451
|
Haga S, Kanno A, Morita N, Jin S, Matoba K, Ozawa T, Ozaki M. Poly(ADP-ribose) Polymerase (PARP) is Critically Involved in Liver Ischemia/reperfusion-injury. J Surg Res 2021; 270:124-138. [PMID: 34656890 DOI: 10.1016/j.jss.2021.09.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 08/27/2021] [Accepted: 09/14/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Poly(ADP-ribose) polymerase (PARP) is a DNA-repairing enzyme activated by extreme genomic stress, and therefore is potently activated in the remnant liver suffering from ischemia after surgical resection. However, the impact of PARP on post-ischemic liver injury has not been elucidated yet. MATERIALS AND METHODS We investigated the impact of PARP on murine hepatocyte/liver injury induced by hypoxia/ischemia, respectively. RESULTS PJ34, a specific inhibitor of PARP, markedly protected against hypoxia/reoxygenation (H/R)-induced cell death, though z-VAD-fmk, a pan-caspase inhibitor similarly showed the protective effect. PJ34 did not affect H/R-induced caspase activity or caspase-mediated cell death. z-VAD-fmk also did not affect the production of PAR (i.e., PARP activity). Therefore, PARP- and caspase-mediated cell death occurred in a mechanism independent of each other in H/R. H/R immediately induced activation of PARP and cell death afterwards, both of which were suppressed by PJ34 or Trolox, an antioxidant. This suggests that H/R-induced cell death occurred redox-dependently through PARP activation. H/R and OS induced nuclear translocation of apoptosis inducing factor (AIF, a marker of parthanatos) and RIP1-RIP3 interaction (a marker of necroptosis), both of which were suppressed by PJ34. H/R induced PARP-mediated parthanatos and necroptosis redox-dependently. In mouse experiments, PJ34 significantly reduced serum levels of AST, ALT & LDH and areas of hepatic necrosis after liver ischemia/reperfusion, similar to z-VAD-fmk or Trolox. CONCLUSION PARP, activated by ischemic damage and/or oxidative stress, may play a critical role in post-ischemic liver injury by inducing programmed necrosis (parthanatos and necroptosis). PARP inhibition may be one of the promising strategies against post-ischemic liver injury.
Collapse
Affiliation(s)
- Sanae Haga
- Department of Biological Response and Regulation, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Akira Kanno
- Department of Environmental Applied Chemistry, University of Toyama, Toyama, Toyama, Japan
| | - Naoki Morita
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, Hokkaido, Japan
| | - Shigeki Jin
- Department of Forensic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Kotaro Matoba
- Department of Forensic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Takeaki Ozawa
- Department of Chemistry, School of Science, The University of Tokyo, Tokyo, Japan
| | - Michitaka Ozaki
- Department of Biological Response and Regulation, Hokkaido University, Sapporo, Hokkaido, Japan; Laboratory of Molecular and Functional Bio-Imaging, Hokkaido University, Sapporo, Hokkaido, Japan.
| |
Collapse
|
452
|
Xu P, Yi Y, Luo Y, Liu Z, Xu Y, Cai J, Zeng Z, Liu A. Radiation‑induced dysfunction of energy metabolism in the heart results in the fibrosis of cardiac tissues. Mol Med Rep 2021; 24:842. [PMID: 34633055 PMCID: PMC8524410 DOI: 10.3892/mmr.2021.12482] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 06/29/2021] [Indexed: 12/13/2022] Open
Abstract
Thoracic radiotherapy increases the risk of radiation‑induced heart damage (RIHD); however, the molecular mechanisms underlying these changes are not fully understood. The aim of the present study was to investigate the effects of radiation on the mouse heart using high‑throughput proteomics. Male C57BL/6J mice were used to establish a model of RIHD by exposing the entire heart to 16 Gy high‑energy X‑rays, and cardiac injuries were verified using a cardiac echocardiogram, as well as by measuring serum brain natriuretic peptide levels and conducting H&E and Masson staining 5 months after irradiation. Proteomics experiments were performed using the heart apex of 5‑month irradiated mice and control mice that underwent sham‑irradiation. The most significantly differentially expressed proteins were enriched in 'cardiac fibrosis' and 'energy metabolism'. Next, the cardiac fibrosis and changes to energy metabolism were confirmed using immunohistochemistry staining and western blotting. Extracellular matrix proteins, such as collagen type 1 α 1 chain, collagen type III α 1 chain, vimentin and CCCTC‑binding factor, along with metabolism‑related proteins, such as fatty acid synthase and solute carrier family 25 member 1, exhibited upregulated expression following exposure to ionizing radiation. Additionally, the myocardial mitochondria inner membranes were injured, along with a decrease in ATP levels and the accumulation of lactic acid in the irradiated heart tissues. These results suggest that the high doses of ionizing radiation used lead to structural remodeling, functional injury and fibrotic alterations in the mouse heart. Radiation‑induced mitochondrial damage and metabolic alterations of the cardiac tissue may thus be a pathogenic mechanism of RIHD.
Collapse
Affiliation(s)
- Peng Xu
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yali Yi
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yijing Luo
- Department of Clinical Medicine, The First Clinical College of Nanchang University, Nanchang, Jiangxi 330031, P.R. China
| | - Zhicheng Liu
- Department of Clinical Medicine, The First Clinical College of Nanchang University, Nanchang, Jiangxi 330031, P.R. China
| | - Yilin Xu
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Jing Cai
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Zhimin Zeng
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Anwen Liu
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
453
|
Jia M, Zhang H, Qin Q, Hou Y, Zhang X, Chen D, Zhang H, Chen Y. Ferroptosis as a new therapeutic opportunity for nonviral liver disease. Eur J Pharmacol 2021; 908:174319. [PMID: 34252441 DOI: 10.1016/j.ejphar.2021.174319] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 06/04/2021] [Accepted: 07/07/2021] [Indexed: 12/18/2022]
Abstract
Nonviral liver disease is a global public health problem due to its high mortality and morbidity. However, its underlying mechanism is unclear. Ferroptosis is a novel form of cell death that is involved in a variety of disease processes. Both abnormal iron metabolism (e.g., iron overload) and lipid peroxidation, which is induced by deletion of glutathione (GSH) or glutathione peroxidase 4 (GPX4), and the accumulation of polyunsaturated fatty acid-containing phospholipids (PUFA-PLs) trigger ferroptosis. Recently, ferroptosis has been involved in the pathological process of nonviral liver diseases [including alcohol-related liver disease (ALD); nonalcoholic fatty liver disease (NAFLD); hereditary hemochromatosis (HH); drug-, ischemia/reperfusion- or immune-induced liver injury; liver fibrosis; and liver cancer]. Hepatocyte ferroptosis is activated in ALD; NAFLD; HH; drug-, ischemia/reperfusion- or immune-induced liver injury; and liver fibrosis, whereas hepatic stellate cell and liver cancer cell ferroptosis are inhibited in liver fibrosis and liver cancer, respectively. Thus, ferroptosis is an ideal target for nonviral liver diseases. In the present review, we discuss the latest findings on ferroptosis and potential drugs targeting ferroptosis for nonviral liver diseases. This review will highlight further directions for the treatment and prevention of nonviral liver diseases.
Collapse
Affiliation(s)
- Min Jia
- Institute of Basic and Translational Medicine, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Hongmei Zhang
- The First Affiliated Hospital of Xi'an Medical University, Xi'an Medical University, Xi'an, Shaanxi, 710077, China
| | - Qiaohong Qin
- Institute of Basic and Translational Medicine, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Ying Hou
- Institute of Basic and Translational Medicine, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Xin Zhang
- Institute of Basic and Translational Medicine, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Di Chen
- School of Basic and Medical Sciences, Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Hong Zhang
- Department of Infectious Diseases, Shaanxi Provincial People's Hospital (the Affiliated Hospital of Xi'an Medical University), Xi'an Medical University, Xi'an, Shaanxi, 710068, China.
| | - Yulong Chen
- Institute of Basic and Translational Medicine, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shaanxi, 710021, China.
| |
Collapse
|
454
|
Wu P, Cai M, Liu J, Wang X. Catecholamine Surges Cause Cardiomyocyte Necroptosis via a RIPK1-RIPK3-Dependent Pathway in Mice. Front Cardiovasc Med 2021; 8:740839. [PMID: 34604361 PMCID: PMC8481609 DOI: 10.3389/fcvm.2021.740839] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 08/16/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Catecholamine surges and resultant excessive β-adrenergic stimulation occur in a broad spectrum of diseases. Excessive β-adrenergic stimulation causes cardiomyocyte necrosis, but the underlying mechanism remains obscure. Necroptosis, a major form of regulated necrosis mediated by RIPK3-centered pathways, is implicated in heart failure; however, it remains unknown whether excessive β-adrenergic stimulation-induced cardiac injury involves necroptosis. Hence, we conducted the present study to address these critical gaps. Methods and Results: Two consecutive daily injections of isoproterenol (ISO; 85 mg/kg, s.c.) or saline were administered to adult mixed-sex mice. At 24 h after the second ISO injection, cardiac area with Evans blue dye (EBD) uptake and myocardial protein levels of CD45, RIPK1, Ser166-phosphorylated RIPK1, RIPK3, and Ser345-phosphorylated MLKL (p-MLKL) were significantly greater, while Ser321-phosphorylated RIPK1 was significantly lower, in the ISO-treated than in saline-treated wild-type (WT) mice. The ISO-induced increase of EBD uptake was markedly less in RIPK3−/− mice compared with WT mice (p = 0.016). Pretreatment with the RIPK1-selective inhibitor necrostatin-1 diminished ISO-induced increases in RIPK3 and p-MLKL in WT mice and significantly attenuated ISO-induced increases of EBD uptake in WT but not RIPK3−/− mice. Conclusions: A large proportion of cardiomyocyte necrosis induced by excessive β-adrenergic stimulation belongs to necroptosis and is mediated by a RIPK1–RIPK3-dependent pathway, identifying RIPK1 and RIPK3 as potential therapeutic targets for catecholamine surges.
Collapse
Affiliation(s)
- Penglong Wu
- Division of Basic Biomedical Sciences, University of South Dakota Sanford School of Medicine, Vermillion, SD, United States.,Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou, China
| | - Mingqi Cai
- Division of Basic Biomedical Sciences, University of South Dakota Sanford School of Medicine, Vermillion, SD, United States
| | - Jinbao Liu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xuejun Wang
- Division of Basic Biomedical Sciences, University of South Dakota Sanford School of Medicine, Vermillion, SD, United States
| |
Collapse
|
455
|
Zhang YS, Lu LQ, Jiang YQ, Li NS, Luo XJ, Peng JW, Peng J. Allopurinol attenuates oxidative injury in rat hearts suffered ischemia/reperfusion via suppressing the xanthine oxidase/vascular peroxidase 1 pathway. Eur J Pharmacol 2021; 908:174368. [PMID: 34302816 DOI: 10.1016/j.ejphar.2021.174368] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 07/15/2021] [Accepted: 07/21/2021] [Indexed: 11/26/2022]
Abstract
Allopurinol, a xanthine oxidase (XO) inhibitor, is reported to alleviate myocardial ischemia/reperfusion (I/R) injury by reducing the production of reactive oxygen species (ROS). As an XO-derived product, H2O2 can act as a substrate of vascular peroxidase 1 (VPO1) to induce the generation of hypochlorous acid (HOCl), a potent oxidant. This study aims to explore whether the XO/VPO1 pathway is involved in the anti-oxidative effects of allopurinol on the myocardial I/R injury. In a rat heart model of I/R, allopurinol alleviated I/R oxidative injury accompanied by decreased XO activity, XO-derived products (H2O2 and uric acid), and VPO1 expression (mRNA and protein). In a cardiac cell model of hypoxia/reoxygenation (H/R), allopurinol or XO siRNA reduced H/R injury concomitant with decreased XO activity, VPO1 expression as well as the XO and VPO1-derived products (H2O2, uric acid, and HOCl). Although knockdown of VPO1 could also exert a beneficial effect on H/R injury, it did not affect XO activity, XO expression, and XO-derived products. Based on these observations, we conclude that the novel pathway of XO/VPO1 is responsible for, at least partly, myocardial I/R-induced oxidative injury, and allopurinol exerted the cardioprotective effects on myocardial I/R injury via inhibiting the XO/VPO1 pathway.
Collapse
Affiliation(s)
- Yi-Shuai Zhang
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Li-Qun Lu
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Ya-Qian Jiang
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Nian-Sheng Li
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China; Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Xiu-Ju Luo
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Jin-Wu Peng
- Department of Pathology, Xiangya Basic Medical School, Central South University, Changsha, 410013, Hunan, China.
| | - Jun Peng
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China; Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China.
| |
Collapse
|
456
|
Xie L, Zhang Q, Mao J, Zhang J, Li L. The Roles of lncRNA in Myocardial Infarction: Molecular Mechanisms, Diagnosis Biomarkers, and Therapeutic Perspectives. Front Cell Dev Biol 2021; 9:680713. [PMID: 34604208 PMCID: PMC8481623 DOI: 10.3389/fcell.2021.680713] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 08/20/2021] [Indexed: 01/22/2023] Open
Abstract
In recent years, long non-coding RNAs (lncRNAs) have been demonstrated to be associated with many physiological and pathological processes in cardiac. Recent studies have shown that lncRNAs are expressed dynamically in cardiovascular diseases and participate in regulation through a variety of molecular mechanisms, which have become a critical part of the epigenetic and transcriptional regulatory pathways in heart development, as well as the initiation and progress of myocardial infarction. In this review, we summarized some current research about the roles of lncRNAs in heart development and myocardial infarction, with the emphasis on molecular mechanisms of pathological responses, and highlighted their functions in the secondary changes of myocardial infarction. We also discussed the possibility of lncRNAs as novel diagnostic biomarkers and potential therapeutic targets for myocardial infarction.
Collapse
Affiliation(s)
- Luhan Xie
- Department of Pathology and Forensic Medicine, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Qingqing Zhang
- Department of Pathology and Forensic Medicine, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Jun Mao
- Department of Pathology and Forensic Medicine, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Jun Zhang
- Department of Teaching Affairs, Dalian Medical University, Dalian, China
| | - Lianhong Li
- Department of Pathology and Forensic Medicine, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| |
Collapse
|
457
|
Pan R, Zhuang Q, Wang J. Ononin alleviates H 2O 2-induced cardiomyocyte apoptosis and improves cardiac function by activating the AMPK/mTOR/autophagy pathway. Exp Ther Med 2021; 22:1307. [PMID: 34584565 PMCID: PMC8461629 DOI: 10.3892/etm.2021.10742] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 06/07/2021] [Indexed: 12/11/2022] Open
Abstract
Ononin (ON) is an isoflavone with numerous reported bioactivities, including anti-oxidative, anti-inflammatory and neuroprotective effects. Autophagy is a critical homeostatic process in the body that has been reported to closely associate with the apoptotic processes of cardiomyocytes. Using flow cytometry, western blotting, echocardiography and Masson's staining, the present study investigated the effects of ON on H2O2-induced cardiomyocyte apoptosis and myocardial infarction, in addition to any potential underlying molecular mechanisms. H2O2 treatment reliably induced apoptosis in H9C2 cells. The anti-apoptotic effects of ON were revealed by flow cytometry results and by the downregulation of cleaved-caspase 3. Further investigations indicated that ON may alleviate apoptosis by enhancing autophagy, as evidenced by increased microtubule-associated proteins 1A/1B light chain 3B expression and p62 degradation. Activation of the 5' AMP-activated protein kinase (AMPK)/mTOR pathway was observed after ON administration following H2O2-induced cardiomyocyte injury. However, these anti-apoptotic effects mediated by ON were lost after autophagy inhibition by chloroquine or AMPK inhibition by Compound C. Finally, the protective effects of ON on cardiomyocytes in vitro could also be observed in vivo. A myocardial infarction model was established by ligating the left anterior descending branch of the rat heart. Using echocardiography and Masson's staining, ON was shown to increase the ejection fraction and decrease cardiac fibrosis in rats with myocardial infarction. These results suggest that ON exerts cardioprotective effects by improving autophagy via the AMPK/mTOR signaling pathway.
Collapse
Affiliation(s)
- Rongrong Pan
- Department of Cardiology, Cixi People's Hospital, Wenzhou Medical University, Cixi, Zhejiang 315300, P.R. China
| | - Qin Zhuang
- Department of Cardiology, Cixi People's Hospital, Wenzhou Medical University, Cixi, Zhejiang 315300, P.R. China
| | - Jiangtin Wang
- Department of Cardiology, Zhejiang Hospital, Hangzhou, Zhejiang 310013, P.R. China
| |
Collapse
|
458
|
Mechanism of total glucosides of paeony in hypoxia/reoxygenation-induced cardiomyocyte pyroptosis. J Bioenerg Biomembr 2021; 53:643-653. [PMID: 34585325 DOI: 10.1007/s10863-021-09921-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 09/21/2021] [Indexed: 01/19/2023]
Abstract
Inflammasome-mediated pyroptosis can aggravate myocardial ischemia/reperfusion injury. Total glucosides of paeony (TGP) is widely used in anti-inflammation. This study investigated the effect of TGP on pyroptosis of hypoxia/reoxygenation (H/R)-induced cardiomyocytes. HL-1 cells were subjected to H/R treatment. H/R-induced cardiomyocytes were treated with TGP at different concentrations (50, 100, and 200 mg/kg). The viability of H/R-induced cardiomyocytes was measured. The levels of lactate dehydrogenase (LDH), malondialdehyde (MDA), superoxide dismutase (SOD), and reactive oxygen species (ROS) were determined. The activity of caspase-1, the expressions of NLRP3 and GSDMD-N, and the concentrations of IL-1β and IL-18 were examined. miR-181a-5p expression in H/R cardiomyocytes was determined. The targeting relationship between miR-181a-5p and adenylate cyclase 1 (ADCY1) was verified. Functional rescue experiments were performed to verify the effect of miR-181a-5p or ADCY1 on the pyroptosis of H/R cardiomyocytes. TGP enhanced H/R-induced cardiomyocyte viability in a dose-dependent manner, reduced LDH, MDA, and ROS levels, increased SOD level, decreased caspase-1 activity, reduced NLRP3 and GSDMD-N expressions, and inhibited IL-1β and IL-18 concentrations. TGP suppressed miR-181a-5p expression in H/R cardiomyocytes. miR-181a-5p targeted ADCY1. miR-181a-5p overexpression or ADCY1 inhibition reversed the inhibitory effect of TGP on the pyroptosis of H/R cardiomyocytes. Collectively, TGP alleviated the pyroptosis of H/R cardiomyocytes via the miR-181a-5p/ADCY1 axis.
Collapse
|
459
|
Huang X, Yan Y, Zheng W, Ma Y, Wang X, Gong W, Nie S. Secreted Frizzled-Related Protein 5 Protects Against Cardiac Rupture and Improves Cardiac Function Through Inhibiting Mitochondrial Dysfunction. Front Cardiovasc Med 2021; 8:682409. [PMID: 34568442 PMCID: PMC8458704 DOI: 10.3389/fcvm.2021.682409] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 08/03/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Secreted frizzled-related protein 5 (Sfrp5) has been suggested to be a protective regulatory protein in coronary heart disease. However, the role of Sfrp5 in regulating ischemic injury and its consequences is not known. The aim of our study was to explore the effects of Sfrp5 on hearts after myocardial infarction (MI) and to investigate the underlying mechanisms. Methods and Results: We found that Sfrp5 was downregulated over time in the heart tissue of MI mice. To further elucidate the role of Sfrp5 during MI, we established a cardiac overexpression of an Sfrp5 mouse model using the cardiotropic adeno-associated virus serotype 9 (AAV9). Overexpression of Sfrp5 significantly reduced infarct size as demonstrated by a decrease in mortality owing to cardiac rupture. Moreover, cardiac overexpression of Sfrp5 increased left ventricular function and mitochondrial biogenesis, decreased cardiomyocyte apoptosis, suppressed inflammation reaction, inhibited oxidative stress, and ameliorated cardiac remodeling as demonstrated by left ventricular ejection fraction, mitochondrial morphology, heart weight, NADH oxidase activity levels, and myocardial fibrosis at 2 weeks post-MI. At the molecular level, overexpression of Sfrp5 significantly increased the expression of p-AMPKThr172 protein with higher expression of mitochondrial fusion protein (MFN1 and MFN2) and lower expression of mitochondrial fission protein (p-Drp1Ser616/Mid49/MFF/Fis-1). In isolated neonatal rat cardiac myocytes, Sfrp5 treatment attenuated hypoxia-induced mitochondrial dysfunction. Inhibition of AMPK activity with compound C abrogated this benefit. Conclusions: Sfrp5 overexpression inhibits ischemic injury, reduces risk of cardiac rupture, ameliorates post-MI remodeling, and decreases the progression to heart failure via disrupting mitochondrial dysfunction and partly through normalizing the AMPK activity.
Collapse
Affiliation(s)
- Xin Huang
- Emergency & Critical Care Center, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.,Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing, China
| | - Yan Yan
- Emergency & Critical Care Center, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.,Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing, China
| | - Wen Zheng
- Emergency & Critical Care Center, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.,Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing, China
| | - Youcai Ma
- Emergency & Critical Care Center, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.,Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing, China
| | - Xiao Wang
- Emergency & Critical Care Center, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.,Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing, China
| | - Wei Gong
- Emergency & Critical Care Center, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.,Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing, China
| | - Shaoping Nie
- Emergency & Critical Care Center, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.,Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing, China
| |
Collapse
|
460
|
Huang F, Yang R, Xiao Z, Xie Y, Lin X, Zhu P, Zhou P, Lu J, Zheng S. Targeting Ferroptosis to Treat Cardiovascular Diseases: A New Continent to Be Explored. Front Cell Dev Biol 2021; 9:737971. [PMID: 34527678 PMCID: PMC8435746 DOI: 10.3389/fcell.2021.737971] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 08/02/2021] [Indexed: 12/20/2022] Open
Abstract
Cardiovascular diseases, including cardiomyopathy, myocardial infarction, myocardial ischemia/reperfusion injury, heart failure, vascular injury, stroke, and arrhythmia, are correlated with cardiac and vascular cell death. Ferroptosis is a novel form of non-apoptotic regulated cell death which is characterized by an iron-driven accumulation of lethal lipid hydroperoxides. The initiation and execution of ferroptosis are under the control of several mechanisms, including iron metabolism, glutamine metabolism, and lipid peroxidation. Recently, emerging evidence has demonstrated that ferroptosis can play an essential role in the development of various cardiovascular diseases. Recent researches have shown the ferroptosis inhibitors, iron chelators, genetic manipulations, and antioxidants can alleviate myocardial injury by blocking ferroptosis pathway. In this review, we systematically described the mechanisms of ferroptosis and discussed the role of ferroptosis as a novel therapeutic strategy in the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Fangze Huang
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ronghua Yang
- Department of Burn Surgery, The First People's Hospital of Foshan, Foshan, China
| | - Zezhou Xiao
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yu Xie
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xuefeng Lin
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Peng Zhu
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Pengyu Zhou
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jun Lu
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shaoyi Zheng
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
461
|
Zhang Y, Zhang X, Lu M, Zou X. Ceramide-1-phosphate and its transfer proteins in eukaryotes. Chem Phys Lipids 2021; 240:105135. [PMID: 34499882 DOI: 10.1016/j.chemphyslip.2021.105135] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 07/31/2021] [Accepted: 09/02/2021] [Indexed: 02/07/2023]
Abstract
Ceramide-1-phosphate (C1P) is a bioactive phosphorylated sphingolipid (SL), produced through the direct phosphorylation of ceramide by ceramide kinase. It plays important roles in regulating cell survival, migration, apoptosis and autophagy and is involved in inflammasome assembly/activation, which can stimulate group IVA cytosolic phospholipase A2α and subsequently increase the levels of arachidonic acid and pro-inflammatory cytokines. Human C1P transfer protein (CPTP) can selectively transport C1P from the Golgi apparatus to specific cellular sites through a non-vesicular mechanism. Human CPTP also affects specific SL levels, thus regulating cell SL homeostasis. In addition, human CPTP plays a crucial role in the regulation of autophagy, inflammation and cell death; thus, human CPTP is closely associated with autophagy and inflammation-related diseases such as cardiovascular and neurodegenerative diseases, and cancers. Therefore, illustrating the functions and mechanisms of human CPTP is important for providing the research foundations for targeted therapy. The key human CPTP residues for C1P recognition and binding are highly conserved in eukaryotic orthologs, while the human CPTP homolog in Arabidopsis (accelerated cell death 11) also exhibits selective inter-membrane transfer of phyto-C1P. These results demonstrate that C1P transporters play fundamental roles in SL metabolism in cells. The present review summarized novel findings of C1P and its TPs in eukaryotes.
Collapse
Affiliation(s)
- Yanqun Zhang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China
| | - Xiangyu Zhang
- Affiliated Stomatology Hospital of Guilin Medical University, Guilin, 541004, PR China
| | - Mengyun Lu
- Affiliated Stomatology Hospital of Guilin Medical University, Guilin, 541004, PR China
| | - Xianqiong Zou
- Affiliated Stomatology Hospital of Guilin Medical University, Guilin, 541004, PR China; College of Biotechnology, Guilin Medical University, Guilin, 541100, PR China.
| |
Collapse
|
462
|
Wang X, Wang Y, Li Z, Qin J, Wang P. Regulation of Ferroptosis Pathway by Ubiquitination. Front Cell Dev Biol 2021; 9:699304. [PMID: 34485285 PMCID: PMC8414903 DOI: 10.3389/fcell.2021.699304] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 07/19/2021] [Indexed: 12/17/2022] Open
Abstract
Ferroptosis is an iron-dependent form of programmed cell death, which plays crucial roles in tumorigenesis, ischemia–reperfusion injury and various human degenerative diseases. Ferroptosis is characterized by aberrant iron and lipid metabolisms. Mechanistically, excess of catalytic iron is capable of triggering lipid peroxidation followed by Fenton reaction to induce ferroptosis. The induction of ferroptosis can be inhibited by sufficient glutathione (GSH) synthesis via system Xc– transporter-mediated cystine uptake. Therefore, induction of ferroptosis by inhibition of cystine uptake or dampening of GSH synthesis has been considered as a novel strategy for cancer therapy, while reversal of ferroptotic effect is able to delay progression of diverse disorders, such as cardiopathy, steatohepatitis, and acute kidney injury. The ubiquitin (Ub)–proteasome pathway (UPP) dominates the majority of intracellular protein degradation by coupling Ub molecules to the lysine residues of protein substrate, which is subsequently recognized by the 26S proteasome for degradation. Ubiquitination is crucially involved in a variety of physiological and pathological processes. Modulation of ubiquitination system has been exhibited to be a potential strategy for cancer treatment. Currently, more and more emerged evidence has demonstrated that ubiquitous modification is involved in ferroptosis and dominates the vulnerability to ferroptosis in multiple types of cancer. In this review, we will summarize the current findings of ferroptosis surrounding the viewpoint of ubiquitination regulation. Furthermore, we also highlight the potential effect of ubiquitination modulation on the perspective of ferroptosis-targeted cancer therapy.
Collapse
Affiliation(s)
- Xinbo Wang
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yanjin Wang
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zan Li
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jieling Qin
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ping Wang
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
463
|
Pei Z, Liu Y, Liu S, Jin W, Luo Y, Sun M, Duan Y, Ajoolabady A, Sowers JR, Fang Y, Cao F, Xu H, Bi Y, Wang S, Ren J. FUNDC1 insufficiency sensitizes high fat diet intake-induced cardiac remodeling and contractile anomaly through ACSL4-mediated ferroptosis. Metabolism 2021; 122:154840. [PMID: 34331963 DOI: 10.1016/j.metabol.2021.154840] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/15/2021] [Accepted: 07/11/2021] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Ferroptosis is indicated in cardiovascular diseases. Given the prominent role of mitophagy in the governance of ferroptosis and our recent finding for FUN14 domain containing 1 (FUNDC1) in obesity anomalies, this study evaluated the impact of FUNDC1 deficiency in high fat diet (HFD)-induced cardiac anomalies. METHODS AND MATERIALS WT and FUNDC1-/- mice were fed HFD (45% calorie from fat) or low fat diet (LFD, 10% calorie from fat) for 10 weeks in the presence of the ferroptosis inhibitor liproxstatin-1 (LIP-1, 10 mg/kg, i.p.). RESULTS RNAseq analysis for differentially expressed genes (DEGs) reported gene ontology term related to ferroptosis and mitophagy in obese rat hearts, which was validated in obese rodent and human hearts. Although 10-week HFD intake did not alter global metabolism, cardiac geometry and function, ablation of FUNDC1 unmasked metabolic derangement, pronounced cardiac remodeling, contractile, intracellular Ca2+ and mitochondrial anomalies upon HFD challenge, the effects of which with exception of global metabolism were attenuated or mitigated by LIP-1. FUNDC1 ablation unmasked HFD-evoked rises in fatty acid synthase ACSL4, necroptosis, inflammation, ferroptosis, mitochondrial O2- production, and mitochondrial injury as well as dampened autophagy and DNA repair enzyme 8-oxoG DNA glycosylase 1 (OGG1) but not apoptosis, the effect of which except ACSL4 and its regulator SP1 was reversed by LIP-1. In vitro data noted that arachidonic acid, an ACSL4 substrate, provoked cytochrome C release, cardiomyocyte defect, and lipid peroxidation under FUNDC1 deficiency, the effects were interrupted by inhibitors of SP1, ACSL4 and ferroptosis. CONCLUSIONS These data suggest that FUNDC1 deficiency sensitized cardiac remodeling and dysfunction with short-term HFD exposure, likely through ACSL4-mediated regulation of ferroptosis.
Collapse
Affiliation(s)
- Zhaohui Pei
- The Second Department of Cardiology, The Third Hospital of Nanchang, Nanchang 200072, China.
| | - Yandong Liu
- The Second Department of Cardiology, The Third Hospital of Nanchang, Nanchang 200072, China
| | - Suqin Liu
- The Second Department of Cardiology, The Third Hospital of Nanchang, Nanchang 200072, China; Nanchang University, Nanchang, Jiangxi 330006, China
| | - Wei Jin
- The Second Department of Cardiology, The Third Hospital of Nanchang, Nanchang 200072, China
| | - Yuanfei Luo
- The Second Department of Cardiology, The Third Hospital of Nanchang, Nanchang 200072, China
| | - Mingming Sun
- University of Wyoming College of Health Sciences, Laramie, WY 82071, USA; Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yu Duan
- Department of Cardiology, Xijing Hospital, the Air Force Military Medical University, Xi'an 710032, China
| | - Amir Ajoolabady
- University of Wyoming College of Health Sciences, Laramie, WY 82071, USA
| | - James R Sowers
- Diabetes and Cardiovascular Research Center, University of Missouri Columbia, Columbia, MO 65212, USA
| | - Yan Fang
- Department of Cardiology, the Second Medical Center of the China PLA General Hospital, Beijing 100853, China
| | - Feng Cao
- Department of Cardiology, the Second Medical Center of the China PLA General Hospital, Beijing 100853, China
| | - Haixia Xu
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Department of Cardiology, Affiliated Hospital of Nantong University, Jiangsu 226001, China
| | - Yaguang Bi
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Shuyi Wang
- University of Wyoming College of Health Sciences, Laramie, WY 82071, USA; Shanghai University School of Medicine, Shanghai 200044, China.
| | - Jun Ren
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
464
|
Xie M, Tao W, Wu F, Wu K, Huang X, Ling G, Zhao C, Lv Q, Wang Q, Zhou X, Chen Y, Yuan Q, Chen Y. Anti-hypertensive and cardioprotective activities of traditional Chinese medicine-derived polysaccharides: A review. Int J Biol Macromol 2021; 185:917-934. [PMID: 34229020 DOI: 10.1016/j.ijbiomac.2021.07.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 06/28/2021] [Accepted: 07/01/2021] [Indexed: 02/05/2023]
Abstract
Cardiovascular diseases (CVDs), a leading cause of death in modern society, have become a major public health issue globally. Although numerous approaches have been proposed to reduce morbidity and mortality, the pursuit of pharmaceuticals with more preventive and/or therapeutic value remains a focus of attention. Being a vast treasure trove of natural drug molecules, Traditional Chinese Medicine (TCM) has a long history of clinical use in the prophylaxis and remedy of CVDs. Increasing lines of preclinical evidence have demonstrated the effectiveness of TCM-derived polysaccharides on hindering the progression of CVDs, e.g. hypertension, myocardial infarction. However, to the best of our knowledge, there are few reviews on the application of TCM-derived polysaccharides in combating CVDs. Hence, we provide an overview of primary literature on the anti-hypertensive and cardioprotective activities of herbal polysaccharides. Additionally, we also discuss the current limitations and propose a new hypothesis about how polysaccharides exert cardiovascular effects based on the metabolism of polysaccharides.
Collapse
Affiliation(s)
- Miaotian Xie
- Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Weili Tao
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Fengjia Wu
- Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Kunlin Wu
- Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Xiujie Huang
- Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Gensong Ling
- Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Chuanyi Zhao
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Qian Lv
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Qiongjin Wang
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Xianhuan Zhou
- Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Ying Chen
- Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Qin Yuan
- Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Yicun Chen
- Shantou University Medical College, Shantou 515041, Guangdong, China; Department of Pharmacology, Shantou University Medical College, Shantou 515041, Guangdong, China.
| |
Collapse
|
465
|
Chi RF, Li L, Wang AL, Yang H, Xi J, Zhu ZF, Wang K, Li B, Yang LG, Qin FZ, Zhang C. Enhanced oxidative stress mediates pathological autophagy and necroptosis in cardiac myocytes in pressure overload induced heart failure in rats. Clin Exp Pharmacol Physiol 2021; 49:60-69. [PMID: 34453856 DOI: 10.1111/1440-1681.13583] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 08/02/2021] [Accepted: 08/19/2021] [Indexed: 11/29/2022]
Abstract
In cardiac myocytes in vitro, hydrogen peroxide induces autophagic cell death and necroptosis. Oxidative stress, myocyte autophagy and necroptosis coexist in heart failure (HF). In this study, we tested the hypothesis that excessive oxidative stress mediates pathological autophagy and necroptosis in myocytes in pressure overload-induced HF. HF was produced by chronic pressure overload induced by abdominal aortic constriction (AAC) in rats. Rats with AAC or sham operation were randomised to orally receive an antioxidant N-acetylcysteine (NAC) or placebo for 4 weeks. Echocardiography was performed for the assessments of left ventricular (LV) structure and function. AAC rats exhibited decreased LV fractional shortening (FS) at 4 weeks after surgery. NAC treatment attenuated decreased LV FS in AAC rats. In AAC rats, myocardial level of 8-hydroxydeoxyguanosine assessed by immunohistochemical staining, indicative of oxidative stress, was increased, LC3 II protein, a marker of autophagy, Beclin1 protein and Atg4b, Atg5, Atg7 and Atg12 mRNA expression were markedly increased, RIP1, RIP3 and MLKL expression, indicative of necroptosis, was increased, and all of the alterations in AAC rats were prevented by the NAC treatment. NAC treatment also attenuated myocyte cross-sectional area and myocardial fibrosis in AAC rats. In conclusion, NAC treatment prevented the increases in oxidative stress, myocyte autophagy and necroptosis and the decrease in LV systolic function in pressure overload-induced HF. These findings suggest that enhanced oxidative stress mediates pathological autophagy and necroptosis in myocytes, leading to LV systolic dysfunction, and antioxidants may be of value to prevent HF through the inhibition of excessive autophagy and necroptosis.
Collapse
Affiliation(s)
- Rui-Fang Chi
- The Second Hospital of Shanxi Medical University, Taiyuan, China.,Shanxi Medical University, Taiyuan, China
| | - Lu Li
- Shanxi Medical University, Taiyuan, China.,Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Ai-Ling Wang
- The Second Hospital of Shanxi Medical University, Taiyuan, China.,Shanxi Medical University, Taiyuan, China
| | - Hong Yang
- The Second Hospital of Shanxi Medical University, Taiyuan, China.,Shanxi Medical University, Taiyuan, China
| | - Jie Xi
- The Second Hospital of Shanxi Medical University, Taiyuan, China.,Shanxi Medical University, Taiyuan, China
| | - Zong-Feng Zhu
- The Second Hospital of Shanxi Medical University, Taiyuan, China.,Shanxi Medical University, Taiyuan, China
| | - Ke Wang
- The Second Hospital of Shanxi Medical University, Taiyuan, China.,Shanxi Medical University, Taiyuan, China
| | - Bao Li
- The Second Hospital of Shanxi Medical University, Taiyuan, China.,Shanxi Medical University, Taiyuan, China
| | - Li-Guo Yang
- The Second Hospital of Shanxi Medical University, Taiyuan, China.,Shanxi Medical University, Taiyuan, China
| | - Fu-Zhong Qin
- The Second Hospital of Shanxi Medical University, Taiyuan, China.,Shanxi Medical University, Taiyuan, China
| | - Ce Zhang
- Shanxi Medical University, Taiyuan, China.,Department of Physiology, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
466
|
Xu Z, Jin Y, Gao Z, Zeng Y, Du J, Yan H, Chen X, Ping L, Lin N, Yang B, He Q, Luo P. Autophagic degradation of CCN2 (cellular communication network factor 2) causes cardiotoxicity of sunitinib. Autophagy 2021; 18:1152-1173. [PMID: 34432562 DOI: 10.1080/15548627.2021.1965712] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Excessive macroautophagy/autophagy is one of the causes of cardiomyocyte death induced by cardiovascular diseases or cancer therapy, yet the underlying mechanism remains unknown. We and other groups previously reported that autophagy might contribute to cardiomyocyte death caused by sunitinib, a tumor angiogenesis inhibitor that is widely used in clinic, which may help to understand the mechanism of autophagy-induced cardiomyocyte death. Here, we found that sunitinib-induced autophagy leads to apoptosis of cardiomyocyte and cardiac dysfunction as the cardiomyocyte-specific Atg7-/+ heterozygous mice are resistant to sunitinib. Sunitinib-induced maladaptive autophagy selectively degrades the cardiomyocyte survival mediator CCN2 (cellular communication network factor 2) through the TOLLIP (toll interacting protein)-mediated endosome-related pathway and cardiomyocyte-specific knockdown of Ccn2 through adeno-associated virus serotype 9 (AAV9) mimics sunitinib-induced cardiac dysfunction in vivo, suggesting that the autophagic degradation of CCN2 is one of the causes of sunitinib-induced cardiotoxicity and death of cardiomyocytes. Remarkably, deletion of Hmgb1 (high mobility group box 1) inhibited sunitinib-induced cardiomyocyte autophagy and apoptosis, and the HMGB1-specific inhibitor glycyrrhizic acid (GA) significantly mitigated sunitinib-induced autophagy, cardiomyocyte death and cardiotoxicity. Our study reveals a novel target protein of autophagic degradation in the regulation of cardiomyocyte death and highlights the pharmacological inhibitor of HMGB1 as an attractive approach for improving the safety of sunitinib-based cancer therapy.
Collapse
Affiliation(s)
- Zhifei Xu
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, P.R.China
| | - Ying Jin
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, P.R.China
| | - Zizheng Gao
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, P.R.China
| | - Yan Zeng
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, P.R.China
| | - Jiangxia Du
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, P.R.China
| | - Hao Yan
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, P.R.China
| | - Xueqin Chen
- Department of Oncology, Hangzhou First People's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, P.R.China
| | - Li Ping
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, P.R.China
| | - Nengming Lin
- Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Cancer Center, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R.China
| | - Bo Yang
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, P.R.China
| | - Qiaojun He
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, P.R.China.,Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, Zhejiang, P.R.China.,Department of Cardiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| | - Peihua Luo
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, P.R.China.,Department of Pharmacology and Toxicology, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| |
Collapse
|
467
|
Calpain-Mediated Mitochondrial Damage: An Emerging Mechanism Contributing to Cardiac Disease. Cells 2021; 10:cells10082024. [PMID: 34440793 PMCID: PMC8392834 DOI: 10.3390/cells10082024] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/19/2021] [Accepted: 08/06/2021] [Indexed: 12/13/2022] Open
Abstract
Calpains belong to the family of calcium-dependent cysteine proteases expressed ubiquitously in mammals and many other organisms. Activation of calpain is observed in diseased hearts and is implicated in cardiac cell death, hypertrophy, fibrosis, and inflammation. However, the underlying mechanisms remain incompletely understood. Recent studies have revealed that calpains target and impair mitochondria in cardiac disease. The objective of this review is to discuss the role of calpains in mediating mitochondrial damage and the underlying mechanisms, and to evaluate whether targeted inhibition of mitochondrial calpain is a potential strategy in treating cardiac disease. We expect to describe the wealth of new evidence surrounding calpain-mediated mitochondrial damage to facilitate future mechanistic studies and therapy development for cardiac disease.
Collapse
|
468
|
Tonnus W, Belavgeni A, Beuschlein F, Eisenhofer G, Fassnacht M, Kroiss M, Krone NP, Reincke M, Bornstein SR, Linkermann A. The role of regulated necrosis in endocrine diseases. Nat Rev Endocrinol 2021; 17:497-510. [PMID: 34135504 PMCID: PMC8207819 DOI: 10.1038/s41574-021-00499-w] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/22/2021] [Indexed: 12/13/2022]
Abstract
The death of endocrine cells is involved in type 1 diabetes mellitus, autoimmunity, adrenopause and hypogonadotropism. Insights from research on basic cell death have revealed that most pathophysiologically important cell death is necrotic in nature, whereas regular metabolism is maintained by apoptosis programmes. Necrosis is defined as cell death by plasma membrane rupture, which allows the release of damage-associated molecular patterns that trigger an immune response referred to as necroinflammation. Regulated necrosis comes in different forms, such as necroptosis, pyroptosis and ferroptosis. In this Perspective, with a focus on the endocrine environment, we introduce these cell death pathways and discuss the specific consequences of regulated necrosis. Given that clinical trials of necrostatins for the treatment of autoimmune conditions have already been initiated, we highlight the therapeutic potential of such novel therapeutic approaches that, in our opinion, should be tested in endocrine disorders in the future.
Collapse
Affiliation(s)
- Wulf Tonnus
- Clinic of Internal Medicine III, Division of Nephrology, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | - Alexia Belavgeni
- Clinic of Internal Medicine III, Division of Nephrology, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | - Felix Beuschlein
- Medizinische Klinik und Poliklinik IV, Hospital of the Ludwig-Maximilian-University Munich, Munich, Germany
- Klinik für Endokrinologie, Diabetologie und Klinische Ernährung, Universitätsspital Zürich, Zürich, Switzerland
| | - Graeme Eisenhofer
- Clinic of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | - Martin Fassnacht
- Clinic of Internal Medicine I, Division of Endocrinology and Diabetology, University Hospital, University of Würzburg, Würzburg, Germany
| | - Matthias Kroiss
- Clinic of Internal Medicine I, Division of Endocrinology and Diabetology, University Hospital, University of Würzburg, Würzburg, Germany
| | - Nils P Krone
- Clinic of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
- Academic Unit of Child Health, Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
| | - Martin Reincke
- Medizinische Klinik und Poliklinik IV, Hospital of the Ludwig-Maximilian-University Munich, Munich, Germany
| | - Stefan R Bornstein
- Klinik für Endokrinologie, Diabetologie und Klinische Ernährung, Universitätsspital Zürich, Zürich, Switzerland
- Clinic of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
- Diabetes and Nutritional Sciences, King's College London, London, UK
| | - Andreas Linkermann
- Clinic of Internal Medicine III, Division of Nephrology, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany.
- Biotechnology Center, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
469
|
Wei Y, Zhu M, Li S, Hong T, Guo X, Li Y, Liu Y, Hou X, He B. Engineered Biomimetic Nanoplatform Protects the Myocardium Against Ischemia/Reperfusion Injury by Inhibiting Pyroptosis. ACS APPLIED MATERIALS & INTERFACES 2021; 13:33756-33766. [PMID: 34258997 DOI: 10.1021/acsami.1c03421] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Protection of cardiomyocytes against oxidative stress is vital to alleviate myocardial ischemia/reperfusion injury (MI/RI). However, antioxidative treatment is hampered by the lack of safe and effective therapeutics. Polydopamine (PDA), as a biodegradable class of nanomaterial with excellent antioxidant properties, has shown great potential in treating MI/RI. To achieve site-specific antioxidative efficacy, we established a PDA-based biomimetic nanoplatform (PDA@M), which consisted of a polydopamine core and a macrophage membrane shell to form a shell-core structure. By inheriting the inherent migration capability of macrophages, PDA@M was able to target the infarcted myocardium and exert an antioxidative effect to protect the myocardium. The results demonstrated that the accumulation of the membrane-wrapped nanoparticles (NPs) in the infarcted myocardium was greatly increased as compared with PDA alone, which effectively relieved the MI/RI-induced oxidative stress. PDA@M largely decreased the infarct size and improved the cardiac function post-MI/RI. Our study revealed that PDA@M could inhibit cell pyroptosis by suppressing the NLRP3/caspase-1 pathway, which is known to play a significant role in the antioxidant signaling pathway. In summary, PDA@M can target the infarcted myocardium and exert antioxidative and antipyroptosis functions to protect the myocardium against MI/RI-induced oxidative stress, suggesting that it may prove to be a potential therapeutic agent for MI/RI.
Collapse
Affiliation(s)
- Yazhong Wei
- Department of Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai 200030, China
| | - Minfang Zhu
- Department of Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai 200030, China
| | - Saiqi Li
- Department of Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai 200030, China
| | - Ting Hong
- Department of Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai 200030, China
| | - Xiaoyu Guo
- Department of Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai 200030, China
| | - Yongyong Li
- Institute for Biomedical Engineering & Nano Science, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200092, China
| | - Yiqiong Liu
- Institute for Biomedical Engineering & Nano Science, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200092, China
| | - Xumin Hou
- Department of Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai 200030, China
| | - Bin He
- Department of Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai 200030, China
| |
Collapse
|
470
|
Zhao W, Zhang X, Rong J. SUMOylation as a Therapeutic Target for Myocardial Infarction. Front Cardiovasc Med 2021; 8:701583. [PMID: 34395563 PMCID: PMC8355363 DOI: 10.3389/fcvm.2021.701583] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/01/2021] [Indexed: 12/23/2022] Open
Abstract
Myocardial infarction is a prevalent and life-threatening cardiovascular disease. The main goal of existing interventional therapies is to restore coronary reperfusion while few are designed to ameliorate the pathology of heart diseases via targeting the post-translational modifications of those critical proteins. Small ubiquitin-like modifier (SUMO) proteins are recently discovered to form a new type of protein post-translational modifications (PTM), known as SUMOylation. SUMOylation and deSUMOylation are dynamically balanced in the maintenance of various biological processes including cell division, DNA repair, epigenetic transcriptional regulation, and cellular metabolism. Importantly, SUMOylation plays a critical role in the regulation of cardiac functions and the pathology of cardiovascular diseases, especially in heart failure and myocardial infarction. This review summarizes the current understanding on the effects of SUMOylation and SUMOylated proteins in the pathophysiology of myocardial infarction and identifies the potential treatments against myocardial injury via targeting SUMO. Ultimately, this review recommends SUMOylation as a key therapeutic target for treating cardiovascular diseases.
Collapse
Affiliation(s)
- Wei Zhao
- Li Ka Shing Faculty of Medicine, School of Chinese Medicine, University of Hong Kong, Hong Kong, China.,Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xiuying Zhang
- Li Ka Shing Faculty of Medicine, School of Chinese Medicine, University of Hong Kong, Hong Kong, China
| | - Jianhui Rong
- Li Ka Shing Faculty of Medicine, School of Chinese Medicine, University of Hong Kong, Hong Kong, China.,Shenzhen Institute of Research and Innovation, The University of Hong Kong, Shenzhen, China
| |
Collapse
|
471
|
Wang B, Xu H, Kong J, Liu D, Qin WD, Bai W. Krüppel-like factor 15 reduces ischemia-induced apoptosis involving regulation of p38/MAPK signaling. Hum Gene Ther 2021; 32:1471-1480. [PMID: 34314239 DOI: 10.1089/hum.2021.075] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Background Cardiomyocyte apoptosis is a characteristic of a variety of cardiac diseases including myocardial infarction (MI). Krüppel-like factor 15 (KLF15) is a transcription factor of Krüppel family that plays an important part in cardiovascular diseases. However, the function and the underlying mechanism of KLF15 in MI remain unknown. Methods and Results The expression of KLF15 was downregulated both in ischemic myocardium of MI mice model and hypoxia-treated neonatal rat ventricular myocytes (NRVCs). KLF15 overexpression mediated by adeno-associated virus significantly abrogated the ischemia-induced cardiac dysfunction, increased the survival rate and reduced infarct size after MI. Meanwhile, KLF15 overexpression dramatically reduced the myocardial apoptosis, regulated apoptosis-related genes such as Bcl2 and Bax, diminished the activities of caspase-9/3 and inactivated p38/MAPK signaling in the border zone. Similar results were observed in NRVCs exposed to hypoxia. Conclusions We demonstrated for the first time that KLF15 overexpression could reduce cardiomyocyte apoptosis and improve cardiac dysfunction in MI mice at least partially by inhibiting p38/MAPK signaling pathway.
Collapse
Affiliation(s)
- Bo Wang
- Shandong University Qilu Hospital, 91623, Jinan, Shandong, China;
| | - Haijia Xu
- Weihai Central Hospital, Weihai, China;
| | - Jing Kong
- Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan, China, 250014. Tel. 86-5313256718345, wenhuaxi road 107, Jinan, China, 250012;
| | - Deshan Liu
- Shandong University Qilu Hospital, 91623, Jinan, Shandong, China;
| | - Wei-Dong Qin
- Shandong Univ, Wenhua xi road, No.107, Jinan, United States, 250012;
| | - Wenwu Bai
- Shandong University, 12589, Qilu Hospital, No.107 Wenhua West Road, Jinan City, Jinan, Shandong, China, 250100;
| |
Collapse
|
472
|
Affiliation(s)
- Xiaotong F Jia
- Cell Biology (X.F.J., F.G.L., R.N.K.), Albert Einstein College of Medicine, Bronx, NY
- Wilf Family Cardiovascular Research Institute (X.F.J., F.G.L., R.N.K.), Albert Einstein College of Medicine, Bronx, NY
| | - Felix G Liang
- Cell Biology (X.F.J., F.G.L., R.N.K.), Albert Einstein College of Medicine, Bronx, NY
- Wilf Family Cardiovascular Research Institute (X.F.J., F.G.L., R.N.K.), Albert Einstein College of Medicine, Bronx, NY
| | - Richard N Kitsis
- Departments of Medicine (Cardiology) (R.N.K.), Albert Einstein College of Medicine, Bronx, NY
- Cell Biology (X.F.J., F.G.L., R.N.K.), Albert Einstein College of Medicine, Bronx, NY
- Wilf Family Cardiovascular Research Institute (X.F.J., F.G.L., R.N.K.), Albert Einstein College of Medicine, Bronx, NY
| |
Collapse
|
473
|
Hu H, Chen Y, Jing L, Zhai C, Shen L. The Link Between Ferroptosis and Cardiovascular Diseases: A Novel Target for Treatment. Front Cardiovasc Med 2021; 8:710963. [PMID: 34368260 PMCID: PMC8341300 DOI: 10.3389/fcvm.2021.710963] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 06/21/2021] [Indexed: 12/24/2022] Open
Abstract
Ferroptosis is an iron-dependent cell death, which is characterized by iron overload and lipid peroxidation. Ferroptosis is distinct from apoptosis, necroptosis, autophagy, and other types of cell death in morphology and function. Ferroptosis is regulated by a variety of factors and controlled by several mechanisms, including mitochondrial activity and metabolism of iron, lipid, and amino acids. Accumulating evidence shows that ferroptosis is closely related to a majority of cardiovascular diseases (CVDs), including cardiomyopathy, myocardial infarction, ischemia/reperfusion injury, heart failure, and atherosclerosis. This review summarizes the current status of ferroptosis and discusses ferroptosis as a potential therapeutic target for CVDs.
Collapse
Affiliation(s)
- Huilin Hu
- Department of Cardiology, The Affiliated Hospital of Jiaxing University, Zhejiang, China
| | - Yunqing Chen
- Department of Infection, The Affiliated Hospital of Jiaxing University, Zhejiang, China
| | - Lele Jing
- Department of Cardiology, The Affiliated Hospital of Jiaxing University, Zhejiang, China
| | - Changlin Zhai
- Department of Cardiology, The Affiliated Hospital of Jiaxing University, Zhejiang, China
| | - Liang Shen
- Department of Cardiology, The Affiliated Hospital of Jiaxing University, Zhejiang, China
| |
Collapse
|
474
|
Shu C, Wang R, Zhang X, Wen H, Tian Z, Wu X, Yang J, Gou G. The "dextran-magnetic layered double hydroxide-fluorouracil" drug delivery system exerts its anti-tumor effect by inducing lysosomal membrane permeability in the process of cell death. Biol Pharm Bull 2021; 44:1473-1483. [PMID: 34305072 DOI: 10.1248/bpb.b21-00297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The "dextran-magnetic layered double hydroxide-fluorouracil" (DMF) drug delivery system is a new type of pharmaceutic preparation that can cause cancer cell oncosis. In the present study, we used different experimental methods such as MTT, cycle assay, reactive oxygen species (ROS) assay, Annexin V-FITC/PI, Giemsa stainings, transmission electron microscopy, immunofluorescence staining and Western blotting to study the mechanism of expansion death by using Hydroxychloroquine (HCQ) as a positive control and 5-Fluorouracil (5-Fu) as reference. The results showed that DMF exhibited a better anti-tumor effect than 5-Fu in the process of cell death, and the pharmacological mechanism of 5-Fu was changed by its preparation DMF. The mechanism of cancer cell death induced by DMF was similar to that of HCQ. But DMF intervention did not cause a large amount of accumulation of mitochondrial reactive oxygen species, and the location of lysosomotropic LysoTracker Red (LTR) staining induced by DMF was closer to the nucleus or nuclear membrane. Lysosomal membrane permeability (LMP) and its subsequent the explosive death of cancer cells may be mainly related to the direct action of DMF with different organelles.
Collapse
Affiliation(s)
- Chunhua Shu
- Department of Pharmaceutics, College of Pharmacy, Ningxia Medical University
| | - Rui Wang
- Department of Pharmacology, Key Laboratory of Ministry of Education in Fertility Preservation and Maintenance, Ningxia Medical University
| | - Xiaoke Zhang
- Department of Stomatology, People's Hospital of Longde
| | - Hongyong Wen
- Department of Pharmaceutics, College of Pharmacy, Ningxia Medical University
| | - Zonghua Tian
- Department of Pharmaceutics, College of Pharmacy, Ningxia Medical University
| | - Xia Wu
- Department of Pharmaceutics, College of Pharmacy, Ningxia Medical University
| | - Jianhong Yang
- Department of Pharmaceutics, College of Pharmacy, Ningxia Medical University
| | - Guojing Gou
- Department of Pharmaceutics, College of Pharmacy, Ningxia Medical University.,Medical Chemistry Department, School of Basic Medical, Ningxia Medical University
| |
Collapse
|
475
|
He Z, Zeng X, Zhou D, Liu P, Han D, Xu L, Bu T, Wang J, Ke M, Pan X, Du Y, Xue H, Lu D, Luo B. LncRNA Chaer Prevents Cardiomyocyte Apoptosis From Acute Myocardial Infarction Through AMPK Activation. Front Pharmacol 2021; 12:649398. [PMID: 34335241 PMCID: PMC8322763 DOI: 10.3389/fphar.2021.649398] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/04/2021] [Indexed: 11/30/2022] Open
Abstract
Long non-coding RNA (lncRNA) is widely reported to be involved in cardiac (patho)physiology. Acute myocardial infarction, in which cardiomyocyte apoptosis plays an important role, is a life-threatening disease. Here, we report the lncRNA Chaer that is anti-apoptotic in cardiomyocytes during Acute myocardial infarction. Importantly, lncRNA Chaer is significantly downregulated in both oxygen-glucose deprivation (oxygen-glucose deprivation)-treated cardiomyocytes in vitro and AMI heart. In vitro, overexpression of lncRNA Chaer with adeno virus reduces cardiomyocyte apoptosis induced by OGD-treated while silencing of lncRNA Chaer increases cardiomyocyte apoptosis instead. In vivo, forced expression of lncRNA Chaer with AAV9 attenuates cardiac apoptosis, reduces infarction area and improves mice heart function in AMI. Interestingly, overexpression of lncRNA Chaer promotes the phosphorylation of AMPK, and AMPK inhibitor Compound C reverses the overexpression of lncRNA Chaer effect of reducing cardiomyocyte apoptosis under OGD-treatment. In summary, we identify the novel ability of lncRNA Chaer in regulating cardiomyocyte apoptosis by promoting phosphorylation of AMPK in AMI.
Collapse
Affiliation(s)
- Zhiyu He
- Department of Cardiology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaojun Zeng
- Department of Cardiology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Deke Zhou
- Department of Cardiology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Traditional Chinese Medicine Hospital of Gaozhou, Department of Cardiology, Gaozhou, China
| | - Peiying Liu
- Department of Cardiology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Dunzheng Han
- Department of Cardiology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lingling Xu
- Department of Cardiology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Tong Bu
- Department of Cardiology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jinping Wang
- Department of Cardiology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Mengmeng Ke
- Department of Cardiology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiudi Pan
- Department of Cardiology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yipeng Du
- Department of Cardiology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hao Xue
- Department of Cardiology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Dongfeng Lu
- Department of Cardiology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Bihui Luo
- Department of Cardiology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
476
|
Deficiency of tenascin-C attenuated cardiac injury by inactivating TLR4/NLRP3/caspase-1 pathway after myocardial infarction. Cell Signal 2021; 86:110084. [PMID: 34271086 DOI: 10.1016/j.cellsig.2021.110084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 02/07/2023]
Abstract
Inflammation and pyroptosis play a deleterious role in cardiac dysfunction after myocardial infarction (MI). NLRP3/caspase-1 is a well-established axis in pyroptosis and inflammation. In this study, we examined the effects of TN-C on pyroptosis through NLRP3 is unclear. We constructed 18 TN-C-knockout and 38 WT male mice model and divided into WT sham (n = 16), WT MI (n = 22), TNKO sham (n = 6), TNKO MI (n = 12). Elisa, immunostaining, TTC, qPCR, CCK8, flow cytometry, and western blot, echocardiographic, TUNEL staining technologies were applied. Here, we found a positive correlation between TN-C and NLRP3 in heart tissue via the GEPIA database (r = 0.52, p < 0.05). The findings indicate that TN-C was elevated and peaked on the fifth day after MI. TN-C deficiency alleviated cardiac dysfunction (LVEF, FS, LVIDd, and LVIDs) and cardiomyocyte death. Though the intracellular levels of pyroptosis-related cytokine caspase-1, cleaved caspase-1, NLRP3, IL-18, IL-1β were upregulated both in MI and H2O2 stimulation, knockout of TN-C resisted such injury and alleviated cardiac pyroptosis, which further decreased IL-6, TNF-α, MCP-1 expression. TN-C knockdown inhibited TLR4 expression, reduces the release of downstream factors by inactivating the TLR4/NF-kB pathway, while protects the cardiomyocytes. And TLR4 inhibitor TAK-242 significantly reduced NLRP3 expression levels after MI. We demonstrated for the first time a direct link between MI-induced TN-C upregulation and caspase-1-dependent cardiomyocyte pyroptosis, a process mediated, at least in part, by TLR4/NF-kB/NLRP3 and IL-18, IL-1β signaling pathways. These findings provide new insights into the role of TN-C in post-MI cardiomyocytes' pyroptosis and inflammation.
Collapse
|
477
|
Huang J, Liu Y, Wang M, Wang R, Ling H, Yang Y. FoxO4 negatively modulates USP10 transcription to aggravate the apoptosis and oxidative stress of hypoxia/reoxygenation-induced cardiomyocytes by regulating the Hippo/YAP pathway. J Bioenerg Biomembr 2021; 53:541-551. [PMID: 34251583 DOI: 10.1007/s10863-021-09910-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 07/01/2021] [Indexed: 12/25/2022]
Abstract
Acute myocardial infarction (AMI) is the main cause of death in the whole world. This study aimed to investigate whether forkhead box O4 (FoxO4) could negatively modulate ubiquitin specific peptidase 10 (USP10) transcription to aggravate the apoptosis and oxidative stress of hypoxia/reoxygenation (H/R)-induced cardiomyocytes through Hippo/YAP pathway. mRNA expression as well as protein expressions of USP10 and FoxO4 in H9C2 cells after H/R induction or transfection were respectively detected by Reverse transcription-quantitative (RT-q) PCR analysis and Western blot. The viability and apoptosis of H9C2 cells after H/R induction or transfection were respectively detected by CCK-8 and TUNEL assays. The expressions of lactate dehydrogenase (LDH), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and malondialdehyde (MDA) in H9C2 cells after H/R induction or transfection were analyzed using appropriate kits and intracellular reactive oxygen species (ROS) levels were detected using a ROS Assay Kit. Dual luciferase reporter assay and Chromatin Immunoprecipitation (ChIP) have adopted to confirm the combination of USP10 and FoxO4. Western blot was also used to analyze the expression of apoptosis-related proteins and Hippo/YAP pathway-related proteins. As a result, USP10 expression was decreased in H/R-induced H9C2 cells in a time-dependent manner. USP10 overexpression increased the viability and suppressed the apoptosis and oxidative stress of H/R-induced H9C2 cells. In addition, FoxO4 modulated USP10 transcription. FoxO4 expression was increased in H9C2 cells induced by H/R. FoxO4 overexpression could reverse the protective effects of USP10 overexpression on H/R-induced H9C2 cells by regulating the Hippo/YAP signaling pathway. In conclusion, FoxO4 negatively modulated USP10 transcription to aggravate the apoptosis and oxidative stress of H/R-induced H9C2 cells via blocking Hippo/YAP pathway.
Collapse
Affiliation(s)
- Jingwen Huang
- Department of Nursing, Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Yu Liu
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Qiaokou District, Wuhan, 430030, Hubei Province, China
| | - Mei Wang
- Department of Nursing, Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Rong Wang
- Department of Nursing, Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Huifen Ling
- Department of Nursing, Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Yan Yang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Qiaokou District, Wuhan, 430030, Hubei Province, China.
| |
Collapse
|
478
|
Kong C, Lyu D, He C, Li R, Lu Q. Dioscin elevates lncRNA MANTIS in therapeutic angiogenesis for heart diseases. Aging Cell 2021; 20:e13392. [PMID: 34081836 PMCID: PMC8282240 DOI: 10.1111/acel.13392] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 04/13/2021] [Accepted: 05/08/2021] [Indexed: 01/16/2023] Open
Abstract
Dioscin has been widely used in clinics for coronary artery disease (CAD) treatment for years in China. However, the underlying mechanism for Dioscin‐mediated cardioprotective effect has not been elucidated. Here, we showed that Dioscin significantly rescues the cardiac function in mouse model of myocardial infarction (MI), accompanied by the reduction of cardiac fibrosis and apoptosis, resulting from elevated angiogenesis. Mechanistically, Dioscin promotes the proliferation and migration of hypoxic endothelial cells via the up‐regulation of lncRNA MANTIS, which serves as a scaffolding lncRNA within a chromatin remodeling complex. Meanwhile, it enables pol II binding to the transcription start sites, which leads to induced expression of angiogenesis‐related genes, including SOX18, SMAD6, and COUP‐TFII. Conversely, IncRNA MANTIS silencing prevents Dioscin‐induced migration and angiogenesis in hypoxic endothelial cells. Taken together, these data provide new insights that clarifies the cardioprotective effects of Dioscin against myocardial infarcted injury and confirms the effect on angiogenic activity of endothelial cells. This will build a solid theoretical basis for clinical therapeutic strategies.
Collapse
Affiliation(s)
- Chuiyu Kong
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine School of Pharmacy Nanjing Medical University Nanjing China
| | - Dayin Lyu
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine School of Pharmacy Nanjing Medical University Nanjing China
| | - Chang He
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine School of Pharmacy Nanjing Medical University Nanjing China
| | - Rui Li
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine School of Pharmacy Nanjing Medical University Nanjing China
| | - Qiulun Lu
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine School of Pharmacy Nanjing Medical University Nanjing China
| |
Collapse
|
479
|
TEAD1 protects against necroptosis in postmitotic cardiomyocytes through regulation of nuclear DNA-encoded mitochondrial genes. Cell Death Differ 2021; 28:2045-2059. [PMID: 33469230 PMCID: PMC8257617 DOI: 10.1038/s41418-020-00732-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 12/25/2020] [Accepted: 12/29/2020] [Indexed: 01/30/2023] Open
Abstract
The Hippo signaling effector, TEAD1 plays an essential role in cardiovascular development. However, a role for TEAD1 in postmitotic cardiomyocytes (CMs) remains incompletely understood. Herein we reported that TEAD1 is required for postmitotic CM survival. We found that adult mice with ubiquitous or CM-specific loss of Tead1 present with a rapid lethality due to an acute-onset dilated cardiomyopathy. Surprisingly, deletion of Tead1 activated the necroptotic pathway and induced massive cardiomyocyte necroptosis, but not apoptosis. In contrast to apoptosis, necroptosis is a pro-inflammatory form of cell death and consistent with this, dramatically higher levels of markers of activated macrophages and pro-inflammatory cytokines were observed in the hearts of Tead1 knockout mice. Blocking necroptosis by administration of necrostatin-1 rescued Tead1 deletion-induced heart failure. Mechanistically, genome-wide transcriptome and ChIP-seq analysis revealed that in adult hearts, Tead1 directly activates a large set of nuclear DNA-encoded mitochondrial genes required for assembly of the electron transfer complex and the production of ATP. Loss of Tead1 expression in adult CMs increased mitochondrial reactive oxygen species, disrupted the structure of mitochondria, reduced complex I-IV driven oxygen consumption and ATP levels, resulting in the activation of necroptosis. This study identifies an unexpected paradigm in which TEAD1 is essential for postmitotic CM survival by maintaining the expression of nuclear DNA-encoded mitochondrial genes required for ATP synthesis.
Collapse
|
480
|
LncRNA Gm4419 Regulates Myocardial Ischemia/Reperfusion Injury Through Targeting the miR-682/TRAF3 Axis. J Cardiovasc Pharmacol 2021; 76:305-312. [PMID: 32590403 DOI: 10.1097/fjc.0000000000000867] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Myocardial cell death during acute myocardial infarction occurs because of acute ischemia, persistent ischemia, reperfusion-associated injury, and the inflammatory infiltrate as a response to cell necrosis. In the present study, quantitative real-time PCR showed that lncRNA Gm4419 was highly upregulated in ischemia/reperfusion myocardial tissues and hypoxia/reoxygenation H9C2 cells, whereas miR-682 was downregulated. Knocking down Gm4419 with sh-Gm4419 resulted in the rescue of myocardial infarction and apoptosis induced by ischemia/reperfusion or hypoxia/reoxygenation. Our study further demonstrated that Gm4419 may bind with miR-682 directly. Moreover, in vitro experiments further demonstrated that miR-682 could bind to tumor necrosis factor receptor-associated factor 3 (TRAF3) directly. Most importantly, TRAF3 overexpression could counteract the effect of sh-Gm4419. Taken together, our study indicated that Gm4419 may target miR-682 via sponging to increase TRAF3 expression, thereby contributing to myocardial I/R injury. Therefore, the Gm4419/miR-682/TRAF3 axis may be an important regulatory mechanism in myocardial ischemia/reperfusion injury.
Collapse
|
481
|
Sha W, Hu F, Xi Y, Chu Y, Bu S. Mechanism of Ferroptosis and Its Role in Type 2 Diabetes Mellitus. J Diabetes Res 2021; 2021:9999612. [PMID: 34258295 PMCID: PMC8257355 DOI: 10.1155/2021/9999612] [Citation(s) in RCA: 134] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/21/2021] [Indexed: 12/21/2022] Open
Abstract
Ferroptosis is a novel form of nonapoptotic regulated cell death (RCD). It features iron-dependent lipid peroxide accumulation accompanied by inadequate redox enzymes, especially glutathione peroxidase 4 (GPX4). RAS-selective lethal 3 (RSL3), erastin, and ferroptosis inducing 56 (FIN56) induce ferroptosis via different manners targeting GPX4 function. Acyl-CoA synthetase long-chain family 4 (ACSL4), lysophosphatidylcholine acyltransferase 3 (LPCAT3), and lipoxygenases (LOXs) participate in the production of lipid peroxides. Heat shock protein family B member 1 (HSPB1) and nuclear receptor coactivator 4 (NCOA4) regulate iron homeostasis preventing ferroptosis caused by the high concentration of intracellular iron. Ferroptosis is ubiquitous in our body as it exists in both physiologic and pathogenic processes. It is involved in glucose-stimulated insulin secretion (GSIS) impairment and arsenic-induced pancreatic damage in the pathogenesis of diabetes. Moreover, iron and the iron-sulfur (Fe-S) cluster influence each other, causing mitochondrial iron accumulation, more reactive oxygen species (ROS) production, endoplasmic reticulum (ER) stress, failure in biosynthesis of insulin, and ferroptosis in β-cells. In addition, ferroptosis also engages in the pathogenesis of diabetic complications such as myocardial ischemia and diabetic cardiomyopathy (DCM). In this review, we summarize the mechanism of ferroptosis and especially its association with type 2 diabetes mellitus (T2DM).
Collapse
Affiliation(s)
- Wenxin Sha
- Diabetes Research Center, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Fei Hu
- Diabetes Research Center, School of Medicine, Ningbo University, Ningbo 315211, China
- Cixi Biomedical Research Institute, Wenzhou Medical University, Cixi 315300, China
| | - Yang Xi
- Diabetes Research Center, School of Medicine, Ningbo University, Ningbo 315211, China
| | - Yudong Chu
- Diabetes Research Center, School of Medicine, Ningbo University, Ningbo 315211, China
- Department of Nephrology, Ningbo Medical Center Lihuili Hospital, Ningbo 315100, China
| | - Shizhong Bu
- Diabetes Research Center, School of Medicine, Ningbo University, Ningbo 315211, China
| |
Collapse
|
482
|
Lewno MT, Cui T, Wang X. Cullin Deneddylation Suppresses the Necroptotic Pathway in Cardiomyocytes. Front Physiol 2021; 12:690423. [PMID: 34262479 PMCID: PMC8273387 DOI: 10.3389/fphys.2021.690423] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 05/24/2021] [Indexed: 12/13/2022] Open
Abstract
Cardiomyocyte death in the form of apoptosis and necrosis represents a major cellular mechanism underlying cardiac pathogenesis. Recent advances in cell death research reveal that not all necrosis is accidental, but rather there are multiple forms of necrosis that are regulated. Necroptosis, the earliest identified regulated necrosis, is perhaps the most studied thus far, and potential links between necroptosis and Cullin-RING ligases (CRLs), the largest family of ubiquitin E3 ligases, have been postulated. Cullin neddylation activates the catalytic dynamic of CRLs; the reverse process, Cullin deneddylation, is performed by the COP9 signalosome holocomplex (CSN) that is formed by eight unique protein subunits, COPS1/CNS1 through COPS8/CNS8. As revealed by cardiomyocyte-restricted knockout of Cops8 (Cops8-cko) in mice, perturbation of Cullin deneddylation in cardiomyocytes impairs not only the functioning of the ubiquitin-proteasome system (UPS) but also the autophagic-lysosomal pathway (ALP). Similar cardiac abnormalities are also observed in Cops6-cko mice; and importantly, loss of the desmosome targeting of COPS6 is recently implicated as a pathogenic factor in arrhythmogenic right ventricular dysplasia/cardiomyopathy (ARVD/C). Cops8-cko causes massive cardiomyocyte death in the form of necrosis rather than apoptosis and rapidly leads to a progressive dilated cardiomyopathy phenotype as well as drastically shortened lifespan in mice. Even a moderate downregulation of Cullin deneddylation as seen in mice with Cops8 hypomorphism exacerbates cardiac proteotoxicity induced by overexpression of misfolded proteins. More recently, it was further demonstrated that cardiomyocyte necrosis caused by Cops8-cko belongs to necroptosis and is mediated by the RIPK1-RIPK3 pathway. This article reviews these recent advances and discusses the potential links between Cullin deneddylation and the necroptotic pathways in hopes of identifying potentially new therapeutic targets for the prevention of cardiomyocyte death.
Collapse
Affiliation(s)
- Megan T Lewno
- Division of Basic Biomedical Sciences, The University of South Dakota Sanford School of Medicine, Vermillion, SD, United States
| | - Taixing Cui
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Xuejun Wang
- Division of Basic Biomedical Sciences, The University of South Dakota Sanford School of Medicine, Vermillion, SD, United States
| |
Collapse
|
483
|
Schisandrol A Attenuates Myocardial Ischemia/Reperfusion-Induced Myocardial Apoptosis through Upregulation of 14-3-3 θ. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5541753. [PMID: 34257806 PMCID: PMC8257380 DOI: 10.1155/2021/5541753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/21/2021] [Accepted: 06/04/2021] [Indexed: 11/29/2022]
Abstract
Schisandrol A (SA), one of the most abundant bioactive lignans extracted from the Schisandra chinensis (Turcz.) Baill., has multiple pharmacological properties. However, the underlying mechanisms of SA in protection against myocardial ischemia/reperfusion (MI/R) injury remain obscure. The present experiment was performed to explore the cardioprotective effects of SA in MI/R injury and hypoxia/reoxygenation- (H/R-) induced cardiomyocyte injury and clarify the potential underlying mechanisms. SA treatment significantly improved MI/R injury as reflected by reduced myocardium infarct size, attenuated histological features, and ameliorated biochemical indicators. In the meantime, SA could profoundly ameliorate oxidative stress damage as evidenced by the higher glutathione peroxidase (GSH-Px) as well as lower malondialdehyde (MDA) and reactive oxygen species (ROS). Additionally, SA alleviated myocardial apoptosis as evidenced by a striking reduction of cleaved caspase-3 expression and increase of Bcl-2/Bax ratio. Further experiments demonstrated that SA had certain binding capability to the key functional protein 14-3-3θ. Mechanistically, SA prevented myocardial apoptosis through upregulating 14-3-3θ expression. Interestingly, siRNA against 14-3-3θ could promote apoptosis of cardiomyocytes, and H/R injury after knockdown of 14-3-3θ could further aggravate apoptosis, while overexpression of 14-3-3θ could significantly reduce apoptosis induced by H/R injury. Further, 14-3-3θ siRNA markedly weakened the antiapoptotic role of SA. Our results demonstrated that SA could exert apparent cardioprotection against MI/R injury and H/R injury, and potential mechanisms might be associated with inhibition of cardiomyocyte apoptosis at least partially through upregulation of 14-3-3θ.
Collapse
|
484
|
Exercise-induced peptide TAG-23 protects cardiomyocytes from reperfusion injury through regulating PKG-cCbl interaction. Basic Res Cardiol 2021; 116:41. [PMID: 34173041 PMCID: PMC8233271 DOI: 10.1007/s00395-021-00878-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 05/11/2021] [Indexed: 11/20/2022]
Abstract
Recent studies have revealed that proper exercise can reduce the risk of chronic disease and is beneficial to the body. Peptides have been shown to play an important role in various pathological processes, including cardiovascular diseases. However, little is known about the role of exercise-induced peptides in cardiovascular disease. We aimed to explore the function and mechanism of TAG-23 peptide in reperfusion injury and oxidative stress. Treatment with TAG-23 peptide significantly improved cell viability, the mitochondrial membrane potential, and ROS levels and reduced LDH release, the apoptosis rate and caspase 3 activation in vitro. In vivo, TAG-23 ameliorated MI and heart failure induced by I/R or DOX treatment. Pull-down assays showed that TAG-23 can bind to PKG . The TAG-23-PKG complex inhibited PKG degradation through the UPS. We also identified cCbl as the E3 ligase of PKG and found that the interaction between these proteins was impaired by TAG-23 treatment. In addition, we provided evidence that TAG-23 mediated Lys48-linked polyubiquitination and subsequent proteasomal degradation. Our results reveal that a novel exercise-induced peptide, TAG-23, can inhibit PKG degradation by serving as a competitive binding peptide to attenuate the formation of the PKG–cCbl complex. Treatment with TAG-23 may be a new therapeutic approach for reperfusion injury.
Collapse
|
485
|
Morciano G, Naumova N, Koprowski P, Valente S, Sardão VA, Potes Y, Rimessi A, Wieckowski MR, Oliveira PJ. The mitochondrial permeability transition pore: an evolving concept critical for cell life and death. Biol Rev Camb Philos Soc 2021; 96:2489-2521. [PMID: 34155777 DOI: 10.1111/brv.12764] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 05/28/2021] [Accepted: 06/04/2021] [Indexed: 02/06/2023]
Abstract
In this review, we summarize current knowledge of perhaps one of the most intriguing phenomena in cell biology: the mitochondrial permeability transition pore (mPTP). This phenomenon, which was initially observed as a sudden loss of inner mitochondrial membrane impermeability caused by excessive calcium, has been studied for almost 50 years, and still no definitive answer has been provided regarding its mechanisms. From its initial consideration as an in vitro artifact to the current notion that the mPTP is a phenomenon with physiological and pathological implications, a long road has been travelled. We here summarize the role of mitochondria in cytosolic calcium control and the evolving concepts regarding the mitochondrial permeability transition (mPT) and the mPTP. We show how the evolving mPTP models and mechanisms, which involve many proposed mitochondrial protein components, have arisen from methodological advances and more complex biological models. We describe how scientific progress and methodological advances have allowed milestone discoveries on mPTP regulation and composition and its recognition as a valid target for drug development and a critical component of mitochondrial biology.
Collapse
Affiliation(s)
- Giampaolo Morciano
- Maria Cecilia Hospital, GVM Care & Research, Via Corriera 1, Cotignola, Ravenna, 48033, Italy.,Department of Medical Sciences, Section of Experimental Medicine, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Via Fossato di Mortara 70, Ferrara, 44121, Italy
| | - Natalia Naumova
- Department of Cardiac Thoracic and Vascular Sciences and Public Health, University of Padua Medical School, Via Giustiniani 2, Padova, 35128, Italy
| | - Piotr Koprowski
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, Warsaw, 02-093, Poland
| | - Sara Valente
- CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, UC Biotech, Biocant Park, Cantanhede, 3060-197, Portugal
| | - Vilma A Sardão
- CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, UC Biotech, Biocant Park, Cantanhede, 3060-197, Portugal
| | - Yaiza Potes
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, Warsaw, 02-093, Poland
| | - Alessandro Rimessi
- Department of Medical Sciences, Section of Experimental Medicine, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Via Fossato di Mortara 70, Ferrara, 44121, Italy
| | - Mariusz R Wieckowski
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, Warsaw, 02-093, Poland
| | - Paulo J Oliveira
- CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, UC Biotech, Biocant Park, Cantanhede, 3060-197, Portugal
| |
Collapse
|
486
|
Hou J, Zeng C, Zheng G, Liang L, Jiang L, Yang Z. LncRNAs Participate in Post-Resuscitation Myocardial Dysfunction Through the PI3K/Akt Signaling Pathway in a Rat Model of Cardiac Arrest and Cardiopulmonary Resuscitation. Front Physiol 2021; 12:689531. [PMID: 34194340 PMCID: PMC8238007 DOI: 10.3389/fphys.2021.689531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/10/2021] [Indexed: 12/18/2022] Open
Abstract
In this study, we aimed to explore the role of lncRNAs in post-resuscitation myocardial dysfunction in a rat model of CA-CPR. A rat model of CA-CPR was constructed using a VF method. Myocardial functions, including cardiac output (CO), ejection fraction (EF), and myocardial performance index (MPI), were evaluated at the baseline, and 1, 2, 3, 4, and 6 h after resuscitation. A high throughput sequencing method was used to screen the differentially expressed lncRNAs, miRNAs, and mRNAs, which were further analyzed with bioinformatics. In addition, relationships between the molecules involved in the PI3K/Akt signaling pathway were explored with ceRNA network. Compared with the sham group, EF was significantly reduced and MPI was increased at the five consecutive time points in the CA-CPR group. 68 lncRNAs were upregulated and 40 lncRNAs were downregulated in the CA-CPR group, while 30 miRNAs were downregulated and 19 miRNAs were upregulated. Moreover, mRNAs were also differentially expressed, with 676 upregulated and 588 downregulated. GO analysis suggested that genes associated with cell proliferation, cell death and programmed cell death were significantly enriched. KEGG analysis showed that the PI3K/Akt, MAPK and Ras signaling pathways were the three most-enriched pathways. Construction of a ceRNA regulatory network indicated that LOC102549506, LOC103689920, and LOC103690137 might play important roles in the regulation of the PI3K/Akt signaling pathway in the CA-CPR treated rat. Taken together, LncRNAs, including LOC102549506, LOC103689920 and LOC103690137, might participate in post-resuscitation myocardial dysfunction by functioning as ceRNAs and regulating the PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Jingying Hou
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chaotao Zeng
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Guanghui Zheng
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lian Liang
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Longyuan Jiang
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhengfei Yang
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
487
|
Yang Y, Tian Y, Guo X, Li S, Wang W, Shi J. Ischemia Injury induces mPTP opening by reducing Sirt3. Neuroscience 2021; 468:68-74. [PMID: 34119577 DOI: 10.1016/j.neuroscience.2021.06.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 12/18/2022]
Abstract
Mitochondrial permeability transition pore (mPTP) opening is critical to mitochondrial apoptosis during ischemic injury. Sirtuin 3 (Sirt3) is a mitochondrial deacetylase known to play a major role in stress resistance and cell death. Our previous studies have shown that Sirt3 activates superoxide dismutase 2 and forkhead box O3a to reduce cellular reactive oxygen species. However, it is unclear the interaction between Sirt3 and mPTP and the roles they play in ischemic stroke. We used the middle cerebral artery occlusion (MCAO) model, a mouse model of stroke, to examine Sirt3 and mPTP-related protein levels. We then applied lentivirus packaged Sirt3 overexpression in HT22 cells, a mouse hippocampal neuronal cell line, to investigate the underlying mechanism. We found Sirt3 protein level was decreased in the penumbra area in MCAO mice, along with an increase in mPTP related proteins, namely voltage-dependent anion channel 1 (VDAC1) and adenine nucleotide translocator 1 (ANT1). Sirt3 overexpression suppressed the increase in VDAC1, ANT1 and cleaved caspase 3 that were induced by the serum and glucose deprivation (SGD) condition. Our studies suggest that ischemic injury induced mPTP opening and apoptosis by reducing Sirt3. It helps to identify new therapeutic targets for ischemic stroke.
Collapse
Affiliation(s)
- Yaping Yang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China; National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ye Tian
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China; National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiaosu Guo
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China; National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Shiping Li
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China; National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Weiping Wang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jiong Shi
- National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China; Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
488
|
Wu X, Iroegbu CD, Peng J, Guo J, Yang J, Fan C. Cell Death and Exosomes Regulation After Myocardial Infarction and Ischemia-Reperfusion. Front Cell Dev Biol 2021; 9:673677. [PMID: 34179002 PMCID: PMC8220218 DOI: 10.3389/fcell.2021.673677] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 05/18/2021] [Indexed: 12/21/2022] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of death in the global population, accounting for about one-third of all deaths each year. Notably, with CVDs, myocardial damages result from myocardial infarction (MI) or cardiac arrhythmias caused by interrupted blood flow. Significantly, in the process of MI or myocardial ischemic-reperfusion (I/R) injury, both regulated and non-regulated cell death methods are involved. The critical factor for patients’ prognosis is the infarct area’s size, which determines the myocardial cells’ survival. Cell therapy for MI has been a research hotspot in recent years; however, exosomes secreted by cells have attracted much attention following shortcomings concerning immunogens. Exosomes are extracellular vesicles containing several biologically active substances such as lipids, nucleic acids, and proteins. New evidence suggests that exosomes play a crucial role in regulating cell death after MI as exosomes of various stem cells can participate in the cell damage process after MI. Hence, in the review herein, we focused on introducing various cell-derived exosomes to reduce cell death after MI by regulating the cell death pathway to understand myocardial repair mechanisms better and provide a reference for clinical treatment.
Collapse
Affiliation(s)
- Xun Wu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Chukwuemeka Daniel Iroegbu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jun Peng
- Hunan Provincial Key Laboratory of Cardiovascular Research, Changsha, China
| | - Jianjun Guo
- Hunan Fangsheng Pharmaceutical Co., Ltd., Changsha, China
| | - Jinfu Yang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Chengming Fan
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Provincial Key Laboratory of Cardiovascular Research, Changsha, China.,Hunan Fangsheng Pharmaceutical Co., Ltd., Changsha, China
| |
Collapse
|
489
|
Liu Y, Chen J, Xia P, Stratakis CA, Cheng Z. Loss of PKA regulatory subunit 1α aggravates cardiomyocyte necrosis and myocardial ischemia/reperfusion injury. J Biol Chem 2021; 297:100850. [PMID: 34087234 PMCID: PMC8233231 DOI: 10.1016/j.jbc.2021.100850] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/24/2021] [Accepted: 05/28/2021] [Indexed: 12/15/2022] Open
Abstract
Reperfusion therapy, the standard treatment for acute myocardial infarction, can trigger necrotic death of cardiomyocytes and provoke ischemia/reperfusion (I/R) injury. However, signaling pathways that regulate cardiomyocyte necrosis remain largely unknown. Our recent genome-wide RNAi screen has identified a potential necrosis suppressor gene PRKAR1A, which encodes PKA regulatory subunit 1α (R1α). R1α is primarily known for regulating PKA activity by sequestering PKA catalytic subunits in the absence of cAMP. Here, we showed that depletion of R1α augmented cardiomyocyte necrosis in vitro and in vivo, resulting in exaggerated myocardial I/R injury and contractile dysfunction. Mechanistically, R1α loss downregulated the Nrf2 antioxidant transcription factor and aggravated oxidative stress following I/R. Degradation of the endogenous Nrf2 inhibitor Keap1 through p62-dependent selective autophagy was blocked by R1α depletion. Phosphorylation of p62 at Ser349 by mammalian target of rapamycin complex 1 (mTORC1), a critical step in p62-Keap1 interaction, was induced by I/R, but diminished by R1α loss. Activation of PKA by forskolin or isoproterenol almost completely abolished hydrogen-peroxide-induced p62 phosphorylation. In conclusion, R1α loss induces unrestrained PKA activation and impairs the mTORC1-p62-Keap1-Nrf2 antioxidant defense system, leading to aggravated oxidative stress, necrosis, and myocardial I/R injury. Our findings uncover a novel role of PKA in oxidative stress and necrosis, which may be exploited to develop new cardioprotective therapies.
Collapse
Affiliation(s)
- Yuening Liu
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington, USA
| | - Jingrui Chen
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington, USA
| | - Peng Xia
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington, USA
| | - Constantine A Stratakis
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Zhaokang Cheng
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington, USA.
| |
Collapse
|
490
|
Yang Y, Jiang K, Liu X, Qin M, Xiang Y. CaMKII in Regulation of Cell Death During Myocardial Reperfusion Injury. Front Mol Biosci 2021; 8:668129. [PMID: 34141722 PMCID: PMC8204011 DOI: 10.3389/fmolb.2021.668129] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 05/10/2021] [Indexed: 12/11/2022] Open
Abstract
Cardiovascular disease is the leading cause of death worldwide. In spite of the mature managements of myocardial infarction (MI), post-MI reperfusion (I/R) injury results in high morbidity and mortality. Cardiomyocyte Ca2+ overload is a major factor of I/R injury, initiating a cascade of events contributing to cardiomyocyte death and myocardial dysfunction. Ca2+/calmodulin-dependent protein kinase II (CaMKII) plays a critical role in cardiomyocyte death response to I/R injury, whose activation is a key feature of myocardial I/R in causing intracellular mitochondrial swelling, endoplasmic reticulum (ER) Ca2+ leakage, abnormal myofilament contraction, and other adverse reactions. CaMKII is a multifunctional serine/threonine protein kinase, and CaMKIIδ, the dominant subtype in heart, has been widely studied in the activation, location, and related pathways of cardiomyocytes death, which has been considered as a potential targets for pharmacological inhibition. In this review, we summarize a brief overview of CaMKII with various posttranslational modifications and its properties in myocardial I/R injury. We focus on the molecular mechanism of CaMKII involved in regulation of cell death induced by myocardial I/R including necroptosis and pyroptosis of cardiomyocyte. Finally, we highlight that targeting CaMKII modifications and cell death involved pathways may provide new insights to understand the conversion of cardiomyocyte fate in the setting of myocardial I/R injury.
Collapse
Affiliation(s)
- Yingjie Yang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Kai Jiang
- Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Xu Liu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Mu Qin
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yaozu Xiang
- Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| |
Collapse
|
491
|
Elucidating the contribution of mitochondrial glutathione to ferroptosis in cardiomyocytes. Redox Biol 2021; 45:102021. [PMID: 34102574 PMCID: PMC8187237 DOI: 10.1016/j.redox.2021.102021] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/17/2021] [Accepted: 05/20/2021] [Indexed: 12/26/2022] Open
Abstract
Ferroptosis is a programmed iron-dependent cell death associated with peroxidation of lipids particularly, phospholipids. Several studies suggested a possible contribution of mitochondria to ferroptosis although the mechanisms underlying mitochondria-mediated ferroptotic pathways remain elusive. Reduced glutathione (GSH) is a central player in ferroptosis that is required for glutathione peroxidase 4 to eliminate oxidized phospholipids. Mitochondria do not produce GSH, and although the transport of GSH to mitochondria is not fully understood, two carrier proteins, the dicarboxylate carrier (DIC, SLC25A10) and the oxoglutarate carrier (OGC, SLC25A11) have been suggested to participate in GSH transport. Here, we elucidated the role of DIC and OGC as well as mitochondrial bioenergetics in ferroptosis in H9c2 cardioblasts. Results showed that mitochondria are highly sensitive to ferroptotic stimuli displaying fragmentation, and lipid peroxidation shortly after the onset of ferroptotic stimulus. Inhibition of electron transport chain complexes and oxidative phosphorylation worsened RSL3-induced ferroptosis. LC-MS/MS analysis revealed a dramatic increase in the levels of pro-ferroptotic oxygenated phosphatidylethanolamine species in mitochondria in response to RSL3 (ferroptosis inducer) and cardiac ischemia-reperfusion. Inhibition of DIC and OGC aggravated ferroptosis and increased mitochondrial ROS, membrane depolarization, and GSH depletion. Dihydrolipoic acid, an essential cofactor for several mitochondrial multienzyme complexes, attenuated ferroptosis and induced direct reduction of pro-ferroptotic peroxidized phospholipids to hydroxy-phospholipids in vitro. In conclusion, we suggest that ferroptotic stimuli diminishes mitochondrial bioenergetics and stimulates GSH depletion and glutathione peroxidase 4 inactivation leading to ferroptosis.
Collapse
|
492
|
Zhuang C, Gao J, Liu G, Zhou M, Yang J, Wang D, Kastelic JP, Han B. Selenomethionine activates selenoprotein S, suppresses Fas/FasL and the mitochondrial pathway, and reduces Escherichia coli-induced apoptosis of bovine mammary epithelial cells. J Dairy Sci 2021; 104:10171-10182. [PMID: 34053755 DOI: 10.3168/jds.2020-20034] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 04/22/2021] [Indexed: 01/12/2023]
Abstract
Escherichia coli is a major environmental pathogen causing bovine mastitis, characterized by cell death and mammary tissue damage. Apoptosis, a form of cell death, has an important role in the pathogenesis of mastitis. Selenium, an essential trace element, protects against mastitis by acting through several biochemical pathways, potentially including prevention of apoptosis. Our objective was to investigate whether selenomethionine (SeMet) attenuated E. coli-induced apoptosis in bovine mammary epithelial cells (bMEC). These cells were cultured in vitro and treated with 0, 5, 10, 20, and 40 μM SeMet for 12 h, with or without E. coli (multiplicity of infection of 5) for 8 h. Treatment with SeMet/Z-IE(OMe)TD(OMe)-FMK (ZIK)/Z-LE(OMe)HD(OMe)-FMK (ZLK, specific inhibitors of caspase-8 and -9, respectively) significantly counteracted effects of E. coli on bMEC. Specifically, SeMet upregulated selenoprotein S (SeS) and increased mitochondrial membrane potential and the ratio of Bcl-2 and Bax. Furthermore, it decreased protein expressions of Fas, FasL, FADD, cleaved caspase-8, cytochrome c, cleaved caspase-9, and cleaved caspase-3, namely, decreasing protein expression of the Fas/FasL and mitochondrial pathways. Furthermore, it downregulated total apoptosis indexes in E. coli-infected bMEC. Although ZIK and ZLK (specific inhibitors of caspases 8 and 9, respectively) significantly inhibited Fas/FasL and the mitochondrial apoptotic pathway and apoptosis indexes, respectively, substantial apoptosis still occurred. In conclusion, SeMet attenuated E. coli-induced apoptosis in bMEC by activating SeS, associated with Fas/FasL and mitochondrial pathways.
Collapse
Affiliation(s)
- Cuicui Zhuang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing 100193, P. R. China
| | - Jian Gao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing 100193, P. R. China
| | - Gang Liu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing 100193, P. R. China
| | - Man Zhou
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing 100193, P. R. China
| | - Jingyue Yang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing 100193, P. R. China
| | - Dong Wang
- College of Life Science, Ningxia University, Yinchuan, Ningxia 750021, P. R. China
| | - John P Kastelic
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada, T2N 4N1
| | - Bo Han
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing 100193, P. R. China.
| |
Collapse
|
493
|
Pan X, Li C, Gao H. High Glucose Attenuates Cardioprotective Effects of Glucagon-Like Peptide-1 Through Induction of Mitochondria Dysfunction via Inhibition of β-Arrestin-Signaling. Front Physiol 2021; 12:648399. [PMID: 34054568 PMCID: PMC8155506 DOI: 10.3389/fphys.2021.648399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 04/06/2021] [Indexed: 12/25/2022] Open
Abstract
An increased vulnerability has been detected after ischemia/reperfusion injury in cardiomyocytes in diabetic patients. Glucagon-like peptide-1 (GLP-1) has been proven to have a notable cardioprotective effect in cardiomyocytes. However, in diabetic patients, the cardioprotective effects of GLP-1 are compromised, which is called GLP-1 resistance. β-arrestin is one of the two main downstream effectors of GLP-1 and β-arrestin signaling pathway exerts cardioprotective effects upon activation of GLP-1R. Our hypothesis is that the increased vulnerability of cardiomyocytes in diabetic patients is partly due to disruption of the β-arrestin signaling pathway. To test this, we analyzed cardiomyocyte viability and survival in high glucose and normal glucose condition after hypoxia/reoxygenation injury in vitro, additional GLP-1 was used to determine whether β-arrestin signaling pathway was involved. We also investigated the role of mitochondrial dysfunction in GLP-1 resistance. Our results showed that cardioprotective effects of GLP-1 were reduced in high glucose cultured H9C2 cells compared to normal glucose cultured H9C2, verifying the existence of GLP-1 resistance in high glucose cultured H9C2 cells. Further study suggested that β-arrestin plays a key role in GLP-1 resistance: β-arrestin expression is notably downregulated in high glucose condition and cardioprotective effects of GLP-1 can be diminished by downregulation of β-arrestin in normal glucose condition while upregulation of β-arrestin can restore cardioprotective effects of GLP-1 in high glucose condition. Then we explore how β-arrestin affects the cardioprotective effects of GLP-1 and found that β-arrestin exerts cardioprotective effects by improving mitochondria quality control via the PI3K/Akt signaling pathway. Thus, our study found out a new mechanism of GLP-1 resistance of cardiomyocytes in high glucose conditions that impaired β-arrestin expression, caused mitochondria dysfunction and eventually cell death. Our study provided a new perspective in treating myocardial ischemia/reperfusion injury in diabetic patients.
Collapse
Affiliation(s)
- Xietian Pan
- Department of Cardiology, People's Liberation Army General Hospital, Beijing, China
| | - Chengxiang Li
- Department of Cardiology, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Haokao Gao
- Department of Cardiology, Xijing Hospital, Air Force Medical University, Xi'an, China
| |
Collapse
|
494
|
Rowe ES, Rowe VD, Hunter J, Gralinski MR, Neves LA. A nephroprotective iodinated contrast agent with cardioprotective properties: A pilot study. J Neuroimaging 2021; 31:706-713. [PMID: 33979019 PMCID: PMC8359965 DOI: 10.1111/jon.12873] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND AND PURPOSE Evaluation and treatment of acute ischemic syndromes, in the heart and brain, require vessel visualization by iodinated X-ray contrast agents. However, these contrast agents can induce injury, in both the kidneys and target organs themselves. Sulfobutylether beta cyclodextrin (SBECD) added to iohexol (SBECD-iohexol) (Captisol Enabled-iohexol, Ligand Pharmaceuticals, Inc, San Diego, CA) is currently in clinical trials in cardiovascular procedures, to determine its relative renal safety in high-risk patients. Preclinical studies showed that SBECD-iohexol reduced contrast-induced acute kidney injury in rodent models by blocking apoptosis. The current study was undertaken to determine whether SBECD-iohexol is also cardioprotective, in the male rat ischemia-reperfusion model, compared to iohexol alone. METHODS After anesthesia, the left coronary artery was ligated for 30 min and the ligation released and reperfusion followed for 2 h prior to sacrifice. Groups 1-4 were injected in the tail vein 10 min prior to ischemia with: (1) vehicle; (2) iohexol; (3) SBECD; and (4) SBECD-iohexol. Infarct size, hemodynamics, and serum markers were measured. RESULTS An eight-fold increase in serum creatine kinase in the iohexol-alone group was observed, compared with no increase in the SBECD-iohexol group. The mean arterial pressure and rate pressure product were depressed in the iohexol-alone group, but not in the SBECD-iohexol group, or controls. No difference in infarct size or serum creatinine among the groups was observed. CONCLUSION The results of this study suggest that SBECD-iohexol is superior to iohexol alone, for both the preservation of cardiomyocyte integrity and preservation of myocardial function in myocardial ischemia.
Collapse
Affiliation(s)
| | | | - John Hunter
- Neurrow Pharmaceuticals, Inc, Shawnee, Kansas, USA
| | | | | |
Collapse
|
495
|
Ying H, Shen Z, Wang J, Zhou B. Role of iron homeostasis in the heart : Heart failure, cardiomyopathy, and ischemia-reperfusion injury. Herz 2021; 47:141-149. [PMID: 33978777 DOI: 10.1007/s00059-021-05039-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 07/15/2020] [Accepted: 04/09/2021] [Indexed: 02/07/2023]
Abstract
As an essential trace mineral in mammals and the second most abundant metal in the Earth's crust, iron acts as a double-edged sword in humans. Iron plays important beneficial roles in numerous biological processes ranging from deoxyribonucleic acid biosynthesis and protein function to cell cycle progression. However, iron metabolism disruption leads to widespread tissue degeneration and organ dysfunction. An increasing number of studies have focused on iron regulation pathways and have explored the relationship between iron and cardiovascular diseases. Ferroptosis, an iron-dependent form of programmed cell death, was first described in cancer cells and has recently been linked to heart diseases, including cardiac ischemia-reperfusion injury and doxorubicin-induced myocardiopathy. Here, we summarize recent advances in our understanding of iron homeostasis and heart diseases and discuss potential relationships between ferroptosis and cardiac ischemia-reperfusion injury and cardiomyopathy.
Collapse
Affiliation(s)
- Hangying Ying
- Department of Cardiology, Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310016, Zhejiang, Hangzhou, China
| | - Zhida Shen
- Department of Cardiology, Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310016, Zhejiang, Hangzhou, China
| | - Jiacheng Wang
- Department of Cardiology, Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310016, Zhejiang, Hangzhou, China
| | - Binquan Zhou
- Department of Cardiology, Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 310016, Zhejiang, Hangzhou, China.
| |
Collapse
|
496
|
Yang K, Song H, Yin D. PDSS2 Inhibits the Ferroptosis of Vascular Endothelial Cells in Atherosclerosis by Activating Nrf2. J Cardiovasc Pharmacol 2021; 77:767-776. [PMID: 33929387 PMCID: PMC8274586 DOI: 10.1097/fjc.0000000000001030] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 03/29/2021] [Indexed: 12/21/2022]
Abstract
ABSTRACT Cardiovascular disease ranks the leading cause of mortality worldwide. Prenyldiphosphate synthase subunits collectively participate in the formation and development of atherosclerosis (AS). This study aimed to investigate the role of PDSS2 in AS and its underlying mechanisms. Human coronary artery endothelial cells (HCAECs) were treated with oxidized low-density lipoprotein to establish the AS model. The gene expression levels were determined by qRT-PCR, Western blot, and ELISA. CCK-8, colony formation was applied to determine the proliferation of HCAECs. Chromatin immunoprecipitation assay and luciferase assay were applied to verify the interaction between PDSS2 and Nrf2. The results showed that the serum levels of PDSS2 and Nrf2 were decreased in patients with AS. Overexpression of PDSS2 suppressed the release of reactive oxygen species, iron content and ferroptosis of HCAECs, and promoted the proliferation of HCAECs. Moreover, PDSS2 activated antioxidant Nrf2. PDSS2 interacted with Nrf2 to alleviate the ferroptosis of HCAECs. However, knockdown of Nrf2 alleviated the effects of PDSS2 on the proliferation and ferroptosis of HCAECs. In vivo assays, overexpression of PDSS2 and Nrf2 suppressed the progression of AS. In conclusion, overexpression of PDSS2 suppressed the ferroptosis of HCAECs by promoting the activation of Nrf2 pathways. Thence PDSS2 may play a cardio-protective role in AS.
Collapse
Affiliation(s)
- Kai Yang
- Cardiovascular Medicine Department, the First People's Hospital of Lianyungang, Lianyungang, Jiangsu, China
| | - Hejian Song
- Cardiovascular Medicine Department, the First People's Hospital of Lianyungang, Lianyungang, Jiangsu, China
| | - Delu Yin
- Cardiovascular Medicine Department, the First People's Hospital of Lianyungang, Lianyungang, Jiangsu, China
| |
Collapse
|
497
|
Deng J. Advanced research on the regulated necrosis mechanism in myocardial ischemia-reperfusion injury. Int J Cardiol 2021; 334:97-101. [PMID: 33930510 DOI: 10.1016/j.ijcard.2021.04.042] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/09/2021] [Accepted: 04/23/2021] [Indexed: 10/21/2022]
Abstract
Myocardial ischemia-reperfusion injury is an important factor that seriously affects the prognosis of patients with myocardial infarction. It can cause myocardial stun, no-reflow phenomenon, reperfusion arrhythmia, and even irreversible cardiomyocyte death. Regulated necrosis is a newly discovered type of regulatory cell death that is different from apoptosis, including necroptosis, pyrolysis, iron death and other forms. Regulated necrosis plays an important role in myocardial infarction, heart failure and other cardiovascular diseases, as well as myocardial ischemia-reperfusion injury and other pathophysiological processes, and is expected to become a new target for intervention in this type of disease.
Collapse
Affiliation(s)
- Jianying Deng
- Department of Cardiovascular Surgery,Chongqing Kanghua Zhonglian Cardiovascular Hospital, Chong Qing, China.
| |
Collapse
|
498
|
Bolívar S, Noriega L, Ortega S, Osorio E, Rosales W, Mendoza X, Mendoza-Torres E. Novel Targets of Metformin in Cardioprotection: Beyond the Effects Mediated by AMPK. Curr Pharm Des 2021; 27:80-90. [PMID: 32386485 DOI: 10.2174/1381612826666200509232610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 04/30/2020] [Indexed: 11/22/2022]
Abstract
Ischemic heart disease is the main cause of death globally. In the heart, the ischemia/reperfusion injury gives rise to a complex cascade of molecular signals, called cardiac remodeling, which generates harmful consequences for the contractile function of the myocardium and consequently heart failure. Metformin is the drug of choice in the treatment of type 2 diabetes mellitus. Clinical data suggest the direct effects of this drug on cardiac metabolism and studies in animal models showed that metformin activates the classical pathway of AMP-activated protein kinase (AMPK), generating cardioprotective effects during cardiac remodeling, hypertrophy and fibrosis. Furthermore, new studies have emerged about other targets of metformin with a potential role in cardioprotection. This state of the art review shows the available scientific evidence of the cardioprotective potential of metformin and its possible effects beyond AMPK. Targeting of autophagy, mitochondrial function and miRNAs are also explored as cardioprotective approaches along with a therapeutic potential. Further advances related to the biological effects of metformin and cardioprotective approaches may provide new therapies to protect the heart and prevent cardiac remodeling and heart failure.
Collapse
Affiliation(s)
- Samir Bolívar
- Healthcare Pharmacy and Pharmacology Research Group, Facultad de Quimica y Farmacia, Universidad del Atlantico, Barranquilla, Colombia
| | - Laura Noriega
- Healthcare Pharmacy and Pharmacology Research Group, Facultad de Quimica y Farmacia, Universidad del Atlantico, Barranquilla, Colombia
| | - Stefany Ortega
- Healthcare Pharmacy and Pharmacology Research Group, Facultad de Quimica y Farmacia, Universidad del Atlantico, Barranquilla, Colombia
| | - Estefanie Osorio
- Advaced Research Group in Biomedicine, Universidad Libre Seccional Barranquilla, Colombia
| | - Wendy Rosales
- Advaced Research Group in Biomedicine, Universidad Libre Seccional Barranquilla, Colombia
| | - Xilene Mendoza
- Universidad Metropolitana, Grupo de Investigacion en Medicina Traslacional (GIMET), Barranquilla, Colombia
| | - Evelyn Mendoza-Torres
- Advaced Research Group in Biomedicine, Universidad Libre Seccional Barranquilla, Colombia
| |
Collapse
|
499
|
Abstract
Identification of effective cardiac biomarkers and therapeutic targets for myocardial infarction (MI) will play an important role in early diagnosis and improving prognosis. Ferroptosis, a cell death process driven by cellular metabolism and iron-dependent lipid peroxidation, has been implicated in diseases such as ischaemic organ damage, cancer and neurological diseases. Its modulators were involved in transferrin receptor, iron chelator, clock protein ARNTL, etc. Its mechanisms included the inhibition of system XC−, diminished GPX4 activity, change of mitochondrial voltage-dependent anion channels and rising intracellular reactive oxygen species level. Further, the inhibitors of apoptosis, pyroptosis and autophagy did not prevent the occurrence of ferroptosis, but iron chelating agents and antioxidants could inhibit it. Noticeably, ferroptosis is an important pattern of cardiomyocyte death in the infarcted area, which may play a vital role in support of the myocardial pathological process of heart disease. However, the molecular mechanism of ferroptosis in the pathogenesis and the development of MI is not clear. Therefore, a greater depth of exploration of the mechanism of ferroptosis and its inhibitors will undoubtedly improve the pathological process of MI, which may be expected to identify ferroptosis as novel diagnostic and therapeutic targets of MI.
Collapse
Affiliation(s)
- Xiao-Dong Wang
- Department of Cardiology, Shanghai East Hospital, Tongji University, Jimo Road 150, Shanghai 200120, People's Republic of China
| | - Sheng Kang
- Department of Cardiology, Shanghai East Hospital, Tongji University, Jimo Road 150, Shanghai 200120, People's Republic of China
| |
Collapse
|
500
|
Zhu Y, Zhao P, Sun L, Lu Y, Zhu W, Zhang J, Xiang C, Mao Y, Chen Q, Zhang F. Overexpression of circRNA SNRK targets miR-103-3p to reduce apoptosis and promote cardiac repair through GSK3β/β-catenin pathway in rats with myocardial infarction. Cell Death Discov 2021; 7:84. [PMID: 33875647 PMCID: PMC8055694 DOI: 10.1038/s41420-021-00467-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/25/2021] [Accepted: 03/12/2021] [Indexed: 02/06/2023] Open
Abstract
Ischemic cardiomyopathy seriously endangers human health leading to a poor prognosis. Acute myocardial infarction (AMI) is the primary etiology, and the pathophysiological process concludes with the death of cardiomyocytes caused by acute and persistent ischemia and hypoxia in the coronary arteries. We identified a circRNA (circSNRK) which was downregulated in rats with myocardial infarction (MI), however, the role it plays in the MI environment is still unclear. This study contained experiments to investigate the role of circSNRK in the regulation of cardiac survival and explore the mechanisms underlying circSNRK functions. Quantitative real-time PCR (qRT-PCR) was performed to determine the circSNRK expression patterns in hearts. Gain-of-function assays were also conducted in vitro and in vivo to determine the role of circSNRK in cardiac repair. qRT-PCR, western blot, and luciferase reporter assays were used to study circRNA interactions with micro RNAs (miRNAs). Overexpression of circSNRK in cardiomyocytes reduced apoptosis and increased proliferation. Adeno associated virus 9 (AAV9) mediated myocardium overexpression of circSNRK in post MI hearts reduced cardiomyocyte apoptosis, promoted cardiomyocyte proliferation, enhanced angiogenesis, and improved cardiac functions. Overall, upregulation of circSNRK promotes cardiac survival and functional recovery after MI. Mechanistically, circSNRK regulates cardiomyocyte apoptosis and proliferation by acting as a miR-103-3p sponge and inducing increased expression of SNRK which can bind GSK3β to regulate its phosphorylated activity. And thus circSNRK may be a promising therapeutic target for improving clinical prognosis after MI.
Collapse
Affiliation(s)
- Yeqian Zhu
- Section of Pacing and Electrophysiology, Division of Cardiology, the First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Pengcheng Zhao
- Section of Pacing and Electrophysiology, Division of Cardiology, the First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Ling Sun
- Section of Pacing and Electrophysiology, Division of Cardiology, the First Affiliated Hospital with Nanjing Medical University, Nanjing, China.,Department of Cardiology, the Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Yao Lu
- Section of Pacing and Electrophysiology, Division of Cardiology, the First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Wenwu Zhu
- Section of Pacing and Electrophysiology, Division of Cardiology, the First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Jian Zhang
- Section of Pacing and Electrophysiology, Division of Cardiology, the First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Chengyu Xiang
- Section of Pacing and Electrophysiology, Division of Cardiology, the First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Yangming Mao
- Section of Pacing and Electrophysiology, Division of Cardiology, the First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Qiushi Chen
- Section of Pacing and Electrophysiology, Division of Cardiology, the First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Fengxiang Zhang
- Section of Pacing and Electrophysiology, Division of Cardiology, the First Affiliated Hospital with Nanjing Medical University, Nanjing, China.
| |
Collapse
|