451
|
Kuhnert MT, Geier C, Elger CE, Lehnertz K. Identifying important nodes in weighted functional brain networks: a comparison of different centrality approaches. CHAOS (WOODBURY, N.Y.) 2012; 22:023142. [PMID: 22757549 DOI: 10.1063/1.4729185] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
We compare different centrality metrics which aim at an identification of important nodes in complex networks. We investigate weighted functional brain networks derived from multichannel electroencephalograms recorded from 23 healthy subject under resting-state eyes-open or eyes-closed conditions. Although we observe the metrics strength, closeness, and betweenness centrality to be related to each other, they capture different spatial and temporal aspects of important nodes in these networks associated with behavioral changes. Identifying and characterizing of these nodes thus benefits from the application of several centrality metrics.
Collapse
Affiliation(s)
- Marie-Therese Kuhnert
- Department of Epileptology, University of Bonn, Sigmund-Freud-Strasse 25, 53105 Bonn, Germany.
| | | | | | | |
Collapse
|
452
|
Várkuti B, Guan C, Pan Y, Phua KS, Ang KK, Kuah CWK, Chua K, Ang BT, Birbaumer N, Sitaram R. Resting State Changes in Functional Connectivity Correlate With Movement Recovery for BCI and Robot-Assisted Upper-Extremity Training After Stroke. Neurorehabil Neural Repair 2012; 27:53-62. [DOI: 10.1177/1545968312445910] [Citation(s) in RCA: 188] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background. Robot-assisted training may improve motor function in some hemiparetic patients after stroke, but no physiological predictor of rehabilitation progress is reliable. Resting state functional magnetic resonance imaging (RS-fMRI) may serve as a method to assess and predict changes in the motor network. Objective. The authors examined the effects of upper-extremity robot-assisted rehabilitation (MANUS) versus an electroencephalography-based brain computer interface setup with motor imagery (MI EEG-BCI) and compared pretreatment and posttreatment RS-fMRI. Methods. In all, 9 adults with upper-extremity paresis were trained for 4 weeks with a MANUS shoulder-elbow robotic rehabilitation paradigm. In 3 participants, robot-assisted movement began if no voluntary movement was initiated within 2 s. In 6 participants, MI-BCI–based movement was initiated if motor imagery was detected. RS-fMRI and Fugl-Meyer (FM) upper-extremity motor score were assessed before and after training. Results. The individual gain in FM scores over 12 weeks could be predicted from functional connectivity changes (FCCs) based on the pre-post differences in RS-fMRI measurements. Both the FM gain and FCC were numerically higher in the MI-BCI group. Increases in FC of the supplementary motor area, the contralesional and ipsilesional motor cortex, and parts of the visuospatial system with mostly association cortex regions and the cerebellum correlated with individual upper-extremity function improvement. Conclusion. FCC may predict the steepness of individual motor gains. Future training could therefore focus on directly inducing these beneficial increases in FC. Evaluation of the treatment groups suggests that MI is a potential facilitator of such neuroplasticity.
Collapse
Affiliation(s)
- Bálint Várkuti
- University of Tübingen, Tübingen, Germany
- Institute for Infocomm Research, Singapore, Singapore
| | - Cuntai Guan
- Institute for Infocomm Research, Singapore, Singapore
| | - Yaozhang Pan
- Institute for Infocomm Research, Singapore, Singapore
| | - Kok Soon Phua
- Institute for Infocomm Research, Singapore, Singapore
| | - Kai Keng Ang
- Institute for Infocomm Research, Singapore, Singapore
| | | | - Karen Chua
- Tan Tock Seng Hospital Rehabilitation Centre, Singapore, Singapore
| | - Beng Ti Ang
- National Neuroscience Institute, Singapore, Singapore
| | | | - Ranganathan Sitaram
- University of Tübingen, Tübingen, Germany
- Sri Chitra Tirunal Institute of Medical Sciences and Technology, Thiruvananthapuram, Kerala, India
- University of Florida, Gainesville, FL, USA
| |
Collapse
|
453
|
Extent of bilateral neuronal network reorganization and functional recovery in relation to stroke severity. J Neurosci 2012; 32:4495-507. [PMID: 22457497 DOI: 10.1523/jneurosci.3662-11.2012] [Citation(s) in RCA: 184] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Remodeling of neuronal structures and networks is believed to significantly contribute to (partial) restoration of functions after stroke. However, it has been unclear to what extent the brain reorganizes and how this correlates with functional recovery in relation to stroke severity. We applied serial resting-state functional MRI and diffusion tensor imaging together with behavioral testing to relate longitudinal modifications in functional and structural connectivity of the sensorimotor neuronal network to changes in sensorimotor function after unilateral stroke in rats. We found that gradual improvement of functions is associated with wide-ranging changes in functional and structural connectivity within bilateral neuronal networks, particularly after large stroke. Both after medium and large stroke, brain reorganization eventually leads to (partial) normalization of neuronal signal synchronization within the affected sensorimotor cortical network (intraregional signal coherence), as well as between the affected and unaffected sensorimotor cortices (interhemispheric functional connectivity). Furthermore, the bilateral network configuration shifts from subacutely increased "small-worldness," possibly reflective of initial excessive neuronal clustering and wiring, toward a baseline small-world topology, optimal for global information transfer and local processing, at chronic stages. Cortical network remodeling was accompanied by recovery of initially disrupted structural integrity in corticospinal tract regions, which correlated positively with retrieval of sensorimotor functions. Our study demonstrates that the degree of functional recovery after stroke is associated with the extent of preservation or restoration of ipsilesional corticospinal tracts in combination with reinstatement of interhemispheric neuronal signal synchronization and normalization of small-world cortical network organization.
Collapse
|
454
|
Quantitative comparison of resting-state functional connectivity derived from fNIRS and fMRI: A simultaneous recording study. Neuroimage 2012; 60:2008-18. [PMID: 22366082 DOI: 10.1016/j.neuroimage.2012.02.014] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2011] [Revised: 02/02/2012] [Accepted: 02/07/2012] [Indexed: 11/23/2022] Open
|
455
|
Johansson BB. Multisensory stimulation in stroke rehabilitation. Front Hum Neurosci 2012; 6:60. [PMID: 22509159 PMCID: PMC3321650 DOI: 10.3389/fnhum.2012.00060] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Accepted: 03/08/2012] [Indexed: 01/22/2023] Open
Abstract
The brain has a large capacity for automatic simultaneous processing and integration of sensory information. Combining information from different sensory modalities facilitates our ability to detect, discriminate, and recognize sensory stimuli, and learning is often optimal in a multisensory environment. Currently used multisensory stimulation methods in stroke rehabilitation include motor imagery, action observation, training with a mirror or in a virtual environment, and various kinds of music therapy. Non-invasive brain stimulation has showed promising preliminary results in aphasia and neglect. Patient heterogeneity and the interaction of age, gender, genes, and environment are discussed. Randomized controlled longitudinal trials starting earlier post-stroke are needed. The advance in brain network science and neuroimaging enabling longitudinal studies of structural and functional networks are likely to have an important impact on patient selection for specific interventions in future stroke rehabilitation. It is proposed that we should pay more attention to age, gender, and laterality in clinical studies.
Collapse
|
456
|
Jin S, Lin P, Hallett M. Reorganization of brain functional small-world networks during finger movements. Hum Brain Mapp 2012; 33:861-72. [PMID: 21484955 PMCID: PMC6870111 DOI: 10.1002/hbm.21253] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Revised: 11/14/2010] [Accepted: 12/16/2010] [Indexed: 11/10/2022] Open
Abstract
A functional measure of brain organization is the efficiency of functional connectivity. The degree of functional connectivity can differ during a task compared to the rest, and to study this issue, we investigated the functional connectivity networks in healthy subjects during a simple, right-handed, sequential finger-tapping task using graph theoretic measures. EEGs were recorded from 58 channels in 15 healthy subjects at rest and during a motor task. We estimated mutual information values of wavelet coefficients to create an association matrix between EEG electrodes and produced a series of adjacency matrices or graphs, A, by thresholding with network cost. These graphs are called small-world networks, and we assessed their efficiency measures. We found economical small-world properties in brain functional connectivity networks in the alpha and beta band networks. The efficiency of the brain networks was enhanced during the task in the beta band networks, but not in the alpha band networks. A regional efficiency analysis during the task showed that the bilateral primary motor and left sensory areas showed increased nodal efficiency, Enodal, whereas decreased Enodal was found over the posterior parietal areas. The present study provides evidence for the reorganization of brain functional connectivity networks in a motor task with the greatest increase in Enodal in motor executive areas.
Collapse
Affiliation(s)
- Seung‐Hyun Jin
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
| | - Peter Lin
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
| | - Mark Hallett
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
457
|
Lohmann G, Ovadia-Caro S, Jungehülsing GJ, Margulies DS, Villringer A, Turner R. Connectivity concordance mapping: a new tool for model-free analysis of FMRI data of the human brain. Front Syst Neurosci 2012; 6:13. [PMID: 22470320 PMCID: PMC3308143 DOI: 10.3389/fnsys.2012.00013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Accepted: 02/29/2012] [Indexed: 12/14/2022] Open
Abstract
Functional magnetic resonance data acquired in a task-absent condition (“resting state”) require new data analysis techniques that do not depend on an activation model. Here, we propose a new analysis method called Connectivity Concordance Mapping (CCM). The main idea is to assign a label to each voxel based on the reproducibility of its whole-brain pattern of connectivity. Specifically, we compute the correlations of time courses of each voxel with every other voxel for each measurement. Voxels whose correlation pattern is consistent across measurements receive high values. The result of a CCM analysis is thus a voxel-wise map of concordance values. Regions of high inter-subject concordance can be assumed to be functionally consistent, and may thus be of specific interest for further analysis. Here we present two fMRI studies to demonstrate the possible applications of the algorithm. The first is a eyes-open/eyes-closed paradigm designed to highlight the potential of the method in a relatively simple domain. The second study is a longitudinal repeated measurement of a patient following stroke. Longitudinal clinical studies such as this may represent the most interesting domain of applications for this algorithm.
Collapse
Affiliation(s)
- Gabriele Lohmann
- Max Planck Institute for Human Cognitive and Brain Sciences Leipzig, Germany
| | | | | | | | | | | |
Collapse
|
458
|
Fan F, Zhu C, Chen H, Qin W, Ji X, Wang L, Zhang Y, Zhu L, Yu C. Dynamic brain structural changes after left hemisphere subcortical stroke. Hum Brain Mapp 2012; 34:1872-81. [PMID: 22431281 DOI: 10.1002/hbm.22034] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Revised: 12/06/2011] [Accepted: 12/06/2011] [Indexed: 11/07/2022] Open
Abstract
This study aimed to quantify dynamic structural changes in the brain after subcortical stroke and identify brain areas that contribute to motor recovery of affected limbs. High-resolution structural MRI and neurological examinations were conducted at five consecutive time points during the year following stroke in 10 patients with left hemisphere subcortical infarctions involving motor pathways. Gray matter volume (GMV) was calculated using an optimized voxel-based morphometry technique, and dynamic changes in GMV were evaluated using a mixed-effects model. After stroke, GMV was decreased bilaterally in brain areas that directly or indirectly connected with lesions, which suggests the presence of regional damage in these "healthy" brain tissues in stroke patients. Moreover, the GMVs of these brain areas were not correlated with the Motricity Index (MI) scores when controlling for time intervals after stroke, which indicates that these structural changes may reflect an independent process (such as axonal degeneration) but cannot affect the improvement of motor function. In contrast, the GMV was increased in several brain areas associated with motor and cognitive functions after stroke. When controlling for time intervals after stroke, only the GMVs in the cognitive-related brain areas (hippocampus and precuneus) were positively correlated with MI scores, which suggests that the structural reorganization in cognitive-related brain areas may facilitate the recovery of motor function. However, considering the small sample size of this study, further studies are needed to clarify the exact relationships between structural changes and recovery of motor function in stroke patients.
Collapse
Affiliation(s)
- Fengmei Fan
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
459
|
Functional MRI and diffusion tensor imaging of brain reorganization after experimental stroke. Transl Stroke Res 2012; 3:36-43. [PMID: 22408692 PMCID: PMC3284658 DOI: 10.1007/s12975-011-0143-8] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Revised: 12/23/2011] [Accepted: 12/27/2011] [Indexed: 11/27/2022]
Abstract
The potential of the adult brain to reorganize after ischemic injury is critical for functional recovery and provides a significant target for therapeutic strategies to promote brain repair. Despite the accumulating evidence of brain plasticity, the interaction and significance of morphological and physiological modifications in post-stroke brain tissue remain mostly unclear. Neuroimaging techniques such as functional MRI (fMRI) and diffusion tensor imaging (DTI) enable in vivo assessment of the spatial and temporal pattern of functional and structural changes inside and outside ischemic lesion areas. This can contribute to the elucidation of critical aspects in post-stroke brain remodeling. Task/stimulus-related fMRI, resting-state fMRI, or pharmacological MRI enables direct or indirect measurement of neuronal activation, functional connectivity, or neurotransmitter system responses, respectively. DTI allows estimation of the structural integrity and connectivity of white matter tracts. Together, these MRI methods provide an unprecedented means to (a) measure longitudinal changes in tissue structure and function close by and remote from ischemic lesion areas, (b) evaluate the organizational profile of neural networks after stroke, and (c) identify degenerative and restorative processes that affect post-stroke functional outcome. Besides, the availability of MRI in clinical institutions as well as research laboratories provides an optimal basis for translational research on stroke recovery. This review gives an overview of the current status and perspectives of fMRI and DTI applications to study brain reorganization in experimental stroke models.
Collapse
|
460
|
Franceschini M, Ceravolo MG, Agosti M, Cavallini P, Bonassi S, Dall’Armi V, Massucci M, Schifini F, Sale P. Clinical Relevance of Action Observation in Upper-Limb Stroke Rehabilitation. Neurorehabil Neural Repair 2012; 26:456-62. [PMID: 22235059 DOI: 10.1177/1545968311427406] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Objective. A randomized controlled observer-blind trial was designed to evaluate the effectiveness of action observation as an add-on treatment to the standard rehabilitation of upper-limb function, early after stroke. Methods. Stroke survivors (N = 102) were consecutively recruited from 13 centers 30 days (±7) after a first-ever stroke and randomly assigned to the experimental (EG) or control group (CG). EG participants watched video footage of daily routine tasks (actions) carried out with the upper limb in order to prepare to imitate the presented action. At the end of each sequence, a therapist prompted the patient to perform the same movement for 2 minutes, providing help when needed. Static images without animals or human beings were shown to the CG. At the end of each sequence, the CG executed movements that simulated the shoulder and elbow joint mobilization activities performed by the EG. Results for the Fugl-Meyer test, Frenchay Arm test, Box and Block test (BBT), Modified Ashworth Scale, and Functional Independence Measure Motor items were recorded before treatment (T0), after 4 weeks of treatment (T1), and at the follow-up visit 4 to 5 months after the conclusion of treatment (T2). Results. An improvement over time was appreciated on all measures of impairment and functional ability with both treatment programs. A Time × Treatment interaction emerged from the generalized estimating equations analysis of BBT, showing significant T0–T1 and T0–T2 differences in favor of EG. Conclusion. This multicenter trial endorses the use of action observation in upper-extremity rehabilitation, along with a role for the mirror neuron system in poststroke recovery.
Collapse
Affiliation(s)
- Marco Franceschini
- Unit of Clinical and Molecular Epidemiology, IRCCS San Raffaele Pisana, Rome, Italy
| | | | | | | | - Stefano Bonassi
- Unit of Clinical and Molecular Epidemiology, IRCCS San Raffaele Pisana, Rome, Italy
| | - Valentina Dall’Armi
- Unit of Clinical and Molecular Epidemiology, IRCCS San Raffaele Pisana, Rome, Italy
| | | | | | - Patrizio Sale
- Unit of Clinical and Molecular Epidemiology, IRCCS San Raffaele Pisana, Rome, Italy
| |
Collapse
|
461
|
Buch ER, Modir Shanechi A, Fourkas AD, Weber C, Birbaumer N, Cohen LG. Parietofrontal integrity determines neural modulation associated with grasping imagery after stroke. ACTA ACUST UNITED AC 2012; 135:596-614. [PMID: 22232595 DOI: 10.1093/brain/awr331] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Chronic stroke patients with heterogeneous lesions, but no direct damage to the primary sensorimotor cortex, are capable of longitudinally acquiring the ability to modulate sensorimotor rhythms using grasping imagery of the affected hand. Volitional modulation of neural activity can be used to drive grasping functions of the paralyzed hand through a brain-computer interface. The neural substrates underlying this skill are not known. Here, we investigated the impact of individual patient's lesion pathology on functional and structural network integrity related to this volitional skill. Magnetoencephalography data acquired throughout training was used to derive functional networks. Structural network models and local estimates of extralesional white matter microstructure were constructed using T(1)-weighted and diffusion-weighted magnetic resonance imaging data. We employed a graph theoretical approach to characterize emergent properties of distributed interactions between nodal brain regions of these networks. We report that interindividual variability in patients' lesions led to differential impairment of functional and structural network characteristics related to successful post-training sensorimotor rhythm modulation skill. Patients displaying greater magnetoencephalography global cost-efficiency, a measure of information integration within the distributed functional network, achieved greater levels of skill. Analysis of lesion damage to structural network connectivity revealed that the impact on nodal betweenness centrality of the ipsilesional primary motor cortex, a measure that characterizes the importance of a brain region for integrating visuomotor information between frontal and parietal cortical regions and related thalamic nuclei, correlated with skill. Edge betweenness centrality, an analogous measure, which assesses the role of specific white matter fibre pathways in network integration, showed a similar relationship between skill and a portion of the ipsilesional superior longitudinal fascicle connecting premotor and posterior parietal visuomotor regions known to be crucially involved in normal grasping behaviour. Finally, estimated white matter microstructure integrity in regions of the contralesional superior longitudinal fascicle adjacent to primary sensorimotor and posterior parietal cortex, as well as grey matter volume co-localized to these specific regions, positively correlated with sensorimotor rhythm modulation leading to successful brain-computer interface control. Thus, volitional modulation of ipsilesional neural activity leading to control of paralyzed hand grasping function through a brain-computer interface after longitudinal training relies on structural and functional connectivity in both ipsilesional and contralesional parietofrontal pathways involved in visuomotor information processing. Extant integrity of this structural network may serve as a future predictor of response to longitudinal therapeutic interventions geared towards training sensorimotor rhythms in the lesioned brain, secondarily improving grasping function through brain-computer interface applications.
Collapse
Affiliation(s)
- Ethan R Buch
- Human Cortical Physiology and Stroke Neurorehabilitation Section, NINDS, NIH, Bethesda, MD 20892, USA.
| | | | | | | | | | | |
Collapse
|
462
|
Jin SH, Lin P, Hallett M. Abnormal reorganization of functional cortical small-world networks in focal hand dystonia. PLoS One 2011; 6:e28682. [PMID: 22174867 PMCID: PMC3236757 DOI: 10.1371/journal.pone.0028682] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Accepted: 11/13/2011] [Indexed: 11/19/2022] Open
Abstract
We investigated the large-scale functional cortical connectivity network in focal hand dystonia (FHD) patients using graph theoretic measures to assess efficiency. High-resolution EEGs were recorded in 15 FHD patients and 15 healthy volunteers at rest and during a simple sequential finger tapping task. Mutual information (MI) values of wavelet coefficients were estimated to create an association matrix between EEG electrodes, and to produce a series of adjacency matrices or graphs, G, by thresholding with network cost. Efficiency measures of small-world networks were assessed. As a result, we found that FHD patients have economical small-world properties in their brain functional networks in the alpha and beta bands. During a motor task, in the beta band network, FHD patients have decreased efficiency of small-world networks, whereas healthy volunteers increase efficiency. Reduced efficient beta band network in FHD patients during the task was consistently observed in global efficiency, cost-efficiency, and maximum cost-efficiency. This suggests that the beta band functional cortical network of FHD patients is reorganized even during a task that does not induce dystonic symptoms, representing a loss of long-range communication and abnormal functional integration in large-scale brain functional cortical networks. Moreover, negative correlations between efficiency measures and duration of disease were found, indicating that the longer duration of disease, the less efficient the beta band network in FHD patients. In regional efficiency analysis, FHD patients at rest have high regional efficiency at supplementary motor cortex (SMA) compared with healthy volunteers; however, it is diminished during the motor task, possibly reflecting abnormal inhibition in FHD patients. The present study provides the first evidence with graph theory for abnormal reconfiguration of brain functional networks in FHD during motor task.
Collapse
Affiliation(s)
- Seung-Hyun Jin
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, United States of America
- Department of Neurosurgery, Seoul National University Hospital, Seoul, Korea
| | - Peter Lin
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Mark Hallett
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
463
|
Jin SH, Seol J, Kim JS, Chung CK. How reliable are the functional connectivity networks of MEG in resting states? J Neurophysiol 2011; 106:2888-95. [DOI: 10.1152/jn.00335.2011] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We investigated the reliability of nodal network metrics of functional connectivity (FC) networks of magnetoencephalography (MEG) covering the whole brain at the sensor level in the eyes-closed (EC) and eyes-open (EO) resting states. Mutual information (MI) was employed as a measure of FC between sensors in theta, alpha, beta, and gamma frequency bands of MEG signals. MI matrices were assessed with three nodal network metrics, i.e., nodal degree (Dnodal), nodal efficiency (Enodal), and betweenness centrality (normBC). Intraclass correlation (ICC) values were calculated as a measure of reliability. We observed that the test-retest reliabilities of the resting states ranged from a poor to good level depending on the bands and metrics used for defining the nodal centrality. The dominant alpha-band FC network changes were the salient features of the state-related FC changes. The FC networks in the EO resting state showed greater reliability when assessed by Dnodal (maximum mean ICC = 0.655) and Enodal (maximum mean ICC = 0.604) metrics. The gamma-band FC network was less reliable than the theta, alpha, and beta networks across the nodal network metrics. However, the sensor-wise ICC values for the nodal centrality metrics were not uniformly distributed, that is, some sensors had high reliability. This study provides a sense of how the nodal centralities of the human resting state MEG are distributed at the sensor level and how reliable they are. It also provides a fundamental scientific background for continued examination of the resting state of human MEG.
Collapse
Affiliation(s)
- Seung-Hyun Jin
- MEG Center, Seoul National University Hospital,
- Department of Neurosurgery, Seoul National University, Seoul, Republic of Korea
| | - Jaeho Seol
- MEG Center, Seoul National University Hospital,
- Interdisciplinary Program in Cognitive Science, and
| | - June Sic Kim
- MEG Center, Seoul National University Hospital,
- Department of Neurosurgery, Seoul National University, Seoul, Republic of Korea
| | - Chun Kee Chung
- MEG Center, Seoul National University Hospital,
- Interdisciplinary Program in Cognitive Science, and
- Department of Neurosurgery, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
464
|
Butz M, van Ooyen A. Need for homeostasis in electrical activity may account for cortical network rewiring. BMC Neurosci 2011; 12 Suppl 1:F1-3, K1-3, O1-20, P1-383. [PMID: 22152274 PMCID: PMC3240163 DOI: 10.1186/1471-2202-12-s1-f1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
465
|
Abstract
Abstract Stroke often leads to impairment of hand function. Over the following months a variable amount of recovery can be seen. The evidence from animal and human studies suggests that reorganization rather than repair is the key. Surviving neural networks are important for recovery of function and non-invasive techniques such as functional magnetic resonance imaging allow us to study them in humans. For example, initial attempts to move a paretic limb following stroke are associated with widespread activity within the distributed motor system in both cerebral hemispheres, more so in patients with greater impairment. Disruption of activity in premotor areas using transcranial magnetic stimulation prior to movement can impair motor performance in stroke patients but not in controls suggesting that these new patterns of brain activity can support recovered function. In other words, this reorganisation is functionally relevant. More recently, research has been directed at understanding how surviving brain regions influence one another during movement. This opens the way for functional brain imaging to become a clinically useful tool in rehabilitation. Understanding the dynamic process of systems level reorganization will allow greater understanding of the mechanisms of recovery and potentially improve our ability to deliver effective restorative therapy.
Collapse
Affiliation(s)
- Nick Ward
- UCL Institute of Neurology, Queen Square, London, UK.
| |
Collapse
|
466
|
Zhang Z, Liao W, Chen H, Mantini D, Ding JR, Xu Q, Wang Z, Yuan C, Chen G, Jiao Q, Lu G. Altered functional–structural coupling of large-scale brain networks in idiopathic generalized epilepsy. Brain 2011; 134:2912-28. [PMID: 21975588 DOI: 10.1093/brain/awr223] [Citation(s) in RCA: 437] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Affiliation(s)
- Zhiqiang Zhang
- Department of Medical Imaging, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
467
|
Pievani M, de Haan W, Wu T, Seeley WW, Frisoni GB. Functional network disruption in the degenerative dementias. Lancet Neurol 2011; 10:829-43. [PMID: 21778116 PMCID: PMC3219874 DOI: 10.1016/s1474-4422(11)70158-2] [Citation(s) in RCA: 351] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Despite advances towards understanding the molecular pathophysiology of the neurodegenerative dementias, the mechanisms linking molecular changes to neuropathology and neuropathological changes to clinical symptoms remain largely obscure. Connectivity is a distinctive feature of the brain and the integrity of functional network dynamics is crucial for normal functioning. A better understanding of network disruption in the neurodegenerative dementias might help bridge the gap between molecular changes, pathological changes, and symptoms. Recent findings on functional network disruption as assessed with resting-state or intrinsic connectivity functional MRI and electroencephalography and magnetoencephalography have shown distinct patterns of network disruption across the major neurodegenerative diseases. These network abnormalities are somewhat specific to the clinical syndromes and, in Alzheimer's disease and frontotemporal dementia, network disruption tracks the pattern of pathological changes. These findings might have practical implications for diagnostic accuracy, allowing earlier detection of neurodegenerative diseases even at the presymptomatic stage, and tracking of disease progression.
Collapse
Affiliation(s)
- Michela Pievani
- Laboratory of Epidemiology, Neuroimaging, and Telemedicine, IRCCS Centro San Giovanni di Dio, Fatebenefratelli, Brescia, Italy
| | | | | | | | | |
Collapse
|
468
|
Weiss SA, Bassett DS, Rubinstein D, Holroyd T, Apud J, Dickinson D, Coppola R. Functional Brain Network Characterization and Adaptivity during Task Practice in Healthy Volunteers and People with Schizophrenia. Front Hum Neurosci 2011; 5:81. [PMID: 21887140 PMCID: PMC3157023 DOI: 10.3389/fnhum.2011.00081] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Accepted: 07/26/2011] [Indexed: 12/24/2022] Open
Abstract
Cognitive remediation involves task practice and may improve deficits in people suffering from schizophrenia, but little is known about underlying neurophysiological mechanisms. In people with schizophrenia and controls, we used magnetoencephalography (MEG) to examine accuracy and practice-related changes in parameters indexing neural network structure and activity, to determine whether these might be useful assays of the efficacy of cognitive remediation. Two MEG recordings were acquired during performance of a tone discrimination task used to improve the acuity of auditory processing, before and after ∼2.5 h of task practice. Accuracy before practice was negatively correlated with beta-band cost efficiency, a graph theoretical measure of network organization. Synthetic aperture magnetometry was used to localize brain oscillations with high spatial accuracy; results demonstrated sound and sensorimotor modulations of the beta band in temporo-parietal regions and the sensorimotor cortex respectively. High-gamma activity also correlated with sensorimotor processing during the task, with activation of auditory regions following sound stimulation, and activation of the left sensorimotor cortex preceding the button press. High-gamma power in the left frontal cortex was also found to correlate with accuracy. Following practice, sound-induced broad-band power in the left angular gyri increased. Accuracy improved and was found to correlate with increased mutual information (MI) between sensors in temporal-parietal regions in the beta band but not global cost efficiency. Based on these results, we conclude that hours of task practice can induce meso-scale changes such as increased power in relevant brain regions as well as changes in MI that correlate with improved accuracy.
Collapse
|
469
|
Inman CS, James GA, Hamann S, Rajendra JK, Pagnoni G, Butler AJ. Altered resting-state effective connectivity of fronto-parietal motor control systems on the primary motor network following stroke. Neuroimage 2011; 59:227-37. [PMID: 21839174 DOI: 10.1016/j.neuroimage.2011.07.083] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 07/12/2011] [Accepted: 07/26/2011] [Indexed: 11/30/2022] Open
Abstract
Previous brain imaging work suggests that stroke alters the effective connectivity (the influence neural regions exert upon each other) of motor execution networks. The present study examines the intrinsic effective connectivity of top-down motor control in stroke survivors (n=13) relative to healthy participants (n=12). Stroke survivors exhibited significant deficits in motor function, as assessed by the Fugl-Meyer Motor Assessment. We used structural equation modeling (SEM) of resting-state fMRI data to investigate the relationship between motor deficits and the intrinsic effective connectivity between brain regions involved in motor control and motor execution. An exploratory adaptation of SEM determined the optimal model of motor execution effective connectivity in healthy participants, and confirmatory SEM assessed stroke survivors' fit to that model. We observed alterations in spontaneous resting-state effective connectivity from fronto-parietal guidance systems to the motor network in stroke survivors. More specifically, diminished connectivity was found in connections from the superior parietal cortex to primary motor cortex and supplementary motor cortex. Furthermore, the paths demonstrated large individual variance in stroke survivors but less variance in healthy participants. These findings suggest that characterizing the deficits in resting-state connectivity of top-down processes in stroke survivors may help optimize cognitive and physical rehabilitation therapies by individually targeting specific neural pathway.
Collapse
Affiliation(s)
- Cory S Inman
- Department of Psychology, Emory University, Atlanta, GA 30322, USA.
| | | | | | | | | | | |
Collapse
|
470
|
Ansmann G, Lehnertz K. Constrained randomization of weighted networks. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011; 84:026103. [PMID: 21929060 DOI: 10.1103/physreve.84.026103] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Indexed: 05/12/2023]
Abstract
We propose a Markov chain method to efficiently generate surrogate networks that are random under the constraint of given vertex strengths. With these strength-preserving surrogates and with edge-weight-preserving surrogates we investigate the clustering coefficient and the average shortest path length of functional networks of the human brain as well as of the International Trade Networks. We demonstrate that surrogate networks can provide additional information about network-specific characteristics and thus help interpreting empirical weighted networks.
Collapse
Affiliation(s)
- Gerrit Ansmann
- Department of Epileptology, University of Bonn, Sigmund-Freud-Straße 25, D-53105 Bonn, Germany.
| | | |
Collapse
|
471
|
Carter AR, Patel KR, Astafiev SV, Snyder AZ, Rengachary J, Strube MJ, Pope A, Shimony JS, Lang CE, Shulman GL, Corbetta M. Upstream dysfunction of somatomotor functional connectivity after corticospinal damage in stroke. Neurorehabil Neural Repair 2011; 26:7-19. [PMID: 21803932 DOI: 10.1177/1545968311411054] [Citation(s) in RCA: 166] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Recent studies have shown that focal injuries can have remote effects on network function that affect behavior, but these network-wide repercussions are poorly understood. OBJECTIVE This study tested the hypothesis that lesions specifically to the outflow tract of a distributed network can result in upstream dysfunction in structurally intact portions of the network. In the somatomotor system, this upstream dysfunction hypothesis predicted that lesions of the corticospinal tract might be associated with functional disruption within the system. Motor impairment might then reflect the dual contribution of corticospinal damage and altered network functional connectivity. METHODS A total of 23 subacute stroke patients and 13 healthy controls participated in the study. Corticospinal tract damage was quantified using a template of the tract generated from diffusion tensor imaging in healthy controls. Somatomotor network functional integrity was determined by resting state functional connectivity magnetic resonance imaging. RESULTS The extent of corticospinal damage was negatively correlated with interhemispheric resting functional connectivity, in particular with connectivity between the left and right central sulcus. Although corticospinal damage accounted for much of the variance in motor performance, the behavioral impact of resting connectivity was greater in subjects with mild or moderate corticospinal damage and less in those with severe corticospinal damage. CONCLUSIONS Our results demonstrated that dysfunction of cortical functional connectivity can occur after interruption of corticospinal outflow tracts and can contribute to impaired motor performance. Recognition of these secondary effects from a focal lesion is essential for understanding brain-behavior relationships after injury, and they may have important implications for neurorehabilitation.
Collapse
Affiliation(s)
- Alex R Carter
- Department of Neurology, Washington University School of Medicine, St Louis, MO 63110, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
472
|
Steenbuck ID, Butz M, Ruiter M, van Ooyen A. Small-world topology is most efficient for homeostatic neuronal network repair. BMC Neurosci 2011. [PMCID: PMC3240475 DOI: 10.1186/1471-2202-12-s1-p357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
473
|
Resting-state activity in development and maintenance of normal brain function. Proc Natl Acad Sci U S A 2011; 108:11638-43. [PMID: 21709227 DOI: 10.1073/pnas.1109144108] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
One of the most intriguing recent discoveries concerning brain function is that intrinsic neuronal activity manifests as spontaneous fluctuations of the blood oxygen level-dependent (BOLD) functional MRI signal. These BOLD fluctuations exhibit temporal synchrony within widely distributed brain regions known as resting-state networks. Resting-state networks are present in the waking state, during sleep, and under general anesthesia, suggesting that spontaneous neuronal activity plays a fundamental role in brain function. Despite its ubiquitous presence, the physiological role of correlated, spontaneous neuronal activity remains poorly understood. One hypothesis is that this activity is critical for the development of synaptic connections and maintenance of synaptic homeostasis. We had a unique opportunity to test this hypothesis in a 5-y-old boy with severe epileptic encephalopathy. The child developed marked neurologic dysfunction in association with a seizure disorder, resulting in a 1-y period of behavioral regression and progressive loss of developmental milestones. His EEG showed a markedly abnormal pattern of high-amplitude, disorganized slow activity with frequent generalized and multifocal epileptiform discharges. Resting-state functional connectivity MRI showed reduced BOLD fluctuations and a pervasive lack of normal connectivity. The child underwent successful corpus callosotomy surgery for treatment of drop seizures. Postoperatively, the patient's behavior returned to baseline, and he resumed development of new skills. The waking EEG revealed a normal background, and functional connectivity MRI demonstrated restoration of functional connectivity architecture. These results provide evidence that intrinsic, coherent neuronal signaling may be essential to the development and maintenance of the brain's functional organization.
Collapse
|
474
|
Smyser CD, Snyder AZ, Neil JJ. Functional connectivity MRI in infants: exploration of the functional organization of the developing brain. Neuroimage 2011; 56:1437-52. [PMID: 21376813 PMCID: PMC3089442 DOI: 10.1016/j.neuroimage.2011.02.073] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Revised: 01/22/2011] [Accepted: 02/27/2011] [Indexed: 12/15/2022] Open
Abstract
Advanced neuroimaging techniques have been increasingly applied to the study of preterm and term infants in an effort to further define the functional cerebral architecture of the developing brain. Despite improved understanding of the complex relationship between structure and function obtained through these investigations, significant questions remain regarding the nature, location, and timing of the maturational changes which occur during early development. Functional connectivity magnetic resonance imaging (fcMRI) utilizes spontaneous, low frequency (< 0.1 Hz), coherent fluctuations in blood oxygen level dependent (BOLD) signal to identify networks of functional cerebral connections. Due to the intrinsic characteristics of its image acquisition and analysis, fcMRI offers a novel neuroimaging approach well suited to investigation of infants. Recently, this methodology has been successfully applied to examine neonatal populations, defining normative patterns of large-scale neural network development in the maturing brain. The resting-state networks (RSNs) identified in these studies reflect the evolving cerebral structural architecture, presumably driven by varied genetic and environmental influences. Principal features of these investigations and their role in characterization of the tenets of neural network development during this critical developmental period are highlighted in this review. Despite these successes, optimal methods for fcMRI data acquisition and analysis for this population have not yet been defined. Further, appropriate schemes for interpretation and translation of fcMRI results remain unknown, a matter of increasing importance as functional neuroimaging findings are progressively applied in the clinical arena. Notwithstanding these concerns, fcMRI provides insight into the earliest forms of cerebral connectivity and therefore holds great promise for future neurodevelopmental investigations.
Collapse
Affiliation(s)
- Christopher D Smyser
- Department of Neurology, Washington University, Saint Louis, MO 63110-1093, USA.
| | | | | |
Collapse
|
475
|
Iturria-Medina Y, Pérez Fernández A, Valdés Hernández P, García Pentón L, Canales-Rodríguez EJ, Melie-Garcia L, Lage Castellanos A, Ontivero Ortega M. Automated discrimination of brain pathological state attending to complex structural brain network properties: the shiverer mutant mouse case. PLoS One 2011; 6:e19071. [PMID: 21637753 PMCID: PMC3103505 DOI: 10.1371/journal.pone.0019071] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Accepted: 03/21/2011] [Indexed: 11/18/2022] Open
Abstract
Neuroimaging classification procedures between normal and pathological subjects are sparse and highly dependent of an expert's clinical criterion. Here, we aimed to investigate whether possible brain structural network differences in the shiverer mouse mutant, a relevant animal model of myelin related diseases, can reflect intrinsic individual brain properties that allow the automatic discrimination between the shiverer and normal subjects. Common structural networks properties between shiverer (C3Fe.SWV Mbp(shi)/Mbp(shi), n = 6) and background control (C3HeB.FeJ, n = 6) mice are estimated and compared by means of three diffusion weighted MRI (DW-MRI) fiber tractography algorithms and a graph framework. Firstly, we found that brain networks of control group are significantly more clustered, modularized, efficient and optimized than those of the shiverer group, which presented significantly increased characteristic path length. These results are in line with previous structural/functional complex brain networks analysis that have revealed topologic differences and brain network randomization associated to specific states of human brain pathology. In addition, by means of network measures spatial representations and discrimination analysis, we show that it is possible to classify with high accuracy to which group each subject belongs, providing also a probability value of being a normal or shiverer subject as an individual anatomical classifier. The obtained correct predictions (e.g., around 91.6-100%) and clear spatial subdivisions between control and shiverer mice, suggest that there might exist specific network subspaces corresponding to specific brain disorders, supporting also the point of view that complex brain network analyses constitutes promising tools in the future creation of interpretable imaging biomarkers.
Collapse
|
476
|
Grefkes C, Fink GR. Reorganization of cerebral networks after stroke: new insights from neuroimaging with connectivity approaches. Brain 2011; 134:1264-76. [PMID: 21414995 PMCID: PMC3097886 DOI: 10.1093/brain/awr033] [Citation(s) in RCA: 429] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Revised: 12/09/2010] [Accepted: 12/23/2010] [Indexed: 12/15/2022] Open
Abstract
The motor system comprises a network of cortical and subcortical areas interacting via excitatory and inhibitory circuits, thereby governing motor behaviour. The balance within the motor network may be critically disturbed after stroke when the lesion either directly affects any of these areas or damages-related white matter tracts. A growing body of evidence suggests that abnormal interactions among cortical regions remote from the ischaemic lesion might also contribute to the motor impairment after stroke. Here, we review recent studies employing models of functional and effective connectivity on neuroimaging data to investigate how stroke influences the interaction between motor areas and how changes in connectivity relate to impaired motor behaviour and functional recovery. Based on such data, we suggest that pathological intra- and inter-hemispheric interactions among key motor regions constitute an important pathophysiological aspect of motor impairment after subcortical stroke. We also demonstrate that therapeutic interventions, such as repetitive transcranial magnetic stimulation, which aims to interfere with abnormal cortical activity, may correct pathological connectivity not only at the stimulation site but also among distant brain regions. In summary, analyses of connectivity further our understanding of the pathophysiology underlying motor symptoms after stroke, and may thus help to design hypothesis-driven treatment strategies to promote recovery of motor function in patients.
Collapse
Affiliation(s)
- Christian Grefkes
- Neuromodulation and Neurorehabilitation, Max Planck Institute for Neurological Research, Gleueler Street 50, 50931 Köln, Germany.
| | | |
Collapse
|
477
|
Niu H, Khadka S, Tian F, Lin ZJ, Lu C, Zhu C, Liu H. Resting-state functional connectivity assessed with two diffuse optical tomographic systems. JOURNAL OF BIOMEDICAL OPTICS 2011; 16:046006. [PMID: 21529075 PMCID: PMC3081862 DOI: 10.1117/1.3561687] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Revised: 02/10/2011] [Accepted: 02/10/2011] [Indexed: 05/20/2023]
Abstract
Functional near-infrared spectroscopy (fNIRS) is recently utilized as a new approach to assess resting-state functional connectivity (RSFC) in the human brain. For any new technique or new methodology, it is necessary to be able to replicate similar experiments using different instruments in order to establish its liability and reproducibility. We apply two different diffuse optical tomographic (DOT) systems (i.e., DYNOT and CW5), with various probe arrangements to evaluate RSFC in the sensorimotor cortex by utilizing a previously published experimental protocol and seed-based correlation analysis. Our results exhibit similar spatial patterns and strengths in RSFC between the bilateral motor cortexes. The consistent observations are obtained from both DYNOT and CW5 systems, and are also in good agreement with the previous fNIRS study. Overall, we demonstrate that the fNIRS-based RSFC is reproducible by various DOT imaging systems among different research groups, enhancing the confidence of neuroscience researchers and clinicians to utilize fNIRS for future applications.
Collapse
Affiliation(s)
- Haijing Niu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
| | | | | | | | | | | | | |
Collapse
|
478
|
|
479
|
Pichiorri F, De Vico Fallani F, Cincotti F, Babiloni F, Molinari M, Kleih SC, Neuper C, Kübler A, Mattia D. Sensorimotor rhythm-based brain-computer interface training: the impact on motor cortical responsiveness. J Neural Eng 2011; 8:025020. [PMID: 21436514 DOI: 10.1088/1741-2560/8/2/025020] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The main purpose of electroencephalography (EEG)-based brain-computer interface (BCI) technology is to provide an alternative channel to support communication and control when motor pathways are interrupted. Despite the considerable amount of research focused on the improvement of EEG signal detection and translation into output commands, little is known about how learning to operate a BCI device may affect brain plasticity. This study investigated if and how sensorimotor rhythm-based BCI training would induce persistent functional changes in motor cortex, as assessed with transcranial magnetic stimulation (TMS) and high-density EEG. Motor imagery (MI)-based BCI training in naïve participants led to a significant increase in motor cortical excitability, as revealed by post-training TMS mapping of the hand muscle's cortical representation; peak amplitude and volume of the motor evoked potentials recorded from the opponens pollicis muscle were significantly higher only in those subjects who develop a MI strategy based on imagination of hand grasping to successfully control a computer cursor. Furthermore, analysis of the functional brain networks constructed using a connectivity matrix between scalp electrodes revealed a significant decrease in the global efficiency index for the higher-beta frequency range (22-29 Hz), indicating that the brain network changes its topology with practice of hand grasping MI. Our findings build the neurophysiological basis for the use of non-invasive BCI technology for monitoring and guidance of motor imagery-dependent brain plasticity and thus may render BCI a viable tool for post-stroke rehabilitation.
Collapse
Affiliation(s)
- F Pichiorri
- Neurolelectrical Imaging and BCI Laboratory, IRCCS Fondazione Santa Lucia, Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
480
|
Westlake KP, Nagarajan SS. Functional connectivity in relation to motor performance and recovery after stroke. Front Syst Neurosci 2011; 5:8. [PMID: 21441991 PMCID: PMC3060711 DOI: 10.3389/fnsys.2011.00008] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Accepted: 02/08/2011] [Indexed: 12/14/2022] Open
Abstract
Plasticity after stroke has traditionally been studied by observing changes only in the spatial distribution and laterality of focal brain activation during affected limb movement. However, neural reorganization is multifaceted and our understanding may be enhanced by examining dynamics of activity within large-scale networks involved in sensorimotor control of the limbs. Here, we review functional connectivity as a promising means of assessing the consequences of a stroke lesion on the transfer of activity within large-scale neural networks. We first provide a brief overview of techniques used to assess functional connectivity in subjects with stroke. Next, we review task-related and resting-state functional connectivity studies that demonstrate a lesion-induced disruption of neural networks, the relationship of the extent of this disruption with motor performance, and the potential for network reorganization in the presence of a stroke lesion. We conclude with suggestions for future research and theories that may enhance the interpretation of changing functional connectivity. Overall findings suggest that a network level assessment provides a useful framework to examine brain reorganization and to potentially better predict behavioral outcomes following stroke.
Collapse
Affiliation(s)
- Kelly P Westlake
- Biomagnetic Imaging Laboratory, Department of Radiology and Biomedical Imaging, University of California San Francisco CA, USA
| | | |
Collapse
|
481
|
Küper M, Brandauer B, Thürling M, Schoch B, Gizewski ER, Timmann D, Hermsdörfer J. Impaired prehension is associated with lesions of the superior and inferior hand representation within the human cerebellum. J Neurophysiol 2011; 105:2018-29. [PMID: 21325683 DOI: 10.1152/jn.00834.2010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Impairment of patients with cerebellar disease in prehension is well recognized. So far specific localizations within the human cerebellum associated with the impairment have rarely been assessed. To address this question we performed voxel-based lesion symptom mapping (VLSM) in patients with chronic focal cerebellar lesions in relation to specific deficits in prehensile movements. Patients with stroke within the posterior inferior cerebellar artery territory (n = 13) or the superior cerebellar artery (SCA) territory (n = 7) and corresponding control subjects were included in the study. Participants reached out, grasped, and lifted an object with either the left or right hand and with fast or normal movement speed. Both kinematic and grip-force parameters were recorded. Magnetic resonance imaging anatomical scans of the cerebellum were acquired, and lesions were marked as regions of interest. For VLSM analysis, a nonparametric test (Brunner-Munzel) was applied. Cerebellar patients showed clear abnormalities in hand transport (impaired movement speed and straightness) and, to a lesser degree, in hand shaping (increased finger touch latencies) while grip function was preserved. Deficits were most prominent in patients with SCA lesions and for ipsilesional, fast movements. Disorders in hand transport may be more difficult to compensate than deficits in hand shaping and grip-force control in chronic focal lesions of the cerebellum because of higher demands on predictive control of interaction torques. Lesions of the superior cerebellar cortex (lobules IV, V, VI) were associated with slower hand transport, whereas lesions of both superior (lobules VI, V, VI) and inferior cerebellar cortex (lobules VII, VIII) were associated with impaired movement straightness. These findings show that both the superior and inferior hand representations within the cerebellum contribute to hand transport during prehensile movements; however, they may have a different functional role.
Collapse
Affiliation(s)
- Michael Küper
- Department of Neurology, University of Duisburg-Essen, Hufelandstrasse 55, 45122 Essen, Germany.
| | | | | | | | | | | | | |
Collapse
|
482
|
Rehme AK, Eickhoff SB, Wang LE, Fink GR, Grefkes C. Dynamic causal modeling of cortical activity from the acute to the chronic stage after stroke. Neuroimage 2011; 55:1147-58. [PMID: 21238594 DOI: 10.1016/j.neuroimage.2011.01.014] [Citation(s) in RCA: 242] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Revised: 12/10/2010] [Accepted: 01/07/2011] [Indexed: 10/18/2022] Open
Abstract
Functional neuroimaging studies frequently demonstrated that stroke patients show bilateral activity in motor and premotor areas during movements of the paretic hand in contrast to a more lateralized activation observed in healthy subjects. Moreover, a few studies modeling functional or effective connectivity reported performance-related changes in the motor network after stroke. Here, we investigated the temporal evolution of intra- and interhemispheric (dys-) connectivity during motor recovery from the acute to the early chronic phase post-stroke. Twelve patients performed hand movements in an fMRI task in the acute (≤72 hours) and subacute stage (2 weeks) post-stroke. A subgroup of 10 patients participated in a third assessment in the early chronic stage (3-6 months). Twelve healthy subjects served as reference for brain connectivity. Changes in effective connectivity within a bilateral network comprising M1, premotor cortex (PMC), and supplementary motor area (SMA) were estimated by dynamic causal modeling. Motor performance was assessed by the Action Research Arm Test and maximum grip force. Results showed reduced positive coupling of ipsilesional SMA and PMC with ipsilesional M1 in the acute stage. Coupling parameters among these areas increased with recovery and predicted a better outcome. Likewise, negative influences from ipsilesional areas to contralesional M1 were attenuated in the acute stage. In the subacute stage, contralesional M1 exerted a positive influence on ipsilesional M1. Negative influences from ipsilesional areas on contralesional M1 subsequently normalized, but patients with poorer outcome in the chronic stage now showed enhanced negative coupling from contralesional upon ipsilesional M1. These findings show that the reinstatement of effective connectivity in the ipsilesional hemisphere is an important feature of motor recovery after stroke. The shift of an early, supportive role of contralesional M1 into enhanced inhibitory coupling might indicate maladaptive processes which could be a target of non-invasive brain stimulation techniques.
Collapse
Affiliation(s)
- Anne K Rehme
- Neuromodulation & Neurorehabilitation, Max Planck Institute for Neurological Research Cologne, Germany
| | | | | | | | | |
Collapse
|
483
|
Abstract
The human brain is a complex network. An important first step toward understanding the function of such a network is to map its elements and connections, to create a comprehensive structural description of the network architecture. This paper reviews current empirical efforts toward generating a network map of the human brain, the human connectome, and explores how the connectome can provide new insights into the organization of the brain's structural connections and their role in shaping functional dynamics. Network studies of structural connectivity obtained from noninvasive neuroimaging have revealed a number of highly nonrandom network attributes, including high clustering and modularity combined with high efficiency and short path length. The combination of these attributes simultaneously promotes high specialization and high integration within a modular small-world architecture. Structural and functional networks share some of the same characteristics, although their relationship is complex and nonlinear. Future studies of the human connectome will greatly expand our knowledge of network topology and dynamics in the healthy, developing, aging, and diseased brain.
Collapse
Affiliation(s)
- Olaf Sporns
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana
| |
Collapse
|
484
|
Wang L, Metzak PD, Honer WG, Woodward TS. Impaired efficiency of functional networks underlying episodic memory-for-context in schizophrenia. J Neurosci 2010; 30:13171-9. [PMID: 20881136 PMCID: PMC6633526 DOI: 10.1523/jneurosci.3514-10.2010] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Accepted: 08/09/2010] [Indexed: 11/21/2022] Open
Abstract
Memory for context and episodic memory have been identified as primary contributors to cognitive impairments in schizophrenia. This study examined neural networks involved in episodic memory-for-context in schizophrenia using a multimodal strategy including a graph theoretical approach, combined with an assessment of the contribution of structural impairments to disruption in the efficiency of functional brain networks. Twenty-three patients with schizophrenia and 33 healthy controls performed an episodic memory-for-context task while undergoing functional magnetic resonance imaging scanning. Graph theory was used to characterize the small-world properties of functional connections between activated regions, and a morphometric analysis was used to investigate schizophrenia-related structural deficits. Similar functional activations were identified in the two groups; however, although small-world properties were present in the topological organization of the functional networks in both groups, significant reductions in local, but not global, efficiency were observed in the schizophrenia group. Several key network "hub" regions related to recollection, such as the bilateral dorsal anterior cingulate gyrus, showed reduced gray matter volume in schizophrenia patients. These findings suggest that loss of gray matter volume may contribute to local inefficiencies in the architecture of the network underlying memory-for-context in schizophrenia.
Collapse
Affiliation(s)
- Liang Wang
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia V6T 2A1, Canada, and
- BC Mental Health and Addictions Research Institute, Vancouver, British Columbia V5Z 4H4, Canada
| | - Paul D. Metzak
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia V6T 2A1, Canada, and
- BC Mental Health and Addictions Research Institute, Vancouver, British Columbia V5Z 4H4, Canada
| | - William G. Honer
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia V6T 2A1, Canada, and
- BC Mental Health and Addictions Research Institute, Vancouver, British Columbia V5Z 4H4, Canada
| | - Todd S. Woodward
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia V6T 2A1, Canada, and
- BC Mental Health and Addictions Research Institute, Vancouver, British Columbia V5Z 4H4, Canada
| |
Collapse
|