451
|
Li Z, Peng Y, Li J, Chen Z, Chen F, Tu J, Lin S, Wang H. N 6-methyladenosine regulates glycolysis of cancer cells through PDK4. Nat Commun 2020; 11:2578. [PMID: 32444598 PMCID: PMC7244544 DOI: 10.1038/s41467-020-16306-5] [Citation(s) in RCA: 175] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 04/17/2020] [Indexed: 12/17/2022] Open
Abstract
Studies on biological functions of N6-methyladenosine (m6A) modification in mRNA have sprung up in recent years. We find m6A can positively regulate the glycolysis of cancer cells. Specifically, m6A-sequencing and functional studies confirm that pyruvate dehydrogenase kinase 4 (PDK4) is involved in m6A regulated glycolysis and ATP generation. The m6A modified 5′UTR of PDK4 positively regulates its translation elongation and mRNA stability via binding with YTHDF1/eEF-2 complex and IGF2BP3, respectively. Targeted specific demethylation of PDK4 m6A by dm6ACRISPR system can significantly decrease the expression of PDK4 and glycolysis of cancer cells. Further, TATA-binding protein (TBP) can transcriptionally increase the expression of Mettl3 in cervical cancer cells via binding to its promoter. In vivo and clinical data confirm the positive roles of m6A/PDK4 in tumor growth and progression of cervical and liver cancer. Our study reveals that m6A regulates glycolysis of cancer cells through PDK4. Dysregulation of N6-Methyladenosine (m6A) is associated with cancer progression. Here, authors show that m6A methylation of pyruvate dehydrogenase kinase 4 (PDK4) positively regulates its mRNA stability and translation, and consequently affects glycolysis in cancer cells
Collapse
Affiliation(s)
- Zihan Li
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong, 510006, China.,Institute of Pharmacy & Pharmacology, University of South China, Hengyang, Hunan, 421001, China
| | - Yanxi Peng
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong, 510006, China.,Department of Basic Medicine, Xiangnan University, Chenzhou, Hunan, 423000, China
| | - Jiexin Li
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong, 510006, China
| | - Zhuojia Chen
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Feng Chen
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong, 510006, China
| | - Jian Tu
- Institute of Pharmacy & Pharmacology, University of South China, Hengyang, Hunan, 421001, China
| | - Shuibin Lin
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hongsheng Wang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong, 510006, China.
| |
Collapse
|
452
|
Zhu X, He J, Zhao S, Tao W, Xiong Y, Bi S. A comprehensive comparison and analysis of computational predictors for RNA N6-methyladenosine sites of Saccharomyces cerevisiae. Brief Funct Genomics 2020; 18:367-376. [PMID: 31609411 DOI: 10.1093/bfgp/elz018] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/07/2019] [Accepted: 07/15/2019] [Indexed: 12/16/2022] Open
Abstract
N6-methyladenosine (m6A) modification, as one of the commonest post-transcription modifications in RNAs, has been reported to be highly related to many biological processes. Over the past decade, several tools for m6A sites prediction of Saccharomyces cerevisiae have been developed and are freely available online. However, the quality of predictions by these tools is difficult to quantify and compare. In this study, an independent dataset M6Atest6540 was compiled to systematically evaluate nine publicly available m6A prediction tools for S. cerevisiae. The experimental results indicate that RAM-ESVM achieved the best performance on M6Atest6540; however, most models performed substantially worse than their performances reported in the original papers. The benchmark dataset Met2614, which was used as the training dataset for the nine methods, were further analyzed by using a position bias index. The results demonstrated the significantly different bias of dataset Met2614 compared with the RNA segments around m6A sites recorded in RMBase. Moreover, newMet2614 was collected by randomly selecting RNA segments from non-redundant data recorded in RMBase, and three different kinds of features were extracted. The performances of the models built on Met2614 and newMet2614 with the features were compared, which shows the better generalization of models built on newMet2614. Our results also indicate the position-specific propensity-based features outperform other features, although they are also easily over-fitted on a biased dataset.
Collapse
Affiliation(s)
- Xiaolei Zhu
- School of Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China.,School of Life Sciences, Anhui University, Hefei, Anhui 230601, China
| | - Jingjing He
- School of Life Sciences, Anhui University, Hefei, Anhui 230601, China
| | - Shihao Zhao
- School of Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Wei Tao
- School of Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Yi Xiong
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shoudong Bi
- School of Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China
| |
Collapse
|
453
|
Huang AZ, Delaidelli A, Sorensen PH. RNA modifications in brain tumorigenesis. Acta Neuropathol Commun 2020; 8:64. [PMID: 32375856 PMCID: PMC7204278 DOI: 10.1186/s40478-020-00941-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 04/27/2020] [Indexed: 02/07/2023] Open
Abstract
RNA modifications are emerging as critical regulators in cancer biology, thanks to their ability to influence gene expression and the predominant protein isoforms expressed during cell proliferation, migration, and other pro-oncogenic properties. The reversibility and dynamic nature of post-transcriptional RNA modifications allow cells to quickly adapt to microenvironmental changes. Recent literature has revealed that the deregulation of RNA modifications can promote a plethora of developmental diseases, including tumorigenesis. In this review, we will focus on four key post-transcriptional RNA modifications which have been identified as contributors to the pathogenesis of brain tumors: m6A, alternative polyadenylation, alternative splicing and adenosine to inosine modifications. In addition to the role of RNA modifications in brain tumor progression, we will also discuss potential opportunities to target these processes to improve the dismal prognosis for brain tumors.
Collapse
Affiliation(s)
- Albert Z Huang
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC, V5Z 1L3, Canada
| | - Alberto Delaidelli
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC, V5Z 1L3, Canada.
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
| | - Poul H Sorensen
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC, V5Z 1L3, Canada.
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
454
|
Liu S, Zhu A, He C, Chen M. REPIC: a database for exploring the N 6-methyladenosine methylome. Genome Biol 2020; 21:100. [PMID: 32345346 PMCID: PMC7187508 DOI: 10.1186/s13059-020-02012-4] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 04/09/2020] [Indexed: 12/19/2022] Open
Abstract
The REPIC (RNA EPItranscriptome Collection) database records about 10 million peaks called from publicly available m6A-seq and MeRIP-seq data using our unified pipeline. These data were collected from 672 samples of 49 studies, covering 61 cell lines or tissues in 11 organisms. REPIC allows users to query N6-methyladenosine (m6A) modification sites by specific cell lines or tissue types. In addition, it integrates m6A/MeRIP-seq data with 1418 histone ChIP-seq and 118 DNase-seq data tracks from the ENCODE project in a modern genome browser to present a comprehensive atlas of m6A methylation sites, histone modification sites, and chromatin accessibility regions. REPIC is accessible at https://repicmod.uchicago.edu/repic.
Collapse
Affiliation(s)
- Shun Liu
- Section of Genetic Medicine, Department of Medicine, The University of Chicago, Chicago, IL, 60637, USA
- Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, 60637, USA
- Howard Hughes Medical Institute, Chicago, IL, 60637, USA
| | - Allen Zhu
- Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, 60637, USA
- Howard Hughes Medical Institute, Chicago, IL, 60637, USA
- Medical Scientist Training Program/Committee on Cancer Biology, The University of Chicago, Chicago, IL, 60637, USA
| | - Chuan He
- Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, 60637, USA
- Howard Hughes Medical Institute, Chicago, IL, 60637, USA
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, 60637, USA
| | - Mengjie Chen
- Section of Genetic Medicine, Department of Medicine, The University of Chicago, Chicago, IL, 60637, USA.
- Department of Human Genetics, The University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
455
|
Antibody-free enzyme-assisted chemical approach for detection of N 6-methyladenosine. Nat Chem Biol 2020; 16:896-903. [PMID: 32341502 DOI: 10.1038/s41589-020-0525-x] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 03/20/2020] [Indexed: 12/31/2022]
Abstract
The inert chemical property of RNA modification N6-methyladenosine (m6A) makes it very challenging to detect. Most m6A sequencing methods rely on m6A-antibody immunoprecipitation and cannot distinguish m6A and N6,2'-O-dimethyladenosine modification at the cap +1 position (cap m6Am). Although the two antibody-free methods (m6A-REF-seq/MAZTER-seq and DART-seq) have been developed recently, they are dependent on m6A sequence or cellular transfection. Here, we present an antibody-free, FTO-assisted chemical labeling method termed m6A-SEAL for specific m6A detection. We applied m6A-SEAL to profile m6A landscapes in humans and plants, which displayed the known m6A distribution features in transcriptome. By doing a comparison with all available m6A sequencing methods and specific m6A sites validation by SELECT, we demonstrated that m6A-SEAL has good sensitivity, specificity and reliability for transcriptome-wide detection of m6A. Given its tagging ability and FTO's oxidation property, m6A-SEAL enables many applications such as enrichment, imaging and sequencing to drive future functional studies of m6A and other modifications.
Collapse
|
456
|
Scarrow M, Chen N, Sun G. Insights into the N 6-methyladenosine mechanism and its functionality: progress and questions. Crit Rev Biotechnol 2020; 40:639-652. [PMID: 32321323 DOI: 10.1080/07388551.2020.1751059] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
N6-methyladenosine (m6A) RNA methylation has become a progressively popular area of molecular research since the discovery of its potentially essential regulatory role amongst eukaryotes. m6A marks are observed in the 5'UTR, 3'UTR and coding regions of eukaryotes and its mediation has been associated with various human diseases, RNA stability and translational efficiency. To understand the implications of m6A methylation in molecular governance, its functionality and mechanism must be initially understood. m6A regulation through its readers, writers and erasers as well as an insight into the potential "cross-talk" occurring between m6A and previously well documented regulatory molecular mechanisms have been characterized. The majority of research to date has been limited to few species and has yet to explore the species- and tissue specific nature or mechanistic plasticity of m6A regulation. There is still a tremendous gap in our knowledge surrounding the mechanism and functionality of m6A RNA methylation. Here we review the formation, removal, and decoding of m6A amongst animals, yeast, and plants while noting potential "cross-talk" between various mechanisms and highlighting potential areas of future research.
Collapse
Affiliation(s)
| | - Ning Chen
- Biology Department, Saint Mary's University, Halifax, Canada
| | - Genlou Sun
- Biology Department, Saint Mary's University, Halifax, Canada
| |
Collapse
|
457
|
Gao B, Xie W, Wu X, Wang L, Guo J. Functionally analyzing the important roles of hepatocyte nuclear factor 3 (FoxA) in tumorigenesis. Biochim Biophys Acta Rev Cancer 2020; 1873:188365. [PMID: 32325165 DOI: 10.1016/j.bbcan.2020.188365] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/14/2020] [Accepted: 04/14/2020] [Indexed: 12/19/2022]
Abstract
Transcriptional factors (TFs) play a central role in governing gene expression under physiological conditions including the processes of embryonic development, metabolic homeostasis and response to extracellular stimuli. Conceivably, the aberrant dysregulations of TFs would dominantly result in various human disorders including tumorigenesis, diabetes and neurodegenerative diseases. Serving as the most evolutionarily reserved TFs, Fox family TFs have been explored to exert distinct biological functions in neoplastic development, by manipulating diverse gene expression. Recently, among the Fox family members, the pilot roles of FoxAs attract more attention due to their functions as both pioneer factor and transcriptional factor in human tumorigenesis, particularly in the sex-dimorphism tumors. Therefore, the pathological roles of FoxAs in tumorigenesis have been well-explored in modulating inflammation, immune response and metabolic homeostasis. In this review, we comprehensively summarize the impressive progression of FoxA functional annotation, clinical relevance, upstream regulators and downstream effectors, as well as valuable animal models, and highlight the potential strategies to target FoxAs for cancer therapies.
Collapse
Affiliation(s)
- Bing Gao
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Wei Xie
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Xueji Wu
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Lei Wang
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Jianping Guo
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510275, China.
| |
Collapse
|
458
|
Down-regulation of FTO promotes proliferation and migration, and protects bladder cancer cells from cisplatin-induced cytotoxicity. BMC Urol 2020; 20:39. [PMID: 32299393 PMCID: PMC7164175 DOI: 10.1186/s12894-020-00612-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 04/07/2020] [Indexed: 12/26/2022] Open
Abstract
Background FTO is known to be associated with body mass and obesity in humans and its over-expression affects the energy metabolism of cancer cells. The aim of the present study is to investigate the biological role of FTO in human bladder urothelial carcinoma. Methods PCR and western blotting are used to measure the levels of FTO in both tissues and cell lines (5637, T24, TCCSUP) of human bladder urothelial carcinoma. Raw RNA-Sequencing reads and the corresponding clinical information for bladder urothelial carcinoma are downloaded from TCGA. Cell Counting Kit-8 and wound healing assays are used to explore the effect of FTO on proliferation and migration of bladder cancer cells. Results The expression of FTO mRNA in bladder urothelial carcinoma decreases significantly compared with the normal controls from both the data of real-time PCR (p < 0.05) and TCGA (p < 0.01). Loss-of-function assays revealed that knockdown of FTO significantly promotes proliferation and migration of 5637 and T24 cells. Consistently, we found that the cisplatin-induced cytotoxicity of bladder cancer cell could be rescued by co-treatment with MA2, which was previously reported as a highly selective inhibitor of FTO, compared with the cisplatin-control group. Conclusions These findings suggest that down-regulation of FTO plays an oncogenic role in bladder cancer. The further exploration of regulation of FTO expression may provide us a potential therapeutic target for the treatment of bladder cancer.
Collapse
|
459
|
Genetic analysis of N6-methyladenosine modification genes in Parkinson's disease. Neurobiol Aging 2020; 93:143.e9-143.e13. [PMID: 32371107 DOI: 10.1016/j.neurobiolaging.2020.03.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 03/23/2020] [Accepted: 03/29/2020] [Indexed: 02/06/2023]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disease with a relatively unclear etiology. Previous studies have shown that N6-methyladenosine (m6A) is a vital RNA modification enriched in brain tissue, and that the genes involved in m6A modification are implicated in various neurologic diseases. Here, we conducted a comprehensive genetic analysis using targeted sequencing with molecular inversion probes (MIPs) to identify m6A-modification genes (including METTL3, METTL14, WTAP, FTO, ALKBH5, YTHDF1, YTHDF2, YTHDF3, HNRNPC, and ELAVL1) in a total of 1647 sporadic PD patients and 1372 controls of Han Chinese origin. PD patients were divided into early-onset PD (EOPD) and late-onset PD (LOPD) based on whether the onset of motor symptoms occurred before or after 50 years of age. Rare variants were subjected to gene-based burden tests and common variants were subjected to single-variant association analyses. As a result, we identified 214 rare variants in all 10 m6A-modification genes and 16 common variants in 7 genes. Gene-wise association analyses of rare variants in each m6A-modification gene did not achieved a p value of less than 0.05 in either total cohorts or 2 age groups. In fact, p values greater than 0.05 were found when conducting single-variant association analyses on common variants of these genes between PD and control patients. Our comprehensive analyses of m6A-modification genes suggest that there is no significant association between these 10 m6A-modification genes and the risk of sporadic PD.
Collapse
|
460
|
Wang Y, Gao M, Zhu F, Li X, Yang Y, Yan Q, Jia L, Xie L, Chen Z. METTL3 is essential for postnatal development of brown adipose tissue and energy expenditure in mice. Nat Commun 2020; 11:1648. [PMID: 32245957 PMCID: PMC7125133 DOI: 10.1038/s41467-020-15488-2] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 03/10/2020] [Indexed: 12/18/2022] Open
Abstract
Brown adipose tissue (BAT) undergoes rapid postnatal development and then protects against cold and obesity into adulthood. However, the molecular mechanism that determines postnatal development and maturation of BAT is largely unknown. Here we show that METTL3 (a key RNA methyltransferase) expression increases significantly in interscapular brown adipose tissue (iBAT) after birth and plays an essential role in the postnatal development and maturation of iBAT. BAT-specific deletion of Mettl3 severely impairs maturation of BAT in vivo by decreasing m6A modification and expression of Prdm16, Pparg, and Ucp1 transcripts, which leads to a marked reduction in BAT-mediated adaptive thermogenesis and promotes high-fat diet (HFD)-induced obesity and systemic insulin resistance. These data demonstrate that METTL3 is an essential regulator that controls iBAT postnatal development and energy homeostasis.
Collapse
Affiliation(s)
- Yuqin Wang
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150001, China
| | - Ming Gao
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150001, China
| | - Fuxing Zhu
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150001, China
| | - Xinzhi Li
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150001, China
| | - Ying Yang
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150001, China
| | - Qiuxin Yan
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150001, China
| | - Linna Jia
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), School of Life Sciences, Northeast Normal University, Changchun, 130024, China
| | - Liwei Xie
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Zheng Chen
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150001, China.
| |
Collapse
|
461
|
MTA, an RNA m 6A Methyltransferase, Enhances Drought Tolerance by Regulating the Development of Trichomes and Roots in Poplar. Int J Mol Sci 2020; 21:ijms21072462. [PMID: 32252292 PMCID: PMC7177244 DOI: 10.3390/ijms21072462] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 03/26/2020] [Accepted: 03/31/2020] [Indexed: 11/17/2022] Open
Abstract
N6-methyladenosine (m6A) is the most prevalent internal modification present in the mRNAs of all higher eukaryotes, where it is present within both coding and noncoding regions. In mammals, methylation requires the catalysis of a multicomponent m6A methyltransferase complex. Proposed biological functions for m6A modification include pre-mRNA splicing, RNA stability, cell fate regulation, and embryonic development. However, few studies have been conducted on m6A modification in trees. In particular, the regulation mechanism of RNA m6A in Populus development remains to be further elucidated. Here, we show that PtrMTA (Populus trichocarpa methyltransferase) was colocalized with PtrFIP37 in the nucleus. Importantly, the PtrMTA-overexpressing plants significantly increased the density of trichomes and exhibited a more developed root system than that of wild-type controls. Moreover, we found that PtrMTA-overexpressing plants had better tolerance to drought stress. We also found PtrMTA was a component of the m6A methyltransferase complex, which participated in the formation of m6A methylation in poplar. Taken together, these results demonstrate that PtrMTA is involved in drought resistance by affecting the development of trichomes and roots, which will provide new clues for the study of RNA m6A modification and expand our understanding of the epigenetic molecular mechanism in woody plants.
Collapse
|
462
|
Cen S, Li J, Cai Z, Pan Y, Sun Z, Li Z, Ye G, Zheng G, Li M, Liu W, Yu W, Wang S, Xie Z, Wang P, Shen H. TRAF4 acts as a fate checkpoint to regulate the adipogenic differentiation of MSCs by activating PKM2. EBioMedicine 2020; 54:102722. [PMID: 32268273 PMCID: PMC7191261 DOI: 10.1016/j.ebiom.2020.102722] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/18/2020] [Accepted: 03/03/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) selectively differentiate into adipocytes or osteoblasts, and several molecules control the fate determination of MSCs. Understanding these key checkpoints greatly contributes to the ability to induce specific MSC differentiation for clinical applications. In this study, we aimed to explore whether TNF receptor-associated factor 4 (TRAF4) affects MSC adipogenic differentiation, which we previously reported that could positively regulated the osteogenic differentiation. METHODS Western blotting and Real-time Polymerase Chain Reaction were used to detected the expression pattern of TRAF4 during adipogenic differentiation. Lentivirus was constructed to regulate TRAF4 expression, and oil red O staining and Western blotting were used to assess its role in adipogenesis, which was confirmed in vivo by implanting an MSC-matrigel mixture into nude mice. Western blotting was used to detect the activated signaling pathways, and a specific inhibitor and agonist were used to clear the roles of the key signaling pathways. Additionaly, Co-Immunoprecipitation was conducted to find that Pyruvate kinase isozyme type M2 (PKM2) interacts with TRAF4, and to further explore their binding and functional domains. Finally, an RNA-binding protein immunoprecipitation assay and Western blotting were used to detect whether N6-methyladenosine mediates the decreased TRAF4 expression during adipogenic differentiation. FINDINGS The results demonstrated that TRAF4 negatively regulates MSC adipogenesis in vitro and in vivo. Mechanistically, we revealed that TRAF4 binds to PKM2 to activate the kinase activity of PKM2, which subsequently activates β-catenin signaling and then inhibits adipogenesis. Furthermore, TRAF4 downregulation during adipogenesis is regulated by ALKBH5-mediated N6-methyladenosine RNA demethylation. INTERPRETATION TRAF4 negatively regulates the adipogenesis of MSCs by activating PKM2 kinase activity, which may act as a checkpoint to fine-tune the balance of adipo-osteogenic differentiation, and suggests that TRAF4 may be a novel target of MSCs in clinical use and may also illuminate the underlying mechanisms of bone metabolic diseases. FUNDING This study was supported by the National Natural Science Foundation of China (81871750 and 81971518) and the Science and Technology Project of Guangdong Province (2019B02023600 and 2017A020215070).
Collapse
Affiliation(s)
- Shuizhong Cen
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518003, PR China; Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, PR China
| | - Jinteng Li
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518003, PR China
| | - Zhaopeng Cai
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518003, PR China
| | - Yiqian Pan
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518003, PR China; Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, PR China
| | - Zehang Sun
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518003, PR China; Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, PR China
| | - Zhaofeng Li
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518003, PR China; Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, PR China
| | - Guiwen Ye
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, PR China
| | - Guan Zheng
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518003, PR China
| | - Ming Li
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518003, PR China; Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, PR China
| | - Wenjie Liu
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518003, PR China; Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, PR China
| | - Wenhui Yu
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518003, PR China
| | - Shan Wang
- Center for Biotherapy, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, PR China
| | - Zhongyu Xie
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518003, PR China.
| | - Peng Wang
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518003, PR China.
| | - Huiyong Shen
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen 518003, PR China; Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, PR China.
| |
Collapse
|
463
|
Lu M, Zhang Z, Xue M, Zhao BS, Harder O, Li A, Liang X, Gao TZ, Xu Y, Zhou J, Feng Z, Niewiesk S, Peeples ME, He C, Li J. N 6-methyladenosine modification enables viral RNA to escape recognition by RNA sensor RIG-I. Nat Microbiol 2020; 5:584-598. [PMID: 32015498 PMCID: PMC7137398 DOI: 10.1038/s41564-019-0653-9] [Citation(s) in RCA: 158] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 12/03/2019] [Indexed: 12/18/2022]
Abstract
Internal N6-methyladenosine (m6A) modification is one of the most common and abundant modifications of RNA. However, the biological roles of viral RNA m6A remain elusive. Here, using human metapneumovirus (HMPV) as a model, we demonstrate that m6A serves as a molecular marker for innate immune discrimination of self from non-self RNAs. We show that HMPV RNAs are m6A methylated and that viral m6A methylation promotes HMPV replication and gene expression. Inactivating m6A addition sites with synonymous mutations or demethylase resulted in m6A-deficient recombinant HMPVs and virion RNAs that induced increased expression of type I interferon, which was dependent on the cytoplasmic RNA sensor RIG-I, and not on melanoma differentiation-associated protein 5 (MDA5). Mechanistically, m6A-deficient virion RNA induces higher expression of RIG-I, binds more efficiently to RIG-I and facilitates the conformational change of RIG-I, leading to enhanced interferon expression. Furthermore, m6A-deficient recombinant HMPVs triggered increased interferon in vivo and were attenuated in cotton rats but retained high immunogenicity. Collectively, our results highlight that (1) viruses acquire m6A in their RNA as a means of mimicking cellular RNA to avoid detection by innate immunity and (2) viral RNA m6A can serve as a target to attenuate HMPV for vaccine purposes.
Collapse
Affiliation(s)
- Mijia Lu
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Zijie Zhang
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
| | - Miaoge Xue
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Boxuan Simen Zhao
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
| | - Olivia Harder
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Anzhong Li
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Xueya Liang
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Thomas Z Gao
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Yunsheng Xu
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jiyong Zhou
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Zongdi Feng
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Stefan Niewiesk
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Mark E Peeples
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Chuan He
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, USA
| | - Jianrong Li
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
464
|
Govindaraj RG, Subramaniyam S, Manavalan B. Extremely-randomized-tree-based Prediction of N 6-Methyladenosine Sites in Saccharomyces cerevisiae. Curr Genomics 2020; 21:26-33. [PMID: 32655295 PMCID: PMC7324895 DOI: 10.2174/1389202921666200219125625] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/28/2019] [Accepted: 01/24/2020] [Indexed: 02/07/2023] Open
Abstract
Introduction N6-methyladenosine (m6A) is one of the most common post-transcriptional modifications in RNA, which has been related to several biological processes. The accurate prediction of m6A sites from RNA sequences is one of the challenging tasks in computational biology. Several computational methods utilizing machine-learning algorithms have been proposed that accelerate in silico screening of m6A sites, thereby drastically reducing the experimental time and labor costs involved. Methodology In this study, we proposed a novel computational predictor termed ERT-m6Apred, for the accurate prediction of m6A sites. To identify the feature encodings with more discriminative capability, we applied a two-step feature selection technique on seven different feature encodings and identified the corresponding optimal feature set. Results Subsequently, performance comparison of the corresponding optimal feature set-based extremely randomized tree model revealed that Pseudo k-tuple composition encoding, which includes 14 physicochemical properties significantly outperformed other encodings. Moreover, ERT-m6Apred achieved an accuracy of 78.84% during cross-validation analysis, which is comparatively better than recently reported predictors. Conclusion In summary, ERT-m6Apred predicts Saccharomyces cerevisiae m6A sites with higher accuracy, thus facilitating biological hypothesis generation and experimental validations.
Collapse
Affiliation(s)
- Rajiv G Govindaraj
- 1HotSpot Therapeutics, 50 Milk Street, 16 Floor, Boston, MA02109, USA; 2Research and Development Center, In-silicogen Inc., Yongin-si 16954, Gyeonggi-do, Republic of Korea; 3Department of Biotechnology, Dr. N.G.P. Arts and Science College, Coimbatore, Tamil Nadu641048, India; 4Department of Physiology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Sathiyamoorthy Subramaniyam
- 1HotSpot Therapeutics, 50 Milk Street, 16 Floor, Boston, MA02109, USA; 2Research and Development Center, In-silicogen Inc., Yongin-si 16954, Gyeonggi-do, Republic of Korea; 3Department of Biotechnology, Dr. N.G.P. Arts and Science College, Coimbatore, Tamil Nadu641048, India; 4Department of Physiology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Balachandran Manavalan
- 1HotSpot Therapeutics, 50 Milk Street, 16 Floor, Boston, MA02109, USA; 2Research and Development Center, In-silicogen Inc., Yongin-si 16954, Gyeonggi-do, Republic of Korea; 3Department of Biotechnology, Dr. N.G.P. Arts and Science College, Coimbatore, Tamil Nadu641048, India; 4Department of Physiology, Ajou University School of Medicine, Suwon, Republic of Korea
| |
Collapse
|
465
|
Marcinkowski M, Pilžys T, Garbicz D, Steciuk J, Zugaj D, Mielecki D, Sarnowski TJ, Grzesiuk E. Human and Arabidopsis alpha-ketoglutarate-dependent dioxygenase homolog proteins-New players in important regulatory processes. IUBMB Life 2020; 72:1126-1144. [PMID: 32207231 DOI: 10.1002/iub.2276] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 02/20/2020] [Accepted: 03/08/2020] [Indexed: 12/31/2022]
Abstract
The family of AlkB homolog (ALKBH) proteins, the homologs of Escherichia coli AlkB 2-oxoglutarate (2OG), and Fe(II)-dependent dioxygenase are involved in a number of important regulatory processes in eukaryotic cells including repair of alkylation lesions in DNA, RNA, and nucleoprotein complexes. There are nine human and thirteen Arabidopsis thaliana ALKBH proteins described, which exhibit diversified functions. Among them, human ALKBH5 and FaT mass and Obesity-associated (FTO) protein and Arabidopsis ALKBH9B and ALKBH10B have been recognized as N6 methyladenine (N6 meA) demethylases, the most abundant posttranscriptional modification in mRNA. The FTO protein is reported to be associated with obesity and type 2 diabetes, and involved in multiple other processes, while ALKBH5 is induced by hypoxia. Arabidopsis ALKBH9B is an N6 meA demethylase influencing plant susceptibility to viral infections via m6 A/A ratio control in viral RNA. ALKBH10B has been discovered to be a functional Arabidopsis homolog of FTO; thus, it is also an RNA N6 meA demethylase involved in plant flowering and several other regulatory processes including control of metabolism. High-throughput mass spectrometry showed multiple sites of human ALKBH phosphorylation. In the case of FTO, the type of modified residue decides about the further processing of the protein. This modification may result in subsequent protein ubiquitination and proteolysis, or in the blocking of these processes. However, the impact of phosphorylation on the other ALKBH function and their downstream pathways remains nearly unexplored in both human and Arabidopsis. Therefore, the investigation of evolutionarily conserved functions of ALKBH proteins and their regulatory impact on important cellular processes is clearly called for.
Collapse
Affiliation(s)
- Michał Marcinkowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Tomaš Pilžys
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Damian Garbicz
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Jaroslaw Steciuk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Dorota Zugaj
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Damian Mielecki
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Tomasz J Sarnowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Elżbieta Grzesiuk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
466
|
Freen-van Heeren JJ, Popović B, Guislain A, Wolkers MC. Human T cells employ conserved AU-rich elements to fine-tune IFN-γ production. Eur J Immunol 2020; 50:949-958. [PMID: 32112565 PMCID: PMC7384093 DOI: 10.1002/eji.201948458] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/27/2020] [Accepted: 02/27/2020] [Indexed: 12/25/2022]
Abstract
Long‐lasting CD8+ T cell responses are critical in combatting infections and tumors. The pro‐inflammatory cytokine IFN‐γ is a key effector molecule herein. We recently showed that in murine T cells the production of IFN‐γ is tightly regulated through adenylate uridylate–rich elements (AREs) that are located in the 3′ untranslated region (UTR) of the Ifng mRNA molecule. Loss of AREs resulted in prolonged cytokine production in activated T cells and boosted anti‐tumoral T cell responses. Here, we investigated whether these findings can be translated to primary human T cells. Utilizing CRISPR‐Cas9 technology, we deleted the ARE region from the IFNG 3′ UTR in peripheral blood‐derived human T cells. Loss of AREs stabilized the IFNG mRNA in T cells and supported a higher proportion of IFN‐γ protein‐producing T cells. Importantly, combining MART‐1 T cell receptor engineering with ARE‐Del gene editing showed that this was also true for antigen‐specific activation of T cells. MART‐1‐specific ARE‐Del T cells showed higher percentages of IFN‐γ producing T cells in response to MART‐1 expressing tumor cells. Combined, our study reveals that ARE‐mediated posttranscriptional regulation is conserved between murine and human T cells. Furthermore, generating antigen‐specific ARE‐Del T cells is feasible, a feature that could potentially be used for therapeutical purposes.
Collapse
Affiliation(s)
- Julian J Freen-van Heeren
- Department of Hematopoiesis, Sanquin Research-Amsterdam UMC Landsteiner Laboratory, Amsterdam, The Netherlands.,Department of Hematopoiesis, Oncode Institute, Amsterdam, The Netherlands
| | - Branka Popović
- Department of Hematopoiesis, Sanquin Research-Amsterdam UMC Landsteiner Laboratory, Amsterdam, The Netherlands.,Department of Hematopoiesis, Oncode Institute, Amsterdam, The Netherlands
| | - Aurélie Guislain
- Department of Hematopoiesis, Sanquin Research-Amsterdam UMC Landsteiner Laboratory, Amsterdam, The Netherlands.,Department of Hematopoiesis, Oncode Institute, Amsterdam, The Netherlands
| | - Monika C Wolkers
- Department of Hematopoiesis, Sanquin Research-Amsterdam UMC Landsteiner Laboratory, Amsterdam, The Netherlands.,Department of Hematopoiesis, Oncode Institute, Amsterdam, The Netherlands
| |
Collapse
|
467
|
Yan G, Yuan Y, He M, Gong R, Lei H, Zhou H, Wang W, Du W, Ma T, Liu S, Xu Z, Gao M, Yu M, Bian Y, Pang P, Li X, Yu S, Yang F, Cai B, Yang L. m 6A Methylation of Precursor-miR-320/RUNX2 Controls Osteogenic Potential of Bone Marrow-Derived Mesenchymal Stem Cells. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 19:421-436. [PMID: 31896070 PMCID: PMC6940653 DOI: 10.1016/j.omtn.2019.12.001] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 12/03/2019] [Accepted: 12/03/2019] [Indexed: 01/13/2023]
Abstract
Methyltransferase-like 3 (METTL3) is the main enzyme for N6-methyladenosine (m6A)-based methylation of RNAs and it has been implicated in many biological and pathophysiological processes. In this study, we aimed to explore the potential involvement of METTL3 in osteoblast differentiation and decipher the underlying cellular and molecular mechanisms. We demonstrated that METTL3 is downregulated in human osteoporosis and the ovariectomized (OVX) mouse model, as well as during the osteogenic differentiation. Silence of METTL3 by short interfering RNA (siRNA) decreased m6A methylation levels and inhibited osteogenic differentiation of bone marrow-derived mesenchymal stem cells (BMSCs) and reduced bone mass, and similar effects were observed in METTL3+/- knockout mice. In contrast, adenovirus-mediated overexpression of METTL3 produced the opposite effects. In addition, METTL3 enhanced, whereas METTL3 silence or knockout suppressed, the m6A methylations of runt-related transcription factor 2 (RUNX2; a key transcription factor for osteoblast differentiation and bone formation) and precursor (pre-)miR-320. Moreover, downregulation of mature miR-320 rescued the decreased bone mass caused by METTL3 silence or METTL3+/- knockout. Therefore, METTL3-based m6A modification favors osteogenic differentiation of BMSCs through m6A-based direct and indirect regulation of RUNX2, and abnormal downregulation of METTL3 is likely one of the mechanisms underlying osteoporosis in patients and mice. Thus, METTL3 overexpression might be considered a new approach of replacement therapy for the treatment of human osteoporosis.
Collapse
Affiliation(s)
- Gege Yan
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Ye Yuan
- Department of Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin, China; Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China.
| | - Mingyu He
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Rui Gong
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Hong Lei
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Hongbao Zhou
- Department of Orthopedics, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Wenbo Wang
- Department of Orthopedics, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Weijie Du
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Tianshuai Ma
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Shenzhen Liu
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Zihang Xu
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Manqi Gao
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Meixi Yu
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Yu Bian
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Ping Pang
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Xin Li
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Shuting Yu
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Fan Yang
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Benzhi Cai
- Department of Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin, China; Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China.
| | - Lei Yang
- Department of Orthopedics, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China.
| |
Collapse
|
468
|
Murik O, Chandran SA, Nevo-Dinur K, Sultan LD, Best C, Stein Y, Hazan C, Ostersetzer-Biran O. Topologies of N 6 -adenosine methylation (m 6 A) in land plant mitochondria and their putative effects on organellar gene expression. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:1269-1286. [PMID: 31657869 DOI: 10.1111/tpj.14589] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 10/03/2019] [Accepted: 10/17/2019] [Indexed: 06/10/2023]
Abstract
Mitochondria serve as major sites of ATP production and play key roles in many other metabolic processes that are critical to the cell. As relicts of an ancient bacterial endosymbiont, mitochondria contain their own hereditary material (i.e. mtDNA, or mitogenome) and a machinery for protein biosynthesis. The expression of the mtDNA in plants is complex, particularly at the post-transcriptional level. Following transcription, the polycistronic pre-RNAs undergo extensive modifications, including trimming, splicing and editing, before being translated by organellar ribosomes. Our study focuses on N6 -methylation of adenosine ribonucleotides (m6 A-RNA) in plant mitochondria. m6 A is a prevalent modification in nuclear-encoded mRNAs. The biological significance of this dynamic modification is under investigation, but it is widely accepted that m6 A mediates structural switches that affect RNA stability and/or activity. Using m6 A-pulldown/RNA-seq (m6 A-RIP-seq) assays of Arabidopsis and cauliflower mitochondria, we provide information on the m6 A-RNA landscapes in Arabidopsis thaliana and Brassica oleracea mitochondria. The results show that m6 A targets different types of mitochondrial transcripts, including known genes, mtORFs, as well as non-coding (transcribed intergenic) RNA species. While ncRNAs undergo multiple m6 A modifications, N6 -methylation of adenosine residues with mRNAs seem preferably positioned near start codons and may modulate their translatability.
Collapse
Affiliation(s)
- Omer Murik
- Dept of Plant and Environmental Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus - Givat Ram, Jerusalem, 9190401, Israel
| | - Sam Aldrin Chandran
- Dept of Plant and Environmental Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus - Givat Ram, Jerusalem, 9190401, Israel
| | - Keren Nevo-Dinur
- Dept of Plant and Environmental Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus - Givat Ram, Jerusalem, 9190401, Israel
| | - Laure D Sultan
- Dept of Plant and Environmental Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus - Givat Ram, Jerusalem, 9190401, Israel
| | - Corinne Best
- Dept of Plant and Environmental Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus - Givat Ram, Jerusalem, 9190401, Israel
| | - Yuval Stein
- Dept of Plant and Environmental Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus - Givat Ram, Jerusalem, 9190401, Israel
| | - Carina Hazan
- Analytical Chemistry Laboratory, The Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus - Givat Ram, Jerusalem, 9190401, Israel
| | - Oren Ostersetzer-Biran
- Dept of Plant and Environmental Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus - Givat Ram, Jerusalem, 9190401, Israel
| |
Collapse
|
469
|
Tang C, Xie Y, Yu T, Liu N, Wang Z, Woolsey RJ, Tang Y, Zhang X, Qin W, Zhang Y, Song G, Zheng W, Wang J, Chen W, Wei X, Xie Z, Klukovich R, Zheng H, Quilici DR, Yan W. m 6A-dependent biogenesis of circular RNAs in male germ cells. Cell Res 2020; 30:211-228. [PMID: 32047269 PMCID: PMC7054367 DOI: 10.1038/s41422-020-0279-8] [Citation(s) in RCA: 128] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 01/14/2020] [Indexed: 12/15/2022] Open
Abstract
The majority of circular RNAs (circRNAs) spliced from coding genes contain open reading frames (ORFs) and thus, have protein coding potential. However, it remains unknown what regulates the biogenesis of these ORF-containing circRNAs, whether they are actually translated into proteins and what functions they play in specific physiological contexts. Here, we report that a large number of circRNAs are synthesized with increasing abundance when late pachytene spermatocytes develop into round and then elongating spermatids during murine spermatogenesis. For a subset of circRNAs, the back splicing appears to occur mostly at m6A-enriched sites, which are usually located around the start and stop codons in linear mRNAs. Consequently, approximately a half of these male germ cell circRNAs contain large ORFs with m6A-modified start codons in their junctions, features that have been recently shown to be associated with protein-coding potential. Hundreds of peptides encoded by the junction sequences of these circRNAs were detected using liquid chromatography coupled with mass spectrometry, suggesting that these circRNAs can indeed be translated into proteins in both developing (spermatocytes and spermatids) and mature (spermatozoa) male germ cells. The present study discovered not only a novel role of m6A in the biogenesis of coding circRNAs, but also a potential mechanism to ensure stable and long-lasting protein production in the absence of linear mRNAs, i.e., through production of circRNAs containing large ORFs and m6A-modified start codons in junction sequences.
Collapse
Affiliation(s)
- Chong Tang
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, 89557, USA.
- BGI Co. Ltd., Shenzhen, 518083, China.
| | - Yeming Xie
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, 89557, USA
| | - Tian Yu
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, 89557, USA
| | - Na Liu
- BGI Co. Ltd., Shenzhen, 518083, China
| | - Zhuqing Wang
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, 89557, USA
| | - Rebekah J Woolsey
- Nevada Proteomics Center, University of Nevada, Reno, Reno, NV, 89557, USA
| | - Yunge Tang
- Key Laboratory of Male Reproduction and Genetics, National Health and Family Planning Commission, No. 17 Meidong Road, Yuexiu District, Guangzhou, 510600, China
- Family Planning Research Institute of Guangdong Province, No. 17 Meidong Road, Yuexiu District, Guangzhou, 510600, China
| | - Xinzong Zhang
- Key Laboratory of Male Reproduction and Genetics, National Health and Family Planning Commission, No. 17 Meidong Road, Yuexiu District, Guangzhou, 510600, China
- Family Planning Research Institute of Guangdong Province, No. 17 Meidong Road, Yuexiu District, Guangzhou, 510600, China
| | - Weibing Qin
- Key Laboratory of Male Reproduction and Genetics, National Health and Family Planning Commission, No. 17 Meidong Road, Yuexiu District, Guangzhou, 510600, China
- Family Planning Research Institute of Guangdong Province, No. 17 Meidong Road, Yuexiu District, Guangzhou, 510600, China
| | - Ying Zhang
- Key Laboratory of Male Reproduction and Genetics, National Health and Family Planning Commission, No. 17 Meidong Road, Yuexiu District, Guangzhou, 510600, China
- Family Planning Research Institute of Guangdong Province, No. 17 Meidong Road, Yuexiu District, Guangzhou, 510600, China
| | - Ge Song
- Key Laboratory of Male Reproduction and Genetics, National Health and Family Planning Commission, No. 17 Meidong Road, Yuexiu District, Guangzhou, 510600, China
- Family Planning Research Institute of Guangdong Province, No. 17 Meidong Road, Yuexiu District, Guangzhou, 510600, China
| | - Weiwei Zheng
- Key Laboratory of Male Reproduction and Genetics, National Health and Family Planning Commission, No. 17 Meidong Road, Yuexiu District, Guangzhou, 510600, China
- Family Planning Research Institute of Guangdong Province, No. 17 Meidong Road, Yuexiu District, Guangzhou, 510600, China
| | - Juan Wang
- BGI Co. Ltd., Shenzhen, 518083, China
| | | | | | - Zhe Xie
- BGI Co. Ltd., Shenzhen, 518083, China
- Department of Cell Biology and Physiology, University of Copenhagen 13, 2100, Copenhagen, Denmark
| | - Rachel Klukovich
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, 89557, USA
| | - Huili Zheng
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, 89557, USA
| | - David R Quilici
- Nevada Proteomics Center, University of Nevada, Reno, Reno, NV, 89557, USA
| | - Wei Yan
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, 89557, USA.
- Department of Obstetrics and Gynecology, University of Nevada, Reno, School of Medicine, Reno, NV, 89557, USA.
- Department of Biology, University of Nevada, Reno, Reno, NV, 89557, USA.
| |
Collapse
|
470
|
Murphy MR, Kleiman FE. Connections between 3' end processing and DNA damage response: Ten years later. WILEY INTERDISCIPLINARY REVIEWS. RNA 2020; 11:e1571. [PMID: 31657151 PMCID: PMC7295566 DOI: 10.1002/wrna.1571] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/10/2019] [Accepted: 09/17/2019] [Indexed: 12/23/2022]
Abstract
Ten years ago we reviewed how the cellular DNA damage response (DDR) is controlled by changes in the functional and structural properties of nuclear proteins, resulting in a timely coordinated control of gene expression that allows DNA repair. Expression of genes that play a role in DDR is regulated not only at transcriptional level during mRNA biosynthesis but also by changing steady-state levels due to turnover of the transcripts. The 3' end processing machinery, which is important in the regulation of mRNA stability, is involved in these gene-specific responses to DNA damage. Here, we review the latest mechanistic connections described between 3' end processing and DDR, with a special emphasis on alternative polyadenylation, microRNA and RNA binding proteins-mediated deadenylation, and discuss the implications of deregulation of these steps in DDR and human disease. This article is categorized under: RNA Processing > 3' End Processing RNA-Based Catalysis > Miscellaneous RNA-Catalyzed Reactions RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Michael Robert Murphy
- Department of Chemistry, Hunter College and Biochemistry Program, The Graduate Center, City University of New York, New York, New York
| | - Frida Esther Kleiman
- Department of Chemistry, Hunter College and Biochemistry Program, The Graduate Center, City University of New York, New York, New York
| |
Collapse
|
471
|
Geng Y, Guan R, Hong W, Huang B, Liu P, Guo X, Hu S, Yu M, Hou B. Identification of m6A-related genes and m6A RNA methylation regulators in pancreatic cancer and their association with survival. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:387. [PMID: 32355831 PMCID: PMC7186697 DOI: 10.21037/atm.2020.03.98] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 02/24/2020] [Indexed: 01/06/2023]
Abstract
BACKGROUND N6-methyladenosine (m6A) modification holds an important position in tumorigenesis and metastasis because it can change gene expression and even function in multiple levels including RNA splicing, stability, translocation and translation. In present study, we aim to conducted comprehensive investigation on m6A RNA methylation regulators and m6A-related genes in pancreatic cancer and their association with survival time. METHODS Based on Univariate Cox regression analysis, protein-protein interaction analysis, LASSO Cox regression, a risk prognostic model, STRING, Spearman and consensus clustering analysis, data from The Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium (ICGC) database was used to analyze 15 m6A RNA methylation regulators that were widely reported and 1,393 m6A-related genes in m6Avar. RESULTS We found that 283 candidate m6A RNA methylation-related genes and 4 m6A RNA methylation regulatory factors, including RNA binding motif protein 15 (RBM15), methyltransferase like 14 (METTL14), fat mass and obesity-associated protein (FTO), and α-ketoglutarate-dependent dioxygenase AlkB homolog 5 (ALKBH5), differed significantly among different stages of the American Joint Committee on Cancer (AJCC) staging system. Protein-protein interaction analysis indicated epidermal growth factor receptor (EGFR), plectin-1 (PLEC), BLM RecQ like helicase (BLM), and polo like kinase 1 (PLK1) were closely related to other genes and could be considered as hub genes in the network. The results of LASSO Cox regression and the risk prognostic model indicated that AJCC stage, stage T and N, KRAS mutation status and x8q23.3 CNV fragment mutation differed significantly between the high-risk and the low-risk subgroups. The AUCs of 1 to 5 years after surgery were all more than 0.7 and increased year by year. Finally, we found KRAS mutation status and AJCC stage differed significantly among these groups after TCGA samples divided into subgroups with k=7. Moreover, we identified four m6A RNA methylation related genes expressed significantly differently among these seven subgroups, including collagen type VII alpha 1 chain (COL7A1), branched chain amino acid transaminase 1 (BCAT1), zinc finger protein 596 (ZNF596), and PLK1. CONCLUSIONS Our study systematically analyzed the m6A RNA methylation related genes, including expression, protein-protein interaction, potential function, and prognostic value and provides important clues to further research on the function of RNA m6A methylation and its related genes in pancreatic cancer.
Collapse
Affiliation(s)
- Yan Geng
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510280, China
- Shunde Hospital, Southern Medical University, The First People’s Hospital of Shunde, Lunjiao, Shunde District, Foshan 528308, China
| | - Renguo Guan
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510280, China
- Department of General Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Weifeng Hong
- Department of Medical Imaging, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China
| | - Bowen Huang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510280, China
- Department of General Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Peizhen Liu
- Department of Nursing, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Xiaohua Guo
- Department of General Surgery, Yingde People’s Hospital, Qingyuan 513000, China
| | - Shixiong Hu
- Department of General Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Min Yu
- Department of General Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Baohua Hou
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510280, China
- Department of General Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| |
Collapse
|
472
|
Multiple m 6A RNA methylation modulators promote the malignant progression of hepatocellular carcinoma and affect its clinical prognosis. BMC Cancer 2020; 20:165. [PMID: 32111180 PMCID: PMC7047390 DOI: 10.1186/s12885-020-6638-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 02/17/2020] [Indexed: 12/13/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) is the second most common cause of cancer-related death in the world. N6-methyladenosine (m6A) RNA methylation is dynamically regulated by m6A RNA methylation modulators (“writer,” “eraser,” and “reader” proteins), which are associated with cancer occurrence and development. The purpose of this study was to explore the relationships between m6A RNA methylation modulators and HCC. Methods First, using data from The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) databases, we compared the expression levels of 13 major m6A RNA methylation modulators between HCC and normal tissues. Second, we applied consensus clustering to the expression data on the m6A RNA methylation modulators to divide the HCC tissues into two subgroups (clusters 1 and 2), and we compared the clusters in terms of overall survival (OS), World Health Organization (WHO) stage, and pathological grade. Third, using least absolute shrinkage and selection operator (LASSO) regression, we constructed a risk signature involving the m6A RNA methylation modulators that affected OS in TCGA and ICGC analyses. Results We found that the expression levels of 12 major m6A RNA methylation modulators were significantly different between HCC and normal tissues. After dividing the HCC tissues into clusters 1 and 2, we found that cluster 2 had poorer OS, higher WHO stage, and higher pathological grade. Four m6A RNA methylation modulators (YTHDF1, YTHDF2, METTL3, and KIAA1429) affecting OS in the TCGA and ICGC analyses were selected to construct a risk signature, which was significantly associated with WHO stage and was also an independent prognostic marker of OS. Conclusions In summary, m6A RNA methylation modulators are key participants in the malignant progression of HCC and have potential value in prognostication and treatment decisions.
Collapse
|
473
|
Li X, Li N, Huang L, Xu S, Zheng X, Hamsath A, Zhang M, Dai L, Zhang H, Wong JJL, Xian M, Yang CT, Liu J. Is Hydrogen Sulfide a Concern During Treatment of Lung Adenocarcinoma With Ammonium Tetrathiomolybdate? Front Oncol 2020; 10:234. [PMID: 32195181 PMCID: PMC7061217 DOI: 10.3389/fonc.2020.00234] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 02/11/2020] [Indexed: 12/15/2022] Open
Abstract
Ammonium tetrathiomolybdate (ATTM) has been used in breast cancer therapy for copper chelation, as elevated copper promotes tumor growth. ATTM is also an identified H2S donor and endogenous H2S facilitates VitB12-induced S-adenosylmethionine (SAM) generation, which have been confirmed in m6A methylation and lung cancer development. The m6A modification was recently shown to participate in lung adenocarcinoma (LUAD) progression. These conflicting analyses of ATTM's anticancer vs. H2S's carcinogenesis suggest that H2S should not be ignored during LUAD's treatment with ATTM. This study was aimed to explore ATTM's effects on LUAD cells and mechanisms associated with H2S and m6A. It was found that treatment with ATTM inhibited cell growth at high concentrations, while enhanced cell growth at low concentrations in three LUAD cell lines (A549, HCC827, and PC9). However, another copper chelator triethylenetetramine, without H2S releasing activity, was not found to induce cell growth. Low ATTM concentrations also elevated m6A content in A549 cells. Analysis of differentially expressed genes in TCGA cohort indicated that m6A writer METTL3 and reader YTHDF1 were upregulated while eraser FTO was downregulated in LUAD tissues, consistent with the findings of protein expression in patient tissues. ATTM treatment of A549 cells significantly increased METTL3/14 and YTHDF1 while decreased FTO expression. Furthermore, inhibition of m6A with shMETTL3 RNA significantly attenuated eukaryotic translation initiation factor (eIF) expressions in A549 cells. Correlation analysis indicated that small nuclear ribonucleic protein PRPF6 was positively expressed with YTHDF1 in LUAD tissues. Knockdown of YTHDF1 partially blocked both basal and ATTM-induced PRPF6 expression, as well as A549 cell growth. Lastly, ATTM treatment not only raised intracellular H2S content but also upregulated H2S-producing enzymes. Exogenous H2S application mimicked ATTM's aforementioned effects, but the effects could be weakened by zinc-induced H2S scavenging. Collectively, H2S impedes ATTM-induced anticancer effects through YTHDF1-dependent PRPF6 m6A methylation in lung adenocarcinoma cells.
Collapse
Affiliation(s)
- Xiang Li
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China.,Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Na Li
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China.,Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Li Huang
- Department of Pancreatobiliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shi Xu
- Department of Chemistry, Washington State University, Pullman, WA, United States
| | - Xue Zheng
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China.,Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Akil Hamsath
- Department of Chemistry, Washington State University, Pullman, WA, United States
| | - Mei Zhang
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China.,Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Lijun Dai
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China.,Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Hui Zhang
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China.,Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Justin Jong-Leong Wong
- Epigenetics and RNA Biology Program Centenary Institute, The University of Sydney, Camperdown, NSW, Australia
| | - Ming Xian
- Department of Chemistry, Washington State University, Pullman, WA, United States
| | - Chun-Tao Yang
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China.,Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Jinbao Liu
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China.,Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
474
|
Sun X, Dai Y, Tan G, Liu Y, Li N. Integration Analysis of m 6A-SNPs and eQTLs Associated With Sepsis Reveals Platelet Degranulation and Staphylococcus aureus Infection are Mediated by m 6A mRNA Methylation. Front Genet 2020; 11:7. [PMID: 32174955 PMCID: PMC7054457 DOI: 10.3389/fgene.2020.00007] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 01/06/2020] [Indexed: 12/22/2022] Open
Abstract
Sepsis is a major threat with high mortality rate for critically ill patients. Response to pathogen infection by the host immune system is a key biological process involved in the onset and development of sepsis. Heterogeneous host genome variation, especially single nucleotide polymorphisms (SNPs), has long been suggested to contribute to differences in disease progression. However, the function of SNPs located in non-coding regions remains to be elucidated. Recently, m6A mRNA modification levels were revealed to differ at SNPs. As m6A is a crucial regulator of gene expression, these SNPs might control genes by changing the m6A level on mRNA. To investigate the potential role of m6A SNPs in sepsis, we integrated m6A-SNP and expression quantitative trait loci (eQTLs) data. Analysis revealed 15,720 m6A-cis-eQTLs and 381 m6A-trans-eQTLs associated with sepsis. We identified 1321 genes as locations of m6A-cis-eQTLs. These were enriched in platelet degranulation and Staphylococcus aureus infection pathways, which are vital for the pathophysiological process of sepsis. We conclude that m6A modification of mRNA plays a very important role in sepsis, with m6A-cis-eQTLs potentially having the most effect on individual variation in sepsis progression.
Collapse
Affiliation(s)
- Xuri Sun
- Department of Critical Care Medicine, The Second Affiliated Hospital, Fujian Medical University, Quanzhou, China.,Respiratory Medicine Center of Fujian Province, Quanzhou, China
| | - Yishuang Dai
- Department of Outpatient operating room, The Second Affiliated Hospital, Fujian Medical University, Quanzhou, China
| | - Guoliang Tan
- Department of Critical Care Medicine, The Second Affiliated Hospital, Fujian Medical University, Quanzhou, China.,Respiratory Medicine Center of Fujian Province, Quanzhou, China
| | - Yuqi Liu
- Department of Critical Care Medicine, The Second Affiliated Hospital, Fujian Medical University, Quanzhou, China.,Respiratory Medicine Center of Fujian Province, Quanzhou, China
| | - Neng Li
- Department of Pathogenic Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| |
Collapse
|
475
|
Kong F, Liu X, Zhou Y, Hou X, He J, Li Q, Miao X, Yang L. Downregulation of METTL14 increases apoptosis and autophagy induced by cisplatin in pancreatic cancer cells. Int J Biochem Cell Biol 2020; 122:105731. [PMID: 32097728 DOI: 10.1016/j.biocel.2020.105731] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 01/19/2020] [Accepted: 02/21/2020] [Indexed: 10/24/2022]
Abstract
Pancreatic cancer is a leading cause of cancer-related death worldwide. Cisplatin is an essential drug treating patients with BRCA1/2 or PALB2 mutations. Whether other genetic determinants of cisplatin sensitivity exist and their underlying mechanisms remain unclear. Immunohistochemistry was used to determine METTL14 expression in pancreatic cancer tissues and non-tumoural tissues. Cell proliferation was detected with CCK-8 assays. Apoptosis was analysed via Western blotting and flow cytometry, and autophagy was analysed via Western blotting and immunofluorescence. In this work, we found higher METTL14 expression in pancreatic cancer tissues than in non-tumoural tissues, and METTL14 expression was associated with pathological characteristics. Downregulation of METTL14 with siRNA sensitized pancreatic cancer cells to cisplatin. Specifically, apoptosis and autophagy were significantly enhanced in METT14 knockdown cells compared with control cells after treatment with cisplatin. Mechanistically, the AMPKα, ERK1/2 and mTOR signalling pathways were disturbed by downregulation of METTL14. We further found that METTL14 knockdown-mediated autophagy was dependent on mTOR signalling and that mTOR activation decreased autophagy to the level observed in the control group. Collectively, our results indicate that METTL14 is upregulated in pancreatic cancer, downregulation of METTL14 sensitizes pancreatic cancer cells to cisplatin by enhancing apoptosis, and autophagy is improved via an mTOR signalling-dependent pathway.
Collapse
Affiliation(s)
- Fanhua Kong
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xi Liu
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yan Zhou
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xuyang Hou
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jun He
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qinglong Li
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiongying Miao
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Leping Yang
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
476
|
Wang K, Jiang L, Zhang Y, Chen C. Progression of Thyroid Carcinoma Is Promoted by the m6A Methyltransferase METTL3 Through Regulating m 6A Methylation on TCF1. Onco Targets Ther 2020; 13:1605-1612. [PMID: 32158230 PMCID: PMC7044742 DOI: 10.2147/ott.s234751] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 02/04/2020] [Indexed: 12/17/2022] Open
Abstract
Objective This study aims to uncover the progression of thyroid carcinoma influenced by the m6A methyltransferase METTL3 through regulating m6A methylation on TCF1 mRNA and the activated Wnt pathway. Methods Thyroid carcinoma tissues and paracancerous ones were collected for detecting levels of METTL3 and TCF1. Potential correlation between levels of METTL3 and TCF1 was analyzed by Pearson analysis. Survival of thyroid carcinoma patients influenced by METTL3 level was assessed by Kaplan–Meier method. Regulatory effect of METTL3 on migratory ability in TPC-1 cells was examined by wound healing assay. The interaction between METTL3 with TCF1 and IGF2BP2 was verified by RNA-Binding Protein Immunoprecipitation (RIP) assay. Meanwhile, the activity of the Wnt pathway was reflected by TOP/FOP-Flash. At last, rescue experiments were conducted to clarify the involvement of TCF1 in phenotype changes of thyroid carcinoma cells that were regulated by METTL3. Results METTL3 and TCF1 were upregulated in thyroid carcinoma. Similarly, METTL3 was highly expressed in thyroid carcinoma cells as well. Kaplan–Meier method uncovered poor prognosis in thyroid carcinoma patients expressing a high level of METTL3. Silence of METTL3 inhibited migratory ability and Wnt activity in TPC-1 cells. RIP assay confirmed the interaction between TCF1 and METTL3 or IGF2BP2. Moreover, METTL3 positively regulated the enrichment abundance of TCF1 in anti-IGF2BP2. Rescue experiments demonstrated that TCF1 was responsible for METTL3-regulated thyroid carcinoma progression via the m6A methylation. Conclusion Upregulated m6A methyltransferase METTL3 promotes the progression of thyroid carcinoma through m6A methylation on TCF1.
Collapse
Affiliation(s)
- Kejin Wang
- Department of Head and Neck Surgery, Cancer Hospital of University of Chinese Academy of Sciences, Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Hangzhou, People's Republic of China
| | - Lin Jiang
- Department of Head and Neck Surgery, Cancer Hospital of University of Chinese Academy of Sciences, Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Hangzhou, People's Republic of China
| | - Yan Zhang
- Department of Head and Neck Surgery, Cancer Hospital of University of Chinese Academy of Sciences, Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Hangzhou, People's Republic of China
| | - Chao Chen
- Department of Head and Neck Surgery, Cancer Hospital of University of Chinese Academy of Sciences, Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Hangzhou, People's Republic of China
| |
Collapse
|
477
|
Hypoxia Promotes Vascular Smooth Muscle Cell (VSMC) Differentiation of Adipose-Derived Stem Cell (ADSC) by Regulating Mettl3 and Paracrine Factors. Stem Cells Int 2020; 2020:2830565. [PMID: 32148516 PMCID: PMC7053496 DOI: 10.1155/2020/2830565] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/19/2019] [Accepted: 12/31/2019] [Indexed: 12/18/2022] Open
Abstract
Adipose-derived stem cell (ADSC) is an alternative and less invasive source of mesenchymal stem cells which can be used to develop biological treatment strategies for tissue regeneration, and their therapeutic applications hinge on an understanding of their physiological characteristics. N6-Methyladenosine (m6A) is the most common chemical modification of mRNAs and has recently been revealed to play important roles in cell lineage differentiation and development. However, the role of m6A modification in the vascular smooth muscle cell (VSMC) differentiation of ADSCs remains unclear. Herein, we investigated the expression of N6-adenosine methyltransferases (Mettl3) and demethylases (Fto and Alkbh5) and found that Mettl3 was upregulated in ADSCs undergoing vascular smooth muscle differentiation induction. Moreover, silence of Mettle3 reduced the expression level of VSMC-specific markers, including α-SMA, SM22α, calponin, and SM-MHC. Meanwhile, Mettl3 knockdown also decreased the expression of paracrine factors, including VEGF, HGF, TGF-β, GM-CSF, bFGF, and SDF-1. In addition, our results suggested that hypoxia stress promotes the ADSC differentiate into VMSCs and regulates the secretion of VEGF, HGF, TGF-β, GM-CSF, bFGF, and SDF-1 by mediating Mettl3 gene expression. These observations might contribute to novel progress in understanding the role of epitranscriptomic regulation in the VSMC differentiation of ADSCs and provide a promising perspective for new therapeutic strategies for tissue regeneration.
Collapse
|
478
|
Coker H, Wei G, Moindrot B, Mohammed S, Nesterova T, Brockdorff N. The role of the Xist 5' m6A region and RBM15 in X chromosome inactivation. Wellcome Open Res 2020; 5:31. [PMID: 32258426 PMCID: PMC7097882 DOI: 10.12688/wellcomeopenres.15711.1] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2020] [Indexed: 12/14/2022] Open
Abstract
Background: X chromosome inactivation in mammals is regulated by the non-coding (nc) RNA, Xist, which represses the chromosome from which it is transcribed. High levels of the N6-methyladenosine (m6A) RNA modification occur within Xist exon I, close to the 5' end of the transcript, and also further 3', in Xist exon VII. The m6A modification is catalysed by the METTL3/14 complex that is directed to specific targets, including Xist, by the RNA binding protein RBM15/15B. m6A modification of Xist RNA has been reported to be important for Xist-mediated gene silencing. Methods: We use CRISPR/Cas9 mediated mutagenesis to delete sequences around the 5' m6A region in interspecific XX mouse embryonic stem cells (mESCs). Following induction of Xist RNA expression, we assay chromosome silencing using allelic RNA-seq and Xist m6A distribution using m6A-seq. Additionally, we use Xist RNA FISH to analyse the effect of deleting the 5' m6A region on the function of the endogenous Xist promoter. We purify epitope tagged RBM15 from mESCs, and then apply MS/MS analysis to define the RBM15 interactome. Results: We show that a deletion encompassing the entire Xist 5' m6A region results in a modest reduction in Xist-mediated silencing, and that the 5' m6A region overlaps essential DNA elements required for activation of the endogenous Xist promoter. Deletion of the Xist A-repeat, to which RBM15 binds, entirely abolishes deposition of m6A in the Xist 5' m6A region without affecting the modification in exon VII. We show that in mESCs, RBM15 interacts with the m6A complex, the SETD1B histone modifying complex, and several proteins linked to RNA metabolism. Conclusions: Our findings support that RBM15 binding to the Xist A-repeat recruits the m6A complex to the 5' Xist m6A region and that this region plays a role in Xist-mediated chromosome silencing.
Collapse
Affiliation(s)
- Heather Coker
- Developmental Epigenetics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Guifeng Wei
- Developmental Epigenetics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Benoit Moindrot
- Developmental Epigenetics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, 91198, France
| | - Shabaz Mohammed
- Proteomics Technology Development and Application, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Tatyana Nesterova
- Developmental Epigenetics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Neil Brockdorff
- Developmental Epigenetics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| |
Collapse
|
479
|
Imam H, Kim GW, Mir SA, Khan M, Siddiqui A. Interferon-stimulated gene 20 (ISG20) selectively degrades N6-methyladenosine modified Hepatitis B Virus transcripts. PLoS Pathog 2020; 16:e1008338. [PMID: 32059034 PMCID: PMC7046284 DOI: 10.1371/journal.ppat.1008338] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 02/27/2020] [Accepted: 01/20/2020] [Indexed: 12/24/2022] Open
Abstract
Interferon (IFN) stimulates a whole repertoire of cellular genes, collectively referred to as ISGs (Interferon-stimulated genes). ISG20, a 3´-5´ exonuclease enzyme, has been previously shown to bind and degrade hepatitis B Virus (HBV) transcripts. Here, we show that the N6-methyladenosine (m6A)-modified HBV transcripts are selectively recognized and processed for degradation by ISG20. Moreover, this effect of ISG20 is critically regulated by m6A reader protein, YTHDF2 (YTH-domain family 2). Previously, we identified a unique m6A site within HBV transcripts and confirmed that methylation at nucleotide A1907 regulates HBV lifecycle. In this report, we now show that the methylation at A1907 is a critical regulator of IFN-α mediated decay of HBV RNA. We observed that the HBV RNAs become less sensitive to ISG20 mediated degradation when methyltransferase enzymes or m6A reader protein YTHDF2 are silenced in HBV expressing cells. By using an enzymatically inactive form ISG20D94G, we further demonstrated that ISG20 forms a complex with m6A modified HBV RNA and YTHDF2 protein. Due to terminal redundancy, HBV genomic nucleotide A1907 position is acquired twice by pregenomic RNA (pgRNA) during transcription and therefore the sites of methylation are encoded within 5´ and 3´ epsilon stem loops. We generated HBV mutants that lack m6A site at either one (5´ or 3´) or both the termini (5´& 3´). Using these mutants, we demonstrated that m6A modified HBV RNAs are subjected to ISG20-mediated decay and propose sequence of events, in which ISG20 binds with YTHDF2 and recognizes m6A-modified HBV transcripts to carry out the ribonuclease activity. This is the first study, which identifies a hitherto unknown role of m6A modification of RNA in IFN-α induced viral RNA degradation and proposes a new role of YTHDF2 protein as a cofactor required for IFN-α mediated viral RNA degradation. Hepatitis B Virus (HBV) is a DNA virus but replicates through a transitional pregenomic RNA (pgRNA). Interferon stimulated antiviral RNase, ISG20 selectively binds to the lower epsilon stem loop of HBV RNA and causes their degradation. Surprisingly this ISG20 binding site is chemically modified by N6-methyladenosine addition to A1907 residue, which resides in the lower region of the epsilon stem loop. This single m6A site occurs twice due to terminal redundancy of sequences in the pgRNA. We demonstrated herein that IFN-α-induced ISG20 can selectively degrade m6A modified HBV RNA. Using a combined strategy of silencing cellular methyltransferases, m6A binding protein YTHDF2 and the m6A sites mutants, we show that HBV transcripts are resistant to either IFN-α treatment or ectopically introduced ISG20 mediated degradation. YTHDF2 is an m6A binding protein which makes the HBV RNAs less stable. YTHDF2 protein forms a complex with IFN-α stimulated ISG20 and executes the nuclease digestion of the recruited m6A modified transcripts. Absence of cellular m6A machinery (methyltransferases or m6A reader proteins) makes the HBV RNA unresponsive to ISG20 mediated decay. This study provides molecular explanation of IFN-α mediated degradation of m6A modified HBV RNAs.
Collapse
Affiliation(s)
- Hasan Imam
- Division of Infectious Diseases, Department of Medicine, University of California, San Diego, La Jolla, California, United States of America
| | - Geon-Woo Kim
- Division of Infectious Diseases, Department of Medicine, University of California, San Diego, La Jolla, California, United States of America
| | - Saiful Anam Mir
- Division of Infectious Diseases, Department of Medicine, University of California, San Diego, La Jolla, California, United States of America
| | - Mohsin Khan
- Division of Infectious Diseases, Department of Medicine, University of California, San Diego, La Jolla, California, United States of America
- * E-mail: (MK); (AS)
| | - Aleem Siddiqui
- Division of Infectious Diseases, Department of Medicine, University of California, San Diego, La Jolla, California, United States of America
- * E-mail: (MK); (AS)
| |
Collapse
|
480
|
Uddin MB, Wang Z, Yang C. Dysregulations of Functional RNA Modifications in Cancer, Cancer Stemness and Cancer Therapeutics. Theranostics 2020; 10:3164-3189. [PMID: 32194861 PMCID: PMC7053189 DOI: 10.7150/thno.41687] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 12/19/2019] [Indexed: 12/11/2022] Open
Abstract
More than a hundred chemical modifications in coding and non-coding RNAs have been identified so far. Many of the RNA modifications are dynamic and reversible, playing critical roles in gene regulation at the posttranscriptional level. The abundance and functions of RNA modifications are controlled mainly by the modification regulatory proteins: writers, erasers and readers. Modified RNA bases and their regulators form intricate networks which are associated with a vast array of diverse biological functions. RNA modifications are not only essential for maintaining the stability and structural integrity of the RNA molecules themselves, they are also associated with the functional outcomes and phenotypic attributes of cells. In addition to their normal biological roles, many of the RNA modifications also play important roles in various diseases particularly in cancer as evidenced that the modified RNA transcripts and their regulatory proteins are aberrantly expressed in many cancer types. This review will first summarize the most commonly reported RNA modifications and their regulations, followed by discussing recent studies on the roles of RNA modifications in cancer, cancer stemness as wells as functional RNA modification machinery as potential cancer therapeutic targets. It is concluded that, while advanced technologies have uncovered the contributions of many of RNA modifications in cancer, the underlying mechanisms are still poorly understood. Moreover, whether and how environmental pollutants, important cancer etiological factors, trigger abnormal RNA modifications and their roles in environmental carcinogenesis remain largely unknown. Further studies are needed to elucidate the mechanism of how RNA modifications promote cell malignant transformation and generation of cancer stem cells, which will lead to the development of new strategies for cancer prevention and treatment.
Collapse
Affiliation(s)
| | | | - Chengfeng Yang
- Department of Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY 40536-0305, USA
| |
Collapse
|
481
|
Wang J, Wang L. Deep analysis of RNA N 6-adenosine methylation (m 6A) patterns in human cells. NAR Genom Bioinform 2020; 2:lqaa007. [PMID: 33575554 PMCID: PMC7671394 DOI: 10.1093/nargab/lqaa007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 01/22/2020] [Accepted: 02/04/2020] [Indexed: 02/06/2023] Open
Abstract
N6-adenosine methylation (m6A) is the most abundant internal RNA modification in eukaryotes, and affects RNA metabolism and non-coding RNA function. Previous studies suggest that m6A modifications in mammals occur on the consensus sequence DRACH (D = A/G/U, R = A/G, H = A/C/U). However, only about 10% of such adenosines can be m6A-methylated, and the underlying sequence determinants are still unclear. Notably, the regulation of m6A modifications can be cell-type-specific. In this study, we have developed a deep learning model, called TDm6A, to predict RNA m6A modifications in human cells. For cell types with limited availability of m6A data, transfer learning may be used to enhance TDm6A model performance. We show that TDm6A can learn common and cell-type-specific motifs, some of which are associated with RNA-binding proteins previously reported to be m6A readers or anti-readers. In addition, we have used TDm6A to predict m6A sites on human long non-coding RNAs (lncRNAs) for selection of candidates with high levels of m6A modifications. The results provide new insights into m6A modifications on human protein-coding and non-coding transcripts.
Collapse
Affiliation(s)
- Jun Wang
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29631, USA
| | - Liangjiang Wang
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29631, USA
| |
Collapse
|
482
|
Luo G, Xu W, Zhao Y, Jin S, Wang S, Liu Q, Chen X, Wang J, Dong F, Hu DN, Reinach PS, Yan D. RNA m 6 A methylation regulates uveal melanoma cell proliferation, migration, and invasion by targeting c-Met. J Cell Physiol 2020; 235:7107-7119. [PMID: 32017066 DOI: 10.1002/jcp.29608] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 01/13/2020] [Indexed: 12/27/2022]
Abstract
N6 -methyladenosine (m6 A) is a novel epitranscriptomic marker that contributes to regulating diverse biological processes through controlling messenger RNA metabolism. However, it is unknown if m6 A RNA methylation affects uveal melanoma (UM) development. To address this question, we probed its function and molecular mechanism in UM. Initially, we demonstrated that global RNA m6 A methylation levels were dramatically elevated in both UM cell lines and clinical specimens. Meanwhile, we found that METTL3, a main m6 A regulatory enzyme, was significantly increased in UM cells and specimens. Subsequently, cycloleucine (Cyc) or METTL3 targeted small interfering RNA was used to block m6 A methylation in UM cells. We found that Cyc or silencing METTL3 significantly suppressed UM cell proliferation and colony formation through cell cycle G1 arrest, as well as migration and invasion by functional analysis. On the other hand, overexpression of METTL3 had the opposite effects. Furthermore, bioinformatics and methylated RNA immunoprecipitation-quantitative polymerase chain reaction identified c-Met as a direct target of m6 A methylation in UM cells. In addition, western blot analysis showed that Cyc or knockdown of METTL3 downregulated c-Met, p-Akt, and cell cycle-related protein levels in UM cells. Taken together, our results demonstrate that METTL3-mediated m6 A RNA methylation modulates UM cell proliferation, migration, and invasion by targeting c-Met. Such a modification acts as a critical oncogenic regulator in UM development.
Collapse
Affiliation(s)
- Guangying Luo
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, Zhejiang, China
| | - Weiwei Xu
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, Zhejiang, China
| | - Yunping Zhao
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, Zhejiang, China
| | - Shanshan Jin
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, Zhejiang, China
| | - Siqi Wang
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, Zhejiang, China
| | - Qi Liu
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, Zhejiang, China
| | - Xiaoyan Chen
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, Zhejiang, China
| | - Jiao Wang
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, Zhejiang, China
| | - Feng Dong
- Department of Ophthalmology, The First Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Dan-Ning Hu
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, Zhejiang, China.,Tissue Culture Center, The New York Eye and Ear Infirmary, New York Medical College, New York, New York
| | - Peter S Reinach
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, Zhejiang, China
| | - Dongsheng Yan
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou, Zhejiang, China
| |
Collapse
|
483
|
DNMT3A mutants provide proliferating advantage with augmentation of self-renewal activity in the pathogenesis of AML in KMT2A-PTD-positive leukemic cells. Oncogenesis 2020; 9:7. [PMID: 32015320 PMCID: PMC6997180 DOI: 10.1038/s41389-020-0191-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 12/11/2019] [Accepted: 01/03/2020] [Indexed: 12/12/2022] Open
Abstract
Acute myeloid leukemia (AML) with partial tandem duplication of histone-lysine N-methyltransferase 2A (KMT2A-PTD) is a subtype of AML and is associated with adverse survival, yet the molecular pathogenesis of KMT2A-PTD is not fully understood. DNA methyltransferase 3A (DNMT3A) is mutated in various myeloid neoplasms including AML, especially at the Arg882. Recently, it has been found that DNMT3A mutations frequently coexisted with KMT2A-PTD and are associated with inferior outcomes. We aimed to understand the biological role of DNMT3A mutation in KMT2A-PTD-positive cells. Herein, we found that overexpression of DNMT3A mutants (MT) in KMT2A-PTD-positive EOL-1 cells augmented cell proliferation and clonogenicity. Serial colony replating assays indicated that DNMT3A-MT increased the self-renewal ability of Kmt2a-PTD-expressing mouse bone marrow cells with immature morphology. At 10 months post bone marrow transplantation, mice with the combined Kmt2a-PTD and DNMT3A-MT showed hepatosplenomegaly and leukocytosis with a shorter latency compared to control and DNMT3A-wild-type. Gene expression microarray analyses of bone marrow samples from human AML with KMT2A-PTD/DNMT3A-MT showed a stem cell signature and myeloid hematopoietic lineage with dysregulation of HOXB gene expression. In addition, human bone marrow AML cells carrying KMT2A-PTD/DNMT3A-MT showed abnormal growth and augmented self-renewal activity in primary cell culture. The present study provides information underlying the pathogenic role of DNMT3A-MT with KMT2A-PTD in proliferating advantage with augmentation of self-renewal activity in human leukemia, which may help to better understand the disease and to design better therapy for AML patients with these mutations.
Collapse
|
484
|
Gu X, Zhang Y, Li D, Cai H, Cai L, Xu Q. N6-methyladenosine demethylase FTO promotes M1 and M2 macrophage activation. Cell Signal 2020; 69:109553. [PMID: 32018056 DOI: 10.1016/j.cellsig.2020.109553] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 01/31/2020] [Accepted: 01/31/2020] [Indexed: 11/29/2022]
Abstract
Macrophage polarization is the driving force of various inflammatory diseases, especially those involved in M1/M2 imbalance. N6-methyladenosine (m6A) is the most prevalent internal mRNA modification in eukaryotes that affects multiple biological processes, including those involved developmental arrest and immune response. However, the role of m6A in macrophage polarization remains unclear. This study found that FTO silencing significantly suppressed both M1 and M2 polarization. FTO depletion decreased the phosphorylation levels of IKKα/β, IκBα and p65 in the NF-κB signaling pathway. The expression of STAT1 was downregulated in M1-polarized macrophages while the expression of STAT6 and PPAR-γ decreased in M2 polarization after FTO knockdown. The actinomycin D experiments showed that FTO knockdown accelerated mRNA decay of STAT1 and PPAR-γ. Furthermore, the stability and expression of STAT1 and PPAR-γ mRNAs increased when the m6A reader YTHDF2 was silenced. In conclusion, our results suggest that FTO knockdown inhibits the NF-κB signaling pathway and reduces the mRNA stability of STAT1 and PPAR-γ via YTHDF2 involvement, thereby impeding macrophage activation. These findings indicated a previously unrecognized link between FTO and macrophage polarization and might open new avenues for research into the molecular mechanisms of macrophage polarization-related diseases.
Collapse
Affiliation(s)
- Xiaofei Gu
- Guanghua School of Stomatology & Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, China.
| | - Yiwen Zhang
- Guanghua School of Stomatology & Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Di Li
- Guanghua School of Stomatology & Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, China.
| | - Hongshi Cai
- Guanghua School of Stomatology & Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, China.
| | - Luhui Cai
- Guanghua School of Stomatology & Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, China.
| | - Qiong Xu
- Guanghua School of Stomatology & Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, China.
| |
Collapse
|
485
|
Total Panax notoginseng saponin inhibits vascular smooth muscle cell proliferation and migration and intimal hyperplasia by regulating WTAP/p16 signals via m 6A modulation. Biomed Pharmacother 2020; 124:109935. [PMID: 31986407 DOI: 10.1016/j.biopha.2020.109935] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 12/14/2019] [Accepted: 12/23/2019] [Indexed: 12/11/2022] Open
Abstract
Intimal hyperplasia, the key event of arterial restenosis, is a result of vascular smooth muscle cell (VSMC) proliferation and migration. Previous studies have demonstrated that total Panax notoginseng saponin (TPNS) represses intimal hyperplasia and inhibits the proliferation of VSMCs following balloon injury. However, the underlying roles of TPNS in intimal hyperplasia remain unclear. In this study, we first found that TPNS inhibited the intimal hyperplasia and reversed the reduced m6A quantity in balloon catheter-injured rat carotid artery. Then, we measured the expression profiles of m6A "writers" (i.e., methyltransferase like 3 (METTL3), methyltransferase like 14 (METTL14), and WT1 associated protein (WTAP)) and "erasers" (i.e., FTO alpha-ketoglutarate dependent dioxygenase (FTO) and alkB homolog 5, RNA demethylase (ALKBH5)) in vivo and found that TPNS up-regulated the reduced the WTAP expression in balloon catheter-injured rat carotid artery. Furthermore, we illustrated that TPNS inhibited the viability, proliferation, and migration potential of VSMCs via promotion of WTAP expression and suppression of WTAP restored the TPNS-induced inhibition of cell viability, proliferation and migration potential of VSMCs. In addition, we found that p16 was up-regulated in VSMCs treated with TPNS and repression of p16 restored the TPNS-induced inhibition of cell viability, proliferation and migration potential of VSMCs. Finally, we elucidated that, mechanistically, WTAP exerted its role by regulating p16 via m6A modification. Collectively, our results reveal the WTAP-p16 signaling axis and highlight the critical roles of m6A modification in intimal hyperplasia. Thus, this study provided a potential biomarker for the assessment of intimal hyperplasia risk following angioplasty as well as a novel therapeutic target for this disease.
Collapse
|
486
|
Nance DJ, Satterwhite ER, Bhaskar B, Misra S, Carraway KR, Mansfield KD. Characterization of METTL16 as a cytoplasmic RNA binding protein. PLoS One 2020; 15:e0227647. [PMID: 31940410 PMCID: PMC6961929 DOI: 10.1371/journal.pone.0227647] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 12/23/2019] [Indexed: 12/17/2022] Open
Abstract
mRNA modification by N6-methyladenosine (m6A) is involved in many post-transcriptional regulation processes including mRNA stability, splicing and promotion of translation. Accordingly, the recently identified mRNA methylation complex containing METTL3, METTL14, and WTAP has been the subject of intense study. However, METTL16 (METT10D) has also been identified as an RNA m6A methyltransferase that can methylate both coding and noncoding RNAs, but its biological role remains unclear. While global studies have identified many potential RNA targets of METTL16, only a handful, including the long noncoding RNA MALAT1, the snRNA U6, as well as the mRNA MAT2A have been verified and/or studied to any great extent. In this study we identified/verified METTL16 targets by immunoprecipitation of both endogenous as well as exogenous FLAG-tagged protein. Interestingly, exogenously overexpressed METTL16 differed from the endogenous protein in its relative affinity for RNA targets which prompted us to investigate METTL16's localization within the cell. Surprisingly, biochemical fractionation revealed that a majority of METTL16 protein resides in the cytoplasm of a number of cells. Furthermore, siRNA knockdown of METTL16 resulted in expression changes of a few mRNA targets suggesting that METTL16 may play a role in regulating gene expression. Thus, while METTL16 has been reported to be a nuclear protein, our findings suggest that METTL16 is also a cytoplasmic methyltransferase that may alter its RNA binding preferences depending on its cellular localization. Future studies will seek to confirm differences between cytoplasmic and nuclear RNA targets in addition to exploring the physiological role of METTL16 through long-term knockdown.
Collapse
Affiliation(s)
- Daniel J. Nance
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, United States of America
| | - Emily R. Satterwhite
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, United States of America
| | - Brinda Bhaskar
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, United States of America
| | - Sway Misra
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, United States of America
| | - Kristen R. Carraway
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, United States of America
| | - Kyle D. Mansfield
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
487
|
Sui X, Hu Y, Ren C, Cao Q, Zhou S, Cao Y, Li M, Shu W, Huo R. METTL3-mediated m 6A is required for murine oocyte maturation and maternal-to-zygotic transition. Cell Cycle 2020; 19:391-404. [PMID: 31916488 DOI: 10.1080/15384101.2019.1711324] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
N6-methyladenosine (m6A) is the most prevalent epigenetic modification of messenger RNA (mRNA) in higher eukaryotes; this modification is mainly catalyzed by a methyltransferase complex including methyltransferase-like 3 (METTL3) as a key factor. Although m6A modification has been proven to play an essential role in diverse biological processes, our knowledge of Mettl3 is still limited because Mettl3 mutations are lethal to embryos in both mammals and plants. In this study, we knocked down Mettl3 by microinjection of its specific short interfering RNAs (siRNAs) or morpholino into fully grown germinal vesicle (GV) oocytes. As a result, we demonstrated that knocking down Mettl3 in female germ cells severely inhibited oocyte maturation by decreasing mRNA translation efficiency and led to defects in the maternal-to-zygotic transition, probably due to its interference in disrupting mRNA degradation. The discovery from this study suggests that the reversible m6A modification has vital functions in mammalian oocyte maturation and pre-implantation embryonic development processes.
Collapse
Affiliation(s)
- Xuesong Sui
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Suzhou Municipal Hospital, Nanjing Medical University, Nanjing, China
| | - Yue Hu
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Suzhou Municipal Hospital, Nanjing Medical University, Nanjing, China
| | - Chao Ren
- Department of Biotechnology, Beijing Institude of Radiation Medicine, Beijing, China
| | - Qiqi Cao
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Suzhou Municipal Hospital, Nanjing Medical University, Nanjing, China
| | - Shuai Zhou
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Suzhou Municipal Hospital, Nanjing Medical University, Nanjing, China
| | - Yumeng Cao
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Suzhou Municipal Hospital, Nanjing Medical University, Nanjing, China
| | - Mingrui Li
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Suzhou Municipal Hospital, Nanjing Medical University, Nanjing, China
| | - Wenjie Shu
- Department of Biotechnology, Beijing Institude of Radiation Medicine, Beijing, China
| | - Ran Huo
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Suzhou Municipal Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
488
|
Feng Y, Hu Y, Hou Z, Sun Q, Jia Y, Zhao R. Chronic corticosterone exposure induces liver inflammation and fibrosis in association with m 6A-linked post-transcriptional suppression of heat shock proteins in chicken. Cell Stress Chaperones 2020; 25:47-56. [PMID: 31745845 PMCID: PMC6985306 DOI: 10.1007/s12192-019-01034-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 08/22/2019] [Accepted: 09/04/2019] [Indexed: 12/14/2022] Open
Abstract
Our previous study had shown that chronic corticosterone (CORT) exposure causes excessive fat deposition in chicken liver, yet it remains unknown whether it is associated with inflammation and fibrosis. In general, heat shock proteins (HSPs) are activated in response to acute stress to play a cytoprotective role, and this activation is associated with m6A-mediated post-transcriptional regulation. However, changes of HSPs and the m6A methylation on their mRNAs in response to chronic CORT treatment in chicken liver have not been reported. In this study, chronic CORT exposure induced inflammation and fibrosis in chicken liver, associated with significantly modulated expression of HSPs that was significantly upregulated at mRNA level yet downregulated at protein level. Concurrently, m6A methyltransferases METTL3 content was upregulated together with the level of m6A methylation on HSPs transcripts. The m6A-seq analysis revealed 2-6 significantly (P < 0.05) hypermethylated m6A peaks in the mRNA of 4 different species of HSPs in CORT-treated chicken liver. HSP90B1 transcript had 6 differentially methylated m6A peaks among which peaks on exon 16 and exon 17 showed 3.14- and 4.72-fold of increase, respectively. Mutation of the 8 predicted m6A sites on exon 16 and exon 17 resulted in a significant (P < 0.05) increase in eGFP-fused content of HSP90B1 exon 16 and exon 17 fragment in 293 T cells, indicating a possible role of m6A in post-transcriptional regulation of HSPs. In conclusion, chronic CORT exposure induces inflammation and fibrosis in chicken liver along with an increase in the levels and m6A methylation of several HSPs mRNAs; HSPs levels were however reduced under the indicated conditions. Results presented suggest that the reduction in HSPs levels may be associated with m6A methylation in CORT-exposed chickens.
Collapse
Affiliation(s)
- Yue Feng
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
- Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Yun Hu
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
- Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Zhen Hou
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
- Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Qinwei Sun
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
- Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Yimin Jia
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
- Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
- Quality and Safety Control, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Nanjing, 210095, People's Republic of China.
| | - Ruqian Zhao
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
- Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
- Quality and Safety Control, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Nanjing, 210095, People's Republic of China
| |
Collapse
|
489
|
Lorenz DA, Sathe S, Einstein JM, Yeo GW. Direct RNA sequencing enables m 6A detection in endogenous transcript isoforms at base-specific resolution. RNA (NEW YORK, N.Y.) 2020; 26:19-28. [PMID: 31624092 PMCID: PMC6913132 DOI: 10.1261/rna.072785.119] [Citation(s) in RCA: 126] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 10/11/2019] [Indexed: 05/21/2023]
Abstract
Direct RNA sequencing holds great promise for the de novo identification of RNA modifications at single-coordinate resolution; however, interpretation of raw sequencing output to discover modified bases remains a challenge. Using Oxford Nanopore's direct RNA sequencing technology, we developed a random forest classifier trained using experimentally detected N6-methyladenosine (m6A) sites within DRACH motifs. Our software MINES (m6A Identification using Nanopore Sequencing) assigned m6A methylation status to more than 13,000 previously unannotated DRACH sites in endogenous HEK293T transcripts and identified more than 40,000 sites with isoform-level resolution in a human mammary epithelial cell line. These sites displayed sensitivity to the m6A writer, METTL3, and eraser, ALKBH5, respectively. MINES (https://github.com/YeoLab/MINES.git) enables m6A annotation at single coordinate-level resolution from direct RNA nanopore sequencing.
Collapse
Affiliation(s)
- Daniel A Lorenz
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California 92093, USA
- Stem Cell Program, University of California San Diego, La Jolla, California 92093, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, California 92093, USA
| | - Shashank Sathe
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California 92093, USA
- Stem Cell Program, University of California San Diego, La Jolla, California 92093, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, California 92093, USA
| | - Jaclyn M Einstein
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California 92093, USA
- Stem Cell Program, University of California San Diego, La Jolla, California 92093, USA
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California 92093, USA
- Stem Cell Program, University of California San Diego, La Jolla, California 92093, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, California 92093, USA
| |
Collapse
|
490
|
Wang J, Gao F, Zhao X, Cai Y, Jin H. Integrated analysis of the transcriptome-wide m6A methylome in preeclampsia and healthy control placentas. PeerJ 2020; 8:e9880. [PMID: 32983644 PMCID: PMC7500358 DOI: 10.7717/peerj.9880] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 08/15/2020] [Indexed: 12/12/2022] Open
Abstract
N6-methyladenosine (m6A) is the most prevalent modification in eukaryotic mRNA and potential regulatory functions of m6A have been shown by mapping the RNA m6A modification landscape. m6A modification in active gene regulation manifests itself as altered methylation profiles. The number of reports regarding to the profiling of m6A modification and its potential role in the placenta of preeclampsia (PE) is small. In this work, placental samples were collected from PE and control patients. Expression of m6A-related genes was investigated using quantitative real-time PCR. MeRIP-seq and RNA-seq were performed to detect m6A methylation and mRNA expression profiles. Gene ontology (GO) functional and Kyoto encyclopedia of genes and genomes (KEGG) pathway analyses were also conducted to explore the modified genes and their clinical significance. Our findings show that METTL3 and METTL14 were up-regulated in PE. In total, 685 m6A peaks were differentially expressed as determined by MeRIP-seq. Altered peaks of m6A-modified transcripts were primarily associated with nitrogen compound metabolic process, positive regulation of vascular-associated smooth muscle cell migration, and endoplasmic reticulum organisation. The m6A hyper-methylated genes of Wnt/β-catenin signalling pathway, mTOR signalling pathway, and several cancer-related pathways may contribute to PE. We also verified that the significant increase of HSPA1A mRNA and protein expression was regulated by m6A modification, suggesting m6A plays a key role in the regulation of gene expression. Our data provide novel information regarding m6A modification alterations in PE and help our understanding of the pathogenesis of PE.
Collapse
Affiliation(s)
- Jin Wang
- Prenatal Diagnosis Center, Jinan Maternal and Child Health Care Hospital, Jinan, China
| | - Fengchun Gao
- Obstetrical Department, Jinan Maternal and Child Health Care Hospital, Jinan, China
| | - Xiaohan Zhao
- Prenatal Diagnosis Center, Jinan Maternal and Child Health Care Hospital, Jinan, China
| | - Yan Cai
- Prenatal Diagnosis Center, Jinan Maternal and Child Health Care Hospital, Jinan, China
| | - Hua Jin
- Prenatal Diagnosis Center, Jinan Maternal and Child Health Care Hospital, Jinan, China
| |
Collapse
|
491
|
Miao Z, Zhang T, Qi Y, Song J, Han Z, Ma C. Evolution of the RNA N 6-Methyladenosine Methylome Mediated by Genomic Duplication. PLANT PHYSIOLOGY 2020; 182:345-360. [PMID: 31409695 PMCID: PMC6945827 DOI: 10.1104/pp.19.00323] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 08/03/2019] [Indexed: 05/19/2023]
Abstract
RNA N 6-methyladenosine (m6A) modification is the most abundant form of RNA epigenetic modification in eukaryotes. Given that m6A evolution is associated with the selective constraints of nucleotide sequences in mammalian genomes, we hypothesize that m6A evolution can be linked, at least in part, to genomic duplication events in complex polyploid plant genomes. To test this hypothesis, we presented the maize (Zea mays) m6A modification landscape in a transcriptome-wide manner and identified 11,968 m6A peaks carried by 5,893 and 3,811 genes from two subgenomes (maize1 and maize2, respectively). Each of these subgenomes covered over 2,200 duplicate genes. Within these duplicate genes, those carrying m6A peaks exhibited significant differences in retention rate. This biased subgenome fractionation of m6A-methylated genes is associated with multiple sequence features and is influenced by asymmetric evolutionary rates. We also characterized the coevolutionary patterns of m6A-methylated genes and transposable elements, which can be mediated by whole genome duplication and tandem duplication. We revealed the evolutionary conservation and divergence of duplicated m6A functional factors and the potential role of m6A modification in maize responses to drought stress. This study highlights complex interplays between m6A modification and gene duplication, providing a reference for understanding the mechanisms underlying m6A evolution mediated by genome duplication events.
Collapse
Affiliation(s)
- Zhenyan Miao
- State Key Laboratory of Crop Stress Biology for Arid Areas, Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Shaanxi, Yangling 712100, China
- Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, Northwest A&F University, Shaanxi, Yangling 712100, China
| | - Ting Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Shaanxi, Yangling 712100, China
| | - Yuhong Qi
- State Key Laboratory of Crop Stress Biology for Arid Areas, Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Shaanxi, Yangling 712100, China
| | - Jie Song
- State Key Laboratory of Crop Stress Biology for Arid Areas, Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Shaanxi, Yangling 712100, China
| | - Zhaoxue Han
- State Key Laboratory of Crop Stress Biology for Arid Areas, Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Shaanxi, Yangling 712100, China
- Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, Northwest A&F University, Shaanxi, Yangling 712100, China
| | - Chuang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas, Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Shaanxi, Yangling 712100, China
- Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, Northwest A&F University, Shaanxi, Yangling 712100, China
| |
Collapse
|
492
|
Luo JH, Wang Y, Wang M, Zhang LY, Peng HR, Zhou YY, Jia GF, He Y. Natural Variation in RNA m 6A Methylation and Its Relationship with Translational Status. PLANT PHYSIOLOGY 2020; 182:332-344. [PMID: 31591151 PMCID: PMC6945879 DOI: 10.1104/pp.19.00987] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 09/23/2019] [Indexed: 05/04/2023]
Abstract
N 6 -methyladenosine (m6A) is the most abundant modification of eukaryotic mRNA. Although m6A has been demonstrated to affect almost all aspects of RNA metabolism, its global contribution to the post-transcriptional balancing of translational efficiency remains elusive in plants. In this study, we performed a parallel analysis of the transcriptome-wide mRNA m6A distribution and polysome profiling in two maize (Zea mays) inbred lines to assess the global correlation of m6A modification with translational status. m6A sites are widely distributed in thousands of protein-coding genes, confined to a consensus motif and primarily enriched in the 3' untranslated regions, and highly coordinated with alternative polyadenylation usage, suggesting a role of m6A modification in regulating alternative polyadenylation site choice. More importantly, we identified that the m6A modification shows multifaceted correlations with the translational status depending on its strength and genic location. Moreover, we observed a substantial intraspecies variation in m6A modification, and this natural variation was shown to be partly driven by gene-specific expression and alternative splicing. Together, these findings provide an invaluable resource for ascertaining transcripts that are subject to m6A modification in maize and pave the way to a better understanding of natural m6A variation in mediating gene expression regulation.
Collapse
Affiliation(s)
- Jin-Hong Luo
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100094, China
- Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, National Maize Improvement Center, China Agricultural University, Beijing 100094, China
| | - Ye Wang
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Min Wang
- Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, National Maize Improvement Center, China Agricultural University, Beijing 100094, China
| | - Li-Yuan Zhang
- Beijing Key Laboratory of Crop Genetic Improvement, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100094, China
| | - Hui-Ru Peng
- Beijing Key Laboratory of Crop Genetic Improvement, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100094, China
| | - Yu-Yi Zhou
- State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100094, China
| | - Gui-Fang Jia
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yan He
- Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, National Maize Improvement Center, China Agricultural University, Beijing 100094, China
| |
Collapse
|
493
|
Methylation of adenosine at the N6 position post-transcriptionally regulates hepatic P450s expression. Biochem Pharmacol 2020; 171:113697. [DOI: 10.1016/j.bcp.2019.113697] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 11/05/2019] [Indexed: 12/11/2022]
|
494
|
Xu H, Dzhashiashvili Y, Shah A, Kunjamma RB, Weng YL, Elbaz B, Fei Q, Jones JS, Li YI, Zhuang X, Ming GL, He C, Popko B. m 6A mRNA Methylation Is Essential for Oligodendrocyte Maturation and CNS Myelination. Neuron 2019; 105:293-309.e5. [PMID: 31901304 DOI: 10.1016/j.neuron.2019.12.013] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 10/15/2019] [Accepted: 12/09/2019] [Indexed: 12/21/2022]
Abstract
The molecular mechanisms that govern the maturation of oligodendrocyte lineage cells remain unclear. Emerging studies have shown that N6-methyladenosine (m6A), the most common internal RNA modification of mammalian mRNA, plays a critical role in various developmental processes. Here, we demonstrate that oligodendrocyte lineage progression is accompanied by dynamic changes in m6A modification on numerous transcripts. In vivo conditional inactivation of an essential m6A writer component, METTL14, results in decreased oligodendrocyte numbers and CNS hypomyelination, although oligodendrocyte precursor cell (OPC) numbers are normal. In vitro Mettl14 ablation disrupts postmitotic oligodendrocyte maturation and has distinct effects on OPC and oligodendrocyte transcriptomes. Moreover, the loss of Mettl14 in oligodendrocyte lineage cells causes aberrant splicing of myriad RNA transcripts, including those that encode the essential paranodal component neurofascin 155 (NF155). Together, our findings indicate that dynamic RNA methylation plays an important regulatory role in oligodendrocyte development and CNS myelination.
Collapse
Affiliation(s)
- Huan Xu
- Center for Peripheral Neuropathy and Department of Neurology, University of Chicago, Chicago, IL 60637, USA
| | - Yulia Dzhashiashvili
- Center for Peripheral Neuropathy and Department of Neurology, University of Chicago, Chicago, IL 60637, USA
| | - Ankeeta Shah
- Committee on Genetics, Genomics, and Systems Biology, University of Chicago, Chicago, IL 60637, USA; Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Rejani B Kunjamma
- Center for Peripheral Neuropathy and Department of Neurology, University of Chicago, Chicago, IL 60637, USA
| | - Yi-Lan Weng
- Department of Neuroscience and Mahoney Institute for Neurosciences, Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Benayahu Elbaz
- Center for Peripheral Neuropathy and Department of Neurology, University of Chicago, Chicago, IL 60637, USA
| | - Qili Fei
- Department of Chemistry and Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637, USA
| | - Joshua S Jones
- Center for Peripheral Neuropathy and Department of Neurology, University of Chicago, Chicago, IL 60637, USA
| | - Yang I Li
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Xiaoxi Zhuang
- Department of Neurobiology, University of Chicago, Chicago, IL 60637, USA
| | - Guo-Li Ming
- Department of Neuroscience and Mahoney Institute for Neurosciences, Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Chuan He
- Department of Chemistry and Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637, USA
| | - Brian Popko
- Center for Peripheral Neuropathy and Department of Neurology, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
495
|
Hu Y, Wang S, Liu J, Huang Y, Gong C, Liu J, Xiao Y, Yang S. New sights in cancer: Component and function of N6-methyladenosine modification. Biomed Pharmacother 2019; 122:109694. [PMID: 31918269 DOI: 10.1016/j.biopha.2019.109694] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/22/2019] [Accepted: 11/22/2019] [Indexed: 12/30/2022] Open
Abstract
M6A is the most prevalent modification among epigenetics. M6A occurs on different sites of RNA and exerts important functions in specific circumstances, such as mRNA splicing, stability, nuclear export, translation or damage response. Different aspects of the concrete machinery of m6A modification have been studied, including its writing, erasing and reading capabilities. The molecular and biological functions of the m6A modification and enzymes, as well as their functions in different cancers have been substantially published. The present review summarizes these findings and provides clear description of the problems involved. The probable roles of m6A modification may acts on other cancers, suggesting that it may be a treatment target for these cancers.
Collapse
Affiliation(s)
- Yiyang Hu
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Sumin Wang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Jiao Liu
- Department of Endoscope, The General Hospital of Shenyang Military Region, China
| | - Yu Huang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Chunli Gong
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Jingjing Liu
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Yufeng Xiao
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China.
| | - Shiming Yang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China.
| |
Collapse
|
496
|
Park MH, Jeong E, Choudhury M. Mono-(2-Ethylhexyl)phthalate Regulates Cholesterol Efflux via MicroRNAs Regulated m6A RNA Methylation. Chem Res Toxicol 2019; 33:461-469. [DOI: 10.1021/acs.chemrestox.9b00367] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Min Hi Park
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, College Station, Texas 77843, United States
| | - Eunae Jeong
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, College Station, Texas 77843, United States
| | - Mahua Choudhury
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, College Station, Texas 77843, United States
| |
Collapse
|
497
|
Berulava T, Buchholz E, Elerdashvili V, Pena T, Islam MR, Lbik D, Mohamed BA, Renner A, von Lewinski D, Sacherer M, Bohnsack KE, Bohnsack MT, Jain G, Capece V, Cleve N, Burkhardt S, Hasenfuss G, Fischer A, Toischer K. Changes in m6A RNA methylation contribute to heart failure progression by modulating translation. Eur J Heart Fail 2019; 22:54-66. [PMID: 31849158 DOI: 10.1002/ejhf.1672] [Citation(s) in RCA: 193] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/15/2019] [Accepted: 10/15/2019] [Indexed: 12/27/2022] Open
Abstract
AIMS Deregulation of epigenetic processes and aberrant gene expression are important mechanisms in heart failure. Here we studied the potential relevance of m6A RNA methylation in heart failure development. METHODS AND RESULTS We analysed m6A RNA methylation via next-generation sequencing. We found that approximately one quarter of the transcripts in the healthy mouse and human heart exhibit m6A RNA methylation. During progression to heart failure we observed that changes in m6A RNA methylation exceed changes in gene expression both in mouse and human. RNAs with altered m6A RNA methylation were mainly linked to metabolic and regulatory pathways, while changes in RNA expression level mainly represented changes in structural plasticity. Mechanistically, we could link m6A RNA methylation to altered RNA translation and protein production. Interestingly, differentially methylated but not differentially expressed RNAs showed differential polysomal occupancy, indicating transcription-independent modulation of translation. Furthermore, mice with a cardiomyocyte restricted knockout of the RNA demethylase Fto exhibited an impaired cardiac function compared to control mice. CONCLUSIONS We could show that m6A landscape is altered in heart hypertrophy and heart failure. m6A RNA methylation changes lead to changes in protein abundance, unconnected to mRNA levels. This uncovers a new transcription-independent mechanisms of translation regulation. Therefore, our data suggest that modulation of epitranscriptomic processes such as m6A methylation might be an interesting target for therapeutic interventions.
Collapse
Affiliation(s)
- Tea Berulava
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Eric Buchholz
- Clinic for Cardiology and Pneumology, University Medical Center, Göttingen, Germany.,German Centre for Cardiovascular Research (DZHK), partner site Göttingen, Göttingen, Germany
| | - Vakhtang Elerdashvili
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany.,Bioinformatics Unit, German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Tonatiuh Pena
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany.,Bioinformatics Unit, German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Md Rezaul Islam
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Dawid Lbik
- Clinic for Cardiology and Pneumology, University Medical Center, Göttingen, Germany.,German Centre for Cardiovascular Research (DZHK), partner site Göttingen, Göttingen, Germany
| | - Belal A Mohamed
- Clinic for Cardiology and Pneumology, University Medical Center, Göttingen, Germany.,German Centre for Cardiovascular Research (DZHK), partner site Göttingen, Göttingen, Germany
| | - Andre Renner
- Clinic for Thoracic and Cardiovascular Surgery, Heart and Diabetes Centre NRW, Ruhr-University Bochum, Bochum, Germany
| | | | - Michael Sacherer
- Department of Cardiology, Medical University Graz, Graz, Austria
| | | | - Markus T Bohnsack
- Department of Molecular Biology, University Medical Center, Göttingen, Germany
| | - Gaurav Jain
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany.,Bioinformatics Unit, German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Vincenzo Capece
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Nicole Cleve
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Susanne Burkhardt
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Gerd Hasenfuss
- Clinic for Cardiology and Pneumology, University Medical Center, Göttingen, Germany.,German Centre for Cardiovascular Research (DZHK), partner site Göttingen, Göttingen, Germany
| | - Andre Fischer
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany.,Department of Psychiatry and Psychotherapy, University Medical Center, Göttingen, Germany.,Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Germany
| | - Karl Toischer
- Clinic for Cardiology and Pneumology, University Medical Center, Göttingen, Germany.,German Centre for Cardiovascular Research (DZHK), partner site Göttingen, Göttingen, Germany
| |
Collapse
|
498
|
Brumbaugh J, Di Stefano B, Hochedlinger K. Reprogramming: identifying the mechanisms that safeguard cell identity. Development 2019; 146:146/23/dev182170. [PMID: 31792064 DOI: 10.1242/dev.182170] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Development and homeostasis rely upon concerted regulatory pathways to establish the specialized cell types needed for tissue function. Once a cell type is specified, the processes that restrict and maintain cell fate are equally important in ensuring tissue integrity. Over the past decade, several approaches to experimentally reprogram cell fate have emerged. Importantly, efforts to improve and understand these approaches have uncovered novel molecular determinants that reinforce lineage commitment and help resist cell fate changes. In this Review, we summarize recent studies that have provided insights into the various chromatin factors, post-transcriptional processes and features of genomic organization that safeguard cell identity in the context of reprogramming to pluripotency. We also highlight how these factors function in other experimental, physiological and pathological cell fate transitions, including direct lineage conversion, pluripotency-to-totipotency reversion and cancer.
Collapse
Affiliation(s)
- Justin Brumbaugh
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Bruno Di Stefano
- Department of Molecular Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA.,Center for Regenerative Medicine, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA.,Cancer Center, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA.,Department of Genetics, Harvard Medical School, Boston, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.,Harvard Stem Cell Institute, 1350 Massachusetts Avenue, Cambridge, MA 02138, USA
| | - Konrad Hochedlinger
- Department of Molecular Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA .,Center for Regenerative Medicine, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA.,Cancer Center, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA.,Department of Genetics, Harvard Medical School, Boston, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.,Harvard Stem Cell Institute, 1350 Massachusetts Avenue, Cambridge, MA 02138, USA
| |
Collapse
|
499
|
Gu C, Wang Z, Zhou N, Li G, Kou Y, Luo Y, Wang Y, Yang J, Tian F. Mettl14 inhibits bladder TIC self-renewal and bladder tumorigenesis through N 6-methyladenosine of Notch1. Mol Cancer 2019; 18:168. [PMID: 31760940 PMCID: PMC6876123 DOI: 10.1186/s12943-019-1084-1] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 10/04/2019] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND N6-methyladenosine (m6A) emerges as one of the most important modification of RNA. Bladder cancer is a common cancer type in developed countries, and hundreds of thousands of bladder cancer patients die every year. MATERIALS AND METHODS There are various cells in bladder tumor bulk, and a small population cells defined as tumor initiating cells (TIC) have self-renewal and differentiation capacities. Bladder TICs drive bladder tumorigenesis and metastasis, and their activities are fine regulated. However, the role of N6-methyladenosine in bladder TIC self-renewal is unknown. RESULTS Here, we found a decrease of N6-methyladenosine in bladder tumors and bladder TICs. N6-methyladenosine levels are related to clinical severity and outcome. Mettl14 is lowly expressed in bladder cancer and bladder TICs. Mettl14 knockout promotes the proliferation, self-renewal, metastasis and tumor initiating capacity of bladder TICs, and Mettl14 overexpression exerts an opposite role. Mettl14 and m6A modification participate in the RNA stability of Notch1 mRNA. Notch1 m6A modification inhibits its RNA stability. Notch1 plays an essential role in bladder tumorigenesis and bladder TIC self-renewal. CONCLUSION This work reveals a novel role of Mettl14 and N6-methyladenosine in bladder tumorigenesis and bladder TICs, adding new layers for bladder TIC regulation and N6-methyladenosine function.
Collapse
Affiliation(s)
- Chaohui Gu
- grid.412633.1Department of Urology and Henan Institute of Urology, Zhengzhou Key Laboratory for Molecular Biology of Urological Tumor Research, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052 People’s Republic of China
| | - Zhiyu Wang
- grid.412633.1Department of Urology and Henan Institute of Urology, Zhengzhou Key Laboratory for Molecular Biology of Urological Tumor Research, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052 People’s Republic of China
| | - Naichun Zhou
- grid.412633.1Department of Urology and Henan Institute of Urology, Zhengzhou Key Laboratory for Molecular Biology of Urological Tumor Research, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052 People’s Republic of China
| | - Guanru Li
- grid.412633.1Department of Urology and Henan Institute of Urology, Zhengzhou Key Laboratory for Molecular Biology of Urological Tumor Research, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052 People’s Republic of China
| | - Yiping Kou
- grid.412633.1Department of Urology and Henan Institute of Urology, Zhengzhou Key Laboratory for Molecular Biology of Urological Tumor Research, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052 People’s Republic of China
| | - Yang Luo
- grid.412633.1Department of Urology and Henan Institute of Urology, Zhengzhou Key Laboratory for Molecular Biology of Urological Tumor Research, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052 People’s Republic of China
| | - Yidi Wang
- grid.412633.1Department of Urology and Henan Institute of Urology, Zhengzhou Key Laboratory for Molecular Biology of Urological Tumor Research, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052 People’s Republic of China
| | - Jinjian Yang
- grid.412633.1Department of Urology and Henan Institute of Urology, Zhengzhou Key Laboratory for Molecular Biology of Urological Tumor Research, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052 People’s Republic of China
| | - Fengyan Tian
- grid.412633.1Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052 People’s Republic of China
| |
Collapse
|
500
|
Rockwell AL, Hongay CF. The m 6A Dynamics of Profilin in Neurogenesis. Front Genet 2019; 10:987. [PMID: 31798620 PMCID: PMC6862867 DOI: 10.3389/fgene.2019.00987] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 09/17/2019] [Indexed: 01/22/2023] Open
Abstract
Our understanding of the biological role of N6-methyladenosine (m6A), a ubiquitous non-editing RNA modification, has increased greatly since 2011. More recently, work from several labs revealed that m6A methylation regulates several aspects of mRNA metabolism. The “writer” protein METTL3, known as MT-A70 in humans, DmIme4 in flies, and MTA in plants, has the catalytic site of the METTL3/14/16 subunit of the methyltransferase complex that includes many other proteins. METTL3 is evolutionarily conserved and essential for development in multicellular organisms. However, until recently, no study has been able to provide a mechanism that explains the essentiality of METTL3. The addition of m6A to gene transcripts has been compared with the epigenetic code of histone modifications because of its effects on gene expression and its reversibility, giving birth to the field of epitranscriptomics, the study of the biological role of this and similar RNA modifications. Here, we focus on METTL3 and its likely conserved role in profilin regulation in neurogenesis. However, this and many other subunits of the methyltransferase complex are starting to be identified in several developmental processes and diseases. A recent plethora of studies about the biological role of METTL3 and other components of the methyltransferase complex that erase (FTO) or recognize (YTH proteins) this modification on transcripts revealed that this RNA modification plays a variety of roles in many biological processes like neurogenesis. Our work in Drosophila shows that the ancient and evolutionarily conserved gene profilin (chic in Drosophila) is a target of the m6A writer. Here, we discuss the implications of our study in Drosophila and how it unveils a conserved mechanism in support of the essential function of METTL3 in metazoan development. Profilin (chic) is an essential gene of ancient evolutionary origins, present in sponges (Porifera), the oldest still extant metazoan phylum of the common metazoan ancestor Urmetazoa. We propose that the relationship between profilin and METTL3 is conserved in metazoans and it provides insights into possible regulatory roles of m6A modification of profilin transcripts in processes such as neurogenesis.
Collapse
Affiliation(s)
| | - Cintia F Hongay
- Department of Biology, Clarkson University, Potsdam, NY, United States
| |
Collapse
|