451
|
Li Y, Danzer JR, Alvarez P, Belmont AS, Wallrath LL. Effects of tethering HP1 to euchromatic regions of the Drosophila genome. Development 2003; 130:1817-24. [PMID: 12642487 DOI: 10.1242/dev.00405] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Heterochromatin protein 1 (HP1) is a conserved non-histone chromosomal protein enriched in heterochromatin. On Drosophila polytene chromosomes, HP1 localizes to centric and telomeric regions, along the fourth chromosome, and to specific sites within euchromatin. HP1 associates with centric regions through an interaction with methylated lysine nine of histone H3, a modification generated by the histone methyltransferase SU(VAR)3-9. This association correlates with a closed chromatin configuration and silencing of euchromatic genes positioned near heterochromatin. To determine whether HP1 is sufficient to nucleate the formation of silent chromatin at non-centric locations, HP1 was tethered to sites within euchromatic regions of Drosophila chromosomes. At 25 out of 26 sites tested, tethered HP1 caused silencing of a nearby reporter gene. The site that did not support silencing was upstream of an active gene, suggesting that the local chromatin environment did not support the formation of silent chromatin. Silencing correlated with the formation of ectopic fibers between the site of tethered HP1 and other chromosomal sites, some containing HP1. The ability of HP1 to bring distant chromosomal sites into proximity with each other suggests a mechanism for chromatin packaging. Silencing was not dependent on SU(VAR)3-9 dosage, suggesting a bypass of the requirement for histone methylation.
Collapse
Affiliation(s)
- Yuhong Li
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA
| | | | | | | | | |
Collapse
|
452
|
Mizutani A, Tanaka M. Regions of GAL4 critical for binding to a promoter in vivo revealed by a visual DNA-binding analysis. EMBO J 2003; 22:2178-87. [PMID: 12727884 PMCID: PMC156092 DOI: 10.1093/emboj/cdg220] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Binding of transcriptional activators to specific sites on DNA, mediated by their DNA-binding domain, is a key regulatory point in transcriptional regulation. With a GFP-based microscopic assay, we investigated how the prototypical activator GAL4 effectively binds to a promoter in living yeast cells. We show that GAL4 relies on a previously unrevealed mechanism involving 'DNA-binding enhancers' (DBEs), the regions of GAL4 that assist DNA-binding domain association with DNA. GAL4 contains two DBEs, one, but not the other, physically overlapping the principal transcriptional activation domain. Either of the DBEs, however, can function independently of transcriptional activation, indicating a discrete mechanism responsible for DNA-binding enhancement. The effect of DBEs, while not limited to natural target promoters, is still not universal and can be profoundly affected by the binding-site context. The GAL4 DBEs can also enhance promoter binding of an unrelated DNA-binding domain, and possibly represent a new modular functional unit responsible for effective binding of diverse regulatory factors to DNA in vivo.
Collapse
Affiliation(s)
- Akiko Mizutani
- Unit Process and Combined Circuit, PRESTO, Japan Science and Technology Corporation (JST), Kawaguchi, Saitama 332-0012, Japan
| | | |
Collapse
|
453
|
Ren Y, Kruhlak MJ, Bazett-Jones DP. Same serial section correlative light and energy-filtered transmission electron microscopy. J Histochem Cytochem 2003; 51:605-12. [PMID: 12704208 DOI: 10.1177/002215540305100506] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Correlative imaging of a specific cell with both the light microscope and the electron microscope has proved to be a difficult task, requiring enormous amounts of patience and technical skill. We describe a technique with a high rate of success, which can be used to identify a particular cell in the light microscope and then to embed and thin-section it for electron microscopy. The technique also includes a method to obtain many uninterrupted, thin serial sections for imaging by conventional or energy-filtered transmission electron microscopy, to obtain images for 3D analysis of detail at the suborganelle level.
Collapse
Affiliation(s)
- Ying Ren
- Programme in Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | |
Collapse
|
454
|
Yamamoto A, Hiraoka Y. Monopolar spindle attachment of sister chromatids is ensured by two distinct mechanisms at the first meiotic division in fission yeast. EMBO J 2003; 22:2284-96. [PMID: 12727894 PMCID: PMC156094 DOI: 10.1093/emboj/cdg222] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
At meiosis I, sister chromatids attach to the same spindle pole (i.e. monopolar attachment). Mechanisms establishing monopolar attachment remain largely unknown. In the fission yeast Schizosaccharomyces pombe, monopolar attachment is established in haploid cells, indicating that homologous chromosomes are dispensable for its establishment. This monopolar attachment requires both mating pheromone signaling and inactivation of Pat1 kinase (a key negative regulator of meiosis). It also requires the meiotic cohesin factor Rec8 but not the recombination factor Rec12. In contrast, in diploid cells, monopolar attachment is established by Pat1 inactivation alone, and does not require mating pheromone signaling. Furthermore, monopolar attachment requires Rec12 in addition to Rec8. These results indicate that monopolar attachment of sister chromatids can be established by two distinct mechanisms in S.pombe, one that is pheromone dependent and recombination independent, and a second that is pheromone independent and recombination dependent. We propose that co-operation of these two mechanisms generates the high fidelity of monopolar attachment.
Collapse
Affiliation(s)
- Ayumu Yamamoto
- CREST Research Project, Kansai Advanced Research Center, Communications Research Laboratory, 588-2 Iwaoka, Iwaoka-cho, Nishi-ku, Kobe 651-2492, Japan.
| | | |
Collapse
|
455
|
Davies KM, Lewis PJ. Localization of rRNA synthesis in Bacillus subtilis: characterization of loci involved in transcription focus formation. J Bacteriol 2003; 185:2346-53. [PMID: 12644506 PMCID: PMC151511 DOI: 10.1128/jb.185.7.2346-2353.2003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2002] [Accepted: 01/14/2003] [Indexed: 11/20/2022] Open
Abstract
In Bacillus subtilis, RNA polymerase becomes concentrated into regions of the nucleoid called transcription foci. With green fluorescent protein-tagged RNA polymerase, these structures are only observed at higher growth rates and have been shown to represent the sites of rRNA synthesis. There are 10 rRNA (rrn) operons distributed around nearly half of the chromosome. In this study we analyzed the rrn composition of transcription foci with fluorescently tagged loci and showed that they comprise the origin-proximal operon rrnO but not the more dispersed rrnE or rrnD. This suggests that transcription foci comprise only the seven origin-proximal operons rrnO, rrnA, rrnJ, rrnW, rrnI, rrnH, and rrnG. These results have important implications for our understanding of microbial chromosome structure.
Collapse
Affiliation(s)
- Karen M Davies
- School of Environmental and Life Sciences, Biological Sciences, University of Newcastle, Callaghan, New South Wales 2308, Australia
| | | |
Collapse
|
456
|
Gerlich D, Beaudouin J, Kalbfuss B, Daigle N, Eils R, Ellenberg J. Global chromosome positions are transmitted through mitosis in mammalian cells. Cell 2003; 112:751-64. [PMID: 12654243 DOI: 10.1016/s0092-8674(03)00189-2] [Citation(s) in RCA: 237] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
We investigated positioning of chromosomes during the cell cycle in live mammalian cells with a combined experimental and computational approach. By non-invasive labeling of chromosome subsets and tracking by 4D imaging, we could show that no global rearrangements occurred in interphase. Using the same assay, we also observed a striking order of chromosomes throughout mitosis. By contrast, our computer simulation based on stochastic movements of individual chromosomes predicted randomization of chromosome order in mitosis. In vivo, a quantitative assay for single chromosome positioning during mitosis revealed strong similarities between daughter and mother cells. These results demonstrate that global chromosome positions are heritable through the cell cycle in mammalian cells. Based on tracking of labeled chromosomes and centromeres during chromosome segregation and experimental perturbations of chromosomal order, we propose that chromosome specific timing of sister chromatid separation transmits chromosomal positions from one cell generation to the next.
Collapse
Affiliation(s)
- Daniel Gerlich
- Intelligent Bioinformatics Systems, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120 Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
457
|
Abstract
Eukaryotic transcription initiation requires the complex dynamics of hundreds of proteins, many of which are found in large multisubunit complexes. Recent experiments have suggested stepwise recruitment of preassembled complexes, including chromatin remodeling, general transcription factor, mediator, and polymerase complexes, in which the actual order of recruitment may vary for different promoters. How do these complexes access target sequences contained within tightly condensed chromatin? While chromatin remodeling activities may facilitate the accessibility of large transcription and polymerase complexes to promoters, it is not known how they themselves are targeted within condensed chromatin. Gene activation in the context of condensed chromatin does occur. A yeast acidic activator, Gal4, can overcome heterochromatin gene silencing in Drosophila, and the addition of LCRs (locus control regions) to transgenes overcomes position effect silencing, even within centromeric chromatin. Here, we directly visualize the recruitment of HAT and SWI/SNF components after tethering the VP16 acidic activation domain within condensed chromatin. A recruitment delay of tens to hundreds of minutes for catalytic HAT subunits and SWI/SNF subunits, relative to other HAT and SWI/SNF components, suggests sequential recruitment/assembly of chromatin remodeling complexes within condensed chromatin.
Collapse
Affiliation(s)
- Sevinci Memedula
- Department of Cell and Structural Biology, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
| | | |
Collapse
|
458
|
Lee PS, Lin DCH, Moriya S, Grossman AD. Effects of the chromosome partitioning protein Spo0J (ParB) on oriC positioning and replication initiation in Bacillus subtilis. J Bacteriol 2003; 185:1326-37. [PMID: 12562803 PMCID: PMC142880 DOI: 10.1128/jb.185.4.1326-1337.2003] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Spo0J (ParB) of Bacillus subtilis is a DNA-binding protein that belongs to a conserved family of proteins required for efficient plasmid and chromosome partitioning in many bacterial species. We found that Spo0J contributes to the positioning of the chromosomal oriC region, but probably not by recruiting the origin regions to specific subcellular locations. In wild-type cells during exponential growth, duplicated origin regions were generally positioned around the cell quarters. In a spo0J null mutant, sister origin regions were often closer together, nearer to midcell. We found, by using a Spo0J-green fluorescent protein [GFP] fusion, that the subcellular location of Spo0J was a consequence of the chromosomal positions of the Spo0J binding sites. When an array of binding sites (parS sites) were inserted at various chromosomal locations in the absence of six of the eight known parS sites, Spo0J-GFP was no longer found predominantly at the cell quarters, indicating that Spo0J is not sufficient to recruit chromosomal parS sites to the cell quarters. spo0J also affected chromosome positioning during sporulation. A spo0J null mutant showed an increase in the number of cells with some origin-distal regions located in the forespore. In addition, a spo0J null mutation caused an increase in the number of foci per cell of LacI-GFP bound to arrays of lac operators inserted in various positions in the chromosome, including the origin region, an increase in the DNA-protein ratio, and an increase in origins per cell, as determined by flow cytometry. These results indicate that the spo0J mutant produced a significant proportion of cells with increased chromosome content, probably due to increased and asynchronous initiation of DNA replication.
Collapse
Affiliation(s)
- Philina S Lee
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | |
Collapse
|
459
|
|
460
|
Fusco D, Accornero N, Lavoie B, Shenoy SM, Blanchard JM, Singer RH, Bertrand E. Single mRNA molecules demonstrate probabilistic movement in living mammalian cells. Curr Biol 2003; 13:161-167. [PMID: 12546792 PMCID: PMC4764064 DOI: 10.1016/s0960-9822(02)01436-7] [Citation(s) in RCA: 455] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Cytoplasmic mRNA movements ultimately determine the spatial distribution of protein synthesis. Although some mRNAs are compartmentalized in cytoplasmic regions, most mRNAs, such as housekeeping mRNAs or the poly-adenylated mRNA population, are believed to be distributed throughout the cytoplasm. The general mechanism by which all mRNAs may move, and how this may be related to localization, is unknown. Here, we report a method to visualize single mRNA molecules in living mammalian cells, and we report that, regardless of any specific cytoplasmic distribution, individual mRNA molecules exhibit rapid and directional movements on microtubules. Importantly, the beta-actin mRNA zipcode increased both the frequency and length of these movements, providing a common mechanistic basis for both localized and nonlocalized mRNAs. Disruption of the cytoskeleton with drugs showed that microtubules and microfilaments are involved in the types of mRNA movements we have observed, which included complete immobility and corralled and nonrestricted diffusion. Individual mRNA molecules switched frequently among these movements, suggesting that mRNAs undergo continuous cycles of anchoring, diffusion, and active transport.
Collapse
Affiliation(s)
- Dahlene Fusco
- Departments of Anatomy and Structural Biology and Cell Biology, Albert Einstein College of Medicine Bronx, New York 10461
| | - Nathalie Accornero
- Institut de Genetique Moleculaire de Montpellier-CNRS UMR 5535 IFR 24 1919 route de Mende 34293 Montpellier Cedex 5 France
| | - Brigitte Lavoie
- NINDS/NIH Molecular Plasticity Section Bethesda, Maryland 20892
| | - Shailesh M. Shenoy
- Departments of Anatomy and Structural Biology and Cell Biology, Albert Einstein College of Medicine Bronx, New York 10461
| | - Jean-Marie Blanchard
- Institut de Genetique Moleculaire de Montpellier-CNRS UMR 5535 IFR 24 1919 route de Mende 34293 Montpellier Cedex 5 France
| | - Robert H. Singer
- Departments of Anatomy and Structural Biology and Cell Biology, Albert Einstein College of Medicine Bronx, New York 10461
- Correspondence: ;
| | - Edouard Bertrand
- Institut de Genetique Moleculaire de Montpellier-CNRS UMR 5535 IFR 24 1919 route de Mende 34293 Montpellier Cedex 5 France
- Correspondence: ;
| |
Collapse
|
461
|
Abstract
The nucleus is the cellular organelle in which the bulk of the genomic information is stored. From studies using fluorescence microscopy with optical sections of fixed cells, a picture of an organized nuclear structure has emerged. Recently, the application of the green fluorescent protein (GFP) as a fluorescent dye allows the visualization of nuclear dynamics in live cells. Using four-dimensional fluorescence microscopy, the nuclear structures within an interphase nucleus are perceived to have dynamic domains. Structural analyses of a living plant nucleus contribute to our understanding of the genome information process in a particular cell in multicelluar systems.
Collapse
Affiliation(s)
- Naohiro Kato
- Biotechnology Center for Agriculture and the Environment, Rutgers, The State University of New Jersey, 59 Dudley Road, Foran Hall, New Brunswick, New Jersey 08901-8520, USA
| |
Collapse
|
462
|
Hediger F, Taddei A, Neumann FR, Gasser SM. Methods for visualizing chromatin dynamics in living yeast. Methods Enzymol 2003; 375:345-65. [PMID: 14870677 DOI: 10.1016/s0076-6879(03)75022-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Florence Hediger
- Department of Molecular Biology, University of Geneva, 1211 Geneva 4, Switzerland
| | | | | | | |
Collapse
|
463
|
Carpenter AE, Belmont AS. Direct visualization of transcription factor-induced chromatin remodeling and cofactor recruitment in vivo. Methods Enzymol 2003; 375:366-81. [PMID: 14870678 DOI: 10.1016/s0076-6879(03)75023-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Anne E Carpenter
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA
| | | |
Collapse
|
464
|
Zhang J, Campbell RE, Ting AY, Tsien RY. Creating new fluorescent probes for cell biology. Nat Rev Mol Cell Biol 2002; 3:906-18. [PMID: 12461557 DOI: 10.1038/nrm976] [Citation(s) in RCA: 1428] [Impact Index Per Article: 64.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Fluorescent probes are one of the cornerstones of real-time imaging of live cells and a powerful tool for cell biologists. They provide high sensitivity and great versatility while minimally perturbing the cell under investigation. Genetically-encoded reporter constructs that are derived from fluorescent proteins are leading a revolution in the real-time visualization and tracking of various cellular events. Recent advances include the continued development of 'passive' markers for the measurement of biomolecule expression and localization in live cells, and 'active' indicators for monitoring more complex cellular processes such as small-molecule-messenger dynamics, enzyme activation and protein-protein interactions.
Collapse
Affiliation(s)
- Jin Zhang
- Department of Pharmacology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, 18-496, Cambridge, Massachusetts 02139, USA
| | | | | | | |
Collapse
|
465
|
Abstract
Recent studies have shown that plasmids are organized inside bacterial cells in a remarkably complex way. Plasmids containing active partitioning systems are tethered to specific regions of the cell, and the number and position of plasmid molecules within the cell are coordinated with the bacterial host cell cycle and growth rate. Plasmids belonging to different incompatibility groups are also tethered to different sites within the cell, and segregate at different times relative to one another and to the bacterial cell cycle. Recent studies suggest that many of these observations regarding subcellular plasmid dynamics formulated for Escherichia coli plasmids may be broadly conserved.
Collapse
Affiliation(s)
- Joe Pogliano
- Division of Biology, University of California, San Diego, 4105 Bonner Hall, 9500 Gilman Drive, La Jolla, CA 92093-0349, USA.
| |
Collapse
|
466
|
Vazquez J, Belmont AS, Sedat JW. The dynamics of homologous chromosome pairing during male Drosophila meiosis. Curr Biol 2002; 12:1473-83. [PMID: 12225662 DOI: 10.1016/s0960-9822(02)01090-4] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
BACKGROUND Meiotic pairing is essential for the proper orientation of chromosomes at the metaphase plate and their subsequent disjunction during anaphase I. In male Drosophila melanogaster, meiosis occurs in the absence of recombination or a recognizable synaptonemal complex (SC). Due to limitations in available cytological techniques, the early stages of homologous chromosome pairing in male Drosophila have not been observed, and the mechanisms involved are poorly understood. RESULTS Chromosome tagging with GFP-Lac repressor protein allowed us to track, for the first time, the behavior of meiotic chromosomes at high resolution, live, at all stages of male Drosophila meiosis. Homologous chromosomes pair throughout the euchromatic regions in spermatogonia and during the early phases of spermatocyte development. Extensive separation of homologs and sister chromatids along the chromosome arms occurs in mid-G2, several hours before the first meiotic division, and before the G2/M transition. Centromeres, on the other hand, show complex association patterns, with specific homolog pairing taking place in mid-G2. These changes in chromosome pairing parallel changes in large-scale chromosome organization. CONCLUSIONS Our results suggest that widespread interactions along the euchromatin are required for the initiation, but not the maintenance, of meiotic pairing of autosomes in male Drosophila. We propose that heterochromatic associations, or chromatid entanglement, may be responsible for the maintenance of homolog association during late G2. Our data also suggest that the formation of chromosome territories in the spermatocyte nucleus may play an active role in ensuring the specificity of meiotic pairing in late prophase by disrupting interactions between nonhomologous chromosomes.
Collapse
Affiliation(s)
- Julio Vazquez
- Department of Biochemistry and Biophysics, University of California, San Francisco, 94143, USA
| | | | | |
Collapse
|
467
|
Abstract
The demonstration that the green fluorescent protein (GFP) from the jellyfish Aequorea victoria required no jellyfish-specific cofactors and could be expressed as a fluorescent protein in heterologous hosts including both prokaryotes and eukaryotes sparked the development of GFP as one of the most common reporters in use today. Over the past several years, the utility of GFP as a reporter has been optimized through the isolation and engineering of variants with increased folding rates, different in vivo stabilities and colour variants with altered excitation and emission spectral properties. One of the great utilities of GFP is as a probe for characterizing spatial and temporal dynamics of gene expression, protein localization and protein-protein interactions in living cells. The innovative application of GFP as a reporter in bacteria has made a significant contribution to microbial cell biology. This review will highlight recent studies that demonstrate the potential of GFP for real-time analysis of gene expression, protein localization and the dynamics of signalling transduction pathways through protein-protein interactions.
Collapse
Affiliation(s)
- Carolyn M Southward
- Department of Microbiology and Infectious Diseases, University of Calgary Health Sciences Centre, 3330 Hospital Drive NW, Calgary, Alberta, Canada T2N 4N1
| | | |
Collapse
|
468
|
Boulon S, Basyuk E, Blanchard JM, Bertrand E, Verheggen C. Intra-nuclear RNA trafficking: insights from live cell imaging. Biochimie 2002; 84:805-13. [PMID: 12457567 DOI: 10.1016/s0300-9084(02)01438-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Despite recent advances, the mechanisms of RNA movements and targeting within the nucleus are still mysterious. While diffusion appears to play a crucial role in nuclear dynamics and RNA transport, some data argue for a model in which diffusion is controlled, at least in part, by the organization of the nucleus in well-defined compartments. Much of the recent progress is based on imaging technologies, and this review will first present them in some detail. We will then summarize studies that analyzed nuclear movements of both polyadenylated RNA and box C/D snoRNP. Indeed, this latter model has already brought a number of interesting results. We will finally present some of our original results on box C/D snoRNA transport.
Collapse
Affiliation(s)
- Séverine Boulon
- IGMM-CNRS UMR 5535, IFR24, 1919, route de Mende, 34293 Montpellier cedex 5, France
| | | | | | | | | |
Collapse
|
469
|
Ancelin K, Brunori M, Bauwens S, Koering CE, Brun C, Ricoul M, Pommier JP, Sabatier L, Gilson E. Targeting assay to study the cis functions of human telomeric proteins: evidence for inhibition of telomerase by TRF1 and for activation of telomere degradation by TRF2. Mol Cell Biol 2002; 22:3474-87. [PMID: 11971978 PMCID: PMC133804 DOI: 10.1128/mcb.22.10.3474-3487.2002] [Citation(s) in RCA: 162] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We investigated the control of telomere length by the human telomeric proteins TRF1 and TRF2. To this end, we established telomerase-positive cell lines in which the targeting of these telomeric proteins to specific telomeres could be induced. We demonstrate that their targeting leads to telomere shortening. This indicates that these proteins act in cis to repress telomere elongation. Inhibition of telomerase activity by a modified oligonucleotide did not further increase the pace of telomere erosion caused by TRF1 targeting, suggesting that telomerase itself is the target of TRF1 regulation. In contrast, TRF2 targeting and telomerase inhibition have additive effects. The possibility that TRF2 can activate a telomeric degradation pathway was directly tested in human primary cells that do not express telomerase. In these cells, overexpression of full-length TRF2 leads to an increased rate of telomere shortening.
Collapse
Affiliation(s)
- Katia Ancelin
- Laboratoire de Biologie Moléculaire et Cellulaire, UMR5665 CNRS/ENSL, Ecole Normale Supérieure de Lyon, Lyon, France
| | | | | | | | | | | | | | | | | |
Collapse
|
470
|
Nye AC, Rajendran RR, Stenoien DL, Mancini MA, Katzenellenbogen BS, Belmont AS. Alteration of large-scale chromatin structure by estrogen receptor. Mol Cell Biol 2002; 22:3437-49. [PMID: 11971975 PMCID: PMC133805 DOI: 10.1128/mcb.22.10.3437-3449.2002] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The estrogen receptor (ER), a member of the nuclear hormone receptor superfamily important in human physiology and disease, recruits coactivators which modify local chromatin structure. Here we describe effects of ER on large-scale chromatin structure as visualized in live cells. We targeted ER to gene-amplified chromosome arms containing large numbers of lac operator sites either directly, through a lac repressor-ER fusion protein (lac rep-ER), or indirectly, by fusing lac repressor with the ER interaction domain of the coactivator steroid receptor coactivator 1. Significant decondensation of large-scale chromatin structure, comparable to that produced by the approximately 150-fold-stronger viral protein 16 (VP16) transcriptional activator, was produced by ER in the absence of estradiol using both approaches. Addition of estradiol induced a partial reversal of this unfolding by green fluorescent protein-lac rep-ER but not by wild-type ER recruited by a lac repressor-SRC570-780 fusion protein. The chromatin decondensation activity did not require transcriptional activation by ER nor did it require ligand-induced coactivator interactions, and unfolding did not correlate with histone hyperacetylation. Ligand-induced coactivator interactions with helix 12 of ER were necessary for the partial refolding of chromatin in response to estradiol using the lac rep-ER tethering system. This work demonstrates that when tethered or recruited to DNA, ER possesses a novel large-scale chromatin unfolding activity.
Collapse
Affiliation(s)
- Anne C Nye
- Department of Cell and Structural Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | | | | | | | | |
Collapse
|
471
|
Simon P, Houston P, Broach J. Directional bias during mating type switching in Saccharomyces is independent of chromosomal architecture. EMBO J 2002; 21:2282-91. [PMID: 11980725 PMCID: PMC125987 DOI: 10.1093/emboj/21.9.2282] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Haploid Saccharomyces cells have the remarkable potential to change mating type as often as every generation, a process accomplished by an intrachromosomal gene conversion between an expressor locus MAT and one of two repositories of mating type information, HML or HMR. The particular locus selected as donor is dictated by the mating type of the cell, a bias that ensures productive mating type interconversion. Here we use green fluorescent protein tagging of the expressor and donor loci on chromosome III to show that this preference for donor locus does not result from a predetermined organization of chromosome III: HML and MAT as well as HMR and MAT remain separated in cells of both mating types. In fact, cells in which the inappropriate donor locus is artificially tethered to MAT still predominantly select the correct donor. We find, though, that initiation of switching leads to a rapid association of the correct donor locus with MAT. Thus, in mating type switching in Saccharomyces, donor preference is imposed at commitment to recombination rather than at physical contact of interacting DNA strands.
Collapse
Affiliation(s)
| | | | - James Broach
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
Corresponding author e-mail:
| |
Collapse
|
472
|
Abstract
The classic view of a transcriptional initiation complex is that of an assembly of factors with many protein-protein contacts, leading to a multi-component complex whose existence is a result of the stabilizing influence of the many intermolecular interactions. Recent findings from protein mobility experiments in living cells indicate that many kinds of nuclear factors move rapidly and exchange quickly with multiple targets. Two countervailing views of factor/regulatory site interactions emerge from the current literature.
Collapse
Affiliation(s)
- Gordon L Hager
- Laboratory of Receptor Biology and Gene Expression, Building 41, B602, 41 Library Drive, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892-5055, USA.
| | | | | |
Collapse
|
473
|
Chubb JR, Boyle S, Perry P, Bickmore WA. Chromatin motion is constrained by association with nuclear compartments in human cells. Curr Biol 2002; 12:439-45. [PMID: 11909528 DOI: 10.1016/s0960-9822(02)00695-4] [Citation(s) in RCA: 434] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
BACKGROUND In comparison with many nuclear proteins, the movement of chromatin in nuclei appears to be generally constrained. These restrictions on motion are proposed to reflect the attachment of chromatin to immobile nuclear substructures. RESULTS To gain insight into the regulation of chromosome dynamics by nuclear architecture, we have followed the movements of different sites in the human genome in living cells. Here, we show that loci at nucleoli or the nuclear periphery are significantly less mobile than other, more nucleoplasmic loci. Disruption of nucleoli increases the mobility of nucleolar-associated loci. CONCLUSIONS This is the first report of distinct nuclear substructures constraining the movements of chromatin. These constraints reflect the physical attachment of chromatin to nuclear compartments or steric impairment caused by local ultrastructure. Our data suggest a role for the nucleolus and nuclear periphery in maintaining the three-dimensional organization of chromatin in the human nucleus.
Collapse
Affiliation(s)
- Jonathan R Chubb
- MRC Human Genetics Unit, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, Scotland, United Kingdom
| | | | | | | |
Collapse
|
474
|
Abstract
Fluorescence in situ hybridization combined with three-dimensional microscopy has shown that chromosomes are not randomly strewn throughout the nucleus but are in fact fairly well organized, with different loci reproducibly found in different regions of the nucleus. At the same time, increasingly sophisticated methods to track and analyze the movements of specific chromosomal loci in vivo using four-dimensional microscopy have revealed that chromatin undergoes extensive Brownian motion. However, the diffusion of interphase chromatin is constrained, implying that chromosomes are physically anchored within the nucleus. This constraint on diffusion is the result of interactions between chromatin and structural elements within the nucleus, such as nuclear pores or the nuclear lamina. The combination of defined positioning with constrained diffusion has a strong impact on interactions between chromosomal loci, and appears to explain the tendency of certain chromosome rearrangements to occur during the development of cancer.
Collapse
Affiliation(s)
- Wallace F Marshall
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520, USA.
| |
Collapse
|
475
|
Navarro M, Gull K. A pol I transcriptional body associated with VSG mono-allelic expression in Trypanosoma brucei. Nature 2001; 414:759-63. [PMID: 11742402 DOI: 10.1038/414759a] [Citation(s) in RCA: 247] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
In the mammalian host, African trypanosomes generate consecutive waves of parasitaemia by changing their antigenic coat. Because this coat consists of a single type of variant surface glycoprotein (VSG), the question arises of how a trypanosome accomplishes the transcription of only one of a multi-allelic family of VSG expression site loci to display a single VSG type on the surface at any one time. No major differences have been detected between the single active expression site and the cohort of inactive expression sites. Here we identify an extranucleolar body containing RNA polymerase I (pol I) that is transcriptionally active and present only in the bloodstream form of the parasite. Visualization of the active expression site locus by tagging with green fluorescent protein shows that it is specifically located at this unique pol I transcriptional factory. The presence of this transcriptional body in postmitotic nuclei and its stability in the nucleus after DNA digestion provide evidence for a coherent structure. We propose that the recruitment of a single expression site and the concomitant exclusion of inactive loci from a discrete transcriptional body define the mechanism responsible for VSG mono-allelic expression.
Collapse
Affiliation(s)
- M Navarro
- Present address: Instituto de Parasitología y Biomedicina 'López-Neyra', CSIC, C/ Ventanilla 11, 18001 Granada, Spain.
| | | |
Collapse
|
476
|
Ye Q, Hu YF, Zhong H, Nye AC, Belmont AS, Li R. BRCA1-induced large-scale chromatin unfolding and allele-specific effects of cancer-predisposing mutations. J Cell Biol 2001; 155:911-21. [PMID: 11739404 PMCID: PMC2150890 DOI: 10.1083/jcb.200108049] [Citation(s) in RCA: 162] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The breast cancer susceptibility gene BRCA1 encodes a protein that has been implicated in multiple nuclear functions, including transcription and DNA repair. The multifunctional nature of BRCA1 has raised the possibility that the polypeptide may regulate various nuclear processes via a common underlying mechanism such as chromatin remodeling. However, to date, no direct evidence exists in mammalian cells for BRCA1-mediated changes in either local or large-scale chromatin structure. Here we show that targeting BRCA1 to an amplified, lac operator-containing chromosome region in the mammalian genome results in large-scale chromatin decondensation. This unfolding activity is independently conferred by three subdomains within the transactivation domain of BRCA1, namely activation domain 1, and the two BRCA1 COOH terminus (BRCT) repeats. In addition, we demonstrate a similar chromatin unfolding activity associated with the transactivation domains of E2F1 and tumor suppressor p53. However, unlike E2F1 and p53, BRCT-mediated chromatin unfolding is not accompanied by histone hyperacetylation. Cancer-predisposing mutations of BRCA1 display an allele-specific effect on chromatin unfolding: 5' mutations that result in gross truncation of the protein abolish the chromatin unfolding activity, whereas those in the 3' region of the gene markedly enhance this activity. A novel cofactor of BRCA1 (COBRA1) is recruited to the chromosome site by the first BRCT repeat of BRCA1, and is itself sufficient to induce chromatin unfolding. BRCA1 mutations that enhance chromatin unfolding also increase its affinity for, and recruitment of, COBRA1. These results indicate that reorganization of higher levels of chromatin structure is an important regulated step in BRCA1-mediated nuclear functions.
Collapse
Affiliation(s)
- Q Ye
- Department of Biochemistry and Molecular Genetics, Health Sciences Center, University of Virginia, Charlottesville, VA 22908, USA
| | | | | | | | | | | |
Collapse
|
477
|
Heun P, Laroche T, Shimada K, Furrer P, Gasser SM. Chromosome dynamics in the yeast interphase nucleus. Science 2001; 294:2181-6. [PMID: 11739961 DOI: 10.1126/science.1065366] [Citation(s) in RCA: 374] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Little is known about the dynamics of chromosomes in interphase nuclei. By tagging four chromosomal regions with a green fluorescent protein fusion to lac repressor, we monitored the movement and subnuclear position of specific sites in the yeast genome, sampling at short time intervals. We found that early and late origins of replication are highly mobile in G1 phase, frequently moving at or faster than 0.5 micrometers/10 seconds, in an energy-dependent fashion. The rapid diffusive movement of chromatin detected in G1 becomes constrained in S phase through a mechanism dependent on active DNA replication. In contrast, telomeres and centromeres provide replication-independent constraint on chromatin movement in both G1 and S phases.
Collapse
Affiliation(s)
- P Heun
- University of Geneva, Department of Molecular Biology, Quai Ernest-Ansermet 30, CH-1211 Geneva, Switzerland
| | | | | | | | | |
Collapse
|
478
|
Abstract
The ability to visualize protein dynamics and biological processes by in vivo microscopy is revolutionizing many areas of biology. These methods generate large, kinetically complex data sets, which often cannot be intuitively interpreted. The combination of dynamic imaging and computational modelling is emerging as a powerful tool for the quantitation of biophysical properties of molecules and processes. The new discipline of computational cell biology will be essential in uncovering the pathways, mechanisms and controls of biological processes and systems as they occur in vivo.
Collapse
Affiliation(s)
- R D Phair
- BioInformatics Services, Rockville, Maryland 20854, USA.
| | | |
Collapse
|
479
|
Thrower DA, Bloom K. Dicentric chromosome stretching during anaphase reveals roles of Sir2/Ku in chromatin compaction in budding yeast. Mol Biol Cell 2001; 12:2800-12. [PMID: 11553718 PMCID: PMC59714 DOI: 10.1091/mbc.12.9.2800] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
We have used mitotic spindle forces to examine the role of Sir2 and Ku in chromatin compaction. Escherichia coli lac operator DNA was placed between two centromeres on a conditional dicentric chromosome in budding yeast cells and made visible by expression of a lac repressor-green fluorescent fusion protein. Centromeres on the same chromatid of a dicentric chromosome attach to opposite poles approximately 50% of the time, resulting in chromosome bridges during anaphase. In cells deleted for yKU70, yKU80, or SIR2, a 10-kb region of the dicentric chromosome stretched along the spindle axis to a length of 6 microm during anaphase. On spindle disassembly, stretched chromatin recoiled to the bud neck and was partitioned to mother and daughter cells after cytokinesis and cell separation. Chromatin immunoprecipitation revealed that Sir2 localizes to the lacO region in response to activation of the dicentric chromosome. These findings indicate that Ku and Sir proteins are required for proper chromatin compaction within regions of a chromosome experiencing tension or DNA damage. The association of Sir2 with the affected region suggests a direct role in this process, which may include the formation of heterochromatic DNA.
Collapse
Affiliation(s)
- D A Thrower
- Department of Biology, CB3280 University of North Carolina, Chapel Hill, NC 27599-3280, USA
| | | |
Collapse
|
480
|
Beach DL, Bloom K. ASH1 mRNA localization in three acts. Mol Biol Cell 2001; 12:2567-77. [PMID: 11553699 PMCID: PMC59695 DOI: 10.1091/mbc.12.9.2567] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2001] [Revised: 06/01/2001] [Accepted: 06/27/2001] [Indexed: 11/11/2022] Open
Abstract
Novel green fluorescent protein (GFP) labeling techniques targeting specific mRNA transcripts reveal discrete phases of mRNA localization in yeast: packaging, transport, and docking. In budding yeast, ASH1 mRNA is translocated via actin and myosin to the tip of growing cells. A GFP-decorated reporter transcript containing the ASH1 3' untranslated region gRNA(ASH1) forms spots of fluorescence localized to a cortical domain at the bud tip, relocates to the mother-bud neck before cell separation, and finally migrates to the incipient bud site before the next budding cycle. The correct positioning of the mRNA requires at least six proteins: She1p-5p and Bud6p/Aip3p. gRNA(ASH1) localization in mutant strains identified three functional categories for the She proteins: mRNA particle formation (She2p and She4p), mRNA transport into the bud (She1p/Myo4p and She3p), and mRNA tethering at the bud tip (She5p/Bni1p and Bud6p/Aip3p). Because localization of the mRNA within the bud does not a priori restrict the translated protein, we examine the distribution of a mother-specific protein (Yta6p) translated from a mRNA directed into the bud. Yta6p remains associated with the mother cortex despite localization of the mRNA to the bud. This video essay traces the life history of a localized mRNA transcript, describes the roles of proteins required to polarize and anchor the mRNA, and demonstrates at least one instance where mRNA localization does not effect protein localization.
Collapse
Affiliation(s)
- D L Beach
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599-3280, USA.
| | | |
Collapse
|
481
|
Vazquez J, Belmont AS, Sedat JW. Multiple regimes of constrained chromosome motion are regulated in the interphase Drosophila nucleus. Curr Biol 2001; 11:1227-39. [PMID: 11525737 DOI: 10.1016/s0960-9822(01)00390-6] [Citation(s) in RCA: 195] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
BACKGROUND Increasing evidence indicates specific changes in the three-dimensional organization of chromosomes in the cell nucleus during the cell cycle and development. These changes may be linked to changes in both the coordinated regulation of gene transcription and the timing of chromosome replication. While there is cytological evidence for short-range diffusive motion of chromosomes during interphase, the mechanisms for large-scale chromosome remodeling inside the nucleus remain unknown. RESULTS Chromosome motion was tracked in Drosophila spermatocyte nuclei by 3D fluorescence microscopy. The Lac repressor/lac operator system was used to label specific chromosomal sites in live tissues, allowing extended observation of chromatin motion in different cell cycle stages. Our results reveal a highly dynamic chromosome organization governed by two types of motion: a fast, short-range component over a 1-2 s time scale and a slower component related to long-range chromosome motion within the nucleus. The motion patterns are consistent with a random walk. In early G2, short-range motion occurs within a small, approximately 0.5 microm radius domain, while long-range motion is confined to a much larger, chromosome-sized domain. Progression through G2 as cells approach meiotic prophase is accompanied by a complete arrest of long-range chromosome motion. CONCLUSIONS Our analysis provides direct evidence for cell cycle-regulated changes in interphase chromatin motion. These changes are consistent with changes in local and long-range constraints on chromosome motility. We propose that dynamic interactions between chromosomes and internal nuclear structures modulate the range and rate of interphase chromatin diffusion and thereby regulate large-scale nuclear chromosome organization.
Collapse
Affiliation(s)
- J Vazquez
- Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, CA 94143, USA
| | | | | |
Collapse
|
482
|
Affiliation(s)
- K P Lemon
- Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
483
|
Kanda T, Wahl GM. The dynamics of acentric chromosomes in cancer cells revealed by GFP-based chromosome labeling strategies. JOURNAL OF CELLULAR BIOCHEMISTRY. SUPPLEMENT 2001; Suppl 35:107-14. [PMID: 11389539 DOI: 10.1002/1097-4644(2000)79:35+<107::aid-jcb1133>3.0.co;2-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Autonomous replicons, such as viral episomes and oncogene containing double minute chromosomes (DMs), lack centromeres and consequently should be lost rapidly when the nuclear membrane breaks down at mitosis. Surprisingly, they are not. This raises the important question of the mechanisms that enable their efficient transmission to daughter cells. We review recent developments in GFP-based chromosome labeling strategies that enable real time analyses using high resolution light microscopy to provide insights into this issue. The results reveal that episomes and DMs both adhere to host chromosomes, a process referred to as "chromosome tethering". Such association enables acentric molecules to use the chromosomal centromere in trans, thereby achieving efficient transmission to daughter cells. This unique mechanism of mitotic segregation also raises the possibility of developing a new class of anti-cancer drugs that work by selectively eliminating growth enhancing genes from cancer cells. J. Cell. Biochem. Suppl. 35:107-114, 2000.
Collapse
Affiliation(s)
- T Kanda
- Gene Expression Laboratory, The Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | | |
Collapse
|
484
|
Dietzel S, Belmont AS. Reproducible but dynamic positioning of DNA in chromosomes during mitosis. Nat Cell Biol 2001; 3:767-70. [PMID: 11483964 DOI: 10.1038/35087089] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
How DNA is folded into chromosomes is unknown. Mitotic chromosome banding shows reproducibility in longitudinal compaction at a resolution of several megabase pairs, but it is less clear whether DNA sequences are targeted laterally to specific locations. The in vitro chromosome assembly of prokaryotic DNA suggests that there is a lack of sequence requirements for chromosome condensation, implying an absence of DNA targeting. Protein extraction experiments indicate, however, that specific DNA sequences may bind to a chromosome scaffold. Chromosome banding patterns, using dyes with differential sequence specificity, have been interpreted to result from the alignment of AT-rich sequences in a partially helically folded chromosome scaffold. But fluorescence in situ hybridization experiments, perhaps owing to technical limitations, have shown at best only slight deviation from a random, lateral sequence distribution. Here we show that there is highly reproducible targeting of specific chromosome segments to the metaphase chromatid axis, but that these segments localize to the periphery of prophase and telophase chromosomes. Unfolding intermediates during anaphase and telophase suggest that sequence repositioning occurs through the global uncoiling of an underlying chromatid structure.
Collapse
Affiliation(s)
- S Dietzel
- Department of Cell and Structural Biology, University of Illinois at Urbana-Champaign, 61801, USA
| | | |
Collapse
|
485
|
Abstract
The major functions of the cell nucleus, including transcription, pre-mRNA splicing and ribosome assembly, have been studied extensively by biochemical, genetic and molecular methods. An overwhelming amount of information about their molecular mechanisms is available. In stark contrast, very little is known about how these processes are integrated into the structural framework of the cell nucleus and how they are spatially and temporally co-ordinated within the three-dimensional confines of the nucleus. It is also largely unknown how nuclear architecture affects gene expression. In order to understand how genomes are organized, and how they function, the basic principles that govern nuclear architecture and function must be uncovered. Recent work combining molecular, biochemical and cell biological methods is beginning to shed light on how the nucleus functions and how genes are expressed in vivo. It has become clear that the nucleus contains distinct compartments and that many nuclear components are highly dynamic. Here we describe the major structural compartments of the cell nucleus and discuss their established and proposed functions. We summarize recent observations regarding the dynamic properties of chromatin, mRNA and nuclear proteins, and we consider the implications these findings have for the organization of nuclear processes and gene expression. Finally, we speculate that self-organization might play a substantial role in establishing and maintaining nuclear organization.
Collapse
Affiliation(s)
- M Dundr
- National Cancer Institute, NIH, 41 Library Drive, Building 41, Bethesda, MD 20892, USA
| | | |
Collapse
|
486
|
Müller WG, Walker D, Hager GL, McNally JG. Large-scale chromatin decondensation and recondensation regulated by transcription from a natural promoter. J Cell Biol 2001; 154:33-48. [PMID: 11448988 PMCID: PMC2196867 DOI: 10.1083/jcb.200011069] [Citation(s) in RCA: 133] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We have examined the relationship between transcription and chromatin structure using a tandem array of the mouse mammary tumor virus (MMTV) promoter driving a ras reporter. The array was visualized as a distinctive fluorescent structure in live cells stably transformed with a green fluorescent protein (GFP)-tagged glucocorticoid receptor (GR), which localizes to the repeated MMTV elements after steroid hormone treatment. Also found at the array by immunofluorescence were two different steroid receptor coactivators (SRC1 and CBP) with acetyltransferase activity, a chromatin remodeler (BRG1), and two transcription factors (NFI and AP-2). Within 3 h after hormone addition, arrays visualized by GFP-GR or DNA fluorescent in situ hybridization (FISH) decondensed to varying degrees, in the most pronounced cases from a approximately 0.5-microm spot to form a fiber 1-10 microm long. Arrays later recondensed by 3-8 h of hormone treatment. The degree of decondensation was proportional to the amount of transcript produced by the array as detected by RNA FISH. Decondensation was blocked by two different drugs that inhibit polymerase II, 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole (DRB) and alpha-amanitin. These observations demonstrate a role for polymerase in producing and maintaining decondensed chromatin. They also support fiber-packing models of higher order structure and suggest that transcription from a natural promoter may occur at much higher DNA-packing densities than reported previously.
Collapse
Affiliation(s)
- W G Müller
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, 41 Library Dr., Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
487
|
Stenoien DL, Nye AC, Mancini MG, Patel K, Dutertre M, O'Malley BW, Smith CL, Belmont AS, Mancini MA. Ligand-mediated assembly and real-time cellular dynamics of estrogen receptor alpha-coactivator complexes in living cells. Mol Cell Biol 2001; 21:4404-12. [PMID: 11390668 PMCID: PMC87100 DOI: 10.1128/mcb.21.13.4404-4412.2001] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Studies with live cells demonstrate that agonist and antagonist rapidly (within minutes) modulate the subnuclear dynamics of estrogen receptor alpha (ER) and steroid receptor coactivator 1 (SRC-1). A functional cyan fluorescent protein (CFP)-tagged lac repressor-ER chimera (CFP-LacER) was used in live cells to discretely immobilize ER on stably integrated lac operator arrays to study recruitment of yellow fluorescent protein (YFP)-steroid receptor coactivators (YFP-SRC-1 and YFP-CREB binding protein [CBP]). In the absence of ligand, YFP-SRC-1 is found dispersed throughout the nucleoplasm, with a surprisingly high accumulation on the CFP-LacER arrays. Agonist addition results in the rapid (within minutes) recruitment of nucleoplasmic YFP-SRC-1, while antagonist additions diminish YFP-SRC-1-CFP-LacER associations. Less ligand-independent colocalization is observed with CFP-LacER and YFP-CBP, but agonist-induced recruitment occurs within minutes. The agonist-induced recruitment of coactivators requires helix 12 and critical residues in the ER-SRC-1 interaction surface, but not the F, AF-1, or DNA binding domains. Fluorescence recovery after photobleaching indicates that YFP-SRC-1, YFP-CBP, and CFP-LacER complexes undergo rapid (within seconds) molecular exchange even in the presence of an agonist. Taken together, these data suggest a dynamic view of receptor-coregulator interactions that is now amenable to real-time study in living cells.
Collapse
Affiliation(s)
- D L Stenoien
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
488
|
Abstract
How large-scale topologies regulate interphase chromosome function remains an important question in eukaryotic cell biology. Looped structures are thought to modulate transcription by pairing promoters with distant control elements and to orchestrate intrachromosomal recombination events by pairing appropriate recombination partners. To explore the effects of chromosomal topology on intrachromosomal recombination, distinct loop geometries were engineered into chromosome III of the budding yeast Saccharomyces cerevisiae. These topologies were created by employing pairs of lac operator clusters to serve as pairing sites and a modified lac repressor to perform the role of a protein cross-bridge. The influence of these engineered loops on the selection of donor loci during mating-type switching was evaluated using novel genetic and molecular methods. These experiments demonstrate that engineered interphase chromosome loops are biologically active-capable of influencing the course of intrachromosomal recombination. They also provide insight into the mechanism of mating-type switching by revealing a causal relationship between defined chromosomal topologies and the choice of donor locus.
Collapse
Affiliation(s)
- R Kostriken
- Department of Biology, Mills College, 5000 Mac Arthur Boulevard, Oakland, CA 94613-1301, USA.
| | | |
Collapse
|
489
|
Kanda T, Otter M, Wahl GM. Coupling of mitotic chromosome tethering and replication competence in epstein-barr virus-based plasmids. Mol Cell Biol 2001; 21:3576-88. [PMID: 11313483 PMCID: PMC100279 DOI: 10.1128/mcb.21.10.3576-3588.2001] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The Epstein-Barr virus (EBV) replicates once per cell cycle and segregates with high efficiency yet does not encode the enzymes needed for DNA replication or the proteins required to contact mitotic spindles. The virus-encoded EBNA-1 (EBV nuclear antigen 1) and latent replication origin (oriP) are required for both replication and segregation. We developed a sensitive and specific fluorescent labeling strategy to analyze the interactions of both EBNA-1 with viral episomes and viral episomes with host chromosomes. This enabled investigation of the hypothesis that replication and chromosome tethering are linked through the EBNA-1 protein. We show that deleting EBNA-1 or oriP disrupts mitotic chromosome tethering but removing the dyad symmetry element of oriP does not. Microscopic and biochemical approaches demonstrated that an EBNA-1 mutant lacking residues 16 to 372 bound to oriP plasmids but did not support their mitotic chromosome association and that the mutant lost the ability of wild-type EBNA-1 to associate with interphase chromatin. Importantly, the transient-replication abilities of various mutant forms of EBV plasmids, including the mutant form with the EBNA-1 internal deletion, correlated directly with their chromosome-tethering abilities. These data lead us to propose that EBNA-1 recruits oriP-containing plasmids into chromatin subdomains in interphase nuclei to both engage the host replication machinery and enable the plasmids to adhere to host chromosomes to increase their segregation efficiency.
Collapse
Affiliation(s)
- T Kanda
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | | | | |
Collapse
|
490
|
Pâques F, Richard GF, Haber JE. Expansions and contractions in 36-bp minisatellites by gene conversion in yeast. Genetics 2001; 158:155-66. [PMID: 11333226 PMCID: PMC1461658 DOI: 10.1093/genetics/158.1.155] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The instability of simple tandem repeats, such as human minisatellite loci, has been suggested to arise by gene conversions. In Saccharomyces cerevisiae, a double-strand break (DSB) was created by the HO endonuclease so that DNA polymerases associated with gap repair must traverse an artificial minisatellite of perfect 36-bp repeats or a yeast Y' minisatellite containing diverged 36-bp repeats. Gene conversions are frequently accompanied by changes in repeat number when the template contains perfect repeats. When the ends of the DSB have nonhomologous tails of 47 and 70 nucleotides that must be removed before repair DNA synthesis can begin, 16% of gene conversions had rearrangements, most of which were contractions, almost always in the recipient locus. When efficient removal of nonhomologous tails was prevented in rad1 and msh2 strains, repair was reduced 10-fold, but among survivors there was a 10-fold reduction in contractions. Half the remaining events were expansions. A similar decrease in the contraction rate was observed when the template was modified so that DSB ends were homologous to the template; and here, too, half of the remaining rearrangements were expansions. In this case, efficient repair does not require RAD1 and MSH2, consistent with our previous observations. In addition, without nonhomologous DSB ends, msh2 and rad1 mutations did not affect the frequency or the distribution of rearrangements. We conclude that the presence of nonhomologous ends alters the mechanism of DSB repair, likely through early recruitment of repair proteins including Msh2p and Rad1p, resulting in more frequent contractions of repeated sequences.
Collapse
Affiliation(s)
- F Pâques
- Rosenstiel Center and Department of Biology, Brandeis University, 415 South St., Waltham, MA 02454-9110, USA
| | | | | |
Collapse
|
491
|
Cremer T, Cremer C. Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nat Rev Genet 2001; 2:292-301. [PMID: 11283701 DOI: 10.1038/35066075] [Citation(s) in RCA: 1593] [Impact Index Per Article: 69.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The expression of genes is regulated at many levels. Perhaps the area in which least is known is how nuclear organization influences gene expression. Studies of higher-order chromatin arrangements and their dynamic interactions with other nuclear components have been boosted by recent technical advances. The emerging view is that chromosomes are compartmentalized into discrete territories. The location of a gene within a chromosome territory seems to influence its access to the machinery responsible for specific nuclear functions, such as transcription and splicing. This view is consistent with a topological model for gene regulation.
Collapse
Affiliation(s)
- T Cremer
- Institute of Anthropology and Human Genetics, Ludwig Maximilians University, Richard Wagner Strasse 10, D-80333 Munich, Germany.
| | | |
Collapse
|
492
|
Pearson CG, Maddox PS, Salmon ED, Bloom K. Budding yeast chromosome structure and dynamics during mitosis. J Cell Biol 2001; 152:1255-66. [PMID: 11257125 PMCID: PMC2199205 DOI: 10.1083/jcb.152.6.1255] [Citation(s) in RCA: 181] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2000] [Accepted: 01/23/2001] [Indexed: 11/22/2022] Open
Abstract
Using green fluorescent protein probes and rapid acquisition of high-resolution fluorescence images, sister centromeres in budding yeast are found to be separated and oscillate between spindle poles before anaphase B spindle elongation. The rates of movement during these oscillations are similar to those of microtubule plus end dynamics. The degree of preanaphase separation varies widely, with infrequent centromere reassociations observed before anaphase. Centromeres are in a metaphase-like conformation, whereas chromosome arms are neither aligned nor separated before anaphase. Upon spindle elongation, centromere to pole movement (anaphase A) was synchronous for all centromeres and occurred coincident with or immediately after spindle pole separation (anaphase B). Chromatin proximal to the centromere is stretched poleward before and during anaphase onset. The stretched chromatin was observed to segregate to the spindle pole bodies at rates greater than centromere to pole movement, indicative of rapid elastic recoil between the chromosome arm and the centromere. These results indicate that the elastic properties of DNA play an as of yet undiscovered role in the poleward movement of chromosome arms.
Collapse
Affiliation(s)
- C G Pearson
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA.
| | | | | | | |
Collapse
|
493
|
Tumbar T, Belmont AS. Interphase movements of a DNA chromosome region modulated by VP16 transcriptional activator. Nat Cell Biol 2001; 3:134-9. [PMID: 11175745 DOI: 10.1038/35055033] [Citation(s) in RCA: 151] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We examined changes in intranuclear chromosome positioning induced by a transcriptional activator in a simple experimental system. Targeting the VP16 acidic activation domain (AAD) to an engineered chromosome site resulted in its transcriptional activation and redistribution from a predominantly peripheral to a more interior nuclear localization. Direct visualization in vivo revealed that the chromosome site normally moves into the nuclear interior transiently in early G1 and again in early S phase. In contrast, VP16 AAD targeting induced this site's permanent interior localization in early G1. A single transcriptional activator therefore can modify the cell-cycle-dependent programme of intranuclear positioning of chromosome loci.
Collapse
Affiliation(s)
- T Tumbar
- Department of Cell and Structural Biology, University of Illinois at Urbana-Champaign, Room B107 C&LSL, 601 South Goodwin Avenue, Urbana, Illinois 61801, USA
| | | |
Collapse
|
494
|
Heun P, Laroche T, Raghuraman M, Gasser SM. The positioning and dynamics of origins of replication in the budding yeast nucleus. J Cell Biol 2001; 152:385-400. [PMID: 11266454 PMCID: PMC2199623 DOI: 10.1083/jcb.152.2.385] [Citation(s) in RCA: 150] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
We have analyzed the subnuclear position of early- and late-firing origins of DNA replication in intact yeast cells using fluorescence in situ hybridization and green fluorescent protein (GFP)-tagged chromosomal domains. In both cases, origin position was determined with respect to the nuclear envelope, as identified by nuclear pore staining or a NUP49-GFP fusion protein. We find that in G1 phase nontelomeric late-firing origins are enriched in a zone immediately adjacent to the nuclear envelope, although this localization does not necessarily persist in S phase. In contrast, early firing origins are randomly localized within the nucleus throughout the cell cycle. If a late-firing telomere-proximal origin is excised from its chromosomal context in G1 phase, it remains late-firing but moves rapidly away from the telomere with which it was associated, suggesting that the positioning of yeast chromosomal domains is highly dynamic. This is confirmed by time-lapse microscopy of GFP-tagged origins in vivo. We propose that sequences flanking late-firing origins help target them to the periphery of the G1-phase nucleus, where a modified chromatin structure can be established. The modified chromatin structure, which would in turn retard origin firing, is both autonomous and mobile within the nucleus.
Collapse
Affiliation(s)
- Patrick Heun
- Swiss Institute for Experimental Cancer Research, CH-1066 Epalinges/Lausanne, Switzerland
| | - Thierry Laroche
- Swiss Institute for Experimental Cancer Research, CH-1066 Epalinges/Lausanne, Switzerland
| | - M.K. Raghuraman
- Department of Genetics, University of Washington, Seattle, Washington 98195
| | - Susan M. Gasser
- Swiss Institute for Experimental Cancer Research, CH-1066 Epalinges/Lausanne, Switzerland
| |
Collapse
|
495
|
Effects of replication termination mutants on chromosome partitioning in Bacillus subtilis. Proc Natl Acad Sci U S A 2001. [PMID: 11134515 PMCID: PMC14570 DOI: 10.1073/pnas.011506098] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Many circular genomes have replication termination systems, yet disruption of these systems does not cause an obvious defect in growth or viability. We have found that the replication termination system of Bacillus subtilis contributes to accurate chromosome partitioning. Partitioning of the terminus region requires that chromosome dimers, that have formed as a result of RecA-mediated homologous recombination, be resolved to monomers by the site-specific recombinase encoded by ripX. In addition, the chromosome must be cleared from the region of formation of the division septum. This process is facilitated by the spoIIIE gene product which is required for movement of a chromosome out of the way of the division septum during sporulation. We found that deletion of rtp, which encodes the replication termination protein, in combination with mutations in ripX or spoIIIE, led to an increase in production of anucleate cells. This increase in production of anucleate cells depended on recA, indicating that there is probably an increase in chromosome dimer formation in the absence of the replication termination system. Our results also indicate that SpoIIIE probably enhances the function of the RipX recombinase system. We also determined the subcellular location of the replication termination protein and found that it is a good marker for the position of the chromosome terminus.
Collapse
|
496
|
Lemon KP, Kurtser I, Grossman AD. Effects of replication termination mutants on chromosome partitioning in
Bacillus subtilis. Proc Natl Acad Sci U S A 2001; 98:212-7. [PMID: 11134515 PMCID: PMC14570 DOI: 10.1073/pnas.98.1.212] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Many circular genomes have replication termination systems, yet
disruption of these systems does not cause an obvious defect in growth
or viability. We have found that the replication termination system of
Bacillus subtilis
contributes to accurate chromosome
partitioning. Partitioning of the terminus region requires that
chromosome dimers, that have formed as a result of RecA-mediated
homologous recombination, be resolved to monomers by the site-specific
recombinase encoded by
ripX
. In addition, the chromosome
must be cleared from the region of formation of the division septum.
This process is facilitated by the
spoIIIE
gene product
which is required for movement of a chromosome out of the way of the
division septum during sporulation. We found that deletion of
rtp
, which encodes the replication termination protein,
in combination with mutations in
ripX
or
spoIIIE
, led to an increase in production of anucleate
cells. This increase in production of anucleate cells depended on
recA
, indicating that there is probably an increase in
chromosome dimer formation in the absence of the replication
termination system. Our results also indicate that SpoIIIE probably
enhances the function of the RipX recombinase system. We also
determined the subcellular location of the replication termination
protein and found that it is a good marker for the position of the
chromosome terminus.
Collapse
Affiliation(s)
- K P Lemon
- Department of Biology, Building 68-530, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | |
Collapse
|
497
|
Kanda T, Otter M, Wahl GM. Mitotic segregation of viral and cellular acentric extrachromosomal molecules by chromosome tethering. J Cell Sci 2001; 114:49-58. [PMID: 11112689 DOI: 10.1242/jcs.114.1.49] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mitotic chromosome segregation is mediated by spindle microtubules attached to centromeres. Recent studies, however, revealed that acentric DNA molecules, such as viral replicons and double minute chromosomes, can efficiently segregate into daughter cells by associating with mitotic chromosomes. Based on this similarity between viral and cellular acentric molecules, we introduced Epstein-Barr virus vectors into cells harboring double minute chromosomes and compared their mitotic behaviors. We added lac operator repeats to an Epstein-Barr virus vector, which enabled us to readily identify the transgene in cells expressing a fusion protein between the lac repressor and green fluorescent protein. Unexpectedly, we found that Epstein-Barr virus vectors integrated into the acentric double minute chromosomes, but not into normal chromosomes, in all of the six stably transfected clones examined. While transiently transfected Epstein-Barr virus vectors randomly associated with wheel-shaped prometaphase chromosome rosettes, the chimeras of double minute chromosomes and Epstein-Barr virus vectors in stably transfected clones always attached to the periphery of chromosome rosettes. These chimeric acentric molecules faithfully represented the behavior of native double minute chromosomes, providing a tool for analyzing their behavior in living cells throughout the cell cycle. Further detailed analyses, including real-time observations, revealed that double minute chromosomes appeared to be repelled from the spindle poles at the same time that they attached to the chromosome periphery, while centromeric regions were pulled poleward by the attached microtubules. Disrupting microtubule organization eliminated such peripheral localization of double minute chromosomes, but it did not affect their association with chromosomes. The results suggest a model in which double minute chromosomes, but not Epstein-Barr virus vectors, are subject to the microtubule-mediated antipolar force, while they both employ chromosome tethering strategies to increase their segregation to daughter cells.
Collapse
Affiliation(s)
- T Kanda
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA.
| | | | | |
Collapse
|
498
|
Hendzel MJ, Kruhlak MJ, MacLean NA, Boisvert F, Lever MA, Bazett-Jones DP. Compartmentalization of regulatory proteins in the cell nucleus. J Steroid Biochem Mol Biol 2001; 76:9-21. [PMID: 11384859 DOI: 10.1016/s0960-0760(00)00153-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The cell nucleus is increasingly recognized as a spatially organized structure. In this review, the nature and controversies associated with nuclear compartmentalization are discussed. The relationship between nuclear structure and organization of proteins involved in the regulation of RNA polymerase II-transcribed genes is then discussed. Finally, very recent data on the mobility of these proteins within the cell nucleus is considered and their implications for regulation through compartmentalization of proteins and genomic DNA are discussed.
Collapse
Affiliation(s)
- M J Hendzel
- Department of Oncology and Cross Cancer Institute, Faculty of Medicine and Dentistry, University of Alberta, 11560 University Ave., Alta, T6G 1Z2, Edmonton, Canada.
| | | | | | | | | | | |
Collapse
|
499
|
Urnov FD, Wolffe AP. A necessary good: nuclear hormone receptors and their chromatin templates. Mol Endocrinol 2001; 15:1-16. [PMID: 11145735 DOI: 10.1210/mend.15.1.0589] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- F D Urnov
- Sangamo Biosciences Point Richmond Technical Center Richmond, California 94804, USA
| | | |
Collapse
|
500
|
Stenoien DL, Patel K, Mancini MG, Dutertre M, Smith CL, O'Malley BW, Mancini MA. FRAP reveals that mobility of oestrogen receptor-alpha is ligand- and proteasome-dependent. Nat Cell Biol 2001; 3:15-23. [PMID: 11146621 DOI: 10.1038/35050515] [Citation(s) in RCA: 318] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Here we report the use of fluorescence recovery after photobleaching (FRAP) to examine the intranuclear dynamics of fluorescent oestrogen receptor-alpha (ER). After bleaching, unliganded ER exhibits high mobility (recovery t1/2 < 1 s). Agonist (oestradiol; E2) or partial antagonist (4-hydroxytamoxifen) slows ER recovery (t1/2 approximately 5-6 s), whereas the pure antagonist (ICI 182,780) and, surprisingly, proteasome inhibitors each immobilize ER to the nuclear matrix. Dual FRAP experiments show that fluorescent ER and SRC-1 exhibit similar dynamics only in the presence of E2. In contrast to reports that several nuclear proteins show uniform dynamics, ER exhibits differential mobility depending upon several factors that are linked to its transcription function.
Collapse
Affiliation(s)
- D L Stenoien
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | |
Collapse
|