451
|
Zarrabeitia MT, Hernández JL, Valero C, Zarrabeitia AL, Ortiz F, Gonzalez-Macias J, Riancho JA. Klotho gene polymorphism and male bone mass. Calcif Tissue Int 2007; 80:10-4. [PMID: 17205327 DOI: 10.1007/s00223-006-0233-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2006] [Accepted: 09/21/2006] [Indexed: 11/24/2022]
Abstract
The Klotho gene codes for a protein that is thought to influence the homeostasis of several tissues, including bone, as well as the aging process. Although the mechanism of action has not been fully elucidated, some studies in women have associated Klotho allelic variants to bone mineral density (BMD). The objective of this study was to determine the relationship of a common T/G polymorphism, resulting in a phenylalanine (F) to valine (V) substitution, with male bone mass. BMD was measured by dual-energy X-ray absorptiometry in 362 Spanish men aged 19-83 years. Klotho alleles were determined by a Taqman assay. Allele frequencies were 85% and 15% for the F and V alleles, respectively. In comparison with the most common FF genotype, young and middle-aged men (age less than 53 years) with FV/VV genotypes had higher age- and body mass index-adjusted BMD at the lumbar spine (1.059 +/- 0.017 vs. 1.016 +/- 0.011 g/cm(2), P = 0.036), the hip (1.077 +/- 0.017 vs. 1.033 +/- 0.011 g/cm(2), P = 0.028), and the calcaneus (0.599 +/- 0.125 vs. 0.547 +/- 0.108 g/cm(2), P = 0.012). Klotho alleles explained about 2-4% of BMD variance. However, Klotho genotype was not associated to BMD in older men. There were no Klotho-related differences in height, body weight, calcium intake, tobacco or alcohol consumption, or serum testosterone levels. In conclusion, these results suggest that allelic variants of Klotho constitute one of the genetic factors influencing BMD in male adults.
Collapse
Affiliation(s)
- M T Zarrabeitia
- Unit of Legal Medicine, University of Cantabria, Av. Herrera Oria s/n, 39008 Santander, Spain
| | | | | | | | | | | | | |
Collapse
|
452
|
van de Graaf SFJ, Bindels RJM, Hoenderop JGJ. Physiology of epithelial Ca2+ and Mg2+ transport. Rev Physiol Biochem Pharmacol 2007; 158:77-160. [PMID: 17729442 DOI: 10.1007/112_2006_0607] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ca2+ and Mg2+ are essential ions in a wide variety of cellular processes and form a major constituent of bone. It is, therefore, essential that the balance of these ions is strictly maintained. In the last decade, major breakthrough discoveries have vastly expanded our knowledge of the mechanisms underlying epithelial Ca2+ and Mg2+ transport. The genetic defects underlying various disorders with altered Ca2+ and/or Mg2+ handling have been determined. Recently, this yielded the molecular identification of TRPM6 as the gatekeeper of epithelial Mg2+ transport. Furthermore, expression cloning strategies have elucidated two novel members of the transient receptor potential family, TRPV5 and TRPV6, as pivotal ion channels determining transcellular Ca2+ transport. These two channels are regulated by a variety of factors, some historically strongly linked to Ca2+ homeostasis, others identified in a more serendipitous manner. Herein we review the processes of epithelial Ca2+ and Mg2+ transport, the molecular mechanisms involved, and the various forms of regulation.
Collapse
Affiliation(s)
- S F J van de Graaf
- Radboud University Nijmegen Medical Centre, 286 Cell Physiology, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | | | | |
Collapse
|
453
|
Abstract
The ion channel TRPV6 is likely to function as an epithelial calcium channel in organs with high calcium transport requirements such as the intestine, kidney, and placenta. Transcriptional regulation of TRPV6 messenger RNA (mRNA) is controlled by 1,25-dihydroxyvitamin D, which is the active hormonal form of vitamin D3, and by additional calcium-dependent and vitamin D3-independent mechanisms. Under physiological conditions, the conductance of the channel itself is highly calcium-selective and underlies complex inactivation mechanisms triggered by intracellular calcium and magnesium ions. There is growing evidence that transcriptional regulation of TRPV6 in certain tissues undergoing malignant transformation, such as prostate cancer, is linked to cancer progression.
Collapse
Affiliation(s)
- U Wissenbach
- Experimentelle und Klinische Pharmakologie und Toxikologie, Medizinische Fakultät, Universität des Saarlandes, 66421 Homburg, Germany.
| | | |
Collapse
|
454
|
Lambers TT, Oancea E, de Groot T, Topala CN, Hoenderop JG, Bindels RJ. Extracellular pH dynamically controls cell surface delivery of functional TRPV5 channels. Mol Cell Biol 2006; 27:1486-94. [PMID: 17178838 PMCID: PMC1800733 DOI: 10.1128/mcb.01468-06] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Extracellular pH has long been known to affect the rate and magnitude of ion transport processes among others via regulation of ion channel activity. The Ca(2+)-selective transient receptor potential vanilloid 5 (TRPV5) channel constitutes the apical entry gate in Ca(2+)-transporting cells, contributing significantly to the overall Ca(2+) balance. Here, we demonstrate that extracellular pH determines the cell surface expression of TRPV5 via a unique mechanism. By a comprehensive approach using total internal reflection fluorescence microscopy, cell surface protein labeling, electrophysiology, (45)Ca(2+) uptake assays, and functional channel recovery after chemobleaching, this study shows that upon extracellular alkalinization, a pool of TRPV5-containing vesicles is rapidly recruited to the cell surface without collapsing into the plasma membrane. These vesicles contain functional TRPV5 channels since extracellular alkalinization is accompanied by increased TRPV5 activity. Conversely, upon subsequent extracellular acidification, vesicles are retrieved from the plasma membrane, simultaneously resulting in decreased TRPV5 activity. Thus, TRPV5 accesses the extracellular compartment via transient openings of vesicles, suggesting that rapid responses of constitutive active TRP channels to physiological stimuli rely on vesicular "kiss and linger" interactions with the plasma membrane.
Collapse
Affiliation(s)
- Tim T Lambers
- Department of Physiology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, 6500 HB Nijmegen, The Netherlands
| | | | | | | | | | | |
Collapse
|
455
|
Bartke A. New findings in transgenic, gene knockout and mutant mice. Exp Gerontol 2006; 41:1217-9. [PMID: 17049788 DOI: 10.1016/j.exger.2006.09.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2006] [Revised: 08/31/2006] [Accepted: 09/04/2006] [Indexed: 11/16/2022]
Abstract
Mice with experimentally induced or spontaneous genetic alterations continue to provide new and often unexpected information on the mechanisms of mammalian aging. Papers published during the last year (July 1, 2005 through June 30, 2006) contain many exciting findings, including development and characterization of a new animal model for the study of aging. Highlights of these recent developments will be briefly discussed in this Review.
Collapse
Affiliation(s)
- Andrzej Bartke
- Geriatrics Research, Departments of Internal Medicine and Physiology, Southern Illinois University School of Medicine, P.O. Box 19628, Springfield, IL 62794-9628, USA.
| |
Collapse
|
456
|
Abstract
A subset of TRP channel proteins undergoes regulatory N-linked glycosylation. A glycosylation site in the first extracellular loop of TRPV5 is enzymatically cleaved by a secreted glucuronidase, indirectly regulating channel function. Members of the TRPC family share a similar site, although details about a regulatory role are lacking. A second conserved TRP channel glycosylation site is found immediately adjacent to the channel pore-forming loop; both TRPV1 and TRPV4--and perhaps other TRPV family members--are influenced by glycosylation at this site. N-linked glycosylation, and the dynamic regulation of this process, substantially impacts function and targeting of TRP channels.
Collapse
Affiliation(s)
- David M Cohen
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health & Science University, Portland Veterans Affairs Medical Center, Portland, OR 97239, USA.
| |
Collapse
|
457
|
Kuro-o M. Klotho as a regulator of fibroblast growth factor signaling and phosphate/calcium metabolism. Curr Opin Nephrol Hypertens 2006; 15:437-41. [PMID: 16775459 DOI: 10.1097/01.mnh.0000232885.81142.83] [Citation(s) in RCA: 168] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE OF REVIEW This review summarizes the most recent findings on Klotho in the regulation of fibroblast growth factor-23 (FGF23) signaling and phosphate/calcium homeostasis. RECENT FINDINGS The klotho gene encodes a single-pass transmembrane protein and functions as an aging-suppressor gene, which extends life span when overexpressed and accelerates the development of aging-like phenotypes when disrupted in mice. FGF23 is a hormone that suppresses phosphate reabsorption in renal proximal tubules. Recent studies have shown that Klotho mice and Fgf23 mice exhibit identical phenotypes including hyperphosphatemia and hypercalcemia in addition to the aging-like syndrome. This may be explained by the fact that Klotho binds to multiple FGF receptors and increases their affinity to FGF23. Another Klotho protein function is to activate transient receptor potential vanilloid-5 - a calcium channel involved in calcium reabsorption in the kidney. Klotho protein can modify sugar chains on transient receptor potential vanilloid-5 through its activity as a beta-glucuronidase, preventing the calcium channel from internalization and inactivation. SUMMARY Klotho protein binds to fibroblast growth factor receptors and functions as a regulator of FGF23 signaling. It also functions as an enzyme that modifies sugar chains of transient receptor potential vanilloid-5 and regulates its activity. Klotho is a multi-functional protein that regulates phosphate/calcium metabolism as well as aging.
Collapse
Affiliation(s)
- Makoto Kuro-o
- Department of Pathology, The University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390-9072, USA.
| |
Collapse
|
458
|
Erler I, Al-Ansary DMM, Wissenbach U, Wagner TFJ, Flockerzi V, Niemeyer BA. Trafficking and assembly of the cold-sensitive TRPM8 channel. J Biol Chem 2006; 281:38396-404. [PMID: 17065148 DOI: 10.1074/jbc.m607756200] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
TRPM (transient receptor potential melastatin-like) channels are distinct from many other members of the transient receptor potential family in regard to their overall size (>1000 amino acids), the lack of N-terminal ankyrin-like repeats, and hydrophobicity predictions that may allow for more than six transmembrane regions. Common to each TRPM member is a prominent C-terminal coiled coil region. Here we have shown that TRPM8 channels assemble as multimers using the putative coiled coil region within the intracellular C terminus and that this assembly can be disturbed by a single point mutation within the coiled coil region. This mutant neither gives rise to functional channels nor do its subunits interact or form protein complexes that correspond to a multimer. However, they are still transported to the plasma membrane. Furthermore, wild-type currents can be suppressed by expressing the membrane-attached C-terminal region of TRPM8. To separate assembly from trafficking, we investigated the maturation of TRPM8 protein by identifying and mutating the relevant N-linked glycosylation site and showing that glycosylation is neither essential for multimerization nor for transport to the plasma membrane per se but appears to facilitate efficient multimerization and transport.
Collapse
Affiliation(s)
- Isabell Erler
- Department of Pharmacology and Toxicology, University of Saarland, Medical Campus, 66421 Homburg, Germany
| | | | | | | | | | | |
Collapse
|
459
|
Schoeber JP, Topala CN, Wang X, Diepens RJ, Lambers TT, Hoenderop JG, Bindels RJ. RGS2 Inhibits the Epithelial Ca2+ Channel TRPV6. J Biol Chem 2006; 281:29669-74. [PMID: 16895908 DOI: 10.1074/jbc.m606233200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The epithelial Ca(2+) channels TRPV5 and TRPV6 constitute the apical Ca(2+) entry pathway in the process of active Ca(2+) (re)absorption. By yeast two-hybrid and glutathione S-transferase pulldown analysis we identified RGS2 as a novel TRPV6-associated protein. RGS proteins determine the inactivation kinetics of heterotrimeric G-protein-coupled receptor (GPCR) signaling by regulating the GTPase activity of G(alpha) subunits. Here we demonstrate that TRPV6 interacts with the NH(2)-terminal domain of RGS2 in a Ca(2+)-independent fashion and that overexpression of RGS2 reduces the Na(+) and Ca(2+) current of TRPV6 but not that of TRPV5-transfected human embryonic kidney 293 (HEK293) cells. In contrast, overexpression of the deletion mutant DeltaN-RGS2, lacking the NH(2)-terminal domain of RGS2, in TRPV6-expressing HEK293 cells did not show this inhibition. Furthermore, cell surface biotinylation indicated that the inhibitory effect of RGS2 on TRPV6 activity is not mediated by differences in trafficking or retrieval of TRPV6 from the plasma membrane. This effect probably results from the direct interaction between RGS2 and TRPV6, affecting the gating properties of the channel. Finally, the scaffolding protein spinophilin, shown to recruit RGS2 and regulate GPCR-signaling via G(alpha), did not affect RGS2 binding and electrophysiological properties of TRPV6, indicating a GPCR-independent mechanism of TRPV6 regulation by RGS2.
Collapse
Affiliation(s)
- Joost P Schoeber
- Department of Physiology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen 6500 HB, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
460
|
Fujinaka H, Nakamura J, Kobayashi H, Takizawa M, Murase D, Tokimitsu I, Suda T. Glucose 1-phosphate increases active transport of calcium in intestine. Arch Biochem Biophys 2006; 460:152-60. [PMID: 17320035 DOI: 10.1016/j.abb.2006.09.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2006] [Revised: 09/08/2006] [Accepted: 09/08/2006] [Indexed: 11/16/2022]
Abstract
Active calcium transport in intestine is essential for serum calcium homeostasis as well as for bone formation. It is well recognized that vitamin D is a major, if not sole, stimulator of intestinal calcium transport activity in mammals. Besides vitamin D, endogenous glucose 1-phosphate (G1P) affects calcium transport activity in some microorganisms. In this study, we investigated whether G1P affects intestinal calcium transport activity in mammals as well. Of several glycolytic intermediates, G1P was the sole sugar compound in stimulating intestinal calcium uptake in Caco-2 cells. G1P stimulated net calcium influx and expression of calbindin D9K protein in rat intestine, through an active transport mechanism. Calcium uptake in G1P-supplemented rats was greater than that in the control rats fed a diet containing adequate vitamin D3. Bone mineral density (BMD) of aged rat femoral metaphysis and diaphysis was also increased by feeding the G1P diet. G1P did not affect serum levels of 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] at all. These results suggest that exogenously applied G1P stimulates active transport of calcium in intestine, independent of vitamin D, leading to an increase of BMD.
Collapse
Affiliation(s)
- Hidetake Fujinaka
- Biological Science Laboratories, Kao Corporation, 2606 Akabane, Ichikaimachi, Haga, Tochigi 321-3497, Japan
| | | | | | | | | | | | | |
Collapse
|
461
|
Gkika D, Topala CN, Chang Q, Picard N, Thébault S, Houillier P, Hoenderop JGJ, Bindels RJM. Tissue kallikrein stimulates Ca(2+) reabsorption via PKC-dependent plasma membrane accumulation of TRPV5. EMBO J 2006; 25:4707-16. [PMID: 17006539 PMCID: PMC1618098 DOI: 10.1038/sj.emboj.7601357] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2006] [Accepted: 08/28/2006] [Indexed: 11/08/2022] Open
Abstract
The transient receptor potential vanilloid 5 (TRPV5) channel determines urinary Ca(2+) excretion, and is therefore critical for Ca(2+) homeostasis. Interestingly, mice lacking the serine protease tissue kallikrein (TK) exhibit robust hypercalciuria comparable to the Ca(2+) leak in TRPV5 knockout mice. Here, we delineated the molecular mechanism through which TK stimulates Ca(2+) reabsorption. Using TRPV5-expressing primary cultures of renal Ca(2+)-transporting epithelial cells, we showed that TK activates Ca(2+) reabsorption. The stimulatory effect of TK was mimicked by bradykinin (BK) and could be reversed by application of JE049, a BK receptor type 2 antagonist. A cell permeable analog of DAG increased TRPV5 activity within 30 min via protein kinase C activation of the channel since mutation of TRPV5 at the putative PKC phosphorylation sites S299 and S654 prevented the stimulatory effect of TK. Cell surface labeling revealed that TK enhances the amount of wild-type TRPV5 channels, but not of the TRPV5 S299A and S654A mutants, at the plasma membrane by delaying its retrieval. In conclusion, TK stimulates Ca(2+) reabsorption via the BK-activated PLC/DAG/PKC pathway and the subsequent stabilization of the TRPV5 channel at the plasma membrane.
Collapse
Affiliation(s)
- Dimitra Gkika
- Department of Physiology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Catalin N Topala
- Department of Physiology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Qing Chang
- Department of Physiology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Nicolas Picard
- INSERM, Unité 652 Institut Fédératif de Recherche 58 and René Descartes University Paris, Paris, France
| | - Stéphanie Thébault
- Department of Physiology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Pascal Houillier
- INSERM, Unité 652 Institut Fédératif de Recherche 58 and René Descartes University Paris, Paris, France
| | - Joost G J Hoenderop
- Department of Physiology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - René J M Bindels
- Department of Physiology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
- Department of Physiology, Radboud University Nijmegen Medical Centre, PO Box 9101, Nijmegen 6500 HB, The Netherlands. Tel.: +31 24 3614211; Fax: +31 24 3616413; E-mail:
| |
Collapse
|
462
|
de Oliveira RM. Klotho RNAi induces premature senescence of human cells via a p53/p21 dependent pathway. FEBS Lett 2006; 580:5753-8. [PMID: 17014852 DOI: 10.1016/j.febslet.2006.09.036] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2006] [Revised: 09/08/2006] [Accepted: 09/18/2006] [Indexed: 10/24/2022]
Abstract
Klotho has recently emerged as a regulator of aging. To investigate the role of Klotho in the regulation of cellular senescence, we generated stable MRC-5 human primary fibroblast cells knockdown for Klotho expression by RNAi. Downregulation of Klotho dramatically induces premature senescence with a concomitant upregulation of p21. The upregulation of p21 is associated with cell cycle arrest at G1/S boundary. Knockdown of p53 in the Klotho attenuated MRC-5 cells restores normal growth and replicative potential. These results demonstrate that Klotho normally regulates cellular senescence by repressing the p53/p21 pathway. Our findings implicate Klotho as a regulator of aging in primary human fibroblasts.
Collapse
|
463
|
Riancho JA, Valero C, Hernández JL, Ortiz F, Zarrabeitia A, Alonso MA, Peña N, Pascual MA, González-Macías J, Zarrabeitia MT. Association of the F352V variant of the Klotho gene with bone mineral density. Biogerontology 2006; 8:121-7. [PMID: 16955217 DOI: 10.1007/s10522-006-9039-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2006] [Accepted: 08/01/2006] [Indexed: 02/02/2023]
Abstract
Klotho gene codes for a protein with glucuronidase activity and is thought to influence bone and vascular homeostasis. We studied the relationship of a common T/G polymorphism, resulting in a phenylalanine (F) to valine (V) substitution at aminoacid position 352, with bone mineral density (BMD) and osteoporotic fractures. The study group comprised 914 Spanish women, including 438 control subjects, 190 patients with osteoporosis, 198 with hip fractures, and 88 patients with severe osteoarthritis. BMD was measured by DEXA in 540 women from the control and osteoporosis groups. Allele frequencies were 86% and 14%, for the F and V alleles, respectively. In comparison with the most common FF genotype, postmenopausal women with FV/VV genotypes had higher hip BMD (femoral neck: 0.673 +/- 0.011 vs. 0.644 +/- 0.006 g/cm(2); P = 0.02; total hip: 0.807 +/- 0.014 vs. 0.774 +/- 0.008 g/cm(2); P = 0.03). Klotho alleles explained about 1.5% of BMD variance, but were not associated to the risk of osteoporotic spine or hip fractures. The Klotho genotype was not associated to BMD in premenopausal women. In conclusion, the F352V Klotho polymorphism is associated with BMD in postmenopausal women, suggesting that Klotho gene variants influence skeletal aging.
Collapse
Affiliation(s)
- José A Riancho
- Department of Internal Medicine, Hospital U.M. Valdecilla, University of Cantabria, 39008 Santander, Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
464
|
Abstract
There is a rapidly growing interest in the family of transient receptor potential (TRP) channels because TRP channels are not only important for many sensory systems, but they are crucial components of the function of neurons, epithelial, blood and smooth muscle cells. These facts make TRP channels important targets for treatment of diseases arising from the malfunction of these channels in the above cells and for treatment of inflammatory pain. TRP channels are also important for a growing number of genetic diseases arising from mutations in various types of TRP channels. The Minerva-Gentner Symposium on TRP channels and Ca(2+) signaling, which took place in Eilat, Israel (February 24-28, 2006) has clearly demonstrated that the study of TRP channels is a newly emerging field of biomedicine with prime importance. In the Eilat symposium, investigators who have contributed seminal publications and insight into the TRP field presented their most recent, and in many cases still unpublished, studies. The excellent presentations and excitement generated by them demonstrated that much progress has been achieved. Nevertheless, it was also evident that the field of TRP channels is still in its infancy in comparison to other fields of ion channels, and even the fundamental knowledge of the gating mechanism of TRP channels is still unsolved. The beautiful location of the symposium, together with informal intensive discussions among the participants, contributed to the success of this meeting.
Collapse
Affiliation(s)
- Baruch Minke
- Department of Physiology and the Kühne Minerva Center for Studies of Visual Transduction, The Hebrew University of Jerusalem, Jerusalem 91120, Israel.
| |
Collapse
|
465
|
Bibliography. Current world literature. Mineral metabolism. Curr Opin Nephrol Hypertens 2006; 15:464-7. [PMID: 16775463 DOI: 10.1097/01.mnh.0000232889.65895.ae] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
466
|
van de Graaf SFJ, Hoenderop JGJ, Bindels RJM. Regulation of TRPV5 and TRPV6 by associated proteins. Am J Physiol Renal Physiol 2006; 290:F1295-302. [PMID: 16682485 DOI: 10.1152/ajprenal.00443.2005] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The epithelial Ca2+ channels TRPV5 and TRPV6 are the most Ca2+-selective members of the TRP channel superfamily. These channels are the prime target for hormonal control of the active Ca2+ flux from the urine space or intestinal lumen to the blood compartment. Insight into their regulation is, therefore, pivotal in our understanding of the (patho)physiology of Ca2+ homeostasis. The recent elucidation of TRPV5/6-associated proteins has provided new insight into the molecular mechanisms underlying the regulation of these channels. In this review, we describe the various means of TRPV5/6 regulation, the role of channel-associated proteins herein, and the relationship between both processes.
Collapse
Affiliation(s)
- Stan F J van de Graaf
- Department of Physiology, Radboud Univ. Nijmegen Medical Centre, 6500 HB Nijmegen, The Netherlands
| | | | | |
Collapse
|
467
|
Abstract
The development of our knowledge on the structure, molecular regulation, and cell function on transient receptor potential (TRP) channels has been growing dramatically during the last few years. Many meetings in the past and upcoming events are now focused on TRP channels as general sensor molecules in cell physiology. However, most of the scientists in the field still feel that we are just beginning to understand these truly remarkable proteins, called TRPs, and there is still a long way to go from structure via molecular regulation to cell and organ function. This generally accepted but exciting view about the long road to the understanding of TRPs dominated all presentations given at the 2006 Minerva-Gentner Symposium on TRP channels and calcium signalling, which was held in Eilat, Israel, and was excellently organized by Baruch Minke (Jerusalem, Israel) and supported by Veit Flockerzi (Homburg, Germany).
Collapse
Affiliation(s)
- Bernd Nilius
- Laboratory of Physiology, KU Leuven, B-3000 Leuven, Belgium.
| | | |
Collapse
|
468
|
Abstract
klotho mutant mice were originally described as a short-lived mouse model with premature aging-like disorders. The klotho gene responsible for these phenotypes encodes a type I membrane protein with a considerable similarity to beta-glycosidase. klotho is predominantly expressed in tissues functioning in the regulation of calcium homeostasis. Suggested functions of Klotho are (i) a fundamental regulator of calcium homeostasis, namely, a cofactor for the fibroblast growth factor (FGF) receptor 1c in FGF23 signaling and a regulator of parathyroid hormone secretion; (ii) a hormone that interferes with the intracellular signaling of insulin and insulin-like growth factor-1; and (iii) a beta-glucuronidase that activates the transient receptor potential ion channel TRPV5 by trimming its sugar moiety. How can we reconcile these pleiotropic functions of Klotho? Is there any common mechanism? Further in vivo studies, and biochemical as well as physiological analyses, are required for a better understanding of the molecular aspects of Klotho.
Collapse
Affiliation(s)
- Yo-ichi Nabeshima
- Department of Pathology and Tumor Biology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan.
| |
Collapse
|
469
|
Lewin E, Olgaard K. Klotho, an important new factor for the activity of Ca2+ channels, connecting calcium homeostasis, ageing and uraemia. Nephrol Dial Transplant 2006; 21:1770-2. [PMID: 16627600 DOI: 10.1093/ndt/gfl178] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
470
|
Journal club. Kidney Int 2006. [DOI: 10.1038/sj.ki.5000157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
471
|
Götz R. [Klotho: a glycosidase, slows the aging process]. PHARMAZIE IN UNSERER ZEIT 2006; 35:280-1. [PMID: 16886502 DOI: 10.1002/pauz.200690077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
|
472
|
Xu H, Fu Y, Tian W, Cohen DM. Glycosylation of the osmoresponsive transient receptor potential channel TRPV4 on Asn-651 influences membrane trafficking. Am J Physiol Renal Physiol 2005; 290:F1103-9. [PMID: 16368742 DOI: 10.1152/ajprenal.00245.2005] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We identified a consensus N-linked glycosylation motif within the pore-forming loop between the fifth and sixth transmembrane segments of the osmoresponsive transient receptor potential (TRP) channel TRPV4. Mutation of this residue from Asn to Gln (i.e., TRPV4(N651Q)) resulted in loss of a slower migrating band on anti-TRPV4 immunoblots and a marked reduction in lectin-precipitable TRPV4 immunoreactivity. HEK293 cells transiently transfected with the mutant TRPV4(N651Q) exhibited increased calcium entry in response to hypotonic stress relative to wild-type TRPV4 transfectants. This increase in hypotonicity responsiveness was associated with an increase in plasma membrane targeting of TRPV4(N651Q) relative to wild-type TRPV4 in both HEK293 and COS-7 cells but had no effect on overall channel abundance in whole cell lysates. Residue N651 of TRPV4 is immediately adjacent to the pore-forming loop. Although glycosylation in this vicinity has not been reported for a TRP channel, the structurally related hexahelical hyperpolarization-activated cyclic nucleotide-gated channel, HCN2, and the voltage-gated potassium channel, human ether-a-go-go-related (HERG), share a nearly identically situated and experimentally confirmed N-linked glycosylation site which promotes rather than limits channel insertion into the plasma membrane. These data point to a potentially conserved structural and functional feature influencing membrane trafficking across diverse members of the voltage-gated-like ion channel superfamily.
Collapse
Affiliation(s)
- Hongshi Xu
- Mailcode PP262, Oregon Health and Science Univ., 3314 S.W. US Veterans Hospital Rd., Portland, OR 97239, USA
| | | | | | | |
Collapse
|
473
|
|