451
|
Chan IH, Wu V, McCauley S, Grimm EA, Mumm JB. IL-10: Expanding the Immune Oncology Horizon. RECEPTORS & CLINICAL INVESTIGATION 2015; 2:1041. [PMID: 26661378 PMCID: PMC4675350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Recent advances in immunoncology have dramatically changed the treatment options available to cancer patients. However, the fundamental challenges with this therapeutic modality are not new and still persist with the current wave of immunoncology compounds. These challenges are centered on the activation and expansion, induction of intratumoral infiltration and persistence of highly activated, cytotoxic, tumor antigen specific CD8+ T cells. We have investigated the anti-tumor mechanism of action of pegylated recombinant interleukin-10, (PEG-rIL-10) both pre-clinically with murine (PEG-rMuIL-10) and now clinically (AM0010) with human pegylated interleukin-10. The preponderance of data suggest that IL-10's engagement of its receptor on CD8+ T cells enhances their activation status leading to antigen specific expansion. Quantitation of CD8+ T cell tumor infiltration reveals that treatment of both humans and mice with pegylated rIL-10 results in 3-4 fold increases of intratumoral, cytotoxic, CD8+ T cells. In addition, mice cured of their tumors with PEG-rMuIL-10 exhibit long term immunological protection from tumor re-challenge and long term treatment of cancer patients with AM0010 results in the persistence of highly activated CD8+ T cells. Cumulatively, these data suggest the IL-10 represents an emerging therapeutic that specifically addresses the fundamental challenges of the current wave of immunoncology assets.
Collapse
Affiliation(s)
- Ivan H. Chan
- ARMO BioSciences 575 Chesapeake Drive Redwood City, CA 94063
| | - Victoria Wu
- ARMO BioSciences 575 Chesapeake Drive Redwood City, CA 94063
| | - Scott McCauley
- ARMO BioSciences 575 Chesapeake Drive Redwood City, CA 94063
| | - Elizabeth A. Grimm
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Box 421, 1515 Holcombe Blvd., Houston, TX 77030
| | - John B. Mumm
- ARMO BioSciences 575 Chesapeake Drive Redwood City, CA 94063
| |
Collapse
|
452
|
Radice E, Bellone G, Miranda V. Enhancement of the Immunostimulatory Functions of Ex Vivo-Generated Dendritic Cells from Early-Stage Colon Cancer Patients by Consecutive Exposure to Low Doses of Sequential-Kinetic-Activated IL-4 and IL-12. A Preliminary Study. Transl Oncol 2015; 8:327-38. [PMID: 26310379 PMCID: PMC4562983 DOI: 10.1016/j.tranon.2015.06.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 06/09/2015] [Accepted: 06/23/2015] [Indexed: 12/24/2022] Open
Abstract
Dendritic cells (DCs), specialized antigen-presenting cells bridging innate and adaptive immunity, play a crucial role in determining specific immune response to tumors. Because of their potent immunoregulatory capacities, DCs have been exploited in anticancer vaccination, with limited success thus far. This pilot study compared low-dose interleukin (IL)-4 and IL-12 prepared by sequential kinetic activation (SKA) with standard doses of the same recombinant human cytokines on functional activity of ex vivo–generated monocyte-derived (Mo) DCs from colon carcinoma patients and normal subjects. MoDCs were exposed to medium alone, SKA-IL-4 (0.5 fg/ml), or SKA-IL-12 (2 fg/ml), alone or consecutively combined, in parallel with rhIL-4 (50 ng/ml) and rhIL-12 (1 ng/ml). Primary allogeneic one-way mixed lymphocyte reaction (MLR) was the end point to assess in vitro T-lymphocyte proliferation in response to MoDCs, and secreted IL-12p70 and interferon-γ in MLR supernatants measured by ELISA to assay for T-helper 1–promoting MoDC phenotype. No single agent enhanced the compromised allostimulatory activity of MoDCs from colon cancer patients, unlike healthy donors. However, MoDCs from nonmetastatic colon cancer patients, after sequential exposure to SKA-IL-4 (48 hours) and SKA-IL-12 (24 hours), displayed increased T-cell stimulatory capacity by MLR and acquired driving T-helper 1 polarization activity, although less markedly than the effects induced by recombinant human cytokines or found in normal subjects. These results point to an immunomodulatory capacity of low-dose SKA-IL-4 and SKA-IL-12 and encourage further investigation to provide clues for the rational development of new and more effective immunotherapeutic strategies against cancer.
Collapse
Affiliation(s)
- Elisabetta Radice
- Department of Surgical Sciences, Corso Dogliotti 14, 10126 Turin, University of Turin, Italy.
| | - Graziella Bellone
- Department of Medical Sciences, Via Genova 3, 10126 Turin, University of Turin, Italy.
| | - Vincenzo Miranda
- Clinical Research Unit, GUNA S.p.a., Via Palmanova, 71, 20132 Milan, Italy.
| |
Collapse
|
453
|
Abstract
The regulatory approval of ipilimumab (Yervoy) in 2011 ushered in a new era of cancer immunotherapies with durable clinical effects. Most of these breakthrough medicines are monoclonal antibodies that block protein-protein interactions between T cell checkpoint receptors and their cognate ligands. In addition, genetically engineered autologous T cell therapies have also recently demonstrated significant clinical responses in haematological cancers. Conspicuously missing from this class of therapies are traditional small-molecule drugs, which have previously served as the backbone of targeted cancer therapies. Modulating the immune system through a small-molecule approach offers several unique advantages that are complementary to, and potentially synergistic with, biologic modalities. This Review highlights immuno-oncology pathways and mechanisms that can be best or solely targeted by small-molecule medicines. Agents aimed at these mechanisms--modulation of the immune response, trafficking to the tumour microenvironment and cellular infiltration--are poised to significantly extend the scope of immuno-oncology applications and enhance the opportunities for combination with tumour-targeted agents and biologic immunotherapies.
Collapse
|
454
|
Littwitz-Salomon E, Akhmetzyanova I, Vallet C, Francois S, Dittmer U, Gibbert K. Activated regulatory T cells suppress effector NK cell responses by an IL-2-mediated mechanism during an acute retroviral infection. Retrovirology 2015. [PMID: 26220086 PMCID: PMC4518534 DOI: 10.1186/s12977-015-0191-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Background It is well established that effector T cell responses are crucial for the control of most virus infections, but they are often tightly controlled by regulatory T cells (Treg) to minimize immunopathology. NK cells also contribute to virus control but it is not known if their antiviral effect is influenced by virus-induced Tregs as well. We therefore analyzed whether antiretroviral NK cell functions are inhibited by Tregs during an acute Friend retrovirus infection of mice. Results Selective depletion of Tregs by using the transgenic DEREG mouse model resulted in improved NK cell proliferation, maturation and effector cell differentiation. Suppression of NK cell functions depended on IL-2 consumption by Tregs, which could be overcome by specific NK cell stimulation with an IL-2/anti-IL-2 mAb complex. Conclusions The current study demonstrates that virus-induced Tregs indeed inhibit antiviral NK cell responses and describes a targeted immunotherapy that can abrogate the suppression of NK cells by Tregs. Electronic supplementary material The online version of this article (doi:10.1186/s12977-015-0191-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Elisabeth Littwitz-Salomon
- Institute of Virology of the University Hospital in Essen, University of Duisburg-Essen, Essen, Germany.
| | - Ilseyar Akhmetzyanova
- Institute of Virology of the University Hospital in Essen, University of Duisburg-Essen, Essen, Germany.
| | - Cecilia Vallet
- Institute of Virology of the University Hospital in Essen, University of Duisburg-Essen, Essen, Germany.
| | - Sandra Francois
- Institute of Virology of the University Hospital in Essen, University of Duisburg-Essen, Essen, Germany.
| | - Ulf Dittmer
- Institute of Virology of the University Hospital in Essen, University of Duisburg-Essen, Essen, Germany.
| | - Kathrin Gibbert
- Institute of Virology of the University Hospital in Essen, University of Duisburg-Essen, Essen, Germany.
| |
Collapse
|
455
|
Favorable alteration of tumor microenvironment by immunomodulatory cytokines for efficient T-cell therapy in solid tumors. PLoS One 2015; 10:e0131242. [PMID: 26107883 PMCID: PMC4479879 DOI: 10.1371/journal.pone.0131242] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 05/29/2015] [Indexed: 01/12/2023] Open
Abstract
Unfavorable ratios between the number and activation status of effector and suppressor immune cells infiltrating the tumor contribute to resistance of solid tumors to T-cell based therapies. Here, we studied the capacity of FDA and EMA approved recombinant cytokines to manipulate this balance in favor of efficient anti-tumor responses in B16.OVA melanoma bearing C57BL/6 mice. Intratumoral administration of IFN-α2, IFN-γ, TNF-α, and IL-2 significantly enhanced the anti-tumor effect of ovalbumin-specific CD8+ T-cell (OT-I) therapy, whereas GM-CSF increased tumor growth in association with an increase in immunosuppressive cell populations. None of the cytokines augmented tumor trafficking of OT-I cells significantly, but injections of IFN-α2, IFN-γ and IL-2 increased intratumoral cytokine secretion and recruitment of endogenous immune cells capable of stimulating T-cells, such as natural killer and maturated CD11c+ antigen-presenting cells. Moreover, IFN-α2 and IL-2 increased the levels of activated tumor-infiltrating CD8+ T-cells concomitant with reduction in the CD8+ T-cell expression of anergy markers CTLA-4 and PD-1. In conclusion, intratumoral administration of IFN-α2, IFN-γ and IL-2 can lead to immune sensitization of the established tumor, whereas GM-CSF may contribute to tumor-associated immunosuppression. The results described here provide rationale for including local administration of immunostimulatory cytokines into T-cell therapy regimens. One appealing embodiment of this would be vectored delivery which could be advantageous over direct injection of recombinant molecules with regard to efficacy, cost, persistence and convenience.
Collapse
|
456
|
Uehara T, Fujiwara T, Takeda K, Kunisada T, Ozaki T, Udono H. Immunotherapy for Bone and Soft Tissue Sarcomas. BIOMED RESEARCH INTERNATIONAL 2015; 2015:820813. [PMID: 26167500 PMCID: PMC4488089 DOI: 10.1155/2015/820813] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 11/13/2014] [Indexed: 02/07/2023]
Abstract
Although multimodal therapies including surgery, chemotherapy, and radiotherapy have improved clinical outcomes of patients with bone and soft tissue sarcomas, the prognosis of patients has plateaued over these 20 years. Immunotherapies have shown the effectiveness for several types of advanced tumors. Immunotherapies, such as cytokine therapies, vaccinations, and adoptive cell transfers, have also been investigated for bone and soft tissue sarcomas. Cytokine therapies with interleukin-2 or interferons have limited efficacy because of their cytotoxicities. Liposomal muramyl tripeptide phosphatidylethanolamine (L-MTP-PE), an activator of the innate immune system, has been approved as adjuvant therapeutics in combination with conventional chemotherapy in Europe, which has improved the 5-year overall survival of patients. Vaccinations and transfer of T cells transduced to express chimeric antigen receptors have shown some efficacy for sarcomas. Ipilimumab and nivolumab are monoclonal antibodies designed to inhibit immune checkpoint mechanisms. These antibodies have recently been shown to be effective for patients with melanoma and also investigated for patients with sarcomas. In this review, we provide an overview of various trials of immunotherapies for bone and soft tissue sarcomas, and discuss their potential as adjuvant therapies in combination with conventional therapies.
Collapse
Affiliation(s)
- Takenori Uehara
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
- Department of Immunology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Tomohiro Fujiwara
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
- Center of Innovative Medicine, Okayama University Hospital, Okayama 700-8558, Japan
| | - Ken Takeda
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
- Department of Intelligent Orthopaedic System, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Toshiyuki Kunisada
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
- Department of Medical Materials for Musculoskeletal Reconstruction, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Toshifumi Ozaki
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Heiichiro Udono
- Department of Immunology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| |
Collapse
|
457
|
IPS-1 differentially induces TRAIL, BCL2, BIRC3 and PRKCE in type I interferons-dependent and -independent anticancer activity. Cell Death Dis 2015; 6:e1758. [PMID: 25950488 PMCID: PMC4669701 DOI: 10.1038/cddis.2015.122] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 03/09/2015] [Accepted: 03/27/2015] [Indexed: 11/13/2022]
Abstract
RIG-I-like receptors are the key cytosolic sensors for RNA viruses and induce the production of type I interferons (IFN) and pro-inflammatory cytokines through a sole adaptor IFN-β promoter stimulator-1 (IPS-1) (also known as Cardif, MAVS and VISA) in antiviral innate immunity. These sensors also have a pivotal role in anticancer activity through induction of apoptosis. However, the mechanism for their anticancer activity is poorly understood. Here, we show that anticancer vaccine adjuvant, PolyIC (primarily sensed by MDA5) and the oncolytic virus, Newcastle disease virus (NDV) (sensed by RIG-I), induce anticancer activity. The ectopic expression of IPS-1 into type I IFN-responsive and non-responsive cancer cells induces anticancer activity. PolyIC transfection and NDV infection upregulate pro-apoptotic gene TRAIL and downregulate the anti-apoptotic genes BCL2, BIRC3 and PRKCE. Furthermore, stable knockdown of IPS-1, IRF3 or IRF7 in IFN-non-responsive cancer cells show reduced anticancer activity by suppressing apoptosis via TRAIL and anti-apoptotic genes. Collectively, our study shows that IPS-1 induces anticancer activity through upregulation of pro-apoptotic gene TRAIL and downregulation of the anti-apoptotic genes BCL2, BIRC3 and PRKCE via IRF3 and IRF7 in type I IFN-dependent and -independent manners.
Collapse
|
458
|
Dan X, Wong JH, Fang EF, Chan FCW, Ng TB. Purification and Characterization of a Novel Hemagglutinin with Inhibitory Activity toward Osteocarcinoma Cells from Northeast China Black Beans. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:3903-3914. [PMID: 25816710 DOI: 10.1021/acs.jafc.5b00106] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
In the present study, we isolated a novel hemagglutinin from an edible legume and explored its growth-inhibitory effect on osteocarcinoma and liver cancer cells. The protein was purified by liquid chromatography techniques which entailed affinity chromatography on Affi-gel blue gel, ion-exchange chromatography on Mono Q, and gel filtration on Superdex 75 with an FPLC system. The hemagglutinating activity of this hemagglutinin was demonstrated to be ion dependent and stable over a wide range of temperature and pH values. Antiproliferative activity was observed in the tumor cell lines MG-63 and HepG2 but not in the normal cell line WRL 68. Osteocarcinoma cells treated with the hemagglutinin underwent obvious cell shrinkage, chromatin condensation, mitochondrial membrane depolarization, and apoptosis. The mRNA expression level of interleukin-2 (IL-2), interleukin-6 (IL-6), interleukin-1 beta (IL-1β), interferon-gamma (IFN-γ), and tumor necrosis factor alpha (TNF-α) were found to be up-regulated to different extents after treatment of this hemagglutinin.
Collapse
Affiliation(s)
- Xiuli Dan
- †School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Jack Ho Wong
- †School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Evandro Fei Fang
- ‡National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, Maryland 21224, United States
| | - Francis Chun Wai Chan
- §School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Tzi Bun Ng
- †School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
459
|
Opposing roles for mammary epithelial-specific PPARγ signaling and activation during breast tumour progression. Mol Cancer 2015; 14:85. [PMID: 25889730 PMCID: PMC4422298 DOI: 10.1186/s12943-015-0347-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 03/18/2015] [Indexed: 11/29/2022] Open
Abstract
Background Among women worldwide, breast cancer is the most commonly diagnosed cancer, and the second leading cause of cancer-related deaths. Improved understanding of breast tumourigenesis may facilitate the development of more effective therapies. Peroxisome proliferator-activated receptor (PPAR)γ is a transcription factor that regulates genes involved in insulin sensitivity and adipogenesis. Previously, we showed, using 7,12-dimethylbenz [a] anthracene (DMBA)-treated haploinsufficient PPARγ mice, that PPARγ suppresses breast tumour progression; however, the PPARγ expressing cell types and mechanisms involved remain to be clarified. Here, the role of PPARγ expression and activation in mammary epithelial cells (MG) with respect to DMBA-mediated breast tumourigenesis was investigated. Methods PPARγ MG knockout (PPARγ-MG KO) mice and their congenic, wild-type controls (PPARγ-WT) were treated once a week for six weeks by oral gavage with 1 mg DMBA dissolved in corn oil and maintained on a normal chow diet. At week 7, mice were randomly divided into those maintained on a normal chow diet (DMBA Only; PPARγ-WT: n = 25 and PPARγ-MG KO: n = 39) or those receiving a diet supplemented with the PPARγ ligand, rosiglitazone (ROSI, 4 mg/kg/day) (DMBA + ROSI; PPARγ-WT: n = 34 and PPARγ-MG KO: n = 17) for the duration of the 25-week study. Results Compared to DMBA Only-treated PPARγ-WTs, both breast tumour susceptibility and serum levels of proinflammatory and chemotactic cytokines, namely IL-4, eotaxin, GM-CSF, IFN-γ, and MIP-1α, were decreased among PPARγ-MG KOs. Cotreatment with ROSI significantly reduced breast tumour progression among PPARγ-WTs, correlating with increased BRCA1 and decreased VEGF and COX-2 protein expression levels in breast tumours; whereas, surprisingly DMBA + ROSI-treated PPARγ-MG KOs showed increased breast tumourigenesis, correlating with activation of COX-2. Conclusion These novel data suggest MG-specific PPARγ expression and signaling is critical during breast tumourigenesis, and may serve as a strong candidate predictive biomarker for response of breast cancer patients to the use of therapeutic strategies that include PPARγ ligands. Electronic supplementary material The online version of this article (doi:10.1186/s12943-015-0347-8) contains supplementary material, which is available to authorized users.
Collapse
|
460
|
Licht V, Noack K, Schlott B, Förster M, Schlenker Y, Licht A, Krämer OH, Heinzel T. Caspase-3 and caspase-6 cleave STAT1 in leukemic cells. Oncotarget 2015; 5:2305-17. [PMID: 24810717 PMCID: PMC4039164 DOI: 10.18632/oncotarget.1911] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Signal Transducer and Activator of Transcription-1 (STAT1) is phosphorylated upon interferon (IFN) stimulation, which can restrict cell proliferation and survival. Nevertheless, in some cancers STAT1 can act in an anti-apoptotic manner. Moreover, certain malignancies are characterized by the overexpression and constitutive activation of STAT1. Here, we demonstrate that the treatment of transformed hematopoietic cells with epigenetic drugs belonging to the class of histone deacetylase inhibitors (HDACi) leads to the cleavage of STAT1 at multiple sites by caspase-3 and caspase-6. This process does not occur in solid tumor cells, normal hematopoietic cells, and leukemic cells that underwent granulocytic or monocytic differentiation. STAT1 cleavage was studied under cell free conditions with purified STAT1 and a set of candidate caspases as well as with mass spectrometry. These assays indicate that unmodified STAT1 is cleaved at multiple sites by caspase-3 and caspase-6. Our study shows that STAT1 is targeted by caspases in malignant undifferentiated hematopoietic cells. This observation may provide an explanation for the selective toxicity of HDACi against rapidly proliferating leukemic cells.
Collapse
Affiliation(s)
- Verena Licht
- Leibniz Institute for Age Research - Fritz Lipmann Institute, Beutenbergstrasse 11, 07745 Jena, Germany. Friedrich-Schiller-Universität Jena, Centre for Molecular Biomedicine (CMB), Institute for Biochemistry and Biophysics, Hans-Knöll-Str. 2, 07745 Jena, Germany
| | | | | | | | | | | | | | | |
Collapse
|
461
|
Yuan CH, Yang XQ, Zhu CL, Liu SP, Wang BC, Wang FB. Interleukin-7 enhances the in vivo anti-tumor activity of tumor-reactive CD8+ T cells with induction of IFN-gamma in a murine breast cancer model. Asian Pac J Cancer Prev 2014; 15:265-71. [PMID: 24528037 DOI: 10.7314/apjcp.2014.15.1.265] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Interleukin-7 (IL-7) is a potent anti-apoptotic cytokine that enhances immune effector cell functions and is essential for lymphocyte survival. While it known to induce differentiation and proliferation in some haematological malignancies, including certain types of leukaemias and lymphomas, little is known about its role in solid tumours, including breast cancer. In the current study, we investigated whether IL-7 could enhance the in vivo antitumor activity of tumor-reactive CD8+ T cells with induction of IFN-γ in a murine breast cancer model. Human IL-7 cDNA was constructed into the eukaryotic expression plasmid pcDNA3.1, and then the recombinational pcDNA3.1-IL-7 was intratumorally injected in the TM40D BALB/C mouse graft model. Serum and intracellular IFN-γ levels were measured by ELISA and flow cytometry, respectively. CD8+ T cell-mediated cytotoxicity was analyzed using the MTT method. Our results showed that IL-7 administration significantly inhibited tumor growth from day 15 after direct intratumoral injection of pcDNA3.1-IL-7. The anti-tumor effect correlated with a marked increase in the level of IFN-γ and breast cancer cells-specific CTL cytotoxicity. In vitro cytotoxicity assays showed that IL-7-treatment could augment cytolytic activity of CD8+ T cells from tumor bearing mice, while anti-IFN-γ blocked the function of CD8+ T cells, suggesting that IFN-γ mediated the cytolytic activity of CD8+ T cells. Furthermore, in vivo neutralization of CD8+ T lymphocytes by CD8 antibodies reversed the antitumor benefit of IL-7. Thus, we demonstrated that IL-7 exerts anti-tumor activity mainly through activating CD8+ T cells and stimulating them to secrete IFN-γ in a murine breast tumor model. Based on these results, our study points to a potential novel way to treat breast cancer and may have important implications for clinical immunotherapy.
Collapse
Affiliation(s)
- Chun-Hui Yuan
- Department of Laboratory Medicine and Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, China E-mail :
| | | | | | | | | | | |
Collapse
|
462
|
Mirsoian A, Bouchlaka MN, Sckisel GD, Chen M, Pai CCS, Maverakis E, Spencer RG, Fishbein KW, Siddiqui S, Monjazeb AM, Martin B, Maudsley S, Hesdorffer C, Ferrucci L, Longo DL, Blazar BR, Wiltrout RH, Taub DD, Murphy WJ. Adiposity induces lethal cytokine storm after systemic administration of stimulatory immunotherapy regimens in aged mice. ACTA ACUST UNITED AC 2014; 211:2373-83. [PMID: 25366964 PMCID: PMC4235633 DOI: 10.1084/jem.20140116] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
William Murphy’s group at UC Davis previously found that systemic administration of stimulatory immunotherapy (IT) in aged mice resulted in the rapid induction of cytokine storm culminating in multi-organ pathology and rapid lethality. They now show that in addition to age, increased body fat is critical to this adverse reaction, as aged calorie-restricted mice demonstrate protection from IT-induced toxicity. In contrast, young obese mice succumb to cytokine storm, multi-organ pathology, and lethality after systemic IT administration. Aging is a contributing factor in cancer occurrence. We recently demonstrated that systemic immunotherapy (IT) administration in aged, but not young, mice resulted in induction of rapid and lethal cytokine storm. We found that aging was accompanied by increases in visceral fat similar to that seen in young obese (ob/ob or diet-induced obese [DIO]) mice. Yet, the effects of aging and obesity on inflammatory responses to immunotherapeutics are not well defined. We determine the effects of adiposity on systemic IT tolerance in aged compared with young obese mice. Both young ob/ob- and DIO-generated proinflammatory cytokine levels and organ pathologies are comparable to those in aged ad libitum mice after IT, culminating in lethality. Young obese mice exhibited greater ratios of M1/M2 macrophages within the peritoneal and visceral adipose tissues and higher percentages of TNF+ macrophages in response to αCD40/IL-2 as compared with young lean mice. Macrophage depletion or TNF blockade in conjunction with αCD40/IL-2 prevented cytokine storms in young obese mice and protected from lethality. Calorie-restricted aged mice contain less visceral fat and displayed reduced cytokine levels, protection from organ pathology, and protection from lethality upon αCD40/IL-2 administration. Our data demonstrate that adiposity is a critical factor in the age-associated pathological responses to systemic anti-cancer IT.
Collapse
Affiliation(s)
- Annie Mirsoian
- Department of Dermatology, Department of Pathology and Laboratory Medicine, Department of Radiation Oncology, and Department of Dermatology and Internal Medicine, University of California, Davis, Sacramento, CA 95817
| | - Myriam N Bouchlaka
- Department of Dermatology, Department of Pathology and Laboratory Medicine, Department of Radiation Oncology, and Department of Dermatology and Internal Medicine, University of California, Davis, Sacramento, CA 95817
| | - Gail D Sckisel
- Department of Dermatology, Department of Pathology and Laboratory Medicine, Department of Radiation Oncology, and Department of Dermatology and Internal Medicine, University of California, Davis, Sacramento, CA 95817
| | - Mingyi Chen
- Department of Dermatology, Department of Pathology and Laboratory Medicine, Department of Radiation Oncology, and Department of Dermatology and Internal Medicine, University of California, Davis, Sacramento, CA 95817
| | - Chien-Chun Steven Pai
- Department of Dermatology, Department of Pathology and Laboratory Medicine, Department of Radiation Oncology, and Department of Dermatology and Internal Medicine, University of California, Davis, Sacramento, CA 95817
| | - Emanuel Maverakis
- Department of Dermatology, Department of Pathology and Laboratory Medicine, Department of Radiation Oncology, and Department of Dermatology and Internal Medicine, University of California, Davis, Sacramento, CA 95817
| | - Richard G Spencer
- National Institute on Aging-Intramural Research Program, National Institutes of Health, Biomedical Research Center, Baltimore, MD 21224
| | - Kenneth W Fishbein
- National Institute on Aging-Intramural Research Program, National Institutes of Health, Biomedical Research Center, Baltimore, MD 21224
| | - Sana Siddiqui
- National Institute on Aging-Intramural Research Program, National Institutes of Health, Biomedical Research Center, Baltimore, MD 21224
| | - Arta M Monjazeb
- Department of Dermatology, Department of Pathology and Laboratory Medicine, Department of Radiation Oncology, and Department of Dermatology and Internal Medicine, University of California, Davis, Sacramento, CA 95817
| | - Bronwen Martin
- National Institute on Aging-Intramural Research Program, National Institutes of Health, Biomedical Research Center, Baltimore, MD 21224
| | - Stuart Maudsley
- National Institute on Aging-Intramural Research Program, National Institutes of Health, Biomedical Research Center, Baltimore, MD 21224
| | - Charles Hesdorffer
- National Institute on Aging-Intramural Research Program, National Institutes of Health, Biomedical Research Center, Baltimore, MD 21224
| | - Luigi Ferrucci
- National Institute on Aging-Intramural Research Program, National Institutes of Health, Biomedical Research Center, Baltimore, MD 21224
| | - Dan L Longo
- National Institute on Aging-Intramural Research Program, National Institutes of Health, Biomedical Research Center, Baltimore, MD 21224
| | - Bruce R Blazar
- Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455
| | | | - Dennis D Taub
- Department of Dermatology, Department of Pathology and Laboratory Medicine, Department of Radiation Oncology, and Department of Dermatology and Internal Medicine, University of California, Davis, Sacramento, CA 95817 Hematology and Immunology Translational Research Center, VA Medical Center, Washington, DC 20422
| | - William J Murphy
- Department of Dermatology, Department of Pathology and Laboratory Medicine, Department of Radiation Oncology, and Department of Dermatology and Internal Medicine, University of California, Davis, Sacramento, CA 95817
| |
Collapse
|
463
|
Shahbazi MA, Fernández TD, Mäkilä EM, Le Guével X, Mayorga C, Kaasalainen MH, Salonen JJ, Hirvonen JT, Santos HA. Surface chemistry dependent immunostimulative potential of porous silicon nanoplatforms. Biomaterials 2014; 35:9224-35. [DOI: 10.1016/j.biomaterials.2014.07.050] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 07/23/2014] [Indexed: 02/02/2023]
|
464
|
New insights into IL-12-mediated tumor suppression. Cell Death Differ 2014; 22:237-46. [PMID: 25190142 DOI: 10.1038/cdd.2014.134] [Citation(s) in RCA: 401] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Revised: 07/17/2014] [Accepted: 07/21/2014] [Indexed: 12/14/2022] Open
Abstract
During the past two decades, interleukin-12 (IL-12) has emerged as one of the most potent cytokines in mediating antitumor activity in a variety of preclinical models. Through pleiotropic effects on different immune cells that form the tumor microenvironment, IL-12 establishes a link between innate and adaptive immunity that involves different immune effector cells and cytokines depending on the type of tumor or the affected tissue. The robust antitumor response exerted by IL-12, however, has not yet been successfully translated into the clinics. The majority of clinical trials involving treatment with IL-12 failed to show sustained antitumor responses and were associated to toxic side effects. Here we discuss the therapeutic effects of IL-12 from preclinical to clinical studies, and will highlight promising strategies to take advantage of the antitumor activity of IL-12 while limiting adverse effects.
Collapse
|
465
|
Gesheva V, Chausheva S, Mihaylova N, Manoylov I, Doumanova L, Idakieva K, Tchorbanov A. Anti-cancer properties of gastropodan hemocyanins in murine model of colon carcinoma. BMC Immunol 2014; 15:34. [PMID: 25168124 PMCID: PMC4164791 DOI: 10.1186/s12865-014-0034-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 08/21/2014] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Various immunotherapeutic approaches have been used for the treatment of cancer. A number of natural compounds are designed to repair, stimulate, or enhance the immune system response. Among them are the hemocyanins (Hcs) - extracellular copper proteins isolated from different arthropod and mollusc species. Hcs are oxygen transporter molecules and normally are freely dissolved in the hemolymph of these animals. Hemocyanins are very promising class of anti-cancer therapeutics due to their immunogenic properties and the absence of toxicity or side effects. KLH (Megathura crenulata hemocyanin) is the most studied molecule of this group setting a standard for natural carrier protein for small molecules and has been used in anti-tumor clinical trials. RESULTS The Hcs isolated from marine snail Rapana thomasiana (RtH) and the terrestrial snail Helix pomatia (HpH) express strong in vivo anti-cancer and anti-proliferative effects in the developed by us murine model of colon carcinoma. The immunization with RtH and HpH prolonged the survival of treated animals, improve humoral anti-cancer response and moderate the manifestation of C-26 carcinoma symptoms as tumor growth, splenomegaly and lung metastasis appearance. CONCLUSION Hemocyanins are used so far for therapy of superficial bladder cancer and murine melanoma models. Our findings demonstrate a potential anti-cancer effect of hemocyanins on a murine model of colon carcinoma suggesting their use for immunotherapy of different types of cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Andrey Tchorbanov
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Acad, G, Bonchev Str, 26, Sofia, 1113, Bulgaria.
| |
Collapse
|
466
|
Chaudhuri S, Singh MK, Bhattacharya D, Acharya S, Chatterjee S, Kumar P, Bhattacharjee P, Basu AK, Sa G, Das T, Ghosh TK, Chaudhuri S. The novel immunotherapeutic molecule T11TS modulates glioma-induced changes of key components of the immunological synapse in favor of T cell activation and glioma abrogation. J Neurooncol 2014; 120:19-31. [DOI: 10.1007/s11060-014-1528-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 06/28/2014] [Indexed: 02/08/2023]
|
467
|
Sachamitr P, Hackett S, Fairchild PJ. Induced pluripotent stem cells: challenges and opportunities for cancer immunotherapy. Front Immunol 2014; 5:176. [PMID: 24860566 PMCID: PMC4029000 DOI: 10.3389/fimmu.2014.00176] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 04/03/2014] [Indexed: 12/22/2022] Open
Abstract
Despite recent advances in cancer treatment over the past 30 years, therapeutic options remain limited and do not always offer a cure for malignancy. Given that tumor-associated antigens (TAA) are, by definition, self-proteins, the need to productively engage autoreactive T cells remains at the heart of strategies for cancer immunotherapy. These have traditionally focused on the administration of autologous monocyte-derived dendritic cells (moDC) pulsed with TAA, or the ex vivo expansion and adoptive transfer of tumor-infiltrating lymphocytes (TIL) as a source of TAA-specific cytotoxic T cells (CTL). Although such approaches have shown some efficacy, success has been limited by the poor capacity of moDC to cross present exogenous TAA to the CD8+ T-cell repertoire and the potential for exhaustion of CTL expanded ex vivo. Recent advances in induced pluripotency offer opportunities to generate patient-specific stem cell lines with the potential to differentiate in vitro into cell types whose properties may help address these issues. Here, we review recent success in the differentiation of NK cells from human induced pluripotent stem (iPS) cells as well as minor subsets of dendritic cells (DCs) with therapeutic potential, including CD141+XCR1+ DC, capable of cross presenting TAA to naïve CD8+ T cells. Furthermore, we review recent progress in the use of TIL as the starting material for the derivation of iPSC lines, thereby capturing their antigen specificity in a self-renewing stem cell line, from which potentially unlimited numbers of naïve TAA-specific T cells may be differentiated, free of the risks of exhaustion.
Collapse
Affiliation(s)
- Patty Sachamitr
- Sir William Dunn School of Pathology , University of Oxford, Oxford , UK
| | - Simon Hackett
- Sir William Dunn School of Pathology , University of Oxford, Oxford , UK
| | | |
Collapse
|
468
|
Guven-Maiorov E, Acuner-Ozbabacan SE, Keskin O, Gursoy A, Nussinov R. Structural pathways of cytokines may illuminate their roles in regulation of cancer development and immunotherapy. Cancers (Basel) 2014; 6:663-83. [PMID: 24670367 PMCID: PMC4074797 DOI: 10.3390/cancers6020663] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 03/11/2014] [Accepted: 03/12/2014] [Indexed: 01/06/2023] Open
Abstract
Cytokines are messengers between tissues and the immune system. They play essential roles in cancer initiation, promotion, metastasis, and immunotherapy. Structural pathways of cytokine signaling which contain their interactions can help understand their action in the tumor microenvironment. Here, our aim is to provide an overview of the role of cytokines in tumor development from a structural perspective. Atomic details of protein-protein interactions can help in understanding how an upstream signal is transduced; how higher-order oligomerization modes of proteins can influence their function; how mutations, inhibitors or antagonists can change cellular consequences; why the same protein can lead to distinct outcomes, and which alternative parallel pathways can take over. They also help to design drugs/inhibitors against proteins de novo or by mimicking natural antagonists as in the case of interferon-γ. Since the structural database (PDB) is limited, structural pathways are largely built from a series of predicted binary protein-protein interactions. Below, to illustrate how protein-protein interactions can help illuminate roles played by cytokines, we model some cytokine interaction complexes exploiting a powerful algorithm (PRotein Interactions by Structural Matching-PRISM).
Collapse
Affiliation(s)
- Emine Guven-Maiorov
- Center for Computational Biology and Bioinformatics and College of Engineering, Koc University, Rumelifeneri Yolu, 34450 Sariyer Istanbul, Turkey.
| | - Saliha Ece Acuner-Ozbabacan
- Center for Computational Biology and Bioinformatics and College of Engineering, Koc University, Rumelifeneri Yolu, 34450 Sariyer Istanbul, Turkey.
| | - Ozlem Keskin
- Center for Computational Biology and Bioinformatics and College of Engineering, Koc University, Rumelifeneri Yolu, 34450 Sariyer Istanbul, Turkey.
| | - Attila Gursoy
- Center for Computational Biology and Bioinformatics and College of Engineering, Koc University, Rumelifeneri Yolu, 34450 Sariyer Istanbul, Turkey.
| | - Ruth Nussinov
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA.
| |
Collapse
|
469
|
Dey P, Chaudhuri TK. In vitro modulation of TH1 and TH2 cytokine expression by edible tuber of Dioscorea alata and study of correlation patterns of the cytokine expression. FOOD SCIENCE AND HUMAN WELLNESS 2014; 3:1-8. [DOI: 10.1016/j.fshw.2014.01.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
470
|
Filho AM, Jammal MP, Côbo EDC, Silveira TP, Adad SJ, Murta EFC, Nomelini RS. Correlation of cytokines and inducible nitric oxide synthase expression with prognostic factors in ovarian cancer. Immunol Lett 2014; 158:195-9. [DOI: 10.1016/j.imlet.2014.01.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Revised: 12/17/2013] [Accepted: 01/10/2014] [Indexed: 01/21/2023]
|
471
|
Radice E, Miranda V, Bellone G. Low-doses of sequential-kinetic-activated interferon-γ enhance the ex vivo cytotoxicity of peripheral blood natural killer cells from patients with early-stage colorectal cancer. A preliminary study. Int Immunopharmacol 2013; 19:66-73. [PMID: 24369312 DOI: 10.1016/j.intimp.2013.12.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 11/29/2013] [Accepted: 12/09/2013] [Indexed: 10/25/2022]
Abstract
Natural killer (NK) cells are innate immune-system lymphocytes capable of killing tumor cells. They secrete cytokines, including interferon (IFN)-γ, which participate in shaping the initial inflammatory and downstream adaptive immune responses. Its potent immunoregulatory action means that IFN-γ might be beneficial in cases of tumor rejection, but its severe side-effects limit clinical applications. This pilot study compared low-dose IFN-γ prepared by sequential-kinetic-activation (SKA), with standard-dose recombinant (r) IFN-γ, in terms of ex-vivo cytotoxic activity of peripheral blood (PB)-NK cells from colorectal carcinoma (CRC) patients. This was tested against the NK-sensitive K562 cell line and the less-sensitive human CRC Caco-2 and HT-29 cell lines. Twenty primitive non-metastatic CRC patients, five metastatic CRC patients, and thirteen healthy donors were enrolled. PB lymphocytes (PBL) were exposed to medium alone, SKA-IFN-γ (0.25fg/ml) or rIFN-γ (1ng/ml). NK-cell cytolytic activity was examined via short-term (51)Cr-release. Pretreatment of PBL from non-metastatic patients with SKA-IFN-γ caused a significant increase in NK-cell cytotoxicity, compared to those from normal donors, although less markedly than pretreatment with rIFN-γ against all three cell lines. In contrast, PBL from metastatic CRC patients displayed significantly decreased NK-cell activity and responsiveness to both rIFN-γ and SKA-IFN-γ treatments. These results demonstrate in principle the immunomodulatory capacity of low-dose SKA-IFN-γ, and might open the door to the possibility of generating a novel, safe, and feasible approach to enhancing NK-cell antitumor activity in early-stage CRC patients.
Collapse
|
472
|
Atherton MJ, Lichty BD. Evolution of oncolytic viruses: novel strategies for cancer treatment. Immunotherapy 2013; 5:1191-206. [DOI: 10.2217/imt.13.123] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Many viruses have documented oncolytic activity, with the first evidence observed clinically over a decade ago. In recent years, there has been a resurgence of interest in the field of oncolytic viruses. Viruses may be innately oncotropic, lacking the ability to cause disease in people or they may require engineering to allow selective tumor targeting and attenuation of pathogenicity. Following infection of a neoplastic cell, several events may occur, including direct viral oncolysis, apoptosis, necrotic cell death and autophagic cellular demise. Of late, a large body of work has recognized the ability of oncolytic viruses (OVs) to activate the innate and adaptive immune system, as well as directly killing tumors. The production of viruses expressing transgenes encoding for cytokines, colony-stimulating factors, costimulatory molecules and tumor-associated antigens has been able to further incite immune responses against target tumors. Multiple OVs are now in the advanced stages of clinical trials, with several individual viruses having completed their respective trials with positive results. This review introduces the multiple mechanisms by which OVs are able to act as an antineoplastic therapy, either on their own or in combination with other more traditional treatment modalities. The full benefit and the place where OVs will be integrated into standard-of-care therapies will be determined with ongoing studies ranging from the laboratory to the patient. With various different viruses now in the clinic this therapeutic option is beginning to prove its worth, and the versatility of these agents means further innovative and novel applications will continue to be developed.
Collapse
Affiliation(s)
- Matthew J Atherton
- McMaster Immunology Research Centre, McMaster University, 1280 Main Street W, Hamilton, ON, Canada, L8S 4K1
| | - Brian D Lichty
- McMaster Immunology Research Centre, McMaster University, 1280 Main Street W, Hamilton, ON, Canada, L8S 4K1
| |
Collapse
|
473
|
Schabath MB, Giuliano AR, Thompson ZJ, Amankwah EK, Gray JE, Fenstermacher DA, Jonathan KA, Beg AA, Haura EB. TNFRSF10B polymorphisms and haplotypes associated with increased risk of death in non-small cell lung cancer. Carcinogenesis 2013; 34:2525-30. [PMID: 23839018 PMCID: PMC3810840 DOI: 10.1093/carcin/bgt244] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 06/13/2013] [Accepted: 07/02/2013] [Indexed: 12/22/2022] Open
Abstract
Presently, there are few validated biomarkers that can predict survival or treatment response for non-small cell lung cancer (NSCLC) and most are based on tumor markers. Biomarkers based on germ line DNA variations represent a valuable complementary strategy, which could have translational implications by subclassifying patients to tailored, patient-specific treatment. We analyzed single nucleotide polymorphisms (SNPs) in 53 inflammation-related genes among 651 NSCLC patients. Multivariable Cox proportional hazard models, adjusted for lung cancer prognostic factors, were used to assess the association of genotypes and haplotypes with overall survival. Four of the top 15 SNPs associated with survival were located in the TNF-receptor superfamily member 10b (TNFRSF10B) gene. The T-allele of the top ranked SNP (rs11785599) was associated with a 41% increased risk of death (95% confidence interval [CI] = 1.16-1.70) and the other three TNFRSF10B SNPs (rs1047275, rs4460370 and rs883429) exhibited a 35% (95% CI = 1.11-1.65), 29% (95% CI = 1.06-1.57) and 24% (95% CI = 0.99-1.54) increased risk of death, respectively. Haplotype analyses revealed that the most common risk haplotype (TCTT) was associated with a 78% (95% CI = 1.25-2.54) increased risk of death compared with the low-risk haplotype (CGCC). When the data were stratified by treatment, the risk haplotypes exhibited statistically significantly increased risk of death among patients who had surgery only and no statistically significant effects among patients who had surgery and adjuvant chemotherapy. These data suggest that possessing one or more risk alleles in TNFRSF10B is associated with an increased risk of death. Validated germ line biomarkers may have potential important clinical implications by optimizing patient-specific treatment.
Collapse
MESH Headings
- Adenocarcinoma/genetics
- Adenocarcinoma/mortality
- Adenocarcinoma/pathology
- Adenocarcinoma, Bronchiolo-Alveolar/genetics
- Adenocarcinoma, Bronchiolo-Alveolar/mortality
- Adenocarcinoma, Bronchiolo-Alveolar/pathology
- Biomarkers, Tumor/analysis
- Carcinoma, Large Cell/genetics
- Carcinoma, Large Cell/mortality
- Carcinoma, Large Cell/pathology
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/mortality
- Carcinoma, Non-Small-Cell Lung/pathology
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/mortality
- Carcinoma, Squamous Cell/pathology
- Female
- Follow-Up Studies
- Haplotypes/genetics
- Humans
- Lung Neoplasms/genetics
- Lung Neoplasms/mortality
- Lung Neoplasms/pathology
- Male
- Middle Aged
- Neoplasm Staging
- Polymorphism, Single Nucleotide/genetics
- Prognosis
- Prospective Studies
- Receptors, TNF-Related Apoptosis-Inducing Ligand/genetics
- Survival Rate
Collapse
Affiliation(s)
| | - Anna R. Giuliano
- Department of Cancer Epidemiology
- Department of Biostatistics
- Department of Thoracic Oncology
- Department of Biomedical Informatics and
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, MRC-CANCONT, Tampa, FL 33612, USA
| | | | - Ernest K. Amankwah
- Department of Cancer Epidemiology
- Department of Biostatistics
- Department of Thoracic Oncology
- Department of Biomedical Informatics and
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, MRC-CANCONT, Tampa, FL 33612, USA
| | | | | | - Kristen A. Jonathan
- Department of Cancer Epidemiology
- Department of Biostatistics
- Department of Thoracic Oncology
- Department of Biomedical Informatics and
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, MRC-CANCONT, Tampa, FL 33612, USA
| | - Amer A. Beg
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, MRC-CANCONT, Tampa, FL 33612, USA
| | | |
Collapse
|
474
|
Li RD, Sun Z, Dong JY, Yin H, Guo WY, Fu ZR, Wang ZX. A quantitative assessment model of T-cell immune function for predicting risks of infection and rejection during the early stage after liver transplantation. Clin Transplant 2013; 27:666-72. [PMID: 23914809 DOI: 10.1111/ctr.12187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/12/2013] [Indexed: 11/30/2022]
Abstract
Although more and more clinical studies indicated that ImmuKnow assay could efficiently assess the immune status of recipients, it still has the challenge to predict the occurrence of clinical adverse events. This study aimed to establish a quantitative assessment model, which could more efficiently predict immune function of T lymphocytes after liver transplantation based on three indexes: CD4+ T lymphocyte count (C), CD4+/CD8+ ratio (R), and ImmuKnow adenosine triphosphate (ATP) value (A). We selected 194 recipients and measured the A, C, and R index every week, then obtained the Fisher linear discriminant functions by SPSS 16.0. Next, we divided the recipients into three groups: infection, stable, and rejection groups according to clinical status. After calculating, the discriminant function, 0.012A + 0.019C + 1.322R (simplified into T = 2A + 3C + 200R), was selected to represent the T-cell-mediated immune function. Based on the model, the optimal cutoff T values for infection and rejection were 1415 (sensitivity = 80%, specificity = 79.9%,AUC = 92.3%) and 1939.5 (sensitivity = 93.9%, specificity = 77.6%, AUC = 88.6%), relatively (p < 0.001). In conclusion, this model may be a more feasible way to evaluate the cellular immune function status in liver transplantation recipients.
Collapse
Affiliation(s)
- Rui-dong Li
- Department of Organ Transplantation, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|