abeta1-43). Although all of these factors could abolish neurotoxicity by Abeta1-43, only HNG could abolish cytotoxicities by all of them. HN and HN derivative peptides may provide a new insight into the study of AD pathophysiology and allow new avenues for the development of therapeutic interventions for various forms of AD.
Collapse
|
492
|
Hashimoto Y, Niikura T, Ito Y, Sudo H, Hata M, Arakawa E, Abe Y, Kita Y, Nishimoto I. Detailed characterization of neuroprotection by a rescue factor humanin against various Alzheimer's disease-relevant insults. J Neurosci 2001; 21:9235-45. [PMID: 11717357 PMCID: PMC6763898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023] Open
Abstract
A novel factor, termed Humanin (HN), antagonizes against neurotoxicity by various types of familial Alzheimer's disease (AD) genes [V642I and K595N/M596L (NL) mutants of amyloid precursor protein (APP), M146L-presenilin (PS) 1, and N141I-PS2] and by Abeta1-43 with clear action specificity ineffective on neurotoxicity by polyglutamine repeat Q79 or superoxide dismutase 1 mutants. Here we report that HN can also inhibit neurotoxicity by other AD-relevant insults: other familial AD genes (A617G-APP, L648P-APP, A246E-PS1, L286V-PS1, C410Y-PS1, and H163R-PS1), APP stimulation by anti-APP antibody, and other Abeta peptides (Abeta1-42 and Abeta25-35). The action specificity was further indicated by the finding that HN could not suppress neurotoxicity by glutamate or prion fragment. Against the AD-relevant insults, essential roles of Cys(8) and Ser(14) were commonly indicated, and the domain from Pro(3) to Pro(19) was responsible for the rescue action of HN, in which seven residues turned out to be essential. We also compared the neuroprotective action of S14G HN (HNG) with that of activity-dependent neurotrophic factor, IGF-I, or basic FGF for the antagonism against various AD-relevant insults (V642I-APP, NL-APP, M146L-PS1, N141I-PS2, and Abeta1-43). Although all of these factors could abolish neurotoxicity by Abeta1-43, only HNG could abolish cytotoxicities by all of them. HN and HN derivative peptides may provide a new insight into the study of AD pathophysiology and allow new avenues for the development of therapeutic interventions for various forms of AD.
Collapse
Affiliation(s)
- Y Hashimoto
- Department of Pharmacology and Neurosciences, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
493
|
Mamiya T, Ukai M. [Gly(14)]-Humanin improved the learning and memory impairment induced by scopolamine in vivo. Br J Pharmacol 2001; 134:1597-9. [PMID: 11739234 PMCID: PMC1572908 DOI: 10.1038/sj.bjp.0704429] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Humanin is a very recently discovered 24 amino acid linear polypeptide, which protects against cell death induced by either familial Alzheimer's disease mutant of amyloid precursor protein, presenilin-1 or presenilin-2 in vitro. However, it has remained uncertain whether humanin is a useful drug for the animal model of learning and memory deficit. In this study, we evaluated the effects of [Gly(14)]-humanin, a more potent humanin analogue, on the scopolamine HBr (1 mg kg(-1) s.c.)-induced impairment of spontaneous alternation behaviour in the Y-maze, an index of short-term memory in mice. [Gly(14)]-Humanin (1000 pmol 5 microl(-1) i.c.v.) reversed the impairment without affecting the number of arm entries. These results suggest that (I) [Gly(14)]-humanin is a beneficial drug for the impairment of learning and memory and (II) it modulates the learning and memory function mediated via cholinergic systems in mice.
Collapse
Affiliation(s)
- T Mamiya
- Department of Chemical Pharmacology, Faculty of Pharmaceutical Sciences, Meijo University, 150, Yagotoyama, Tempaku-ku, Nagoya 468-8503, Japan.
| | | |
Collapse
|
494
|
News in brief. Drug Discov Today 2001. [DOI: 10.1016/s1359-6446(01)01917-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
495
|
Hashimoto Y, Ito Y, Niikura T, Shao Z, Hata M, Oyama F, Nishimoto I. Mechanisms of neuroprotection by a novel rescue factor humanin from Swedish mutant amyloid precursor protein. Biochem Biophys Res Commun 2001; 283:460-8. [PMID: 11327724 DOI: 10.1006/bbrc.2001.4765] [Citation(s) in RCA: 168] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We report a novel gene, designated Humanin (HN) cDNA, that suppresses neuronal cell death by K595N/M596L-APP (NL-APP), a mutant causing familial Alzheimer's disease (FAD), termed Swedish mutant. Transfection of neuronal cells with HN cDNA or treatment with the coding HN polypeptide abrogated cytotoxicity by NL-APP. HN suppressed neurotoxicity by Abeta1-43 in the absence of N2 supplement, but could not inhibit Abeta secretion from NL-APP. HN could also protect neuronal cells from death by NL-APP lacking the 41st and 42nd residues of the Abeta region. Therefore, HN suppressed neuronal cell death by NL-APP not through inhibition of Abeta42 secretion, but with two targets for its inhibitory action: (i) the intracellular toxic mechanism directly triggered by NL-APP and (ii) neurotoxicity by Abeta. HN will contribute to the development of curative therapy of AD, especially as a novel reagent that could mechanistically supplement Abeta-production inhibitors.
Collapse
Affiliation(s)
- Y Hashimoto
- Department of Pharmacology and Neurosciences, KEIO University School of Medicine, Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | | | | | | | | | | | | |
Collapse
|