451
|
Park CK, Oh IJ, Choi YD, Jang TW, Lee JE, Ryu JS, Lee SY, Kim YC. A Prospective Observational Study Evaluating the Correlation of c-MET Expression and EGFR Gene Mutation with Response to Erlotinib as Second-Line Treatment for Patients with Advanced/Metastatic Non-Small-Cell Lung Cancer. Oncology 2018; 94:373-382. [PMID: 29502124 DOI: 10.1159/000486896] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 01/12/2018] [Indexed: 03/22/2025]
Abstract
OBJECTIVES We aimed to evaluate the prevalence and predictive role of c-MET expression and EGFR mutation in the efficacy of erlotinib in non-small-cell lung cancer (NSCLC). METHODS We prospectively recruited 196 patients with stage IV or recurrent NSCLC treated with erlotinib after failure of first-line chemotherapy. Immunohistochemistry was used to evaluate c-MET overexpression, silver in situ hybridization (SISH) to assess gene copy number, and real-time polymerase chain reaction to detect EGFR mutations, respectively, in tumor tissue. RESULTS The major histologic type was adenocarcinoma (66.8%). c-MET was overexpressed in 55.8% (87/156) and dominant in females as well as non-squamous histology. Although c-MET gene amplification and high polysomy were observed in 2.0% (3/152) and 11.2% (17/152), they did not correlate with any characteristics. EGFR mutation was detected in 13.1% (20/153). The objective response rate of erlotinib was higher (61.1 vs. 3.7%, p < 0.001) and the median progression-free survival (PFS) was longer (10.2 vs. 1.9 months, p < 0.001) in EGFR-sensitizing mutations. However, c-MET positivity did not show a significant correlation with response to erlotinib or PFS. CONCLUSION We reconfirmed EGFR mutation as a strong predictive marker of NSCLC. However, c-MET positivity was not associated with response or PFS, although c-MET overexpression correlated with some clinical characteristics.
Collapse
Affiliation(s)
- Cheol-Kyu Park
- Department of Internal Medicine, Chonnam National University Hwasun Hospital, Jeonnam, Republic of Korea
| | - In-Jae Oh
- Department of Internal Medicine, Chonnam National University Hwasun Hospital, Jeonnam, Republic of Korea,
| | - Yoo-Duk Choi
- Department of Pathology, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Tae-Won Jang
- Department of Internal Medicine, Kosin University Gospel Hospital, Busan, Republic of Korea
| | - Jeong-Eun Lee
- Department of Internal Medicine, Chungnam National University Hospital, Daejeon, Republic of Korea
| | - Jeong-Seon Ryu
- Department of Internal Medicine, Inha University Hospital, Incheon, Republic of Korea
| | - Shin-Yup Lee
- Department of Internal Medicine, Kyungpook National University Chilgok Hospital, Daegu, Republic of Korea
| | - Young-Chul Kim
- Department of Internal Medicine, Chonnam National University Hwasun Hospital, Jeonnam, Republic of Korea
| |
Collapse
|
452
|
Bouattour M, Raymond E, Qin S, Cheng A, Stammberger U, Locatelli G, Faivre S. Recent developments of c-Met as a therapeutic target in hepatocellular carcinoma. Hepatology 2018; 67:1132-1149. [PMID: 28862760 PMCID: PMC5873445 DOI: 10.1002/hep.29496] [Citation(s) in RCA: 200] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 07/25/2017] [Accepted: 08/18/2017] [Indexed: 12/16/2022]
Abstract
Aberrant c-Met activity has been implicated in the development of hepatocellular carcinoma (HCC), suggesting that c-Met inhibition may have therapeutic potential. However, clinical trials of nonselective kinase inhibitors with c-Met activity (tivantinib, cabozantinib, foretinib, and golvatinib) in patients with HCC have failed so far to demonstrate significant efficacy. This lack of observed efficacy is likely due to several factors, including trial design, lack of patient selection according to tumor c-Met status, and the prevalent off-target activity of these agents, which may indicate that c-Met inhibition is incomplete. In contrast, selective c-Met inhibitors (tepotinib, capmatinib) can be dosed at a level predicted to achieve complete inhibition of tumor c-Met activity. Moreover, results from early trials can be used to optimize the design of clinical trials of these agents. Preliminary results suggest that selective c-Met inhibitors have antitumor activity in HCC, with acceptable safety and tolerability in patients with Child-Pugh A liver function. Ongoing trials have been designed to assess the efficacy and safety of selective c-Met inhibition compared with standard therapy in patients with HCC that were selected based on tumor c-Met status. Thus, c-Met inhibition continues to be an active area of research in HCC, with well-designed trials in progress to investigate the benefit of selective c-Met inhibitors. (Hepatology 2018;67:1132-1149).
Collapse
Affiliation(s)
- Mohamed Bouattour
- Digestive Oncology DepartmentBeaujon University HospitalClichyFrance
| | - Eric Raymond
- Oncology UnitGroupe Hospitalier Paris Saint JosephParisFrance
| | - Shukui Qin
- Medical Oncology DepartmentNanjing Bayi HospitalNanjingChina
| | | | | | | | - Sandrine Faivre
- Medical Oncology DepartmentBeaujon University HospitalClichyFrance
| |
Collapse
|
453
|
Lindeman NI, Cagle PT, Aisner DL, Arcila ME, Beasley MB, Bernicker EH, Colasacco C, Dacic S, Hirsch FR, Kerr K, Kwiatkowski DJ, Ladanyi M, Nowak JA, Sholl L, Temple-Smolkin R, Solomon B, Souter LH, Thunnissen E, Tsao MS, Ventura CB, Wynes MW, Yatabe Y. Updated Molecular Testing Guideline for the Selection of Lung Cancer Patients for Treatment With Targeted Tyrosine Kinase Inhibitors: Guideline From the College of American Pathologists, the International Association for the Study of Lung Cancer, and the Association for Molecular Pathology. Arch Pathol Lab Med 2018; 142:321-346. [PMID: 29355391 DOI: 10.5858/arpa.2017-0388-cp] [Citation(s) in RCA: 573] [Impact Index Per Article: 81.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
CONTEXT - In 2013, an evidence-based guideline was published by the College of American Pathologists, the International Association for the Study of Lung Cancer, and the Association for Molecular Pathology to set standards for the molecular analysis of lung cancers to guide treatment decisions with targeted inhibitors. New evidence has prompted an evaluation of additional laboratory technologies, targetable genes, patient populations, and tumor types for testing. OBJECTIVE - To systematically review and update the 2013 guideline to affirm its validity; to assess the evidence of new genetic discoveries, technologies, and therapies; and to issue an evidence-based update. DESIGN - The College of American Pathologists, the International Association for the Study of Lung Cancer, and the Association for Molecular Pathology convened an expert panel to develop an evidence-based guideline to help define the key questions and literature search terms, review abstracts and full articles, and draft recommendations. RESULTS - Eighteen new recommendations were drafted. The panel also updated 3 recommendations from the 2013 guideline. CONCLUSIONS - The 2013 guideline was largely reaffirmed with updated recommendations to allow testing of cytology samples, require improved assay sensitivity, and recommend against the use of immunohistochemistry for EGFR testing. Key new recommendations include ROS1 testing for all adenocarcinoma patients; the inclusion of additional genes ( ERBB2, MET, BRAF, KRAS, and RET) for laboratories that perform next-generation sequencing panels; immunohistochemistry as an alternative to fluorescence in situ hybridization for ALK and/or ROS1 testing; use of 5% sensitivity assays for EGFR T790M mutations in patients with secondary resistance to EGFR inhibitors; and the use of cell-free DNA to "rule in" targetable mutations when tissue is limited or hard to obtain.
Collapse
Affiliation(s)
- Neal I Lindeman
- From the Departments of Pathology (Drs Lindeman and Sholl) and Medicine (Dr Kwiatkowski), Brigham and Women's Hospital, Boston, Massachusetts; the Cancer Center (Dr Bernicker) and the Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas (Dr Cagle); the Department of Pathology, University of Colorado School of Medicine, Denver (Dr Aisner); the Diagnostic and Molecular Pathology Laboratory (Dr Arcila) and the Molecular Diagnostics Service (Dr Ladanyi), Memorial Sloan Kettering Cancer Center, New York, New York; the Department of Pathology & Medicine, Pulmonary, Critical Care and Sleep Medicine, New York, New York (Dr Beasley); the Pathology and Laboratory Quality Center, College of American Pathologists, Northfield, Illinois (Mss Colasacco and Ventura); the Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania (Dr Dacic); the Department of Medicine and Pathology, University of Colorado, Denver (Dr Hirsch); the Department of Pathology, University of Aberdeen, Aberdeen, Scotland (Dr Kerr); the Department of Molecular Pathology, Roswell Park Cancer Institute, Buffalo, New York (Dr Nowak); the Clinical and Scientific Affairs Division, Association for Molecular Pathology, Bethesda, Maryland (Dr Temple-Smolkin); the Molecular Therapeutics and Biomarkers Laboratory, Peter Maccallum Cancer Center, Melbourne, Australia (Dr Solomon); the Department of Pathology, VU University Medical Center, Amsterdam, the Netherlands (Dr Thunnissen); the Department of Laboratory Medicine and Pathobiology, Princess Margaret Cancer Center, Toronto, Ontario, Canada (Dr Tsao); Scientific Affairs, International Association for the Study of Lung Cancer, Aurora, Colorado (Dr Wynes); and the Department of Pathology and Molecular Diagnostics, Aichi Cancer Center, Nagoya, Japan (Dr Yatabe). Dr Souter is in private practice in Wellanport, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
454
|
Lindeman NI, Cagle PT, Aisner DL, Arcila ME, Beasley MB, Bernicker EH, Colasacco C, Dacic S, Hirsch FR, Kerr K, Kwiatkowski DJ, Ladanyi M, Nowak JA, Sholl L, Temple-Smolkin R, Solomon B, Souter LH, Thunnissen E, Tsao MS, Ventura CB, Wynes MW, Yatabe Y. Updated Molecular Testing Guideline for the Selection of Lung Cancer Patients for Treatment With Targeted Tyrosine Kinase Inhibitors: Guideline From the College of American Pathologists, the International Association for the Study of Lung Cancer, and the Association for Molecular Pathology. J Thorac Oncol 2018; 13:323-358. [PMID: 29396253 DOI: 10.1016/j.jtho.2017.12.001] [Citation(s) in RCA: 357] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2017] [Indexed: 12/15/2022]
Abstract
CONTEXT In 2013, an evidence-based guideline was published by the College of American Pathologists, the International Association for the Study of Lung Cancer, and the Association for Molecular Pathology to set standards for the molecular analysis of lung cancers to guide treatment decisions with targeted inhibitors. New evidence has prompted an evaluation of additional laboratory technologies, targetable genes, patient populations, and tumor types for testing. OBJECTIVE To systematically review and update the 2013 guideline to affirm its validity; to assess the evidence of new genetic discoveries, technologies, and therapies; and to issue an evidence-based update. DESIGN The College of American Pathologists, the International Association for the Study of Lung Cancer, and the Association for Molecular Pathology convened an expert panel to develop an evidence-based guideline to help define the key questions and literature search terms, review abstracts and full articles, and draft recommendations. RESULTS Eighteen new recommendations were drafted. The panel also updated 3 recommendations from the 2013 guideline. CONCLUSIONS The 2013 guideline was largely reaffirmed with updated recommendations to allow testing of cytology samples, require improved assay sensitivity, and recommend against the use of immunohistochemistry for EGFR testing. Key new recommendations include ROS1 testing for all adenocarcinoma patients; the inclusion of additional genes (ERBB2, MET, BRAF, KRAS, and RET) for laboratories that perform next-generation sequencing panels; immunohistochemistry as an alternative to fluorescence in situ hybridization for ALK and/or ROS1 testing; use of 5% sensitivity assays for EGFR T790M mutations in patients with secondary resistance to EGFR inhibitors; and the use of cell-free DNA to "rule in" targetable mutations when tissue is limited or hard to obtain.
Collapse
Affiliation(s)
- Neal I Lindeman
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts.
| | - Philip T Cagle
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas
| | - Dara L Aisner
- Department of Pathology, University of Colorado School of Medicine, Denver, New York
| | - Maria E Arcila
- Diagnostic and Molecular Pathology Laboratory, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Mary Beth Beasley
- Department of Pathology & Medicine, Pulmonary, Critical Care and Sleep Medicine, New York, New York
| | | | - Carol Colasacco
- Pathology and Laboratory Quality Center, College of American Pathologists, Northfield, Illinois
| | - Sanja Dacic
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Fred R Hirsch
- Department of Medicine and Pathology, University of Colorado, Denver, New York
| | - Keith Kerr
- Department of Pathology, University of Aberdeen, Aberdeen, Scotland
| | | | - Marc Ladanyi
- Molecular Diagnostics Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jan A Nowak
- Department of Molecular Pathology, Roswell Park Cancer Institute, Buffalo, New York
| | - Lynette Sholl
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Robyn Temple-Smolkin
- Clinical and Scientific Affairs Division, Association for Molecular Pathology, Bethesda, Maryland
| | - Benjamin Solomon
- Molecular Therapeutics and Biomarkers Laboratory, Peter Maccallum Cancer Center, Melbourne, Australia
| | | | - Erik Thunnissen
- Department of Pathology, VU University Medical Center, Amsterdam, the Netherlands
| | - Ming S Tsao
- Department of Laboratory Medicine and Pathobiology, Princess Margaret Cancer Center, Toronto, Ontario, Canada
| | - Christina B Ventura
- Pathology and Laboratory Quality Center, College of American Pathologists, Northfield, Illinois
| | - Murry W Wynes
- Scientific Affairs, International Association for the Study of Lung Cancer, Aurora, Colorado
| | - Yasushi Yatabe
- Department of Pathology and Molecular Diagnostics, Aichi Cancer Center, Nagoya, Japan
| |
Collapse
|
455
|
Lindeman NI, Cagle PT, Aisner DL, Arcila ME, Beasley MB, Bernicker EH, Colasacco C, Dacic S, Hirsch FR, Kerr K, Kwiatkowski DJ, Ladanyi M, Nowak JA, Sholl L, Temple-Smolkin R, Solomon B, Souter LH, Thunnissen E, Tsao MS, Ventura CB, Wynes MW, Yatabe Y. Updated Molecular Testing Guideline for the Selection of Lung Cancer Patients for Treatment With Targeted Tyrosine Kinase Inhibitors: Guideline From the College of American Pathologists, the International Association for the Study of Lung Cancer, and the Association for Molecular Pathology. J Mol Diagn 2018; 20:129-159. [PMID: 29398453 DOI: 10.1016/j.jmoldx.2017.11.004] [Citation(s) in RCA: 248] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2017] [Indexed: 02/07/2023] Open
Abstract
CONTEXT In 2013, an evidence-based guideline was published by the College of American Pathologists, the International Association for the Study of Lung Cancer, and the Association for Molecular Pathology to set standards for the molecular analysis of lung cancers to guide treatment decisions with targeted inhibitors. New evidence has prompted an evaluation of additional laboratory technologies, targetable genes, patient populations, and tumor types for testing. OBJECTIVE To systematically review and update the 2013 guideline to affirm its validity; to assess the evidence of new genetic discoveries, technologies, and therapies; and to issue an evidence-based update. DESIGN The College of American Pathologists, the International Association for the Study of Lung Cancer, and the Association for Molecular Pathology convened an expert panel to develop an evidence-based guideline to help define the key questions and literature search terms, review abstracts and full articles, and draft recommendations. RESULTS Eighteen new recommendations were drafted. The panel also updated 3 recommendations from the 2013 guideline. CONCLUSIONS The 2013 guideline was largely reaffirmed with updated recommendations to allow testing of cytology samples, require improved assay sensitivity, and recommend against the use of immunohistochemistry for EGFR testing. Key new recommendations include ROS1 testing for all adenocarcinoma patients; the inclusion of additional genes (ERBB2, MET, BRAF, KRAS, and RET) for laboratories that perform next-generation sequencing panels; immunohistochemistry as an alternative to fluorescence in situ hybridization for ALK and/or ROS1 testing; use of 5% sensitivity assays for EGFR T790M mutations in patients with secondary resistance to EGFR inhibitors; and the use of cell-free DNA to "rule in" targetable mutations when tissue is limited or hard to obtain.
Collapse
Affiliation(s)
- Neal I Lindeman
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts.
| | - Philip T Cagle
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas
| | - Dara L Aisner
- Department of Pathology, University of Colorado School of Medicine, Denver, Colorado
| | - Maria E Arcila
- Diagnostic and Molecular Pathology Laboratory, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Mary Beth Beasley
- Department of Pathology & Medicine, Pulmonary, Critical Care and Sleep Medicine, New York, New York
| | - Eric H Bernicker
- Cancer Research Program, Houston Methodist Research Institute, Houston, Texas
| | - Carol Colasacco
- Pathology and Laboratory Quality Center, College of American Pathologists, Northfield, Illinois
| | - Sanja Dacic
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Fred R Hirsch
- Department of Medicine and Pathology, University of Colorado, Denver, Colorado
| | - Keith Kerr
- Department of Pathology, University of Aberdeen, Aberdeen, Scotland
| | | | - Marc Ladanyi
- Molecular Diagnostics Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jan A Nowak
- Department of Molecular Pathology, Roswell Park Cancer Institute, Buffalo, New York
| | - Lynette Sholl
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Robyn Temple-Smolkin
- Clinical and Scientific Affairs Division, Association for Molecular Pathology, Bethesda, Maryland
| | - Benjamin Solomon
- Molecular Therapeutics and Biomarkers Laboratory, Peter Maccallum Cancer Center, Melbourne, Australia
| | | | - Erik Thunnissen
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands
| | - Ming S Tsao
- Department of Laboratory Medicine and Pathobiology, Princess Margaret Cancer Center, Toronto, Ontario, Canada
| | - Christina B Ventura
- Pathology and Laboratory Quality Center, College of American Pathologists, Northfield, Illinois
| | - Murry W Wynes
- Scientific Affairs, International Association for the Study of Lung Cancer, Aurora, Colorado
| | - Yasushi Yatabe
- Department of Pathology and Molecular Diagnostics, Aichi Cancer Center, Nagoya, Japan
| |
Collapse
|
456
|
|
457
|
Bennett CW, Berchem G, Kim YJ, El-Khoury V. Cell-free DNA and next-generation sequencing in the service of personalized medicine for lung cancer. Oncotarget 2018; 7:71013-71035. [PMID: 27589834 PMCID: PMC5342606 DOI: 10.18632/oncotarget.11717] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 08/11/2016] [Indexed: 12/13/2022] Open
Abstract
Personalized medicine has emerged as the future of cancer care to ensure that patients receive individualized treatment specific to their needs. In order to provide such care, molecular techniques that enable oncologists to diagnose, treat, and monitor tumors are necessary. In the field of lung cancer, cell free DNA (cfDNA) shows great potential as a less invasive liquid biopsy technique, and next-generation sequencing (NGS) is a promising tool for analysis of tumor mutations. In this review, we outline the evolution of cfDNA and NGS and discuss the progress of using them in a clinical setting for patients with lung cancer. We also present an analysis of the role of cfDNA as a liquid biopsy technique and NGS as an analytical tool in studying EGFR and MET, two frequently mutated genes in lung cancer. Ultimately, we hope that using cfDNA and NGS for cancer diagnosis and treatment will become standard for patients with lung cancer and across the field of oncology.
Collapse
Affiliation(s)
- Catherine W Bennett
- Department of Oncology, Luxembourg Institute of Health, L-1526 Luxembourg, Luxembourg
| | - Guy Berchem
- Department of Oncology, Luxembourg Institute of Health, L-1526 Luxembourg, Luxembourg.,Centre Hospitalier de Luxembourg, L-1210 Luxembourg, Luxembourg
| | - Yeoun Jin Kim
- Department of Oncology, Luxembourg Institute of Health, L-1526 Luxembourg, Luxembourg
| | - Victoria El-Khoury
- Department of Oncology, Luxembourg Institute of Health, L-1526 Luxembourg, Luxembourg
| |
Collapse
|
458
|
Kleczko EK, Heasley LE. Mechanisms of rapid cancer cell reprogramming initiated by targeted receptor tyrosine kinase inhibitors and inherent therapeutic vulnerabilities. Mol Cancer 2018; 17:60. [PMID: 29458371 PMCID: PMC5817864 DOI: 10.1186/s12943-018-0816-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 02/13/2018] [Indexed: 01/06/2023] Open
Abstract
Receptor tyrosine kinase (RTK) pathways serve as frequent oncogene drivers in solid cancers and small molecule and antibody-based inhibitors have been developed as targeted therapeutics for many of these oncogenic RTKs. In general, these drugs, when delivered as single agents in a manner consistent with the principles of precision medicine, induce tumor shrinkage but rarely complete tumor elimination. Moreover, acquired resistance of treated tumors is nearly invariant such that monotherapy strategies with targeted RTK drugs fail to provide long-term control or cures. The mechanisms mediating acquired resistance in tumors at progression treated with RTK inhibitors are relatively well defined compared to the molecular and cellular understanding of the cancer cells that persist early on therapy. We and others propose that these persisting cancer cells, termed "residual disease", provide the reservoir from which acquired resistance eventually emerges. Herein, we will review the literature that describes rapid reprogramming induced upon inhibition of oncogenic RTKs in cancer cells as a mechanism by which cancer cells persist to yield residual disease and consider strategies for disrupting these intrinsic responses for future therapeutic gain.
Collapse
Affiliation(s)
- Emily K. Kleczko
- Division of Renal Diseases and Hypertension, Department of Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045 USA
| | - Lynn E. Heasley
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045 USA
| |
Collapse
|
459
|
MET in the Driver's Seat: Exon 14 Skipping Mutations as Actionable Targets in Lung Cancer. J Thorac Oncol 2018; 11:1381-3. [PMID: 27565402 DOI: 10.1016/j.jtho.2016.07.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 06/30/2016] [Accepted: 07/01/2016] [Indexed: 11/20/2022]
|
460
|
Villaflor V, Won B, Nagy R, Banks K, Lanman RB, Talasaz A, Salgia R. Biopsy-free circulating tumor DNA assay identifies actionable mutations in lung cancer. Oncotarget 2018; 7:66880-66891. [PMID: 27602770 PMCID: PMC5341844 DOI: 10.18632/oncotarget.11801] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Accepted: 08/13/2016] [Indexed: 12/23/2022] Open
Abstract
INTRODUCTION The potential of oncogene-driven targeted therapy is perhaps most fully realized in non-small cell lung cancer (NSCLC), given the number of genomic targets and approved matched therapies. However, invasive tissue biopsy at the time of each disease progression may not be possible and is associated with high morbidity and cost. Use of newly available "liquid biopsies" can circumvent these issues. RESULTS 83% of subjects had at least one genomic alteration identified in plasma. Most commonly mutated genes were TP53, KRAS and EGFR. Subjects with no detectable ctDNA were more likely to have small volume disease, lepidic growth pattern, mucinous tumors or isolated leptomeningeal disease. METHODS Subjects were individuals with NSCLC undergoing analysis of cell-free circulating tumor DNA using a validated, commercially-available next-generation sequencing assay at a single institution. Demographic, clinicopathologic information and results from tissue and plasma-based genomic testing were reviewed for each subject. CONCLUSIONS This is the first clinic-based series of NSCLC patients assessing outcomes of targeted therapies using a commercially available ctDNA assay. Over 80% of patients had detectable ctDNA, concordance between paired tissue and blood for truncal oncogenic drivers was high and patients with biomarkers identified in plasma had PFS in the expected range. These data suggest that biopsy-free ctDNA analysis is a viable first choice when the diagnostic tissue biopsy is insufficient for genotyping or at the time of progression when a repeated invasive tissue biopsy is not possible/preferred.
Collapse
Affiliation(s)
- Victoria Villaflor
- Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Brian Won
- University of Chicago School of Medicine, MC 2115, Chicago, IL 60637, USA
| | | | | | | | | | | |
Collapse
|
461
|
The coexistence of MET over-expression and an EGFR T790M mutation is related to acquired resistance to EGFR tyrosine kinase inhibitors in advanced non-small cell lung cancer. Oncotarget 2018; 7:51311-51319. [PMID: 27259997 PMCID: PMC5239477 DOI: 10.18632/oncotarget.9697] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Accepted: 05/13/2016] [Indexed: 12/16/2022] Open
Abstract
MET overexpression and the EGFR T790M mutation are both associated with acquired resistance (AR) to epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) in advanced non-small cell lung cancer (NSCLC). We characterized the frequency, underlying molecular mechanisms, and subsequent treatment for AR in MET overexpressing NSCLC patients with or without the T790M mutation. The study participants were 207 patients with advanced NSCLC and AR to EGFR-TKIs. The percentages of MET-, T790M- and MET/T790M-positive patients were 20.3% (42/207), 34.8% (72/207) and 6.8% (14/207), respectively. The disease control rate was 100% (5/5) for five patients with MET overexpression who received EGFR-TKIs plus a MET inhibitor. Among the MET/T790M-positive patients, seven received EGFR-TKIs plus a MET inhibitor and four received a T790M inhibitor, but no response was observed. The median post-progression survival (PPS) was 14.1, 24.5, and 10.7 months for MET-overexpressing, T790M-positive and MET/T790M-positive patients, respectively (P=0.044). c-Met, p-Met, ERBB3, and p-ERBB3 were highly expressed in MET-positive and MET/T790M-positive patients, but were poorly expressed in T790M-positive patients. EGFR, p-EGFR, AKT, p-AKT, MAPK, and p-MAPK were highly expressed in all three groups. These results suggest that MET/T790M-positive patients are at higher risk of AR to EGFR-TKIs, and have a worse PPS than patients with only MET overexpression or the T790M mutation alone. Clinical trials are needed to determine the best treatment for patients with both MET overexpression and the EGFR T790M mutation.
Collapse
|
462
|
Melosky B, Blais N, Cheema P, Couture C, Juergens R, Kamel-Reid S, Tsao MS, Wheatley-Price P, Xu Z, Ionescu D. Standardizing biomarker testing for Canadian patients with advanced lung cancer. Curr Oncol 2018; 25:73-82. [PMID: 29507487 PMCID: PMC5832280 DOI: 10.3747/co.25.3867] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND The development and approval of both targeted and immune therapies for patients with advanced non-small cell lung cancer (nsclc) has significantly improved patient survival rates and quality of life. Biomarker testing for patients newly diagnosed with nsclc, as well as for patients progressing after treatment with epidermal growth factor receptor (EGFR) inhibitors, is the standard of care in Canada and many parts of the world. METHODS A group of thoracic oncology experts in the field of thoracic oncology met to describe the standard for biomarker testing for lung cancer in the Canadian context, focusing on evidence-based recommendations for standard-of-care testing for EGFR, anaplastic lymphoma kinase (ALK), ROS1, BRAF V600 and programmed death-ligand (PD-L1) at the time of diagnosis of advanced disease and EGFR T790M upon progression. As well, additional exploratory molecules and targets are likely to impact future patient care, including MET exon 14 skipping mutations and whole gene amplification, RET translocations, HER2 (ERBB2) mutations, NTRK, RAS (KRAS and NRAS), as well as TP53. RESULTS The standard of care must include the incorporation of testing for novel biomarkers as they become available, as it will be difficult for national guidelines to keep pace with technological advances in this area. CONCLUSIONS Canadian patients with nsclc should be treated equally; the minimum standard of care is defined in this paper.
Collapse
Affiliation(s)
- B. Melosky
- British Columbia Cancer Agency, Vancouver Centre, Vancouver BC
| | | | - P. Cheema
- William Osler Health System, University of Toronto, Toronto, Ontario
| | - C. Couture
- IUCPQ-Université Laval, Québec City, Quebec
| | - R. Juergens
- McMaster University, Juravinski Cancer Centre, Hamilton, Ontario, Chair of Medical Advisory Committee, Lung Cancer Canada
| | - S. Kamel-Reid
- University Health Network, Princess Margaret Cancer Centre and University of Toronto, Toronto, Ontario
| | - M.-S. Tsao
- University Health Network, Princess Margaret Cancer Centre and University of Toronto, Toronto, Ontario
| | - P. Wheatley-Price
- University of Ottawa/Ottawa Hospital Research Institute; President Lung Cancer Canada
| | - Z. Xu
- Queen Elizabeth II Health Sciences Centre/Dalhousie University, Halifax NS
| | - D.N. Ionescu
- British Columbia Cancer Agency, Vancouver Centre, Vancouver BC
| |
Collapse
|
463
|
Lategahn J, Keul M, Rauh D. Lessons To Be Learned: The Molecular Basis of Kinase-Targeted Therapies and Drug Resistance in Non-Small Cell Lung Cancer. Angew Chem Int Ed Engl 2018; 57:2307-2313. [DOI: 10.1002/anie.201710398] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Jonas Lategahn
- Faculty of Chemistry and Chemical Biology; TU Dortmund University; Otto-Hahn-Strasse 4a 44227 Dortmund Germany
| | - Marina Keul
- Faculty of Chemistry and Chemical Biology; TU Dortmund University; Otto-Hahn-Strasse 4a 44227 Dortmund Germany
| | - Daniel Rauh
- Faculty of Chemistry and Chemical Biology; TU Dortmund University; Otto-Hahn-Strasse 4a 44227 Dortmund Germany
| |
Collapse
|
464
|
Lategahn J, Keul M, Rauh D. Lektion gelernt? Die molekularen Grundlagen von Kinase-gerichteten Therapien und Wirkstoffresistenz im nicht-kleinzelligen Lungenkrebs. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201710398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Jonas Lategahn
- Fakultät für Chemie und Chemische Biologie; Technische Universität Dortmund; Otto-Hahn-Straße 4a 44227 Dortmund Deutschland
| | - Marina Keul
- Fakultät für Chemie und Chemische Biologie; Technische Universität Dortmund; Otto-Hahn-Straße 4a 44227 Dortmund Deutschland
| | - Daniel Rauh
- Fakultät für Chemie und Chemische Biologie; Technische Universität Dortmund; Otto-Hahn-Straße 4a 44227 Dortmund Deutschland
| |
Collapse
|
465
|
Parikh PK, Ghate MD. Recent advances in the discovery of small molecule c-Met Kinase inhibitors. Eur J Med Chem 2018; 143:1103-1138. [DOI: 10.1016/j.ejmech.2017.08.044] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Revised: 08/03/2017] [Accepted: 08/21/2017] [Indexed: 12/17/2022]
|
466
|
Abstract
Crizotinib is an ATP-competitive small-molecule inhibitor of the receptor tyrosine kinases (RTK) C-Met, ALK and ROS1. There is a robust effectiveness in non-small-cell lung cancer (NSCLC) harbouring EML4-ALK-rearrangements resulting in constitutional activation of the ALK-RTK. The drug is approved for this entity, which represents no more than 3-5% of all NSCLC. However, in this population, impressive response rates are generated. The same is true for ROS-1 rearrangements; however, these only occur in approximately 1% of all NSCLC. In small series, efficacy is also reported in patients, whose tumours harbour a MET Exon 4 skipping mutation (approx. 3% of all NSCLC). Toxicities include visual impairment, nausea, peripheral edema, QT-prolongation and liver-enzyme elevation. Also, the occurrence of renal cysts is reported. The detection of ALK-protein by immunohistochemistry is a predictor of efficacy for crizotinib. In cases of doubt, fluorescence in situ hybridisation (FISH) detecting the ALK-rearrangement has to be performed on tumour tissue. FISH is also the method of choice to detect ROS1-rearrangement, whereas MET-mutations are detected by sequencing methods. The high efficacy of crizotinib in ALK- and ROS-rearranged as well as MET mutated lung cancer as new molecular targets beside the epidermal growth factor receptor (EGFR) underscores the importance of molecular typing in NSCLC.
Collapse
|
467
|
Van Der Steen N, Mentens Y, Ramael M, Leon LG, Germonpré P, Ferri J, Gandara DR, Giovannetti E, Peters GJ, Pauwels P, Rolfo C. Double Trouble: A Case Series on Concomitant Genetic Aberrations in NSCLC. Clin Lung Cancer 2018; 19:35-41. [PMID: 28757336 DOI: 10.1016/j.cllc.2017.06.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 06/26/2017] [Accepted: 06/27/2017] [Indexed: 01/03/2023]
Abstract
Several oncogenic drivers have been identified in non-small cell lung cancer. Targeted therapies for these aberrations have already been successfully developed and implemented in clinical practice. Owing to improved sensitivity in genetic testing, more and more tumors with multiple driver mutations are identified, resulting in dilemmas for treating physicians whether and which targeted therapy to use. In this case series, we provide an overview of patients with intrinsic double mutations in oncogenic drivers and their reported response to targeted therapies, with a focus on epidermal growth factor receptor, anaplastic lymphoma kinase, cMET, and Kirsten rat sarcoma viral oncogene. We also include an unpublished case report on a patient with an epidermal growth factor receptor L858R and cMET exon 14 skipping.
Collapse
Affiliation(s)
- Nele Van Der Steen
- Center for Oncological Research, University of Antwerp, Antwerp, Belgium; Department of Pathology, Antwerp University Hospital, Antwerp, Belgium; Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands
| | - Yves Mentens
- Department of Pneumology, AZ Herentals, Herentals, Belgium
| | - Marc Ramael
- Department of Pathology, AZ Herentals, Herentals, Belgium; Laboratory of Cell Biology and Histology, University of Antwerp, Antwerp, Belgium
| | - Leticia G Leon
- Cancer Pharmacology Lab, AIRC Start-Up Unit, University of Pisa, Pisa, Italy
| | - Paul Germonpré
- Center for Oncological Research, University of Antwerp, Antwerp, Belgium; Department of Pneumology, AZ Maria Middelares, Ghent, Belgium
| | - Jose Ferri
- Phase I - Early Clinical Trials Unit, Oncology Department, Antwerp University Hospital, Antwerp, Belgium
| | - David R Gandara
- Department of Medicine, University of California Davis Cancer Center, Sacramento, CA
| | - Elisa Giovannetti
- Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands; Cancer Pharmacology Lab, AIRC Start-Up Unit, University of Pisa, Pisa, Italy
| | - Godefridus J Peters
- Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands
| | - Patrick Pauwels
- Center for Oncological Research, University of Antwerp, Antwerp, Belgium; Department of Pathology, Antwerp University Hospital, Antwerp, Belgium
| | - Christian Rolfo
- Center for Oncological Research, University of Antwerp, Antwerp, Belgium; Phase I - Early Clinical Trials Unit, Oncology Department, Antwerp University Hospital, Antwerp, Belgium.
| |
Collapse
|
468
|
Affiliation(s)
- Avrum Spira
- 1 Division of Computational Biomedicine, Boston University School of Medicine, Boston, Massachusetts
| | - Balazs Halmos
- 2 Department of Oncology, Albert Einstein College of Medicine, Bronx, New York; and
| | - Charles A Powell
- 3 Division of Pulmonary, Critical Care and Sleep Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
469
|
Abstract
Lung cancer is the number one cause of cancer-related death in both men and women. However, over the last few years, we have witnessed improved outcomes that are largely attributable to early detection, increased efforts in tobacco control, improved surgical approaches, and the development of novel targeted therapies. Currently, there are several novel therapies in clinical practice, including those targeting actionable mutations and more recently immunotherapeutic agents. Immunotherapy represents the most significant step forward in eradicating this deadly disease. Given the ever-changing landscape of lung cancer management, here we present an overview of the most recent advances in the management of non-small cell lung cancer.
Collapse
Affiliation(s)
- Samira Shojaee
- Division of Pulmonary and Critical Care Medicine, Virginia Commonwealth University, Richmond, USA
| | - Patrick Nana-Sinkam
- Division of Pulmonary and Critical Care Medicine, Virginia Commonwealth University, Richmond, USA
| |
Collapse
|
470
|
Aisner DL, Sholl LM, Berry LD, Rossi MR, Chen H, Fujimoto J, Moreira AL, Ramalingam SS, Villaruz LC, Otterson GA, Haura E, Politi K, Glisson B, Cetnar J, Garon EB, Schiller J, Waqar SN, Sequist LV, Brahmer J, Shyr Y, Kugler K, Wistuba II, Johnson BE, Minna JD, Kris MG, Bunn PA, Kwiatkowski DJ. The Impact of Smoking and TP53 Mutations in Lung Adenocarcinoma Patients with Targetable Mutations-The Lung Cancer Mutation Consortium (LCMC2). Clin Cancer Res 2017; 24:1038-1047. [PMID: 29217530 DOI: 10.1158/1078-0432.ccr-17-2289] [Citation(s) in RCA: 149] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 10/19/2017] [Accepted: 11/30/2017] [Indexed: 12/21/2022]
Abstract
Purpose: Multiplex genomic profiling is standard of care for patients with advanced lung adenocarcinomas. The Lung Cancer Mutation Consortium (LCMC) is a multi-institutional effort to identify and treat oncogenic driver events in patients with lung adenocarcinomas.Experimental Design: Sixteen U.S. institutions enrolled 1,367 patients with lung cancer in LCMC2; 904 were deemed eligible and had at least one of 14 cancer-related genes profiled using validated methods including genotyping, massively parallel sequencing, and IHC.Results: The use of targeted therapies in patients with EGFR, ERBB2, or BRAF p.V600E mutations, ALK, ROS1, or RET rearrangements, or MET amplification was associated with a survival increment of 1.5 years compared with those with such mutations not receiving targeted therapy, and 1.0 year compared with those lacking a targetable driver. Importantly, 60 patients with a history of smoking derived similar survival benefit from targeted therapy for alterations in EGFR/ALK/ROS1, when compared with 75 never smokers with the same alterations. In addition, coexisting TP53 mutations were associated with shorter survival among patients with EGFR, ALK, or ROS1 alterations.Conclusion: Patients with adenocarcinoma of the lung and an oncogenic driver mutation treated with effective targeted therapy have a longer survival, regardless of prior smoking history. Molecular testing should be performed on all individuals with lung adenocarcinomas irrespective of clinical characteristics. Routine use of massively parallel sequencing enables detection of both targetable driver alterations and tumor suppressor gene and other alterations that have potential significance for therapy selection and as predictive markers for the efficacy of treatment. Clin Cancer Res; 24(5); 1038-47. ©2017 AACR.
Collapse
Affiliation(s)
- Dara L Aisner
- University of Colorado Cancer Center, Aurora, Colorado.
| | - Lynette M Sholl
- Brigham and Women's Hospital, Boston, Massachusetts.,Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Lynne D Berry
- Vanderbilt-Ingram Cancer Center, Nashville, Tennessee
| | - Michael R Rossi
- Winship Cancer Institute of Emory University, Atlanta, Georgia
| | - Heidi Chen
- Vanderbilt-Ingram Cancer Center, Nashville, Tennessee
| | - Junya Fujimoto
- The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | | | - Liza C Villaruz
- University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania
| | | | - Eric Haura
- H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | | | - Bonnie Glisson
- The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Edward B Garon
- David Geffen School of Medicine, University of California, Los Angeles, California
| | - Joan Schiller
- University of Texas Southwestern, Medical Center, Dallas, Texas
| | - Saiama N Waqar
- Washington University School of Medicine, St. Louis, Missouri
| | | | - Julie Brahmer
- The Johns Hopkins University, The Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland
| | - Yu Shyr
- Vanderbilt-Ingram Cancer Center, Nashville, Tennessee
| | - Kelly Kugler
- University of Colorado Cancer Center, Aurora, Colorado
| | | | | | - John D Minna
- University of Texas Southwestern, Medical Center, Dallas, Texas
| | - Mark G Kris
- Memorial Sloan Kettering Cancer Center, New York, New York
| | - Paul A Bunn
- University of Colorado Cancer Center, Aurora, Colorado
| | - David J Kwiatkowski
- Brigham and Women's Hospital, Boston, Massachusetts. .,Dana-Farber Cancer Institute, Boston, Massachusetts
| | | |
Collapse
|
471
|
Batra U, Jain A, Sharma M, Bajaj R, Suryavanshis M. Role of crizotinib in c-mesenchymal-epidermal transition-positive nonsmall cell lung cancer patients. Indian J Cancer 2017; 54:178-181. [PMID: 29199685 DOI: 10.4103/0019-509x.219592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
The increasing cases of NSCLC and improved understanding of its molecular biology has lead to identification of its varied driver mutations. cMET amplification has an important role as resistance mechanism for EGFR TKIs. Crizotinib is a drug which shows its anti-tumoral effect in cMET positive cases. Here we present a case series of three such patients who achieved were cMET amplified and showed partial response on Crizotinib.
Collapse
Affiliation(s)
- U Batra
- Rajiv Gandhi Cancer Institute and Research Centre, New Delhi, India
| | - A Jain
- Rajiv Gandhi Cancer Institute and Research Centre, New Delhi, India
| | - M Sharma
- Rajiv Gandhi Cancer Institute and Research Centre, New Delhi, India
| | - R Bajaj
- Rajiv Gandhi Cancer Institute and Research Centre, New Delhi, India
| | - M Suryavanshis
- Rajiv Gandhi Cancer Institute and Research Centre, New Delhi, India
| |
Collapse
|
472
|
Yan SB, Um SL, Peek VL, Stephens JR, Zeng W, Konicek BW, Liu L, Manro JR, Wacheck V, Walgren RA. MET-targeting antibody (emibetuzumab) and kinase inhibitor (merestinib) as single agent or in combination in a cancer model bearing MET exon 14 skipping. Invest New Drugs 2017; 36:536-544. [PMID: 29188469 PMCID: PMC6061111 DOI: 10.1007/s10637-017-0545-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 11/20/2017] [Indexed: 11/30/2022]
Abstract
Purpose Approximately 3% of lung cancer bears mutations leading to MET exon 14 skipping, an oncogenic driver which is further evidenced by case reports of patient response to MET kinase inhibitor treatment. Approximately 15% of tumors harboring MET exon14 skipping have concurrent MET amplification. Experimental Design Merestinib is a type II MET kinase inhibitor. Emibetuzumab, a bivalent anti-MET antibody, internalizes MET receptor. Each single agent and the combination were evaluated in the Hs746t gastric cancer line bearing MET exon14 skipping and MET amplification. Results Merestinib inhibited Hs746t cell proliferation (IC50=34 nM) and totally eliminated pMET at 100nM. Emibetuzumab showed little anti-proliferative activity against Hs746t cells (IC50>100nM), did not reduce pMET, and slightly reduced cell surface MET. In the Hs746t xenograft model, dose dependent differences in durability of response were seen with merestinib including durable tumor regression (91.8%) at 12 mg/kg qd. Emibetuzumab treatment (10mg/kg qw) provided transient tumor regression (37.7%), but tumors re-grew while on treatment. Concurrent combination of merestinib (6 mg/kg qd) and emibetuzumab resulted in 85% tumor regression, while a sequential combination (initiating merestinib first) resulted in longer duration of treatment response. Conclusions Data in this study support a clinical evaluation of merestinib in patients with MET exon 14 skipping (NCT02920996). As a type II MET kinase inhibitor, merestinib may provide a therapeutic option to treatment naïve patients or to patients who progress on type I MET inhibitor treatment. Data also support clinical evaluation of the sequential combination of merestinib with emibetuzumab when patients progress on single agent merestinib.
Collapse
Affiliation(s)
- S Betty Yan
- Lilly Research Laboratories, Eli Lilly and Company, DC0522, 307 E. McCarty Street, Indianapolis, IN, 46285, USA.
| | - Suzane L Um
- Lilly Research Laboratories, Eli Lilly and Company, DC0522, 307 E. McCarty Street, Indianapolis, IN, 46285, USA
| | - Victoria L Peek
- Lilly Research Laboratories, Eli Lilly and Company, DC0522, 307 E. McCarty Street, Indianapolis, IN, 46285, USA
| | - Jennifer R Stephens
- Lilly Research Laboratories, Eli Lilly and Company, DC0522, 307 E. McCarty Street, Indianapolis, IN, 46285, USA
| | - Wei Zeng
- Lilly Research Laboratories, Eli Lilly and Company, DC0522, 307 E. McCarty Street, Indianapolis, IN, 46285, USA
| | - Bruce W Konicek
- Lilly Research Laboratories, Eli Lilly and Company, DC0522, 307 E. McCarty Street, Indianapolis, IN, 46285, USA
| | - Ling Liu
- Lilly Research Laboratories, Eli Lilly and Company, DC0522, 307 E. McCarty Street, Indianapolis, IN, 46285, USA
| | - Jason R Manro
- Lilly Research Laboratories, Eli Lilly and Company, DC0522, 307 E. McCarty Street, Indianapolis, IN, 46285, USA
| | - Volker Wacheck
- Lilly Research Laboratories, Eli Lilly and Company, DC0522, 307 E. McCarty Street, Indianapolis, IN, 46285, USA
| | - Richard A Walgren
- Lilly Research Laboratories, Eli Lilly and Company, DC0522, 307 E. McCarty Street, Indianapolis, IN, 46285, USA
| |
Collapse
|
473
|
Genetic screening and molecular characterization of MET alterations in non-small cell lung cancer. Clin Transl Oncol 2017; 20:881-888. [DOI: 10.1007/s12094-017-1799-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 11/05/2017] [Indexed: 11/26/2022]
|
474
|
Li SD, Martial A, Schrock AB, Liu JJ. Extraordinary clinical benefit to sequential treatment with targeted therapy and immunotherapy of a BRAF V600E and PD-L1 positive metastatic lung adenocarcinoma. Exp Hematol Oncol 2017; 6:29. [PMID: 29142786 PMCID: PMC5674807 DOI: 10.1186/s40164-017-0089-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 10/27/2017] [Indexed: 12/22/2022] Open
Abstract
Background The treatment algorithm for metastatic non-small cell lung cancers (NSCLCs) has been evolving rapidly due to the development of new therapeutic agents. Although guidelines are provided by National Comprehensive Cancer Network (NCCN) for treatment options according to biomarker testing results, sequentially applying the three main modalities (chemotherapy, targeted therapy and immunotherapy) remains an ad hoc practice in clinic. In light of recent FDA approval of dabrafenib and trametinib combination for metastatic NSCLCs with BRAF V600E mutation, one question arises due to insufficient clinical data is if the targeted therapy should be used before immunotherapy in patients with both BRAF V600E and PD-L1 expression. Case presentation We present a case of 74-year-old female, former smoker with metastatic lung adenocarcinoma. The BRAF V600E mutation among other abnormalities was identified by comprehensive genomic profiling. The patient had an excellent 2-year response to the combination of pemetrexed and sorafenib. The patient was then treated with dabrafenib due to the presence of the BRAF V600E mutation and intolerance to cytotoxic chemotherapy. Not only the patient had an 18-month durable response to dabrafenib, she experienced outstanding quality of life with no serious adverse effects. At the time of symptomatic progression, the patient was then treated with two cycles of pembrolizumab based on her positive PD-L1 staining (90%). She had early response and came off pembrolizumab due to side effects. Seven months after initiation of pembrolizumab, the patient is off all the therapy and is currently asymptomatic. The patient is surviving with metastatic disease for over 7 years as of to date. Conclusions By appropriately sequencing the three main modalities of systemic therapies, we are able to achieve long-term disease control with minimal side effects even in a geriatric patient with multiple comorbidities. We argue that it is reasonable to first use a BRAF inhibitor before considering immunotherapy for NSCLCs positive for both BRAF V600E and PD-L1. Electronic supplementary material The online version of this article (10.1186/s40164-017-0089-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shuyu D Li
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA.,Sema4, A Mount Sinai Venture, Stamford, CT 06902 USA
| | - Annia Martial
- Department of Internal Medicine, OSF St., Francis Medical Center, University of Illinois College of Medicine at Peoria, Peoria, IL 61605 USA
| | | | - Jane J Liu
- Illinois CancerCare, P.C., Peoria, IL 61615 USA
| |
Collapse
|
475
|
KIF5B-MET Gene Rearrangement with Robust Antitumor Activity in Response to Crizotinib in Lung Adenocarcinoma. J Thorac Oncol 2017; 13:e29-e31. [PMID: 29102694 DOI: 10.1016/j.jtho.2017.10.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 10/14/2017] [Accepted: 10/26/2017] [Indexed: 02/07/2023]
|
476
|
Parsons BM, Meier DR, Gurda GT, Lofgren KA, Kenny PA. Exceptional Response to Crizotinib in an MET-Amplified Triple-Negative Breast Tumor. JCO Precis Oncol 2017; 1:1-6. [DOI: 10.1200/po.17.00070] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Benjamin M. Parsons
- Benjamin M. Parsons and Grzegorz T. Gurda, Gundersen Health System; David R. Meier, Kristopher A. Lofgren, and Paraic A. Kenny, Kabara Cancer Research Institute, Gundersen Medical Foundation, La Crosse; and Paraic A. Kenny, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - David R. Meier
- Benjamin M. Parsons and Grzegorz T. Gurda, Gundersen Health System; David R. Meier, Kristopher A. Lofgren, and Paraic A. Kenny, Kabara Cancer Research Institute, Gundersen Medical Foundation, La Crosse; and Paraic A. Kenny, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Grzegorz T. Gurda
- Benjamin M. Parsons and Grzegorz T. Gurda, Gundersen Health System; David R. Meier, Kristopher A. Lofgren, and Paraic A. Kenny, Kabara Cancer Research Institute, Gundersen Medical Foundation, La Crosse; and Paraic A. Kenny, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Kristopher A. Lofgren
- Benjamin M. Parsons and Grzegorz T. Gurda, Gundersen Health System; David R. Meier, Kristopher A. Lofgren, and Paraic A. Kenny, Kabara Cancer Research Institute, Gundersen Medical Foundation, La Crosse; and Paraic A. Kenny, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Paraic A. Kenny
- Benjamin M. Parsons and Grzegorz T. Gurda, Gundersen Health System; David R. Meier, Kristopher A. Lofgren, and Paraic A. Kenny, Kabara Cancer Research Institute, Gundersen Medical Foundation, La Crosse; and Paraic A. Kenny, University of Wisconsin School of Medicine and Public Health, Madison, WI
| |
Collapse
|
477
|
Tan X, Dai L, Wang Y, Liang G, Yang N, Chen M. Responses to crizotinib and disease monitoring with circulating tumor cells in lung adenocarcinoma patient with MET exon 14 skipping mutation: A case report. Medicine (Baltimore) 2017; 96:e8744. [PMID: 29381967 PMCID: PMC5708966 DOI: 10.1097/md.0000000000008744] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 10/24/2017] [Accepted: 10/26/2017] [Indexed: 12/15/2022] Open
Abstract
RATIONALE Mesenchymal-to-epithelial transition (MET) exon 14 skipping mutation was a targetable alteration in nonsmall-cell lung cancer (NSCLC), and the MET inhibitor of crizotinib had the most efficacy among all the targeted drugs. Most of the cancer-related deaths are associated with metastasis. Circulating tumor cells (CTCs) have been a valuable biomarker in assessing metastasis. Recent experiences suggested that CTCs detection may help improve diagnosis and predict prognosis for patients with NSCLC. However, few literatures have reported the CTCs detection based on the (MET) exon 14 skipping, which are positive in NSCLC patients. PATIENT CONCERNS The patient, a 69-year-old Chinese male, with a 50 years history of smoking. Because of the cough, the patient went to the hospital and found the upper right lung tumor and the right supraclavicular lymph node enlarged. He was worried that it was cancer. DIAGNOSES The patient was performed biopsy of the right clavicle lymph node metastasis on October 12 and sent the tissue specimen for pathological evaluation. Finally, the patient was diagnosed to be with a pT3N3Mx stage IIIC lung adenocarcinoma. INTERVENTIONS The patient began to take orally crizotinib 250 mg twice a day for the medical therapy after lymph node biopsy. At the same time, the CTCs were detected to observe the prognosis of the patients. OUTCOMES Compared with the first CTCs result, the second test revealed a decrease in the amount of CTCs, while the mesenchymal CTCs have increased, indicating the possibility of distal metastasis. LESSONS This is the first proof that CTCs can be quantitatively assayed by MET exon 14 skipping mutation, which demonstrates the clinical response to crizotinib. More cases should be reported and further evaluation for treatment options and prognosis evaluation is necessary.
Collapse
|
478
|
Li SD, Ma M, Li H, Waluszko A, Sidorenko T, Schadt EE, Zhang DY, Chen R, Ye F. Cancer gene profiling in non-small cell lung cancers reveals activating mutations in JAK2 and JAK3 with therapeutic implications. Genome Med 2017; 9:89. [PMID: 29082853 PMCID: PMC5662094 DOI: 10.1186/s13073-017-0478-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 10/04/2017] [Indexed: 01/05/2023] Open
Abstract
Background Next-generation sequencing (NGS) of cancer gene panels are widely applied to enable personalized cancer therapy and to identify novel oncogenic mutations. Methods We performed targeted NGS on 932 clinical cases of non-small-cell lung cancers (NSCLCs) using the Ion AmpliSeq™ Cancer Hotspot panel v2 assay. Results Actionable mutations were identified in 65% of the cases with available targeted therapeutic options, including 26% of the patients with mutations in National Comprehensive Cancer Network (NCCN) guideline genes. Most notably, we discovered JAK2 p.V617F somatic mutation, a hallmark of myeloproliferative neoplasms, in 1% (9/932) of the NSCLCs. Analysis of cancer cell line pharmacogenomic data showed that a high level of JAK2 expression in a panel of NSCLC cell lines is correlated with increased sensitivity to a selective JAK2 inhibitor. Further analysis of TCGA genomic data revealed JAK2 gain or loss due to genetic alterations in NSCLC clinical samples are associated with significantly elevated or reduced PD-L1 expression, suggesting that the activating JAK2 p.V617F mutation could confer sensitivity to both JAK inhibitors and anti-PD1 immunotherapy. We also detected JAK3 germline activating mutations in 6.7% (62/932) of the patients who may benefit from anti-PD1 treatment, in light of recent findings that JAK3 mutations upregulate PD-L1 expression. Conclusion Taken together, this study demonstrated the clinical utility of targeted NGS with a focused hotspot cancer gene panel in NSCLCs and identified activating mutations in JAK2 and JAK3 with clinical implications inferred through integrative analysis of cancer genetic, genomic, and pharmacogenomic data. The potential of JAK2 and JAK3 mutations as response markers for the targeted therapy against JAK kinases or anti-PD1 immunotherapy warrants further investigation. Electronic supplementary material The online version of this article (doi:10.1186/s13073-017-0478-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shuyu D Li
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.,Sema4, a Mount Sinai venture, Stamford, CT, 06902, USA
| | - Meng Ma
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.,Sema4, a Mount Sinai venture, Stamford, CT, 06902, USA
| | - Hui Li
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.,Sema4, a Mount Sinai venture, Stamford, CT, 06902, USA
| | - Aneta Waluszko
- Department of Pathology and Laboratory Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Tatyana Sidorenko
- Department of Pathology and Laboratory Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Eric E Schadt
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.,Sema4, a Mount Sinai venture, Stamford, CT, 06902, USA
| | - David Y Zhang
- Department of Pathology and Laboratory Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Rong Chen
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA. .,Sema4, a Mount Sinai venture, Stamford, CT, 06902, USA.
| | - Fei Ye
- Department of Pathology and Laboratory Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA. .,Department of Pathology, New York Medical College, Valhalla, NY, 10595, USA.
| |
Collapse
|
479
|
Abstract
The expanding spectrum of both established and candidate oncogenic driver mutations identified in non-small-cell lung cancer (NSCLC), coupled with the increasing number of clinically available signal transduction pathway inhibitors targeting these driver mutations, offers a tremendous opportunity to enhance patient outcomes. Despite these molecular advances, advanced-stage NSCLC remains largely incurable due to therapeutic resistance. In this Review, we discuss alterations in the targeted oncogene ('on-target' resistance) and in other downstream and parallel pathways ('off-target' resistance) leading to resistance to targeted therapies in NSCLC, and we provide an overview of the current understanding of the bidirectional interactions with the tumour microenvironment that promote therapeutic resistance. We highlight common mechanistic themes underpinning resistance to targeted therapies that are shared by NSCLC subtypes, including those with oncogenic alterations in epidermal growth factor receptor (EGFR), anaplastic lymphoma kinase (ALK), ROS1 proto-oncogene receptor tyrosine kinase (ROS1), serine/threonine-protein kinase b-raf (BRAF) and other less established oncoproteins. Finally, we discuss how understanding these themes can inform therapeutic strategies, including combination therapy approaches, and overcome the challenge of tumour heterogeneity.
Collapse
Affiliation(s)
- Julia Rotow
- Department of Medicine, Division of Hematology and Oncology, University of California San Francisco, 505 Parnassus Avenue, Box 1270, San Francisco, California 94143, USA
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, Box 0981, San Francisco, California 94143, USA
| | - Trever G Bivona
- Department of Medicine, Division of Hematology and Oncology, University of California San Francisco, 505 Parnassus Avenue, Box 1270, San Francisco, California 94143, USA
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, Box 0981, San Francisco, California 94143, USA
- Cellular and Molecular Pharmacology, University of California San Francisco, Box 2140, San Francisco, California 94158, USA
| |
Collapse
|
480
|
Wu YL, Soo RA, Locatelli G, Stammberger U, Scagliotti G, Park K. Does c-Met remain a rational target for therapy in patients with EGFR TKI-resistant non-small cell lung cancer? Cancer Treat Rev 2017; 61:70-81. [PMID: 29121501 DOI: 10.1016/j.ctrv.2017.10.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 10/12/2017] [Accepted: 10/13/2017] [Indexed: 02/07/2023]
Abstract
Non-small cell lung cancer (NSCLC) inevitably develops resistance to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) treatment. In 5-20% of cases, this can be attributed to aberrant c-Met activity, providing a clear rationale for the use of c-Met inhibitors in these patients. EGFR TKI-resistant tumors often remain sensitive to EGFR signaling, such that c-Met inhibitors are likely to be most effective when combined with continued EGFR TKI therapy. The phase III trials of the c-Met inhibitors onartuzumab and tivantinib, which failed to demonstrate significant benefit in patients with NSCLC but excluded patients with EGFR TKI-resistant disease, do not allow c-Met to be dismissed as a rational target in EGFR TKI-resistant NSCLC. Selective c-Met TKIs exhibit more favorable properties, targeting both hepatocyte growth factor (HGF)-dependent and -independent c-Met activity, with a reduced risk of toxicity compared to non-selective c-Met TKIs. Phase Ib/II trials of the selective c-Met TKIs capmatinib and tepotinib have shown encouraging signs of efficacy. Factors affecting the success of ongoing and future trials of c-Met inhibitors in patients with EGFR TKI-resistant, c-Met-positive NSCLC are considered.
Collapse
Affiliation(s)
- Yi-Long Wu
- Guangdong Lung Cancer Institute, Guangdong General Hospital (GGH) & Guangdong Academy of Medical Sciences, Guangzhou, China.
| | - Ross Andrew Soo
- National University Cancer Institute, National University Health System, Singapore.
| | | | | | - Giorgio Scagliotti
- University of Torino, Department of Medical Oncology, S. Luigi Hospital, Torino, Italy.
| | - Keunchil Park
- Innovative Cancer Medicine Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
481
|
Simultaneous evolutionary expansion and constraint of genomic heterogeneity in multifocal lung cancer. Nat Commun 2017; 8:823. [PMID: 29018192 PMCID: PMC5634994 DOI: 10.1038/s41467-017-00963-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 08/09/2017] [Indexed: 02/06/2023] Open
Abstract
Recent genomic analyses have revealed substantial tumor heterogeneity across various cancers. However, it remains unclear whether and how genomic heterogeneity is constrained during tumor evolution. Here, we sequence a unique cohort of multiple synchronous lung cancers (MSLCs) to determine the relative diversity and uniformity of genetic drivers upon identical germline and environmental background. We find that each multicentric primary tumor harbors distinct oncogenic alterations, including novel mutations that are experimentally demonstrated to be functional and therapeutically targetable. However, functional studies show a strikingly constrained tumorigenic pathway underlying heterogeneous genetic variants. These results suggest that although the mutation-specific routes that cells take during oncogenesis are stochastic, genetic trajectories may be constrained by selection for functional convergence on key signaling pathways. Our findings highlight the robust evolutionary pressures that simultaneously shape the expansion and constraint of genomic diversity, a principle that holds important implications for understanding tumor evolution and optimizing therapeutic strategies.Across cancer types tumor heterogeneity has been observed, but how this relates to tumor evolution is unclear. Here, the authors sequence multiple synchronous lung cancers, highlighting the evolutionary pressures that simultaneously shape the expansion and constraint of genomic heterogeneity.
Collapse
|
482
|
Klinghammer K, Keller J, George J, Hoffmann J, Chan EL, Hayman MJ. A phosphoarray platform is capable of personalizing kinase inhibitor therapy in head and neck cancers. Int J Cancer 2017; 142:156-164. [PMID: 28906000 DOI: 10.1002/ijc.31045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 08/06/2017] [Accepted: 08/22/2017] [Indexed: 01/07/2023]
Abstract
Tyrosine kinase inhibitors are effective treatments for cancers. Knowing the specific kinase mutants that drive the underlying cancers predict therapeutic response to these inhibitors. Thus, the current protocol for personalized cancer therapy involves genotyping tumors in search of various driver mutations and subsequently individualizing the tyrosine kinase inhibitor to the patients whose tumors express the corresponding driver mutant. While this approach works when known driver mutations are found, its limitation is the dependence on driver mutations as predictors for response. To complement the genotype approach, we hypothesize that a phosphoarray platform is equally capable of personalizing kinase inhibitor therapy. We selected head and neck squamous cell carcinoma as the cancer model to test our hypothesis. Using the receptor tyrosine kinase phosphoarray, we identified the phosphorylation profiles of 49 different tyrosine kinase receptors in five different head and neck cancer cell lines. Based on these results, we tested the cell line response to the corresponding kinase inhibitor therapy. We found that this phosphoarray accurately informed the kinase inhibitor response profile of the cell lines. Next, we determined the phosphorylation profiles of 39 head and neck cancer patient derived xenografts. We found that absent phosphorylated EGFR signal predicted primary resistance to cetuximab treatment in the xenografts without phosphorylated ErbB2. Meanwhile, absent ErbB2 signaling in the xenografts with phosphorylated EGFR is associated with a higher likelihood of response to cetuximab. In summary, the phosphoarray technology has the potential to become a new diagnostic platform for personalized cancer therapy.
Collapse
Affiliation(s)
- Konrad Klinghammer
- Department of Hematology and Oncology, Charite University Medicine, Berlin, Germany
| | - James Keller
- Department of Microbiology and Molecular Genetics, Stony Brook University, Stony Brook, NY, 11794
| | - Jonathan George
- Department of Microbiology and Molecular Genetics, Stony Brook University, Stony Brook, NY, 11794
| | - Jens Hoffmann
- EPO-Experimental Pharmacology and Oncology GmbH, Berlin, Germany
| | - Edward L Chan
- Department of Microbiology and Molecular Genetics, Stony Brook University, Stony Brook, NY, 11794.,Division of Pediatric Hematology/Oncology
| | - Michael J Hayman
- Department of Microbiology and Molecular Genetics, Stony Brook University, Stony Brook, NY, 11794
| |
Collapse
|
483
|
Müller JN, Falk M, Talwar J, Neemann N, Mariotti E, Bertrand M, Zacherle T, Lakis S, Menon R, Gloeckner C, Tiemann M, Heukamp LC, Thomas RK, Griesinger F, Heuckmann JM. Concordance between Comprehensive Cancer Genome Profiling in Plasma and Tumor Specimens. J Thorac Oncol 2017; 12:1503-1511. [DOI: 10.1016/j.jtho.2017.07.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 06/08/2017] [Accepted: 07/03/2017] [Indexed: 12/30/2022]
|
484
|
Daoud A, Chu QS. Targeting Novel but Less Common Driver Mutations and Chromosomal Translocations in Advanced Non-Small Cell Lung Cancer. Front Oncol 2017; 7:222. [PMID: 29034207 PMCID: PMC5626928 DOI: 10.3389/fonc.2017.00222] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 09/01/2017] [Indexed: 01/25/2023] Open
Abstract
Discovery of the epidermal growth factor receptor gene mutation and the anaplastic lymphoma kinase chromosomal translocation in non-small cell lung cancer has prompted efforts around the world to identify many less common targetable oncogenic drivers. Such concerted efforts have been variably successful in both non-squamous and squamous cell carcinomas of the lung. Some of the targeted therapies for these oncogenic drivers have received regulatory approval for clinical use, while others have modest clinical benefit. In this mini-review, several of these targets will be reviewed.
Collapse
Affiliation(s)
- Alia Daoud
- Department of Medical Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB, Canada
| | - Quincy S. Chu
- Department of Medical Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
485
|
Ku BM, Sun JM, Lee SH, Ahn JS, Park K, Ahn MJ. An update on biomarkers for kinase inhibitor response in non-small-cell lung cancer. Expert Rev Mol Diagn 2017; 17:933-942. [PMID: 28838271 DOI: 10.1080/14737159.2017.1372196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION The discovery of activating genetic and their use as predictive biomarkers for targeted therapy, such as tyrosine kinase inhibitors (TKIs), has changed the treatment paradigm of non-small cell lung cancer (NSCLC). As a result, epidermal growth factor receptor (EGFR) and anaplastic lymphoma kinase (ALK) TKIs have become the standard first-line treatment. Since then, other kinds of targetable oncogenic alterations have been identified in NSCLC. Several novel, molecularly-targeted TKIs have now achieved regulatory approval, while many others are currently in early- or late-phase clinical trial testing. These TKIs have significantly impacted and changed clinical outcomes for advanced NSCLC. Areas covered: In this review, the authors discuss recent evidence and progress in targeted therapies, especially small molecular tyrosine kinase inhibitors, matched with their biomarkers for the treatment of advanced NSCLC. Expert commentary: Although targeted therapies dramatically improve the outcome of patients with NSCLC harboring specific oncogenic alterations, molecular and clinical resistance almost invariably develops. New TKIs specifically active in molecular subgroups of NSCLC or the resistance setting have now been developed. The development of additional TKIs and rational combinations may further improve outcomes of NSCLC.
Collapse
Affiliation(s)
- Bo Mi Ku
- a Samsung Biomedical Research Institute, Samsung Medical Center , Sungkyunkwan University School of Medicine , Seoul , Korea
| | - Jong-Mu Sun
- b Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center , Sungkyunkwan University School of Medicine , Seoul , Korea
| | - Se-Hoon Lee
- b Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center , Sungkyunkwan University School of Medicine , Seoul , Korea
| | - Jin Seok Ahn
- b Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center , Sungkyunkwan University School of Medicine , Seoul , Korea
| | - Keunchil Park
- b Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center , Sungkyunkwan University School of Medicine , Seoul , Korea
| | - Myung-Ju Ahn
- b Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center , Sungkyunkwan University School of Medicine , Seoul , Korea
| |
Collapse
|
486
|
Smith MA, Licata T, Lakhani A, Garcia MV, Schildhaus HU, Vuaroqueaux V, Halmos B, Borczuk AC, Chen YA, Creelan BC, Boyle TA, Haura EB. MET-GRB2 Signaling-Associated Complexes Correlate with Oncogenic MET Signaling and Sensitivity to MET Kinase Inhibitors. Clin Cancer Res 2017; 23:7084-7096. [PMID: 28855353 DOI: 10.1158/1078-0432.ccr-16-3006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 05/01/2017] [Accepted: 08/23/2017] [Indexed: 12/31/2022]
Abstract
Purpose: Targeting MET in cancer is hampered by lack of diagnostics that accurately reflect high MET signaling and dependence. We hypothesized that assays reflecting MET signaling associated protein complexes could redefine tumors dependent on MET and could add additional precision beyond genomic assessments.Experimental Design: We used biochemical approaches, cellular viability studies, and proximity ligation assays to assess MET dependence. We examined MET signaling complexes in lung cancer patient specimens (N = 406) and patient-derived xenograft (PDX) models of solid tumors (N = 308). We evaluated response to crizotinib in a MET-amplified cohort of PDX models of lung cancer (N = 6) and provide a case report of a lung cancer patient harboring a Δexon14 MET splice variant.Results: We found the interaction of MET with the adaptor protein GRB2 is necessary for oncogenic survival signaling by MET. MET-GRB2 complexes were identified only within MET-amplified PDX models and patient specimens but exhibit substantial variability. Lack of MET-GRB2 complexes was associated with lack of response to MET TKI in cell lines and PDX models. Presence of MET-GRB2 complexes can further subtype tumors with Δexon14 MET splice variants. Presence of these complexes correlated with response to crizotinib in one patient with Δexon14 MET lacking MET gene amplification.Conclusions: Proximity assays measuring MET-GRB2 signaling complexes provide novel insights into MET-mediated signaling and could complement current clinical genomics-based assay platforms. Clin Cancer Res; 23(22); 7084-96. ©2017 AACR.
Collapse
Affiliation(s)
- Matthew A Smith
- Department of Thoracic Oncology, Moffitt Cancer Center, Tampa, Florida
| | - Thomas Licata
- Department of Thoracic Oncology, Moffitt Cancer Center, Tampa, Florida
| | - Aliya Lakhani
- Department of Thoracic Oncology, Moffitt Cancer Center, Tampa, Florida
| | | | | | | | - Balazs Halmos
- Department of Oncology, Montefiore/Albert Einstein Cancer Center, Bronx, New York
| | - Alain C Borczuk
- Department of Pathology, Weill-Cornell Medicine, New York, New York
| | - Y Ann Chen
- Department of Biostatistics, Moffitt Cancer Center, Tampa, Florida
| | | | - Theresa A Boyle
- Department of Molecular Pathology, Moffitt Cancer Center, Tampa, Florida
| | - Eric B Haura
- Department of Thoracic Oncology, Moffitt Cancer Center, Tampa, Florida.
| |
Collapse
|
487
|
Davies KD, Ng TL, Estrada-Bernal A, Le AT, Ennever PR, Camidge DR, Doebele RC, Aisner DL. Dramatic Response to Crizotinib in a Patient with Lung Cancer Positive for an HLA-DRB1-MET Gene Fusion. JCO Precis Oncol 2017. [PMID: 29527595 DOI: 10.1200/po.17.00117] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- Kurtis D Davies
- Department of Pathology, University of Colorado - Anschutz Medical Campus, Aurora CO
| | - Terry L Ng
- Division of Medical Oncology - University of Colorado - Anschutz Medical Campus, Aurora CO
| | - Adriana Estrada-Bernal
- Division of Medical Oncology - University of Colorado - Anschutz Medical Campus, Aurora CO
| | - Anh T Le
- Division of Medical Oncology - University of Colorado - Anschutz Medical Campus, Aurora CO
| | | | - D Ross Camidge
- Division of Medical Oncology - University of Colorado - Anschutz Medical Campus, Aurora CO
| | - Robert C Doebele
- Division of Medical Oncology - University of Colorado - Anschutz Medical Campus, Aurora CO
| | - Dara L Aisner
- Department of Pathology, University of Colorado - Anschutz Medical Campus, Aurora CO
| |
Collapse
|
488
|
Pilotto S, Carbognin L, Karachaliou N, Ma PC, Rosell R, Tortora G, Bria E. Tracking MET de-addiction in lung cancer: A road towards the oncogenic target. Cancer Treat Rev 2017; 60:1-11. [PMID: 28843992 DOI: 10.1016/j.ctrv.2017.08.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 08/05/2017] [Accepted: 08/09/2017] [Indexed: 02/06/2023]
Abstract
The discovery of druggable oncogenic drivers (i.e. EGFR and ALK), along with the introduction of comprehensive tumor genotyping techniques into the daily clinical practice define non-small-cell lung cancer (NSCLC) asa group of heterogeneous diseases, requiring a context-personalized clinico-therapeutical approach. Among the most investigated biomarkers, the MET proto-oncogene has been extensively demonstrated to play a crucial role throughout the lung oncogenesis, unbalancing the proliferation/apoptosis signaling and influencing the epithelial-mesenchymal transition and the invasive phenotype. Nevertheless, although different mechanisms eliciting the aberrant MET-associated oncogenic stimulus have been detected in lung cancer (such as gene amplification, increased gene copy number, mutations and MET/HGF overexpression), to date no clinically impactful results have been achieved with anti-MET tyrosine kinase inhibitors and monoclonal antibodies in the context of an unselected or MET enriched population. Recently, MET exon 14 splicing abnormalities have been identified asa potential oncogenic target in lung cancer, able to drive the activity of MET inhibitors in molecularly selected patients. In this paper, the major advancement and drawbacks of MET history in lung cancer are reviewed, underlying the renewed scientific euphoria related to the recent identification of MET exon 14 splicing variants asan actionable oncogenic target.
Collapse
Affiliation(s)
- S Pilotto
- Medical Oncology, University of Verona, Azienda Ospedaliera Universitaria Integrata, Verona, Italy.
| | - L Carbognin
- Medical Oncology, University of Verona, Azienda Ospedaliera Universitaria Integrata, Verona, Italy.
| | | | - P C Ma
- WVU Cancer Institute, Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, WV, United States; WV Clinical and Translational Science Institute, Morgantown, WV, United States.
| | - R Rosell
- Pangaea Biotech, Barcelona, Spain; Instituto Oncológico Dr Rosell, Quiron-Dexeus University Hospital, Barcelona, Spain; Catalan Institute of Oncology, Hospital Germans Trias i Pujol, Badalona, Spain; Molecular Oncology Research (MORe) Foundation, Barcelona, Spain; Germans Trias i Pujol Health Sciences Institute and Hospital, Campus Can Ruti, Spain.
| | - G Tortora
- Medical Oncology, University of Verona, Azienda Ospedaliera Universitaria Integrata, Verona, Italy.
| | - E Bria
- Medical Oncology, University of Verona, Azienda Ospedaliera Universitaria Integrata, Verona, Italy.
| |
Collapse
|
489
|
Reeser JW, Martin D, Miya J, Kautto EA, Lyon E, Zhu E, Wing MR, Smith A, Reeder M, Samorodnitsky E, Parks H, Naik KR, Gozgit J, Nowacki N, Davies KD, Varella-Garcia M, Yu L, Freud AG, Coleman J, Aisner DL, Roychowdhury S. Validation of a Targeted RNA Sequencing Assay for Kinase Fusion Detection in Solid Tumors. J Mol Diagn 2017; 19:682-696. [PMID: 28802831 DOI: 10.1016/j.jmoldx.2017.05.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 05/01/2017] [Accepted: 05/08/2017] [Indexed: 12/22/2022] Open
Abstract
Kinase gene fusions are important drivers of oncogenic transformation and can be inhibited with targeted therapies. Clinical grade diagnostics using RNA sequencing to detect gene rearrangements in solid tumors are limited, and the few that are available require prior knowledge of fusion break points. To address this, we have analytically validated a targeted RNA sequencing assay (OSU-SpARKFuse) for fusion detection that interrogates complete transcripts from 93 kinase and transcription factor genes. From a total of 74 positive and 36 negative control samples, OSU-SpARKFuse had 93.3% sensitivity and 100% specificity for fusion detection. Assessment of repeatability and reproducibility revealed 96.3% and 94.4% concordance between intrarun and interrun technical replicates, respectively. Application of this assay on prospective patient samples uncovered OLFM4 as a novel RET fusion partner in a small-bowel cancer and led to the discovery of a KLK2-FGFR2 fusion in a patient with prostate cancer who subsequently underwent treatment with a pan-fibroblast growth factor receptor inhibitor. Beyond fusion detection, OSU-SpARKFuse has built-in capabilities for discovery research, including gene expression analysis, detection of single-nucleotide variants, and identification of alternative splicing events.
Collapse
Affiliation(s)
- Julie W Reeser
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Dorrelyn Martin
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Jharna Miya
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Esko A Kautto
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Ezra Lyon
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Eliot Zhu
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Michele R Wing
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Amy Smith
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Matthew Reeder
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | | | - Hannah Parks
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Karan R Naik
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | | | - Nicholas Nowacki
- Department of Pathology, The Ohio State University, Columbus, Ohio
| | - Kurtis D Davies
- Department of Pathology, University of Colorado, Anschutz Medical Campus, Denver, Colorado
| | | | - Lianbo Yu
- Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio
| | - Aharon G Freud
- Department of Pathology, The Ohio State University, Columbus, Ohio
| | - Joshua Coleman
- Department of Pathology, The Ohio State University, Columbus, Ohio
| | - Dara L Aisner
- Department of Pathology, University of Colorado, Anschutz Medical Campus, Denver, Colorado
| | - Sameek Roychowdhury
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio; Department of Internal Medicine, Division of Medical Oncology, The Ohio State University, Columbus, Ohio.
| |
Collapse
|
490
|
Abstract
Advances in lung cancer genomics have revolutionized the diagnosis and treatment of this heterogeneous and clinically significant group of tumors. This article provides a broad overview of the most clinically relevant oncogenic alterations in common and rare lung tumors, with an emphasis on the pathologic correlates of the major oncogenic drivers, including EGFR, KRAS, ALK, and MET. Illustrations emphasize the morphologic diversity of lung adenocarcinoma, including genotype-phenotype correlations of genomic evolution in tumorigenesis. Molecular diagnostic approaches, including PCR-based testing, massively parallel sequencing, fluorescence in situ hybridization, and immunohistochemistry are reviewed.
Collapse
Affiliation(s)
- Lynette M Sholl
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA.
| |
Collapse
|
491
|
Poirot B, Doucet L, Benhenda S, Champ J, Meignin V, Lehmann-Che J. MET Exon 14 Alterations and New Resistance Mutations to Tyrosine Kinase Inhibitors: Risk of Inadequate Detection with Current Amplicon-Based NGS Panels. J Thorac Oncol 2017; 12:1582-1587. [PMID: 28779874 DOI: 10.1016/j.jtho.2017.07.026] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 07/12/2017] [Accepted: 07/17/2017] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Targeted therapies such as tyrosine kinase inhibitors (TKIs) have dramatically improved the treatment of lung adenocarcinoma, and detection of activating mutations of genes such as EGFR or anaplastic lymphoma kinase gene (ALK) is now mandatory in the clinical setting. However, additional targetable alterations are continuously being described and forcing us to adapt our detection methods. Here we have evaluated the ability of eight amplicon-based next-generation sequencing (NGS) panels to detect the recently described mesenchymal epithelial transition factor (MET) exon 14 (METex14) alterations or new mutations conferring resistance to TKIs. METHODS A total of 191 tumor samples from patients with NSCLC were screened for METex14 mutations by Sanger sequencing, and 62 additional cases were screened by Sanger sequencing and two amplicon-based NGS panels. In silico comparison of eight commercially available targeted NGS panels was also performed for the detection of METex14 alterations or ALK, ROS1, or EGFR resistance mutations. RESULTS NGS analysis of the positive METex14 cases revealed a false-negative case because of amplicon design. Moreover, in silico analysis revealed that none of the eight panels considered would be able to detect more than 63% of literature-reported cases of METex14 mutations and similar limitations would be expected with new ALK, ROS1, or EGFR resistance mutations. CONCLUSIONS We have illustrated major limitations of commercially available amplicon-based DNA NGS panels for detection of METex14 and recently described resistance mutations to TKIs. Documented choice of available panels and their frequent reevaluation are mandatory to deliver the most accurate data to the clinician for therapeutic decisions.
Collapse
Affiliation(s)
- Brigitte Poirot
- Molecular Oncology Unit, Saint-Louis Hospital, Assistance Publique Hôpitaux de Paris, Paris, France; Paris Diderot University, Sorbonne Paris Cité Paris, France; INSERM U944, Saint-Louis Hospital Paris, France
| | - Ludovic Doucet
- Department of Medical Oncology, Saint-Louis Hospital, Assistance Publique Hôpitaux de Paris, Paris, France
| | | | - Jérôme Champ
- Molecular Oncology Unit, Saint-Louis Hospital, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Véronique Meignin
- Department of Pathology, Saint-Louis Hospital, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Jacqueline Lehmann-Che
- Molecular Oncology Unit, Saint-Louis Hospital, Assistance Publique Hôpitaux de Paris, Paris, France; Paris Diderot University, Sorbonne Paris Cité Paris, France; INSERM U944, Saint-Louis Hospital Paris, France.
| |
Collapse
|
492
|
Engstrom LD, Aranda R, Lee M, Tovar EA, Essenburg CJ, Madaj Z, Chiang H, Briere D, Hallin J, Lopez-Casas PP, Baños N, Menendez C, Hidalgo M, Tassell V, Chao R, Chudova DI, Lanman RB, Olson P, Bazhenova L, Patel SP, Graveel C, Nishino M, Shapiro GI, Peled N, Awad MM, Jänne PA, Christensen JG. Glesatinib Exhibits Antitumor Activity in Lung Cancer Models and Patients Harboring MET Exon 14 Mutations and Overcomes Mutation-mediated Resistance to Type I MET Inhibitors in Nonclinical Models. Clin Cancer Res 2017; 23:6661-6672. [DOI: 10.1158/1078-0432.ccr-17-1192] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 06/13/2017] [Accepted: 07/24/2017] [Indexed: 11/16/2022]
|
493
|
Pool M, Terwisscha van Scheltinga AGT, Kol A, Giesen D, de Vries EGE, Lub-de Hooge MN. 89Zr-Onartuzumab PET imaging of c-MET receptor dynamics. Eur J Nucl Med Mol Imaging 2017; 44:1328-1336. [PMID: 28315949 PMCID: PMC5486818 DOI: 10.1007/s00259-017-3672-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 03/03/2017] [Indexed: 12/12/2022]
Abstract
PURPOSE c-MET and its ligand hepatocyte growth factor are often dysregulated in human cancers. Dynamic changes in c-MET expression occur and might predict drug efficacy or emergence of resistance. Noninvasive visualization of c-MET dynamics could therefore potentially guide c-MET-directed therapies. We investigated the feasibility of 89Zr-labelled one-armed c-MET antibody onartuzumab PET for detecting relevant changes in c-MET levels induced by c-MET-mediated epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor erlotinib resistance or heat shock protein-90 (HSP90) inhibitor NVP-AUY-922 treatment in human non-small-cell lung cancer (NSCLC) xenografts. METHODS In vitro membrane c-MET levels were determined by flow cytometry. HCC827ErlRes, an erlotinib-resistant clone with c-MET upregulation, was generated from the exon-19 EGFR-mutant human NSCLC cell line HCC827. Mice bearing HCC827 and HCC827ErlRes tumours in opposite flanks underwent 89Zr-onartuzumab PET scans. The HCC827-xenografted mice underwent 89Zr-onartuzumab PET scans before treatment and while receiving biweekly intraperitoneal injections of 100 mg/kg NVP-AUY-922 or vehicle. Ex vivo, tumour c-MET immunohistochemistry was correlated with the imaging results. RESULTS In vitro, membrane c-MET was upregulated in HCC827ErlRes tumours by 213 ± 44% in relation to the level in HCC827 tumours, while c-MET was downregulated by 69 ± 9% in HCC827 tumours following treatment with NVP-AUY-922. In vivo, 89Zr-onartuzumab uptake was 26% higher (P < 0.05) in erlotinib-resistant HCC827ErlRes than in HCC827 xenografts, while HCC827 tumour uptake was 33% lower (P < 0.001) following NVP-AUY-922 treatment. CONCLUSION The results show that 89Zr-onartuzumab PET effectively discriminates relevant changes in c-MET levels and could potentially be used clinically to monitor c-MET status.
Collapse
Affiliation(s)
- Martin Pool
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Anton G T Terwisscha van Scheltinga
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, P.O. Box 30.001, 9700 RB, Groningen, The Netherlands
| | - Arjan Kol
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Danique Giesen
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Elisabeth G E de Vries
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Marjolijn N Lub-de Hooge
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, P.O. Box 30.001, 9700 RB, Groningen, The Netherlands.
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
494
|
Salgia R. MET in Lung Cancer: Biomarker Selection Based on Scientific Rationale. Mol Cancer Ther 2017; 16:555-565. [PMID: 28373408 DOI: 10.1158/1535-7163.mct-16-0472] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 11/21/2016] [Accepted: 12/19/2016] [Indexed: 11/16/2022]
Abstract
MET or hepatocyte growth factor (HGF) receptor pathway signaling mediates wound healing and hepatic regeneration, with pivotal roles in embryonic, neuronal, and muscle development. However, dysregulation of MET signaling mediates proliferation, apoptosis, and migration and is implicated in a number of malignancies. In non-small cell lung cancer (NSCLC), aberrant MET signaling can occur through a number of mechanisms that collectively represent a significant proportion of patients. These include MET or HGF protein overexpression, MET gene amplification, MET gene mutation or fusion/rearrangement, or aberrations in downstream signaling or regulatory components. Responses to MET tyrosine kinase inhibitors have been documented in clinical trials in patients with MET-amplified or MET-overexpressing NSCLC, and case studies or case series have shown that MET mutation/deletion is a biomarker that is also predictive of response to these agents. However, other recent clinical data have highlighted an urgent need to elucidate optimal biomarkers based on genetic and/or protein diagnostics to correctly identify patients most likely to benefit in ongoing clinical trials of an array of MET-targeted therapies of differing class. The latest advances in the development of MET biomarkers in NSCLC have been reviewed, toward establishing appropriate MET biomarker selection based on a scientific rationale. Mol Cancer Ther; 16(4); 555-65. ©2017 AACR.
Collapse
Affiliation(s)
- Ravi Salgia
- City of Hope, Department of Medical Oncology and Therapeutics Research, Duarte, California.
| |
Collapse
|
495
|
Lee GD, Lee SE, Oh DY, Yu DB, Jeong HM, Kim J, Hong S, Jung HS, Oh E, Song JY, Lee MS, Kim M, Jung K, Kim J, Shin YK, Choi YL, Kim HR. MET Exon 14 Skipping Mutations in Lung Adenocarcinoma: Clinicopathologic Implications and Prognostic Values. J Thorac Oncol 2017; 12:1233-1246. [DOI: 10.1016/j.jtho.2017.04.031] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 04/24/2017] [Accepted: 04/27/2017] [Indexed: 12/16/2022]
|
496
|
Climente-González H, Porta-Pardo E, Godzik A, Eyras E. The Functional Impact of Alternative Splicing in Cancer. Cell Rep 2017; 20:2215-2226. [DOI: 10.1016/j.celrep.2017.08.012] [Citation(s) in RCA: 389] [Impact Index Per Article: 48.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 07/15/2017] [Accepted: 07/26/2017] [Indexed: 12/29/2022] Open
|
497
|
METex14-Positive NSCLC: Time to Take the Therapy to the Target to Aim for a Cure? J Thorac Oncol 2017; 12:1180-1182. [PMID: 28748813 DOI: 10.1016/j.jtho.2017.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 06/15/2017] [Indexed: 11/22/2022]
|
498
|
Pillai RN, Behera M, Berry LD, Rossi MR, Kris MG, Johnson BE, Bunn PA, Ramalingam SS, Khuri FR. HER2 mutations in lung adenocarcinomas: A report from the Lung Cancer Mutation Consortium. Cancer 2017; 123:4099-4105. [PMID: 28743157 DOI: 10.1002/cncr.30869] [Citation(s) in RCA: 145] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 04/20/2017] [Accepted: 05/05/2017] [Indexed: 01/09/2023]
Abstract
BACKGROUND Human epidermal growth factor receptor 2 (HER2) mutations have been reported in lung adenocarcinomas. Herein, the authors describe the prevalence, clinical features, and outcomes associated with HER2 mutations in 1007 patients in the Lung Cancer Mutation Consortium (LCMC). METHODS Patients with advanced-stage lung adenocarcinomas were enrolled to the LCMC. Tumor specimens were assessed for diagnosis and adequacy; multiplexed genotyping was performed in Clinical Laboratory Improvement Amendments (CLIA)-certified laboratories to examine 10 oncogenic drivers. The LCMC database was queried for patients with HER2 mutations to access demographic data, treatment history, and vital status. An exploratory analysis was performed to evaluate the survival of patients with HER2 mutations who were treated with HER2-directed therapies. RESULTS A total of 920 patients were tested for HER2 mutations; 24 patients (3%) harbored exon 20 insertion mutations (95% confidence interval, 2%-4%). One patient had a concurrent mesenchymal-epithelial transition factor (MET) amplification. The median age of the patients was 62 years, with a slight predominance of females over males (14 females vs 10 males). The majority of the patients were never-smokers (71%) and presented with advanced disease at the time of diagnosis. The median survival for patients who received HER2-targeted therapies (12 patients) was 2.1 years compared with 1.4 years for those who did not (12 patients) (P = .48). Patients with HER2 mutations were found to have inferior survival compared with the rest of the LCMC cohort with other mutations: the median survival was 3.5 years in the LCMC population receiving targeted therapy and 2.4 years for patients not receiving targeted therapy. CONCLUSIONS HER2 mutations were detected in 3% of patients with lung adenocarcinoma in the LCMC. HER2-directed therapies should be investigated in this subgroup of patients. Cancer 2017;123:4099-4105. © 2017 American Cancer Society.
Collapse
Affiliation(s)
- Rathi N Pillai
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia
| | - Madhusmita Behera
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia
| | - Lynne D Berry
- Vanderbilt Center for Quantitative Sciences, Vanderbilt-Ingram Cancer Center, Nashville, Tennessee
| | - Mike R Rossi
- Division of Cancer Biology, Department of Radiation Oncology, Emory University, Atlanta, Georgia
| | - Mark G Kris
- Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Bruce E Johnson
- Clinical Research, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Paul A Bunn
- Division of Medical Oncology, University of Colorado Cancer Center, Aurora, Colorado
| | - Suresh S Ramalingam
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia
| | - Fadlo R Khuri
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia
| |
Collapse
|
499
|
Preferential Localization of MET Expression at the Invasion Front and in Spreading Cells Through Air Spaces in Non-Small Cell Lung Carcinomas. Am J Surg Pathol 2017; 41:414-422. [PMID: 28098570 DOI: 10.1097/pas.0000000000000810] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The involvement of the HGF/MET pathway in acquisition of an invasive phenotype in non-small cell lung carcinomas (NSCLCs) suggests that MET inhibitors might prove effective against these cancers, but clinical trials have yielded conflicting results. The aim of our study was to evaluate how intratumoral heterogeneity (ITH) of MET staining affects the determination of MET status for therapeutic purposes. We analyzed 64 NSCLC samples, including 33 adenocarcinomas (ADCs) and 31 squamous cell carcinomas (SCCs). We used immunohistochemistry to detect MET and phospho-MET on whole slides and determined the MET SP44 immunoscore and the H-score. A high METMab score (2+/3+) was observed in 34% of NSCLCs and was more prevalent in ADCs (52%) than in SCCs (16%). We found ITH in 73% of ADCs and 77% of SCCs, with higher levels of MET and phospho-MET at the invasion front (in 52% of ADCs and 22% of SCCs) and in tumor cells spreading through air spaces in ADCs. Within-sample ITH was high in 40% of the ADCs and 29% of the SCCs. When different samples from the same tumor were compared, discordant assessments (high MET vs. low MET) were made for 12% of the ADCs and 10% of the SCCs. C-MET and phospho-MET overexpression occurred preferentially in ADCs and in areas involved in tumor progression, in support of the view that MET activation plays a role in the development of an invasive phenotype in NSCLC. To use MET status adequately as a biomarker, one must take the resulting high level of ITH into account.
Collapse
|
500
|
Schallenberg S, Merkelbach-Bruse S, Buettner R. Lung cancer as a paradigm for precision oncology in solid tumours. Virchows Arch 2017; 471:221-233. [PMID: 28730537 DOI: 10.1007/s00428-017-2183-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 04/19/2017] [Accepted: 06/25/2017] [Indexed: 02/06/2023]
Abstract
Non-small cell lung cancer (NSCLC) is the leading cause of cancer-related death in the western world. However, the combination of molecular genotyping and subsequent systematic treatment of decoded target structures is a prime example of precision oncology in solid tumours. In this review, current targets of approved therapeutics and potential targets in clinical and preclinical trials are outlined. Furthermore, immune checkpoint inhibitors, as promising new therapeutic options, which have already been applied successfully in cases of lung cancer, are introduced. A major issue of targeted treatment of lung tumours is the persistent development of resistance. The underlying mechanisms and established and potentially applicable alternative therapeutic approaches are described. In this process of precision oncology, immunohistochemistry, fluorescence in situ hybridization, and parallel sequencing are crucial diagnostic tools.
Collapse
Affiliation(s)
- Simon Schallenberg
- Institute of Pathology, University Hospital and Center for Integrated Oncology Cologne, Kerpener Straße 62, 50937, Cologne, Germany
| | - Sabine Merkelbach-Bruse
- Institute of Pathology, University Hospital and Center for Integrated Oncology Cologne, Kerpener Straße 62, 50937, Cologne, Germany.
| | - Reinhard Buettner
- Institute of Pathology, University Hospital and Center for Integrated Oncology Cologne, Kerpener Straße 62, 50937, Cologne, Germany
| |
Collapse
|