501
|
Murad HAS, Rafeeq MM, Alqurashi TMA. Role and implications of the CXCL12/CXCR4/CXCR7 axis in atherosclerosis: still a debate. Ann Med 2021; 53:1598-1612. [PMID: 34494495 PMCID: PMC8439212 DOI: 10.1080/07853890.2021.1974084] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 08/23/2021] [Indexed: 01/20/2023] Open
Abstract
Atherosclerosis is one of the leading causes of mortality and morbidity worldwide. Chemokines and their receptors are implicated in the pathogenesis of atherosclerosis. CXCL12 is a member of the chemokine family exerting a myriad role in atherosclerosis through its classical CXCR4 and atypical ACKR3 (CXCR7) receptors. The modulatory and regulatory functional spectrum of CXCL12/CXCR4/ACKR3 axis in atherosclerosis spans from proatherogenic, prothrombotic and proinflammatory to atheroprotective, plaque stabilizer and dyslipidemia rectifier. This diverse continuum is executed in a wide range of biological units including endothelial cells (ECs), progenitor cells, macrophages, monocytes, platelets, lymphocytes, neutrophils and vascular smooth muscle cells (VSMCs) through complex heterogeneous and homogenous coupling of CXCR4 and ACKR3 receptors, employing different downstream signalling pathways, which often cross-talk among themselves and with other signalling interactomes. Hence, a better understanding of this structural and functional heterogeneity and complex phenomenon involving CXCL12/CXCR4/ACKR3 axis in atherosclerosis would not only help in formulation of novel therapeutics, but also in elucidation of the CXCL12 ligand and its receptors, as possible diagnostic and prognostic biomarkers.Key messagesThe role of CXCL12 per se is proatherogenic in atherosclerosis development and progression.The CXCL12 receptors, CXCR4 and ACKR3 perform both proatherogenic and athero-protective functions in various cell typesDue to functional heterogeneity and cross talk of CXCR4 and ACKR3 at receptor level and downstream pathways, regional boosting with specific temporal and spatial modulators of CXCL12, CXCR4 and ACKR3 need to be explored.
Collapse
Affiliation(s)
- Hussam A. S. Murad
- Department of Pharmacology, Faculty of Medicine, Rabigh, King Abdulaziz University (KAU), Jeddah, Saudi Arabia
| | - Misbahuddin M. Rafeeq
- Department of Pharmacology, Faculty of Medicine, Rabigh, King Abdulaziz University (KAU), Jeddah, Saudi Arabia
| | - Thamer M. A. Alqurashi
- Department of Pharmacology, Faculty of Medicine, Rabigh, King Abdulaziz University (KAU), Jeddah, Saudi Arabia
| |
Collapse
|
502
|
Xu K, Wu CL, Wang ZX, Wang HJ, Yin FJ, Li WD, Liu CC, Fan HN. VEGF Family Gene Expression as Prognostic Biomarkers for Alzheimer's Disease and Primary Liver Cancer. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2021; 2021:3422393. [PMID: 34845413 PMCID: PMC8627334 DOI: 10.1155/2021/3422393] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/09/2021] [Accepted: 10/26/2021] [Indexed: 12/29/2022]
Abstract
BACKGROUND To analyze the expression of vascular endothelial growth factor (VEGF) in hepatocellular carcinoma (HCC) and cognitive impairment, explore the relationship between the expression of VEGF family genes and prognosis of patients with HCC, and evaluate the predictive ability of VEGF in cognitive impairment using computerized methods. METHODS VEGF expression in liver cancer tissues and normal tissues was analyzed using bioinformatics methods. The Kaplan-Meier survival analysis method was also used to analyze the relationship between VEGF expression and the prognosis of patients with HCC. Furthermore, immune infiltration assessment and gene set enrichment analysis were performed. Meanwhile, the differential expression of VEGF family genes between patients with Alzheimer's disease (AD) and healthy controls was also checked. RESULTS Based on The Cancer Genome Atlas (TCGA) database, the VEGF family genes (VEFGA, VEGFB, VEGFC, and VEGFD) were highly expressed in cancer tissues and were significantly associated with poor prognosis in HCC. In HCC, the VEGF family genes showed significant heterogeneity in their functional and immune infiltration characteristics. Finally, VEGF family genes were identified as prognostic biomarkers in AD and risk prediction markers in HCC. CONCLUSIONS VEGF is highly expressed in patients with HCC and lowly expressed in patients with AD. VEGF has opposite opposing roles in the treatment of tumors and cognitive impairment.
Collapse
Affiliation(s)
- Kai Xu
- Department of Hepatopancreatobiliary Surgery, Affiliated Hospital of Qinghai University, China
| | - Chuan-ling Wu
- Jianhu College, Zhejiang Industry Polytechnic College, China
| | - Zhi-xin Wang
- Department of Hepatopancreatobiliary Surgery, Affiliated Hospital of Qinghai University, China
- Qinghai Province Key Laboratory of Hydatid Disease Research, China
| | - Hai-jiu Wang
- Department of Hepatopancreatobiliary Surgery, Affiliated Hospital of Qinghai University, China
- Qinghai Province Key Laboratory of Hydatid Disease Research, China
| | - Feng-jiao Yin
- Department of Hepatopancreatobiliary Surgery, Affiliated Hospital of Qinghai University, China
| | - Wen-deng Li
- Department of Hepatopancreatobiliary Surgery, Affiliated Hospital of Qinghai University, China
| | - Chu-chu Liu
- Department of Hepatopancreatobiliary Surgery, Affiliated Hospital of Qinghai University, China
| | - Hai-ning Fan
- Department of Hepatopancreatobiliary Surgery, Affiliated Hospital of Qinghai University, China
| |
Collapse
|
503
|
Conforti A, Wahlers T, Paunel-Görgülü A. Neutrophil extracellular traps modulate inflammatory markers and uptake of oxidized LDL by human and murine macrophages. PLoS One 2021; 16:e0259894. [PMID: 34797846 PMCID: PMC8604363 DOI: 10.1371/journal.pone.0259894] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/29/2021] [Indexed: 01/23/2023] Open
Abstract
Neutrophil extracellular traps (NETs) are web-like structures, which are released upon neutrophil activation. It has previously been demonstrated that NETs are present in atherosclerotic lesions of both humans and animal models thus playing a decisive role in atherosclerosis. Besides, macrophages have a crucial role in disease progression, whereby classically activated M1 macrophages sustain inflammation and alternatively activated M2 macrophages display anti-inflammatory effects. Although NETs and macrophages were found to colocalize in atherosclerotic lesions, the impact of NETs on macrophage function is not fully understood. In the present study, we aimed to investigate the effect of NETs on human and murine macrophages in respect to the expression of pro-inflammatory cytokines, matrix metalloproteinases (MMPs) and uptake of oxidized LDL (oxLDL) in vitro. Human THP-1 and murine bone marrow-derived macrophages were cultured under M1 (LPS + IFN-γ)- and M2a (IL-4)-polarizing culture conditions and treated with NETs. To mimic intraplaque regions, cells were additionally cultured under hypoxic conditions. NETs significantly increased the expression of IL-1β, TNF-α and IL-6 in THP-M1 macrophages under normoxia but suppressed their expression in murine M1 macrophages under hypoxic conditions. Notably, NETs increased the number of oxLDL-positive M1 and M2 human and murine macrophages under normoxia, but did not influence formation of murine foam cells under hypoxia. However, oxLDL uptake did not strongly correlate with the expression of the LDL receptor CD36. Besides, upregulated MMP-9 expression and secretion by macrophages was detected in the presence of NETs. Again, hypoxic culture conditions dampened NETs effects. These results suggest that NETs may favor foam cell formation and plaque vulnerability, but exert opposite effects in respect to the inflammatory response of human and murine M1 macrophages. Moreover, effects of NETs on macrophages’ phenotype are altered under hypoxia.
Collapse
Affiliation(s)
- Andreas Conforti
- Department of Cardiothoracic Surgery, Heart Center of The University of Cologne, Cologne, Germany
| | - Thorsten Wahlers
- Department of Cardiothoracic Surgery, Heart Center of The University of Cologne, Cologne, Germany
| | - Adnana Paunel-Görgülü
- Department of Cardiothoracic Surgery, Heart Center of The University of Cologne, Cologne, Germany
- * E-mail:
| |
Collapse
|
504
|
Aspirin Exerts Neuroprotective Effects by Reversing Lipopolysaccharide-Induced Secondary Brain Injury and Inhibiting Matrix Metalloproteinase-3 Gene Expression. DISEASE MARKERS 2021; 2021:3682034. [PMID: 34790277 PMCID: PMC8592756 DOI: 10.1155/2021/3682034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/14/2021] [Accepted: 10/21/2021] [Indexed: 11/17/2022]
Abstract
Objective This study is aimed at exploring the possible neuroprotective mechanism of aspirin and the effect of bacterial endotoxin lipopolysaccharide (LPS) during cerebral ischaemia-reperfusion (CIRP) injury. Methods We established three animal models: the CIRP, LPS, and CIRP+LPS models. Mortality, the injured brain area, and the beam walking test were used to estimate the degree of cerebral injury among the rats. Immunohistochemistry and immunofluorescence were used to detect activated microglia, matrix metalloproteinase-3 (MMP-3), and osteopontin (OPN). Results The injured brain area and mortality were dramatically reduced (p < 0.01), and the beam walking test scores were elevated (p < 0.01) in the acetylsalicylic acid (ASA) group compared to the control group. The number of microglia-, MMP-3-, and OPN-positive cells also increased. Furthermore, the number of GSI-B4, OPN, and MMP-3 cells decreased in the ASA group compared to the control group. After LPS stimulation, the number of microglia reached a peak at 24 h; at 7 d, these cells disappeared. In the ASA group, the number of microglia was significantly smaller (p < 0.05), especially at 24 h (p < 0.01), compared to the LPS group. Moreover, the injured brain area and the mortality were dramatically increased and the beam walking test scores were reduced (p < 0.01) after LPS simulation following CIRP. The degree of injury in the ASA group resembled that in the control group. However, the number of MMP-3-immunoreactive neurons or microglia was significantly larger than that of the control group (p < 0.05). In the ASA group, the MMP-3 expression was also considerably decreased (p < 0.05). Conclusions After CIRP, microglia were rapidly activated and the expression of MMP-3 and OPN significantly increased. For rats injected with LPS at reperfusion, the injured brain area and mortality also dramatically increased and the neurologic impairment worsened. However, ASA exhibited a neuroprotective effect during CIRP injury. Furthermore, ASA can reverse LPS-induced cerebral injury and inhibit the inflammatory reaction after CIRP injury.
Collapse
|
505
|
Wang X, He Q, Jin D, Ma B, Yao K, Zou X. Association between helicobacter pylori infection and subclinical atherosclerosis: A systematic review and meta-analysis. Medicine (Baltimore) 2021; 100:e27840. [PMID: 34797316 PMCID: PMC8601324 DOI: 10.1097/md.0000000000027840] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 10/30/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND The relationship between Helicobacter pylori (H. pylori) infection and subclinical atherosclerosis has been confirmed, but these conclusions are still controversial. Therefore, we have performed a systematic review and meta-analysis to assess the association between H. pylori infection and subclinical atherosclerosis. METHODS Databases including PubMed, Embase, Web of Science were searched for the articles on the association of carotid intima-media thickness or pulse wave velocity with H. pylori infection published up to January 1, 2020. Stata 12.0 was used to calculate standardized mean difference (SMD) and 95% confidence interval (95% CI); the I2 test was used to evaluate heterogeneity between studies and sensitivity analysis and subgroup analysis were used to explore the source of heterogeneity. Funnel plot, Begg test, and Egger test were used to estimate publication bias. RESULTS Data were extracted from 18 studies involving 6776 subjects with H. pylori positive and 7794 with H. pylori negative. H. pylori positive subjects is significantly associated with increased subclinical atherosclerosis as determined by carotid intima-media thickness (SMD: 0.376 mm; 95% CI: 0.178, 0.574; P < .001, I2 = 90.6%), pulse wave velocity (SMD: 0.320 m/s; 95% CI: 0.242, 0.398; P < .001, I2 = 52.6%), compared with H. pylori negative. Similar results were observed when subgroups analysis were stratified according to age, male ratio, geographical location, H. pylori diagnosis, and study design. Sensitivity analyses showed that our results were robust. The Begg test or Egger test showed no significant publication bias (all P > .05). CONCLUSIONS This meta-analysis confirmed a significant association between H. pylori and subclinical atherosclerosis, which will help H. pylori patients to establish effective strategies for the prevention and control of cardiovascular events.
Collapse
Affiliation(s)
- Xianghong Wang
- Department of Endocrinology, The Third Clinical Medical College of China Three Gorges University/Gezhouba Central Hospital of Sinopharm, Yichang, Hubei Province, China
| | - Qian He
- Department of Geriatrics, The People's Hospital of China Three Gorges University/The First People's Hospital of Yichang, Yichang, Hubei Province, China
| | - Donghua Jin
- Department of Neurosurgery, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Baohua Ma
- Department of Endocrinology, The People's Hospital of China Three Gorges University/The First People's Hospital of Yichang, Yichang, Hubei Province, China
| | - Kecheng Yao
- Department of Geriatrics, The People's Hospital of China Three Gorges University/The First People's Hospital of Yichang, Yichang, Hubei Province, China
| | - Xiulan Zou
- Department of Geriatrics, The People's Hospital of China Three Gorges University/The First People's Hospital of Yichang, Yichang, Hubei Province, China
- Healthcare Center, The People's Hospital of China Three Gorges University/The First People's Hospital of Yichang, Yichang, Hubei Province, China
| |
Collapse
|
506
|
Huang W, Lv Q, Xiao Y, Zhong Z, Hu B, Yan S, Yan Y, Zhang J, Shi T, Jiang L, Li W, Lu G. Triggering Receptor Expressed on Myeloid Cells 2 Protects Dopaminergic Neurons by Promoting Autophagy in the Inflammatory Pathogenesis of Parkinson's Disease. Front Neurosci 2021; 15:745815. [PMID: 34867158 PMCID: PMC8641649 DOI: 10.3389/fnins.2021.745815] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 10/12/2021] [Indexed: 12/12/2022] Open
Abstract
Parkinson's disease is a neurodegenerative disorder with an inflammatory response as the core pathogenic mechanism. Previous human genetics findings support the view that the loss of TREM2 function will aggravate neurodegeneration, and TREM2 is one of the most highly expressed receptors in microglia. However, the role of TREM2 in the inflammatory mechanism of PD is not clear. In our study, it was found both in vivo and in vitro that the activation of microglia not only promoted the secretion of inflammatory factors but also decreased the level of TREM2 and inhibited the occurrence of autophagy. In contrast, an increase in the level of TREM2 decreased the expression of inflammatory factors and enhanced the level of autophagy through the p38 MAPK/mTOR pathway. Moreover, increased TREM2 expression significantly decreased the apoptosis of dopaminergic (DA) neurons and improved the motor ability of PD mice. In summary, TREM2 is an important link between the pathogenesis of PD and inflammation. Our study provides a new view for the mechanism of TREM2 in PD and reveals TREM2 as a potential therapeutic target for PD.
Collapse
Affiliation(s)
- Wei Huang
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Qiankun Lv
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yunfei Xiao
- Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Zhen Zhong
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Binbin Hu
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Si Yan
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yufang Yan
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Junjun Zhang
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ting Shi
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Lijuan Jiang
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wen Li
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Guohui Lu
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
507
|
Jhan MK, Chen CL, Shen TJ, Tseng PC, Wang YT, Satria RD, Yu CY, Lin CF. Polarization of Type 1 Macrophages Is Associated with the Severity of Viral Encephalitis Caused by Japanese Encephalitis Virus and Dengue Virus. Cells 2021; 10:3181. [PMID: 34831405 PMCID: PMC8621422 DOI: 10.3390/cells10113181] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/09/2021] [Accepted: 11/11/2021] [Indexed: 12/20/2022] Open
Abstract
Infection with flaviviruses causes mild to severe diseases, including viral hemorrhagic fever, vascular shock syndrome, and viral encephalitis. Several animal models explore the pathogenesis of viral encephalitis, as shown by neuron destruction due to neurotoxicity after viral infection. While neuronal cells are injuries caused by inflammatory cytokine production following microglial/macrophage activation, the blockade of inflammatory cytokines can reduce neurotoxicity to improve the survival rate. This study investigated the involvement of macrophage phenotypes in facilitating CNS inflammation and neurotoxicity during flavivirus infection, including the Japanese encephalitis virus, dengue virus (DENV), and Zika virus. Mice infected with different flaviviruses presented encephalitis-like symptoms, including limbic seizure and paralysis. Histology indicated that brain lesions were identified in the hippocampus and surrounded by mononuclear cells. In those regions, both the infiltrated macrophages and resident microglia were significantly increased. RNA-seq analysis showed the gene profile shifting toward type 1 macrophage (M1) polarization, while M1 markers validated this phenomenon. Pharmacologically blocking C-C chemokine receptor 2 and tumor necrosis factor-α partly retarded DENV-induced M1 polarization. In summary, flavivirus infection, such as JEV and DENV, promoted type 1 macrophage polarization in the brain associated with encephalitic severity.
Collapse
MESH Headings
- Animals
- Animals, Suckling
- Cell Line
- Cell Polarity
- Dengue Virus/physiology
- Disease Models, Animal
- Encephalitis Virus, Japanese/physiology
- Encephalitis, Japanese/immunology
- Encephalitis, Japanese/pathology
- Encephalitis, Japanese/virology
- Encephalitis, Viral/immunology
- Encephalitis, Viral/pathology
- Encephalitis, Viral/virology
- Hippocampus/pathology
- Inflammation/pathology
- Macrophages/pathology
- Mice, Inbred ICR
- Neurotoxins/toxicity
- Receptors, CCR2/metabolism
- Severity of Illness Index
- Tumor Necrosis Factor-alpha/metabolism
- Mice
Collapse
Affiliation(s)
- Ming-Kai Jhan
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (M.-K.J.); (T.-J.S.)
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (P.-C.T.); (Y.-T.W.); (R.D.S.)
| | - Chia-Ling Chen
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei 110, Taiwan;
| | - Ting-Jing Shen
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (M.-K.J.); (T.-J.S.)
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (P.-C.T.); (Y.-T.W.); (R.D.S.)
| | - Po-Chun Tseng
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (P.-C.T.); (Y.-T.W.); (R.D.S.)
- Core Laboratory of Immune Monitoring, Office of Research & Development, Taipei Medical University, Taipei 110, Taiwan
| | - Yung-Ting Wang
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (P.-C.T.); (Y.-T.W.); (R.D.S.)
| | - Rahmat Dani Satria
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (P.-C.T.); (Y.-T.W.); (R.D.S.)
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Laboratory Medicine, Department of Clinical Pathology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
- Clinical Laboratory Installation, Dr. Sardjito Central General Hospital, Yogyakarta 55281, Indonesia
| | - Chia-Yi Yu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli 350, Taiwan;
| | - Chiou-Feng Lin
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (M.-K.J.); (T.-J.S.)
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (P.-C.T.); (Y.-T.W.); (R.D.S.)
- Core Laboratory of Immune Monitoring, Office of Research & Development, Taipei Medical University, Taipei 110, Taiwan
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| |
Collapse
|
508
|
Chen C, Li X, Lv Y, Yin Z, Zhao F, Liu Y, Li C, Ji S, Zhou J, Wei Y, Cao X, Wang J, Gu H, Lu F, Liu Z, Shi X. High Blood Uric Acid Is Associated With Reduced Risks of Mild Cognitive Impairment Among Older Adults in China: A 9-Year Prospective Cohort Study. Front Aging Neurosci 2021; 13:747686. [PMID: 34720995 PMCID: PMC8552040 DOI: 10.3389/fnagi.2021.747686] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/22/2021] [Indexed: 11/13/2022] Open
Abstract
Background: It remains unsolved that whether blood uric acid (UA) is a neuroprotective or neurotoxic agent. This study aimed to evaluate the longitudinal association of blood UA with mild cognitive impairment (MCI) among older adults in China. Methods: A total of 3,103 older adults (aged 65+ years) free of MCI at baseline were included from the Healthy Aging and Biomarkers Cohort Study (HABCS). Blood UA level was determined by the uricase colorimetry assay and analyzed as both continuous and categorical (by quartile) variables. Global cognition was assessed using the Mini-Mental State Examination four times between 2008 and 2017, with a score below 24 being considered as MCI. Cox proportional hazards models were used to examine the associations. Results: During a 9-year follow-up, 486 (15.7%) participants developed MCI. After adjustment for all covariates, higher UA had a dose-response association with a lower risk of MCI (all Pfor trend < 0.05). Participants in the highest UA quartile group had a reduced risk [hazard ratio (HR), 0.73; 95% (CI): 0.55–0.96] of MCI, compared with those in the lowest quartile group. The associations were still robust even when considering death as a competing risk. Subgroup analyses revealed that these associations were statistically significant in younger older adults (65–79 years) and those without hyperuricemia. Similar significant associations were observed when treating UA as a continuous variable. Conclusions: High blood UA level is associated with reduced risks of MCI among Chinese older adults, highlighting the potential of managing UA in daily life for maintaining late-life cognition.
Collapse
Affiliation(s)
- Chen Chen
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xueqin Li
- Department of Big Data in Health Science, School of Public Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuebin Lv
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zhaoxue Yin
- Division of Non-communicable Disease and Healthy Ageing Management, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Feng Zhao
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yingchun Liu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Chengcheng Li
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Saisai Ji
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jinhui Zhou
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yuan Wei
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xingqi Cao
- Department of Big Data in Health Science, School of Public Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiaonan Wang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China.,Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Heng Gu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Feng Lu
- Beijing Municipal Health Commission Information Center, Beijing Municipal Health Commission Policy Research Center, Beijing, China
| | - Zuyun Liu
- Department of Big Data in Health Science, School of Public Health, Zhejiang University School of Medicine, Hangzhou, China.,Center for Clinical Big Data and Analytics, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoming Shi
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China.,Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
509
|
Qiu M, Xu E, Zhan L. Epigenetic Regulations of Microglia/Macrophage Polarization in Ischemic Stroke. Front Mol Neurosci 2021; 14:697416. [PMID: 34707480 PMCID: PMC8542724 DOI: 10.3389/fnmol.2021.697416] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 08/26/2021] [Indexed: 01/04/2023] Open
Abstract
Ischemic stroke is one of the leading causes of death and disability worldwide. Microglia/macrophages (MMs)-mediated neuroinflammation contributes significantly to the pathological process of ischemic brain injury. Microglia, serving as resident innate immune cells in the central nervous system, undergo pro-inflammatory phenotype or anti-inflammatory phenotype in response to the microenvironmental changes after cerebral ischemia. Emerging evidence suggests that epigenetics modifications, reversible modifications of the phenotype without changing the DNA sequence, could play a pivotal role in regulation of MM polarization. However, the knowledge of the mechanism of epigenetic regulations of MM polarization after cerebral ischemia is still limited. In this review, we present the recent advances in the mechanisms of epigenetics involved in regulating MM polarization, including histone modification, non-coding RNA, and DNA methylation. In addition, we discuss the potential of epigenetic-mediated MM polarization as diagnostic and therapeutic targets for ischemic stroke. It is valuable to identify the underlying mechanisms between epigenetics and MM polarization, which may provide a promising treatment strategy for neuronal damage after cerebral ischemia.
Collapse
Affiliation(s)
- Meiqian Qiu
- Institute of Neurosciences and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University and Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - En Xu
- Institute of Neurosciences and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University and Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Lixuan Zhan
- Institute of Neurosciences and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University and Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| |
Collapse
|
510
|
Mo M, Tang Y, Wei L, Qiu J, Peng G, Lin Y, Zhou M, Dai W, Zhang Z, Chen X, Liu H, Ding L, Ye P, Wu Y, Zhu X, Wu Z, Guo W, Xu P. Soluble Triggering Receptor Expressed on Myeloid Cells 2 From Cerebrospinal Fluid in Sleep Disorders Related to Parkinson's Disease. Front Aging Neurosci 2021; 13:753210. [PMID: 34658845 PMCID: PMC8511683 DOI: 10.3389/fnagi.2021.753210] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 09/07/2021] [Indexed: 01/04/2023] Open
Abstract
Background: Triggering receptor expressed on myeloid cells 2 (TREM2) is a microglial receptor exclusively expressed in the central nervous system (CNS). It contributes to abnormal protein aggregation in neurodegenerative disorders, but its role in Parkinson’s disease (PD) is still unclear. Methods: In this case-control study, we measured the concentration of the soluble fragment of TREM2 (sTREM2) in PD patients, evaluated their sleep conditions by the PD sleep scale (PDSS), and analyzed the relationship between sTREM2 and PD symptoms. Results: We recruited 80 sporadic PD patients and 65 healthy controls without disease-related variants in TREM2. The concentration of sTREM2 in the CSF was significantly higher in PD patients than in healthy controls (p < 0.01). In the PD group, the concentration of sTREM2 had a positive correlation with α-syn in the CSF (Pearson r = 0.248, p = 0.027). Receiver operating characteristic curve (ROC) analyses showed that sTREM2 in the CSF had a significant diagnostic value for PD (AUC, 0.791; 95% CI, 0.711–0.871, p < 0.05). The subgroup analysis showed that PD patients with sleep disorders had a significantly higher concentration of sTREM2 in their CSF (p < 0.01). The concentration of sTREM2 in the CSF had a negative correlation with the PDSS score in PD patients (Pearson r = −0.555, p < 0.01). The ROC analyses showed that sTREM2 in the CSF had a significant diagnostic value for sleep disorders in PD (AUC, 0.733; 95% CI, 0.619–0.846, p < 0.05). Conclusion: Our findings suggest that CSF sTREM2 may be a potential biomarker for PD and it could help predict sleep disorders in PD patients, but multicenter prospective studies with more participants are still needed to confirm its diagnostic value in future.
Collapse
Affiliation(s)
- Mingshu Mo
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yuting Tang
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lijian Wei
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jiewen Qiu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Guoyou Peng
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yuwan Lin
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Miaomiao Zhou
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wei Dai
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhiling Zhang
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiang Chen
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hanqun Liu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Liuyan Ding
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Panghai Ye
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yijuan Wu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaoqin Zhu
- Department of Physiology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Zhuohua Wu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wenyuan Guo
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Pingyi Xu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
511
|
Gottfried I, Schottlender N, Ashery U. Hyperbaric Oxygen Treatment-From Mechanisms to Cognitive Improvement. Biomolecules 2021; 11:biom11101520. [PMID: 34680155 PMCID: PMC8533945 DOI: 10.3390/biom11101520] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/06/2021] [Accepted: 10/13/2021] [Indexed: 12/19/2022] Open
Abstract
Hyperbaric oxygen treatment (HBOT)—the medical use of oxygen at environmental pressure greater than one atmosphere absolute—is a very effective therapy for several approved clinical situations, such as carbon monoxide intoxication, incurable diabetes or radiation-injury wounds, and smoke inhalation. In recent years, it has also been used to improve cognition, neuro-wellness, and quality of life following brain trauma and stroke. This opens new avenues for the elderly, including the treatment of neurological and neurodegenerative diseases and improvement of cognition and brain metabolism in cases of mild cognitive impairment. Alongside its integration into clinics, basic research studies have elucidated HBOT’s mechanisms of action and its effects on cellular processes, transcription factors, mitochondrial function, oxidative stress, and inflammation. Therefore, HBOT is becoming a major player in 21st century research and clinical treatments. The following review will discuss the basic mechanisms of HBOT, and its effects on cellular processes, cognition, and brain disorders.
Collapse
Affiliation(s)
- Irit Gottfried
- School of Neurobiology, Biochemistry and Biophysics, Life Sciences Faculty, Tel Aviv University, Tel Aviv 6997801, Israel; (I.G.); (N.S.)
| | - Nofar Schottlender
- School of Neurobiology, Biochemistry and Biophysics, Life Sciences Faculty, Tel Aviv University, Tel Aviv 6997801, Israel; (I.G.); (N.S.)
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Uri Ashery
- School of Neurobiology, Biochemistry and Biophysics, Life Sciences Faculty, Tel Aviv University, Tel Aviv 6997801, Israel; (I.G.); (N.S.)
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
- Correspondence: ; Tel.: +972-3-6409827
| |
Collapse
|
512
|
The Prognostic Value of Serum Uric Acid in Hospitalized Patients with Acute Cerebral Infarction. DISEASE MARKERS 2021; 2021:6103961. [PMID: 34630737 PMCID: PMC8497128 DOI: 10.1155/2021/6103961] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/15/2021] [Indexed: 01/02/2023]
Abstract
Background Previous studies reported that the level of serum uric acid (SUA) was an important risk factor for acute cerebral infarction (ACI). However, the prognostic value of SUA levels in hospitalized patients with ACI has not been fully elucidated. The aim of this study was to investigate whether the SUA level on admission was associated with subsequent mortality in hospitalized patients with ACI. Methods The clinical data of ACI patients obtained from December 2017 to December 2019 were retrospectively reviewed. χ2 and Kaplan–Meier methods were used to compare the clinical differences and overall survival between patients with or without hyperuricemia, respectively. Univariate and multivariate analyses were used to identify independent prognoses. Results In the total population, the in-hospital mortality of the hyperuricemia group was significantly higher than that of the normal uric acid group (P = 0.006). In the abnormal renal function group, the in-hospital mortality among the hyperuricemia group was significantly higher than the normal uric acid group (P = 0.002). However, there was no statistical difference of in-hospital mortality between the two groups in the normal renal function group (P = 0.321). Univariate and multivariate analyses showed that a previous history of diabetes (P = 0.018), hyperuricemia (P = 0.001), and National Institutes of Health Stroke Scale (NIHSS) score on admission (P ≤ 0.001) were independent factors for all samples. The hyperuricemia (P = 0.003) on admission were independent factors for patients with abnormal renal function. Conclusions In ACI patients with abnormal renal function, hyperuricemia may be associated with higher in-hospital mortality than patients with normal uric acid, and hyperuricemia may be an independent associated factor for in-hospital death in the subgroup patients.
Collapse
|
513
|
Demyanenko S, Dzreyan V, Sharifulina S. Histone Deacetylases and Their Isoform-Specific Inhibitors in Ischemic Stroke. Biomedicines 2021; 9:biomedicines9101445. [PMID: 34680562 PMCID: PMC8533589 DOI: 10.3390/biomedicines9101445] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/06/2021] [Accepted: 10/09/2021] [Indexed: 01/01/2023] Open
Abstract
Cerebral ischemia is the second leading cause of death in the world and multimodal stroke therapy is needed. The ischemic stroke generally reduces the gene expression due to suppression of acetylation of histones H3 and H4. Histone deacetylases inhibitors have been shown to be effective in protecting the brain from ischemic damage. Histone deacetylases inhibitors induce neurogenesis and angiogenesis in damaged brain areas promoting functional recovery after cerebral ischemia. However, the role of different histone deacetylases isoforms in the survival and death of brain cells after stroke is still controversial. This review aims to analyze the data on the neuroprotective activity of nonspecific and selective histone deacetylase inhibitors in ischemic stroke.
Collapse
|
514
|
Roles of Crosstalk between Astrocytes and Microglia in Triggering Neuroinflammation and Brain Edema Formation in 1,2-Dichloroethane-Intoxicated Mice. Cells 2021; 10:cells10102647. [PMID: 34685627 PMCID: PMC8534694 DOI: 10.3390/cells10102647] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/30/2021] [Accepted: 09/30/2021] [Indexed: 12/30/2022] Open
Abstract
We have previously reported that the activation of astrocytes and microglia may lead to the overproduction of proinflammatory mediators, which could induce neuroinflammation and cause brain edema in 1,2-dichloroethane (1,2-DCE)-intoxicated mice. In this research, we further hypothesized that astrocyte–microglia crosstalk might trigger neuroinflammation and contribute to brain edema in 1,2-DCE-intoxicated mice. The present research revealed, for the first time, that subacute intoxication with 1,2-DCE might provoke the proinflammatory polarization of microglia, and pretreatment with minocycline, a specific inhibitor of microglial activation, may attenuate the enhanced protein levels of ionized calcium-binding adapter molecule1 (Iba-1), cluster of differentiation 11b (CD11b), glial fibrillary acidic protein (GFAP), soluble calcium-binding protein 100B (S100B), tumor necrosis factor α (TNF-α), interleukin 6 (IL-6), inducible nitric oxide synthase (iNOS), vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1), matrix metalloproteinase-9 (MMP-9), Toll-like receptor 4 (TLR4), MyD88, and p-p65, and ameliorate the suppressed protein expression levels of occludin and claudin 5; we also observed changes in water content and made pathological observations on edema in the brains of 1,2-DCE-intoxicated mice. Moreover, pretreatment with fluorocitrate, an inhibitor of reactive astrocytes, could also reverse the alteration in protein expression levels of GFAP, S100B, Iba-1, CD11b, TNF-α, IL-6, iNOS, VCAM-1, ICAM-1, MMP-9, occludin, and claudin 5 in the brain of 1,2-DCE intoxicated mice. Furthermore, pretreatment with melatonin, a well-known anti-inflammatory drug, could also attenuate the above-mentioned changes in the brains of 1,2-DCE-intoxicated mice. Altogether, the findings from this research indicated that microglial activation might play an important role in triggering neuroinflammation, and hence may contribute to brain edema formation; additionally, the findings suggested that molecular crosstalk between reactive astrocytes and activated microglia may amplify the neuroinflammatory reaction, which could induce secondary brain injury in 1,2-DCE-intoxicated mice.
Collapse
|
515
|
Li J, Shui X, Sun R, Wan L, Zhang B, Xiao B, Luo Z. Microglial Phenotypic Transition: Signaling Pathways and Influencing Modulators Involved in Regulation in Central Nervous System Diseases. Front Cell Neurosci 2021; 15:736310. [PMID: 34594188 PMCID: PMC8476879 DOI: 10.3389/fncel.2021.736310] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/18/2021] [Indexed: 12/12/2022] Open
Abstract
Microglia are macrophages that reside in the central nervous system (CNS) and belong to the innate immune system. Moreover, they are crucially involved in CNS development, maturation, and aging; further, they are closely associated with neurons. In normal conditions, microglia remain in a static state. Upon trauma or lesion occurrence, microglia can be activated and subsequently polarized into the pro-inflammatory or anti-inflammatory phenotype. The phenotypic transition is regulated by numerous modulators. This review focus on the literature regarding the modulators and signaling pathways involved in regulating the microglial phenotypic transition, which are rarely mentioned in other reviews. Hence, this review provides molecular insights into the microglial phenotypic transition, which could be a potential therapeutic target for neuroinflammation.
Collapse
Affiliation(s)
- Jiaxin Li
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,Xiangya School of Medicine, Central South University, Changsha, China
| | - Xinyu Shui
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,Xiangya School of Medicine, Central South University, Changsha, China
| | - Ruizheng Sun
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Lily Wan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Boxin Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,Xiangya School of Medicine, Central South University, Changsha, China
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhaohui Luo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
516
|
Zhang F, Hou G, Hou G, Wang C, Shi B, Zheng Y. Serum Irisin as a Potential Biomarker for Cognitive Decline in Vascular Dementia. Front Neurol 2021; 12:755046. [PMID: 34589052 PMCID: PMC8473826 DOI: 10.3389/fneur.2021.755046] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 08/23/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Irisin, a new exercise-related myokine, has been shown to be associated with a variety of diseases including serious neurological disorders. However, whether irisin is involved in the pathogenesis of vascular dementia (VD) has not yet been reported. Our aim is to determine the serum irisin level in patients with VD and investigate its relationship with cognitive function. Methods: The subjects of the study were VD patients and controls with normal cognitive function who were hospitalized in the Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University from July 2018 to June 2020. Upon admission, a cognitive function assessment was performed. Enzyme-linked immunosorbent assay (ELISA) was used to determine the concentration of irisin in serum. Results: During the study period, 187 subjects (82 controls and 105 VD patients) were included in the analysis. The serum irisin level of VD patients was significantly lower than that of the control group (p < 0.001). Spearman analysis showed that irisin was positively correlated with HLD-C and MoCA, and negatively correlated with all clinical characteristics except for HCY. Logistic regression analysis showed that after adjusting for all clinical characteristics, the serum irisin of VD patients still had a significant correlation with MoCA (β = 0.304, p = 0.029). According to receiver operating characteristic (ROC) curve analysis, the diagnostic accuracy for serum irisin levels on VD was 76% with the sensitivity and 71% with specificity respectively. Conclusions: These data indicate that a decrease in serum irisin levels is a powerful biological marker for cognitive decline in patients with VD, even after adjustment for risk factors. Further multi-center studies need to confirm this connection, which may pave the way for new treatment options.
Collapse
Affiliation(s)
- Feng Zhang
- Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Guangshun Hou
- Qilu Children's Hospital of Shandong University, Shandong University, Jinan, China
| | - Guangjian Hou
- Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Congan Wang
- Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Bin Shi
- Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Yuekun Zheng
- Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
517
|
Emerging methods for and novel insights gained by absolute quantification of mitochondrial DNA copy number and its clinical applications. Pharmacol Ther 2021; 232:107995. [PMID: 34592204 DOI: 10.1016/j.pharmthera.2021.107995] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 08/26/2021] [Accepted: 09/01/2021] [Indexed: 02/07/2023]
Abstract
The past thirty years have seen a surge in interest in pathophysiological roles of mitochondria, and the accurate quantification of mitochondrial DNA copy number (mCN) in cells and tissue samples is a fundamental aspect of assessing changes in mitochondrial health and biogenesis. Quantification of mCN between studies is surprisingly variable due to a combination of physiological variability and diverse protocols being used to measure this endpoint. The advent of novel methods to quantify nucleic acids like digital polymerase chain reaction (dPCR) and high throughput sequencing offer the ability to measure absolute values of mCN. We conducted an in-depth survey of articles published between 1969 -- 2020 to create an overview of mCN values, to assess consensus values of tissue-specific mCN, and to evaluate consistency between methods of assessing mCN. We identify best practices for methods used to assess mCN, and we address the impact of using specific loci on the mitochondrial genome to determine mCN. Current data suggest that clinical measurement of mCN can provide diagnostic and prognostic value in a range of diseases and health conditions, with emphasis on cancer and cardiovascular disease, and the advent of means to measure absolute mCN should improve future clinical applications of mCN measurements.
Collapse
|
518
|
Liu NY, Sun JH, Jiang XF, Li H. Helicobacter pylori infection and risk for developing dementia: an evidence-based meta-analysis of case-control and cohort studies. Aging (Albany NY) 2021; 13:22571-22587. [PMID: 34559067 PMCID: PMC8507304 DOI: 10.18632/aging.203571] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 08/23/2021] [Indexed: 01/02/2023]
Abstract
BACKGROUND Infection with multiple pathogens may play a key role in the pathogenesis of dementia. Whether Helicobacter pylori (H. pylori) infection is associated causally with dementia is controversial. OBJECTIVE We conduct a meta-analysis of case-control and cohort studies on the association between H. pylori infection and the risk for all-cause and Alzheimer's disease (AD) dementia. METHODS Two independent reviewers searched the PubMed, Cochrane Library, and Embase databases with English language restrictions from the date of conception to September 18, 2020. The primary analysis was as follows: the exposure variable was H. pylori infection, and the outcome was incident all-cause and AD dementia. Pooled odds ratios (OR), relative risk (RR), and corresponding 95% confidence intervals (CI) were obtained using the fixed-or random-effect model. Forest plots were generated to summarize the results. RESULTS Ten studies involving 96,561 participants were included in the meta-analysis: 5 case-control studies and 5 cohort studies. The overall pooled cohort studies showed a significant positive association between H. pylori infection and all-cause dementia with pooled RR of 1.36 (95% CI, 1.11-1.67). There was no association between H. pylori infection and risk for developing AD: RR of 1.33 (95% CI, 0.86-2.05) in cohort studies, and OR of 1.72 (95% CI, 0.97-3.04) in case-control studies. Significant heterogeneity was showed in each comparison group. CONCLUSION This meta-analysis supports a positive association between H. pylori infection and the risk of all-cause dementia, but not AD dementia. Due to the interference of confounding factors, randomized controlled trials are needed to prove their causality.
Collapse
Affiliation(s)
- Nan-Yang Liu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jia-Hui Sun
- Beijing University of Traditional Chinese Medicine, Beijing, China
| | - Xue-Fan Jiang
- Beijing University of Traditional Chinese Medicine, Beijing, China
| | - Hao Li
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
519
|
Balasubramanian P, Delfavero J, Nyul-Toth A, Tarantini A, Gulej R, Tarantini S. Integrative Role of Hyperbaric Oxygen Therapy on Healthspan, Age-Related Vascular Cognitive Impairment, and Dementia. FRONTIERS IN AGING 2021; 2:678543. [PMID: 35821996 PMCID: PMC9261405 DOI: 10.3389/fragi.2021.678543] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 09/09/2021] [Indexed: 12/17/2022]
Abstract
Growing life expectancy will contribute to the on-going shift towards a world population increasingly comprised of elderly individuals. This demographic shift is associated with a rising prevalence of age-related diseases, among all age-related pathologies it has become crucial to understand the age-associated cognitive changes that remain a major risk factor for the development of vascular cognitive impairment and dementia (VCID). Furthermore, age-related Alzheimer's disease and other neurogenerative diseases with vascular etiology are the most prominent contributing factors for the loss of cognitive function observed in aging. Hyperbaric Oxygen Therapy (HBOT) achieves physiologic effects by increasing oxygen tension (PO2), raising oxygen tissue levels, decreasing intracranial pressure and relieving cerebral edema. Many of the beneficial effects of HBOT exert their protective effects at the level of the microcirculation. Furthermore, the microcirculation's exquisite pervasive presence across every tissue in the body, renders it uniquely able to influence the local environment of most tissues and organs, including the brain. As such, treatments aimed at restoring aging-induced functional and structural alterations of the cerebral microcirculation may potentially contribute to the amelioration of a range of age-related pathologies including vascular cognitive impairment, Alzheimer's disease, and vascular dementias. Despite the presented evidence, the efficacy and safety of HBOT for the treatment of age-related vascular cognitive impairment and dementia remains understudied. The present review aims to examine the existing evidence indicative of a potential therapeutic role for HBOT-induced hyperoxia against age-related cerebromicrovascular pathologies contributing to cognitive impairment, dementia and decreased healthspan in the elderly.
Collapse
Affiliation(s)
- Priya Balasubramanian
- Vascular Cognitive Impairment and Neurodegeneration Program, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Jordan Delfavero
- Vascular Cognitive Impairment and Neurodegeneration Program, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Adam Nyul-Toth
- Vascular Cognitive Impairment and Neurodegeneration Program, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- International Training Program in Geroscience, Institute of Biophysics, Biological Research Centre, Eötvös Loránd Research Network (ELKH), Szeged, Hungary
| | - Amber Tarantini
- Vascular Cognitive Impairment and Neurodegeneration Program, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Rafal Gulej
- Vascular Cognitive Impairment and Neurodegeneration Program, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Stefano Tarantini
- Vascular Cognitive Impairment and Neurodegeneration Program, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| |
Collapse
|
520
|
Lycopene-Loaded Microemulsion Regulates Neurogenesis in Rats with A β-Induced Alzheimer's Disease Rats Based on the Wnt/ β-catenin Pathway. Neural Plast 2021; 2021:5519330. [PMID: 34545285 PMCID: PMC8448994 DOI: 10.1155/2021/5519330] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 08/14/2021] [Accepted: 08/16/2021] [Indexed: 11/29/2022] Open
Abstract
Objective To investigate the effects of lycopene-loaded microemulsion (LME) on the cognitive function and neurogenesis in the dentate gyrus (DG) of the hippocampus and subventricular (SVZ) region of rats with amyloid β- (Aβ-) induced Alzheimer's disease (AD) and its mechanism based on the Wnt/β-catenin pathway. Methods Healthy Wistar rats were divided into four groups: the blank control (CON), AD control, traditional lycopene (LOO), and LME groups. The CON and AD groups were fed with normal saline, while the LOO group was fed with traditional lycopene, and the LME group was fed with lycopene-loaded microemulsion. Behavioral tests were performed after three weeks of gastric administration. Immunofluorescence-labeled cells were used to observe the differentiation and maturation of new nerve cells in the DG of the hippocampus and SVZ region. qRT-PCR and Western blotting detected the expression of neurogenesis genes and Wnt/β-catenin pathway-related proteins, respectively. Results On the Morris water maze test, LME rats had significantly shortened movement trajectory on the searching platform, reduced escape latency time, and increased residence time on the original platform quadrant. In addition, more LME rats crossed the platform when it was removed. Thus, LME can improve the spatial learning and memory of Aβ-induced AD rats. On qRT-PCR, LME significantly increased Reelin, Nestin, and Pax6 gene expressions, which regulate neurogenesis. Immunofluorescence showed that LME could significantly increase BrdU+, Dcx+, BrdU+/Neun+, BrdU+/Dcx+ cells in the DG and SVZ regions, thus promoting neurogenesis. LME also reduced the number of Iba1+ and Iba1+/BrdU+ cells, thus reducing the neuroinflammatory response. On Western blot, LME upregulated the Wnt/β-catenin pathway by upregulating Wnt3a, β-catenin, Disheveled (Dvl), and p-GSK3β and downregulating p-β-catenin and GSK3β. Conclusion LME attenuates cognitive impairment in Aβ-induced AD rats by promoting neurogenesis in the hippocampus and SVZ region through upregulating the Wnt/β-catenin pathway.
Collapse
|
521
|
Decreased Serum NCAM Levels Associated with Cognitive Impairment in Vascular Dementia. DISEASE MARKERS 2021; 2021:2792884. [PMID: 34504627 PMCID: PMC8423537 DOI: 10.1155/2021/2792884] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/17/2021] [Accepted: 08/19/2021] [Indexed: 11/17/2022]
Abstract
Objective Neural cell adhesion molecule (NCAM), a glycoprotein widely distributed in the brain, has recently been shown to regulate neuroplasticity. However, the role of NCAM in vascular dementia (VaD) is still unclear. The purpose of this study is to determine whether NCAM is involved in the course of VaD. Methods Continuous recruitment of VaD patients and control population to join this study. Doctors or nurses are responsible for collecting their clinical characteristics including age, gender, formal education, heart rate, supine systolic blood pressure, supine diastolic blood pressure, fasting glucose, high-density lipoprotein, and low-density lipoprotein. Each participant received the Montreal Cognitive Assessment (MoCA) scale after being enrolled in the group. At the same time, their peripheral blood was collected, and their serum NCAM levels were measured by enzyme-linked immunosorbent assay (ELISA). Results 98 VaD patients and 83 age- and sex-matched controls were enrolled. There was no significant statistical difference between the VaD group and the control group in terms of the comparison of clinical characteristics (p > 0.05). The MoCA score of VaD patients was significantly lower than that of the controls (27.9 ± 1.4 vs. 23.0 ± 2.1 points, p < 0.001). In addition, the circulating NCAM level of VaD patients was also significantly lower than that of controls (21.7 ± 3.8 vs. 17.6 ± 4.2 ng/mL, p < 0.001). The circulating NCAM level of VaD patients was significantly positively correlated with MoCA score (r = 0.285, p = 0.026). After adjusting for clinical characteristics, circulating NCAM levels are still an independent pathogenic factor of VaD (regression coefficient = 0.223, p = 0.034). Conclusions VaD patients have low circulating NCAM levels, which can be used as a potential predictor of VaD.
Collapse
|
522
|
Shapira R, Gdalyahu A, Gottfried I, Sasson E, Hadanny A, Efrati S, Blinder P, Ashery U. Hyperbaric oxygen therapy alleviates vascular dysfunction and amyloid burden in an Alzheimer's disease mouse model and in elderly patients. Aging (Albany NY) 2021; 13:20935-20961. [PMID: 34499614 PMCID: PMC8457592 DOI: 10.18632/aging.203485] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 08/10/2021] [Indexed: 04/21/2023]
Abstract
Vascular dysfunction is entwined with aging and in the pathogenesis of Alzheimer's disease (AD) and contributes to reduced cerebral blood flow (CBF) and consequently, hypoxia. Hyperbaric oxygen therapy (HBOT) is in clinical use for a wide range of medical conditions. In the current study, we exposed 5XFAD mice, a well-studied AD model that presents impaired cognitive abilities, to HBOT and then investigated the therapeutical effects using two-photon live animal imaging, behavioral tasks, and biochemical and histological analysis. HBOT increased arteriolar luminal diameter and elevated CBF, thus contributing to reduced hypoxia. Furthermore, HBOT reduced amyloid burden by reducing the volume of pre-existing plaques and attenuating the formation of new ones. This was associated with changes in amyloid precursor protein processing, elevated degradation and clearance of Aß protein and improved behavior of 5XFAD mice. Hence, our findings are consistent with the effects of HBOT being mediated partially through a persistent structural change in blood vessels that reduces brain hypoxia. Motivated by these findings, we exposed elderly patients with significant memory loss at baseline to HBOT and observed an increase in CBF and improvement in cognitive performances. This study demonstrates HBOT efficacy in hypoxia-related neurological conditions, particularly in AD and aging.
Collapse
Affiliation(s)
- Ronit Shapira
- School of Neurobiology, Biochemistry and Biophysics, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel-Aviv, Israel
| | - Amos Gdalyahu
- School of Neurobiology, Biochemistry and Biophysics, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel-Aviv, Israel
| | - Irit Gottfried
- School of Neurobiology, Biochemistry and Biophysics, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel-Aviv, Israel
| | - Efrat Sasson
- Sagol Center for Hyperbaric Medicine and Research, Assaf Harofeh Medical Center, Be’er Ya’akov, Israel
| | - Amir Hadanny
- Sagol Center for Hyperbaric Medicine and Research, Assaf Harofeh Medical Center, Be’er Ya’akov, Israel
| | - Shai Efrati
- Sagol School of Neuroscience, Tel Aviv University, Tel-Aviv, Israel
- Sackler School of Medicine, Tel Aviv University, Tel-Aviv, Israel
- Sagol Center for Hyperbaric Medicine and Research, Assaf Harofeh Medical Center, Be’er Ya’akov, Israel
| | - Pablo Blinder
- School of Neurobiology, Biochemistry and Biophysics, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel-Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel-Aviv, Israel
| | - Uri Ashery
- School of Neurobiology, Biochemistry and Biophysics, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel-Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel-Aviv, Israel
| |
Collapse
|
523
|
Huang YT, Hong FF, Yang SL. Atherosclerosis: The Culprit and Co-victim of Vascular Dementia. Front Neurosci 2021; 15:673440. [PMID: 34421513 PMCID: PMC8377286 DOI: 10.3389/fnins.2021.673440] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 06/11/2021] [Indexed: 11/24/2022] Open
Abstract
Vascular dementia (VD), a cerebrovascular disease which causes cognitive impairment, is one of the significant factors that affects the quality of senectitude. Atherosclerosis (AS) is a chronic inflammatory syndrome and closely associated with VD. Analyzing the role of AS in VD contribute greatly to its early detection and prevention, but their relationship has not been integrated into a complete network. This review summarizes AS biomarkers as VD predictors for the first time and describes the direct mechanisms of AS causing VD from five aspects: vascular morphogenesis, hemodynamic change, neurovascular unit damage (NVU), oxidative stress, and microRNA (miRNA). Finally, it discriminates the relationship between AS and VD in common risk factors which can be disease or some molecules. In particular, these data imply that the role of AS in VD is not only a pathogenic factor but also a comorbidity in VD. This review aims to bring new ideas for the prediction and treatment of VD.
Collapse
Affiliation(s)
- Ya-Ting Huang
- Department of Physiology, College of Medicine, Nanchang University, Nanchang, China.,Queen Marry College, School of Medicine, Nanchang University, Nanchang, China
| | - Fen-Fang Hong
- Experimental Center of Pathogen Biology, Nanchang University, Nanchang, China
| | - Shu-Long Yang
- Department of Physiology, College of Medicine, Nanchang University, Nanchang, China.,Department of Physiology, Fuzhou Medical College, Fuzhou, China
| |
Collapse
|
524
|
Piec PA, Pons V, Rivest S. Triggering Innate Immune Receptors as New Therapies in Alzheimer's Disease and Multiple Sclerosis. Cells 2021; 10:cells10082164. [PMID: 34440933 PMCID: PMC8393987 DOI: 10.3390/cells10082164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/17/2021] [Accepted: 08/19/2021] [Indexed: 02/06/2023] Open
Abstract
Multiple sclerosis and Alzheimer's disease are two complex neurodegenerative diseases involving the immune system. So far, available treatments provide at best mild improvements to patients' conditions. For decades now, a new set of molecules have been used to modulate and regulate the innate immunity in these pathologies. Most studies have been carried out in rodents and some of them have reported tremendous beneficial effects on the disease course. The modulation of innate immune cells is of great interest since it provides new hope for patients. In this review, we will briefly overview the therapeutic potential of some molecules and receptors in multiple sclerosis and Alzheimer's disease and how they could be used to exploit new therapeutic avenues.
Collapse
|
525
|
Park J, Kim TJ, Song JH, Jang H, Kim JS, Kang SH, Kim HR, Hwangbo S, Shin HY, Na DL, Seo SW, Kim HJ, Kim JJ. Helicobacter Pylori Infection Is Associated with Neurodegeneration in Cognitively Normal Men. J Alzheimers Dis 2021; 82:1591-1599. [PMID: 34180413 DOI: 10.3233/jad-210119] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND An association between Helicobacter pylori (H. pylori) infection and dementia was reported in previous studies; however, the evidence is inconsistent. OBJECTIVE In the present study, the association between H. pylori infection and brain cortical thickness as a biomarker of neurodegeneration was investigated. METHODS A cross-sectional study of 822 men who underwent a medical health check-up, including an esophagogastroduodenoscopy and 3.0 T magnetic resonance imaging, was performed. H. pylori infection status was assessed based on histology. Multiple linear regression analyses were conducted to evaluate the relationship between H. pylori infection and brain cortical thickness. RESULTS Men with H. pylori infection exhibited overall brain cortical thinning (p = 0.022), especially in the parietal (p = 0.008) and occipital lobes (p = 0.050) compared with non-infected men after adjusting for age, educational level, alcohol intake, smoking status, and intracranial volume. 3-dimentional topographical analysis showed that H. pylori infected men had cortical thinning in the bilateral lateral temporal, lateral frontal, and right occipital areas compared with non-infected men with the same adjustments (false discovery rate corrected, Q < 0.050). The association remained significant after further adjusting for inflammatory marker (C-reactive protein) and metabolic factors (obesity, dyslipidemia, fasting glucose, and blood pressure). CONCLUSION Our results indicate H. pylori infection is associated with neurodegenerative changes in cognitive normal men. H. pylori infection may play a pathophysiologic role in the neurodegeneration and further studies are needed to validate this association.
Collapse
Affiliation(s)
- Jaehong Park
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Alzheimer's Disease Convergence Research Center, Samsung Medical Center, Seoul, Korea
| | - Tae Jun Kim
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Joo Hye Song
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hyemin Jang
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Alzheimer's Disease Convergence Research Center, Samsung Medical Center, Seoul, Korea
| | - Ji Sun Kim
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Alzheimer's Disease Convergence Research Center, Samsung Medical Center, Seoul, Korea
| | - Sung Hoon Kang
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Alzheimer's Disease Convergence Research Center, Samsung Medical Center, Seoul, Korea.,Department of Neurology, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Korea
| | - Hang-Rai Kim
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Alzheimer's Disease Convergence Research Center, Samsung Medical Center, Seoul, Korea.,Department of Neurology, Dongguk University Ilsan Hospital, Dongguk University College of Medicine, Goyang, Korea
| | - Song Hwangbo
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Alzheimer's Disease Convergence Research Center, Samsung Medical Center, Seoul, Korea
| | - Hee Young Shin
- Center for Health Promotion, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Duk L Na
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Alzheimer's Disease Convergence Research Center, Samsung Medical Center, Seoul, Korea.,Department of Health Science and Technology, SAIHST, Sungkyunkwan University, Seoul, Korea
| | - Sang Won Seo
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Alzheimer's Disease Convergence Research Center, Samsung Medical Center, Seoul, Korea.,Department of Health Science and Technology, SAIHST, Sungkyunkwan University, Seoul, Korea.,Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, Korea
| | - Hee Jin Kim
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Alzheimer's Disease Convergence Research Center, Samsung Medical Center, Seoul, Korea.,Department of Health Science and Technology, SAIHST, Sungkyunkwan University, Seoul, Korea.,Department of Digital Health, SAIHST, Sungkyunkwan University, Seoul, Korea
| | - Jae J Kim
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
526
|
Du L, Liu J, Jin C, Ma Y, Yin L, Man S, Li S, Li L, Ning Y, Zhang X. Association between Helicobacter pylori infection and carotid atherosclerosis in Chinese adults. ATHEROSCLEROSIS PLUS 2021; 44:25-30. [PMID: 36644666 PMCID: PMC9833265 DOI: 10.1016/j.athplu.2021.08.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 07/26/2021] [Accepted: 08/12/2021] [Indexed: 01/18/2023]
Abstract
Background and aims The role of Helicobacter pylori (H. pylori) infection in carotid atherosclerosis remains inconsistent and sometimes controversial. We aimed to determine whether H. pylori infection is associated with carotid atherosclerotic plaques in a large number of Chinese adults. Methods We recruited 108,210 Chinese adults who participated in a standard medical screening with both carotid ultrasonic examination and 13C-urea breath test for H.pylori infection from two Chinese cohorts. A total of 93,915 adults were included in the analysis after excluding participants with cardiovascular disease (CVD) and carotid plaques at baseline. Hazard ratio (HR) for developing carotid plaques by H. pylori infection was analyzed using the Cox proportional hazard model, with sociodemographic and clinical factors adjusted. Findings across cohorts were pooled by meta-analyses. Results 11,208 (13.13%) participants occurred carotid plaques at a median follow-up of 20 months in the MN cohort, while 1279 (14.95%) participants occurred carotid plaques at a median follow-up of 24 months in the MJ cohort. Compare with participants without H. pylori infection, participants with H. pylori infection were more likely to occur carotid plaques. After adjusting for age, sex, annual personal income, body mass index, blood pressure, blood glucose, triglycerides, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, high-sensitivity C-reactive protein, and estimated glomerular filtration rate, the HR was 1.04 (95%CI: 1.01-1.08). After further adjusting for education level, marital status, smoking status, alcohol drinking status, physical activity, and family history of CVD, the HR changed minimally. Additional sensitivity analyses confirmed the robustness of the results. Significant interactions of age, sex, blood pressure, blood glucose, or chronic inflammation were not observed in this research. Conclusions H. pylori infection was associated with carotid plaque onset in a large number of Chinese adults without previous CVD. These data suggested that the prevention of H. pylori infection may reduce the burden of carotid atherosclerosis.
Collapse
Affiliation(s)
- Li Du
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Jianghong Liu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Cheng Jin
- Meinian Institute of Health, Beijing, China,Department of Epidemiology, Peking University School of Public Health, Beijing, China
| | - Yuan Ma
- Meinian Institute of Health, Beijing, China,Department of Epidemiology, Peking University School of Public Health, Beijing, China
| | - Linlin Yin
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Sailimai Man
- Meinian Institute of Health, Beijing, China,Department of Epidemiology, Peking University School of Public Health, Beijing, China,Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Shijun Li
- Jinzhong Meinian Healthcare Center, Shangxi, China
| | - Liming Li
- Department of Epidemiology, Peking University School of Public Health, Beijing, China,Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Yi Ning
- Meinian Institute of Health, Beijing, China,Department of Epidemiology, Peking University School of Public Health, Beijing, China,Corresponding author. Meinian Institute of Health, No. 35 Huayuan North Road, Haidian District, Beijing, 100083, China.
| | - Xinghu Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China,China National Clinical Research Center for Neurological Diseases, Beijing, China,Corresponding author. Beijing Tiantan Hospital, Capital Medical University, No.119 South 4th Ring West Road, Fengtai District, Beijing 100070, China.
| |
Collapse
|
527
|
Sun W, Zhang Z, Feng X, Sui X, Miao Y. Serum Neuropeptide Y: A Potential Prognostic Marker of Intracerebral Hemorrhage. DISEASE MARKERS 2021; 2021:7957013. [PMID: 34422139 PMCID: PMC8371617 DOI: 10.1155/2021/7957013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 07/19/2021] [Accepted: 07/27/2021] [Indexed: 01/06/2023]
Abstract
OBJECTIVE Neuropeptide Y (NPY), a 36-amino acid neuromodulator, is mainly secreted by neurons in the central and peripheral nervous systems, which participate in the regulation of a series of physiological processes. However, there are few studies on its correlation with intracranial hemorrhage (ICH). The purpose of this study is to determine whether the serum NPY level is related to the prognosis of ICH. METHODS 364 patients diagnosed with ICH were included in the current study. The demographics, anthropometrics, medical history, clinical severity, and laboratory data are collected. Enzyme-linked immunoassay (ELISA) was used to detect the serum NPY level of each patient upon admission. Three months after the occurrence of ICH, we used the modified Rankin scale (mRS) to evaluate the prognosis of patients, and mRS > 2 was defined as a poor prognosis. RESULTS A total of 364 patients with ICH were included in the study, including 140 patients with a good prognosis and 224 patients with a poor prognosis. Compared with patients with a poor prognosis, ICH patients with a good prognosis have a lower baseline National Institutes of Health Stroke Scale (NIHSS) score (p = 0.036) and smaller hematoma volume (p = 0.039). The results of ELISA showed that compared with patients with a poor prognosis, ICH patients with a good prognosis had lower serum NPY levels (19.4 ± 3.7 vs. 27.6 ± 3.3 ng/ml, p < 0.001). Linear correlation analysis showed that the serum NPY level of ICH patients was significantly positively correlated with the baseline NIHSS score (r = 0.413, p = 0.041) and hematoma volume (r = 0.308, p = 0.026). Receiver operating characteristic (ROC) curve analysis showed that the sensitivity of the serum NPY level to predict the prognosis of ICH was 70.9%, the specificity was 72.6%, and the cut-off value was 24.2 ng/ml. CONCLUSIONS The serum NPY level may be used as a predictor of ICH prognosis.
Collapse
Affiliation(s)
- Weiming Sun
- Department of Breast Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121000 Liaoning Province, China
| | - Zhenxing Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121000 Liaoning Province, China
| | - Xu Feng
- Department of Neurosurgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121000 Liaoning Province, China
| | - Xin Sui
- Department of Neurosurgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121000 Liaoning Province, China
| | - Ye Miao
- Department of Neurosurgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121000 Liaoning Province, China
| |
Collapse
|
528
|
Demyanenko S, Sharifulina S. The Role of Post-Translational Acetylation and Deacetylation of Signaling Proteins and Transcription Factors after Cerebral Ischemia: Facts and Hypotheses. Int J Mol Sci 2021; 22:ijms22157947. [PMID: 34360712 PMCID: PMC8348732 DOI: 10.3390/ijms22157947] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 02/07/2023] Open
Abstract
Histone deacetylase (HDAC) and histone acetyltransferase (HAT) regulate transcription and the most important functions of cells by acetylating/deacetylating histones and non-histone proteins. These proteins are involved in cell survival and death, replication, DNA repair, the cell cycle, and cell responses to stress and aging. HDAC/HAT balance in cells affects gene expression and cell signaling. There are very few studies on the effects of stroke on non-histone protein acetylation/deacetylation in brain cells. HDAC inhibitors have been shown to be effective in protecting the brain from ischemic damage. However, the role of different HDAC isoforms in the survival and death of brain cells after stroke is still controversial. HAT/HDAC activity depends on the acetylation site and the acetylation/deacetylation of the main proteins (c-Myc, E2F1, p53, ERK1/2, Akt) considered in this review, that are involved in the regulation of cell fate decisions. Our review aims to analyze the possible role of the acetylation/deacetylation of transcription factors and signaling proteins involved in the regulation of survival and death in cerebral ischemia.
Collapse
Affiliation(s)
- Svetlana Demyanenko
- Laboratory of Molecular Neurobiology, Academy of Biology and Biotechnology, Southern Federal University, pr. Stachki 194/1, 344090 Rostov-on-Don, Russia
| | - Svetlana Sharifulina
- Laboratory of Molecular Neurobiology, Academy of Biology and Biotechnology, Southern Federal University, pr. Stachki 194/1, 344090 Rostov-on-Don, Russia
- Neuroscience Center HiLife, University of Helsinki, Haartmaninkatu 8, P.O. Box 63, 00014 Helsinki, Finland
| |
Collapse
|
529
|
Liu L, Wang T, Huang D, Song D. Comprehensive Analysis of Differentially Expressed Genes in Clinically Diagnosed Irreversible Pulpitis by Multiplatform Data Integration Using a Robust Rank Aggregation Approach. J Endod 2021; 47:1365-1375. [PMID: 34260959 DOI: 10.1016/j.joen.2021.07.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/24/2021] [Accepted: 07/01/2021] [Indexed: 02/05/2023]
Abstract
INTRODUCTION Molecular diagnosis may overcome the limitations of clinical and histologic diagnosis in pulpitis, thereby benefiting many treatment techniques, such as vital pulp therapies. In this study, integrated microarray data on pulpitis were used to obtain a list of normalized differentially expressed (DE) genes for analyzing the molecular mechanisms underlying pulpitis and identifying potential diagnostic biomarkers. METHODS A systematic search of public microarray and sequencing databases was performed to obtain expression data of pulpitis. Robust rank aggregation (RRA) was used to obtain DE gene lists (RRA_DEmRNAs and RRA_DElncRNAs) between inflamed pulp and normal samples. DE genes were evaluated by functional enrichment analyses, correlation analyses for inflammation-related RRA_DEmRNAs, and protein-protein interaction and competing endogenous RNA network construction. Quantitative real-time polymerase chain reaction validation was applied in snap-frozen pulp tissues. RESULTS Using the GSE77459 and GSE92681 data sets, 280 RRA_DEmRNAs and 90 RRA_DElncRNAs were identified. RRA_DEmRNAs were significantly enriched in inflammation-related biological processes and osteoclast differentiation and tumor necrosis factor, chemokine, and B-cell receptor signaling pathways. The molecular complex detection and cytoHubba methods identified 2 clusters and 10 hub genes in the protein-protein interaction network. The competing endogenous RNA network was composed of 2 long noncoding RNAs (ADAMTS9-AS2 and LINC00290), 2 microRNAs (hsa-miR-30a-5p and hsa-miR-128-3p), and 3 messenger RNAs (ABCA1, FBLN5, and SOCS3). The expression between most top inflammation-related RRA_DEmRNAs in pulpitis showed positive correlations. Quantitative real-time polymerase chain reacation validated the expression trends of selected genes, including ITGAX, TREM1, CD86, FCGR2A, ADAMTS9-AS2, LINC00290, hsa-miR-30a-5p, hsa-miR-128-3p, RASGRP3, IL3RA, CCDC178, CRISPLD1, LINC01857, AC007991.2, ARHGEF26-AS1, and AL021408.1. CONCLUSIONS The identified biomarkers provide insight into the pathology and may aid in the molecular diagnosis of pulpitis.
Collapse
Affiliation(s)
- Liu Liu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Conservative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Tianyi Wang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Dingming Huang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Conservative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Dongzhe Song
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Conservative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
530
|
Deng L, Guo Y, Liu J, Wang X, Chen S, Wang Q, Rao J, Wang Y, Zuo T, Hu Q, Zhao X, Dong Z. miR-671-5p Attenuates Neuroinflammation via Suppressing NF-κB Expression in an Acute Ischemic Stroke Model. Neurochem Res 2021; 46:1801-1813. [PMID: 33871800 DOI: 10.1007/s11064-021-03321-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/31/2021] [Accepted: 04/02/2021] [Indexed: 12/15/2022]
Abstract
This study was designed to investigate the role of miR-671-5p in in vitro and in vivo models of ischemic stroke (IS). Middle cerebral artery occlusion and reperfusion (MCAO/R) in C57BL/6 mice as well as oxygen-glucose deprivation and reoxygenation (OGD/R) in a mouse hippocampal HT22 neuron line were used as in vivo and in vitro models of IS injury, respectively. miR-671-5p agomir, miR-671-5p antagomir, pcDNA3.1-NF-κB, and negative controls were transfected into cells using riboFECT CP reagent. miR-671-5p agomir, pcDNA3.1-NF-κB, and negative vectors were administered into MCAO/R mice via intracerebroventricular injection. The results showed that miR-671-5p was significantly downregulated and that miR-671-5p agomir alleviated injury and neuroinflammation induced by ischemic reperfusion. A dual-luciferase reporter assay confirmed that NF-κB is a direct target of miR-671-5p. Reverse experiments showed that miR-671-5p agomir reduced neuroinflammation via suppression of NF-κB expression in both in vitro and in vivo models of IS. Our data suggest that miR-671-5p may be a viable therapeutic target for diminishing neuroinflammation in patients with IS.
Collapse
Affiliation(s)
- Ling Deng
- College of Pharmacology, The Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing, 400016, China
- Library, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Yi Guo
- Department of Radiology, Chongqing University Central Hospital, Chongqing, 400014, China
| | - Jingdong Liu
- College of Pharmacology, The Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing, 400016, China
| | - Xuan Wang
- College of Pharmacology, The Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing, 400016, China
| | - Sha Chen
- College of Pharmacology, The Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing, 400016, China
| | - Qian Wang
- College of Pharmacology, The Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing, 400016, China
| | - Jianyan Rao
- College of Pharmacology, The Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing, 400016, China
| | - Yuchun Wang
- College of Pharmacology, The Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing, 400016, China
| | - Tianrui Zuo
- College of Pharmacology, The Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing, 400016, China
| | - Qingwen Hu
- College of Pharmacology, The Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing, 400016, China
| | - Xiahong Zhao
- College of Pharmacology, The Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing, 400016, China
| | - Zhi Dong
- College of Pharmacology, The Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
531
|
Zhang PF, Hu H, Tan L, Yu JT. Microglia Biomarkers in Alzheimer's Disease. Mol Neurobiol 2021; 58:3388-3404. [PMID: 33713018 DOI: 10.1007/s12035-021-02348-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 03/03/2021] [Indexed: 12/13/2022]
Abstract
Early detection and clinical diagnosis of Alzheimer's disease (AD) have become an extremely important link in the prevention and treatment of AD. Because of the occult onset, the diagnosis and treatment of AD based on clinical symptoms are increasingly challenged by current severe situations. Therefore, molecular diagnosis models based on early AD pathological markers have received more attention. Among the possible pathological mechanisms, microglia which are necessary for normal brain function are highly expected and have been continuously studied in various models. Several AD biomarkers already exist, but currently there is a paucity of specific and sensitive microglia biomarkers which can accurately measure preclinical AD. Bringing microglia biomarkers into the molecular diagnostic system which is based on fluid and neuroimaging will play an important role in future scientific research and clinical practice. Furthermore, developing novel, more specific, and sensitive microglia biomarkers will make it possible to pharmaceutically target chemical pathways that preserve beneficial microglial functions in response to AD pathology. This review discusses microglia biomarkers in the context of AD.
Collapse
Affiliation(s)
- Peng-Fei Zhang
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, No.5 Donghai Middle Road, Qingdao, China
| | - Hao Hu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, No.5 Donghai Middle Road, Qingdao, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, No.5 Donghai Middle Road, Qingdao, China.
| | - Jin-Tai Yu
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
532
|
A Single-Center Clinical Study to Evaluate Shenxiong Glucose Injection Combined with Edaravone in the Treatment of Acute Large-Area Cerebral Infarction. BIOMED RESEARCH INTERNATIONAL 2021; 2021:9935752. [PMID: 34307676 PMCID: PMC8263277 DOI: 10.1155/2021/9935752] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/27/2021] [Accepted: 06/21/2021] [Indexed: 12/30/2022]
Abstract
Objectives To investigate the clinical efficacy and safety of Shenxiong glucose injection combined with edaravone in the treatment of acute large-area cerebral infarction. Methods 156 patients with acute large-area cerebral infarction admitted to our hospital from July 2015 to January 2017 were included in the analysis. The patients were randomly divided into experimental (78 cases) and control (78 cases) groups. Patients in the experimental group were given a 30 mg injection of edaravone in 100 ml of 0.9% sodium chloride solution by intravenous drip, twice a day within 30 minutes and a daily 200 ml injection of Shenxiong glucose by intravenous drip. Patients in the control group were given a 30 mg edaravone injection in 100 ml of 0.9% sodium chloride solution by intravenous drip, twice a day, and the drip was completed within 30 minutes. Patients in both groups were treated for 2 weeks. The levels of fibrinogen (FIB), D-dimer, interleukin 6 (IL-6), P-selectin (CD62P), and hypersensitive C-reactive protein (hs-CRP) were evaluated in the two groups of patients. Neurological disability was evaluated using the modified Rankin scale (mRS) and the neurological deficit score (National Institute of Health Stroke Scale, NIHSS). Adverse reactions to the treatments were also recorded. Results No significant differences in age, gender, medical histories, and blood biochemical indices were observed between the two groups before treatment (P > 0.05). After treatment, the levels of FIB, D-dimer, IL-6, CD62P, and hs-CRP were significantly lower following treatment and compared to the control group (P < 0.05). Also, the mRS and NIHSS scores were significantly lower after treatment and compared with the control group (P < 0.05). The total effective rate of the treatment in the experimental group was significantly higher compared to the control group (P < 0.05). During the treatment period, no obvious adverse reactions were observed in the two groups of patients. Conclusions In addition to the routine basic treatment of acute large-area cerebral infarction, the addition of Shenxiong glucose injection combined with edaravone injection can improve platelet aggregation and reduce inflammation by affecting P-selectin, D-dimer, and FIB. This treatment approach promotes the recovery of nerve defect function without obvious adverse reactions in patients with acute large-area cerebral infarction.
Collapse
|
533
|
The Influence of Serum Uric Acid Level on Alzheimer's Disease: A Narrative Review. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5525710. [PMID: 34124244 PMCID: PMC8192189 DOI: 10.1155/2021/5525710] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 05/21/2021] [Accepted: 05/27/2021] [Indexed: 12/24/2022]
Abstract
As a powerful antioxidant in the human body, uric acid (UA) has been the subject of increasing research that focused on its influence on Alzheimer's disease (AD) in recent years. The latest literature was gathered to describe the influence of serum uric acid (SUA) level on the onset and progression of AD and to analyze the possibility that SUA is a biomarker of Alzheimer's disease. A large number of existing studies suggested that the SUA level was lower or tended to decrease in patients with AD, and increased SUA level may have a protective effect in AD, which could reduce the risk of onset and slowing the course of the disease. However, some Mendelian randomization analyses suggested that genetically determined uric acid was not associated with AD risk. Existing research results are contradictory due to the high inconsistency of the studies, the selection of subjects, and other factors. UA also showed a strong association with cognitive function, and there appeared to be a gender-selective neuroprotective action. Due to its potent antioxidant properties, the low uric acid level may contribute to oxidative stress to accelerate disease progression. But some preclinical data showed a possibility that in some special cases, UA had a prooxidant properties. The possibility was raised in the discussion of the underlying mechanism that both the low uric acid level and the rapidly progressive course of the disease were the consequence of malnutrition. This paper reviews recent advances in the study of SUA and AD which offers the possibility of new biomarker, new prevention, and treatment strategies for Alzheimer's disease.
Collapse
|
534
|
Decreased Levels of Serum IL-34 Associated with Cognitive Impairment in Vascular Dementia. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6793860. [PMID: 34095310 PMCID: PMC8163526 DOI: 10.1155/2021/6793860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/05/2021] [Accepted: 05/13/2021] [Indexed: 12/04/2022]
Abstract
Objective Interleukin- (IL-) 34 is a new type of cytokine with neuroprotective effects discovered in recent years. However, the relationship between IL-34 and vascular dementia (VaD) has not yet been elucidated. The purpose of this study is to determine whether IL-34 is involved in cognitive impairment of VaD. Methods From January 2017 to December 2020, 84 VaD patients and 60 healthy controls who attended Qingpu Branch of Zhongshan Hospital were prospectively included in the study. Once included in the study, demographic features of all research subjects are collected. They include age, gender, education, white blood cells (WBC), neutrophil, lymphocyte, systolic blood pressure (SBP), diastolic blood pressure (DBP), fasting blood glucose (FBG), triglycerides (TG), and total cholesterol (TC). Meanwhile, the Montreal Cognitive Assessment (MoCA) scale was used to assess the cognitive function of participants. The serum IL-34 level was determined by enzyme-linked immunosorbent assay (ELISA). Results There was no significant difference between the demographic features of VaD patients and healthy controls (p > 0.05). However, the serum IL-34 levels of VaD patients and healthy controls are 27.6 ± 3.9 pg/ml and 41.8 ± 6.0 pg/ml, respectively, and there is a significant statistical difference between them (p < 0.001). The results of bivariate correlation analysis showed that serum IL-34 levels were significantly positively correlated with MoCA scores (r = 0.371, p = 0.023). Further regression analysis showed that IL-34 was still correlated with MoCA after adjusting for demographic features (β = 0.276, p = 0038). Conclusions Serum IL-34 levels in VaD patients were significantly reduced, which may be an independent predictor of cognitive impairment in VaD patients.
Collapse
|
535
|
Siniscalchi A, Gray C, Malferrari G. Ultrasound Diagnostic Method in Vascular Dementia: Current Concepts. Curr Med Imaging 2021; 17:507-512. [PMID: 33032514 DOI: 10.2174/1573405616999201008145106] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/20/2020] [Accepted: 08/05/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Increasing interest in identifying cerebral hemodynamics alterations as a cause of possible onset or worsening of cognitive impairment in elderly patients with vascular risk factors. INTRODUCTION Intracranial ultrasound is a non-invasive, repeatable inexpensive method for recording variation of the cerebral vascular tree in physiological and pathological conditions and the diagnosis of vascular dementia (VaD). METHODS PubMed, Embase, Cochrane library and reference lists have been searched for articles published until March 30, 2020. RESULTS Clinical studies reported different Transcranial Doppler (TCD) parameters and subsequently transcranial duplex with color code (TCCD) in patients affected by vascular dementia. The number of studies using TCCD remains limited and most of the available data are still based on TCD. However, the use of transcranial Doppler could better stratify elderly patients with initial signs of cognitive impairment. CONCLUSION Intracranial ultrasound employment to detect cerebral hemodynamic changes in VaD patients has been briefly discussed in this review.
Collapse
Affiliation(s)
- Antonio Siniscalchi
- Department of Neurology and Stroke Unit, Annunziata Hospital of Cosenza, Cosenza, Italy
| | - Cleona Gray
- Vascular and Endovascular Surgery Unit, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Giovanni Malferrari
- Stroke Unit, Neurology Unit, Azienda Unità Sanitaria Locale - IRCCS, Reggio Emilia, Italy
| |
Collapse
|
536
|
Lin X, Zhan J, Jiang J, Ren Y. Upregulation of Neuronal Cylindromatosis Expression is Essential for Electroacupuncture-Mediated Alleviation of Neuroinflammatory Injury by Regulating Microglial Polarization in Rats Subjected to Focal Cerebral Ischemia/Reperfusion. J Inflamm Res 2021; 14:2061-2078. [PMID: 34045881 PMCID: PMC8149215 DOI: 10.2147/jir.s307841] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/17/2021] [Indexed: 01/03/2023] Open
Abstract
Background Activated microglia are polarized into the M1 or M2 phenotype. We previously reported that electroacupuncture (EA) effectively prevented nuclear factor-κB (NF-κB) nuclear translocation and improved neuronal C-X-C motif 3 chemokine ligand 1 (CX3CL1) expression, repressing microglial activation by upregulating neuronal cylindromatosis (CYLD) expression in the periischemic cortex. However, the potential mechanisms are unclear. Therefore, we explored whether EA improved CYLD protein expression to regulate microglial polarization-mediated neuroinflammation and the potential mechanisms in an ischemic stroke model. Methods A middle cerebral artery occlusion/reperfusion (MCAO/R) model was established in male Sprague-Dawley (SD) rats. The rats were treated with EA at the Baihui, Hegu and Taichong acupoints once daily beginning 2 h after focal cerebral ischemia. CYLD gene interference was used to investigate the role of CYLD in microglial polarization. We used neurobehavioral evaluations and TTC staining to examine the neuroprotective effect of EA via CYLD upregulation. Immunofluorescence and RT-qPCR were used to measure NLRP3 activation, M1/M2 microglial activation, pro-/anti-inflammatory gene mRNA expression and crosstalk (CX3CL1/CX3CR1 axis) between neurons and microglia. Western blotting was used to assess the underlying molecular mechanism. Results CYLD inhibited M1 microglial activation and improved M2 microglial activation after 72 h of reperfusion. CYLD overexpression decreased the NLRP3 mRNA level. CYLD suppressed microglial overactivation by inhibiting NLRP3 activation. CYLD gene silencing partially weakened EA improvement of neurological function deficits and reduction of infarct volumes after 72 h reperfusion. In addition, EA inhibited M1-like phenotypic microglial activation and promoted M2-like phenotypic microglia through upregulating CYLD expression. Finally, EA-mediated modulation of the CX3CL1/CX3CR1 axis and NLRP3 inflammasome was reversed by CYLD gene silencing in the periischemic cortex. Conclusion EA-induced upregulation of neuronal CYLD expression plays anti-inflammatory and neuroprotective roles and regulates the interaction between neurons and microglia, thereby suppressing M1 and improving M2 microglial activation in the periischemic cortex.
Collapse
Affiliation(s)
- Xing Lin
- Department of Biological Immunotherapy, Chongqing University Cancer Hospital, Chongqing Cancer Institute, Chongqing Cancer Hospital, Shapingba District, Chongqing, 400030, People's Republic of China
| | - Jian Zhan
- Department of Neurology, The Second Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou Province, 563000, People's Republic of China
| | - Jin Jiang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Yikun Ren
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| |
Collapse
|
537
|
Yan LJ. NADH/NAD + Redox Imbalance and Diabetic Kidney Disease. Biomolecules 2021; 11:biom11050730. [PMID: 34068842 PMCID: PMC8153586 DOI: 10.3390/biom11050730] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 12/11/2022] Open
Abstract
Diabetic kidney disease (DKD) is a common and severe complication of diabetes mellitus. If left untreated, DKD can advance to end stage renal disease that requires either dialysis or kidney replacement. While numerous mechanisms underlie the pathogenesis of DKD, oxidative stress driven by NADH/NAD+ redox imbalance and mitochondrial dysfunction have been thought to be the major pathophysiological mechanism of DKD. In this review, the pathways that increase NADH generation and those that decrease NAD+ levels are overviewed. This is followed by discussion of the consequences of NADH/NAD+ redox imbalance including disruption of mitochondrial homeostasis and function. Approaches that can be applied to counteract DKD are then discussed, which include mitochondria-targeted antioxidants and mimetics of superoxide dismutase, caloric restriction, plant/herbal extracts or their isolated compounds. Finally, the review ends by pointing out that future studies are needed to dissect the role of each pathway involved in NADH-NAD+ metabolism so that novel strategies to restore NADH/NAD+ redox balance in the diabetic kidney could be designed to combat DKD.
Collapse
Affiliation(s)
- Liang-Jun Yan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| |
Collapse
|
538
|
Chen W, Fan H, Lu G. The Efficacy and Predictors of Using GPi-DBS to Treat Early-Onset Dystonia: An Individual Patient Analysis. Neural Plast 2021; 2021:9924639. [PMID: 34040641 PMCID: PMC8121596 DOI: 10.1155/2021/9924639] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 04/21/2021] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE To compare the efficacy in patients with different genotypes, identify the potential predictive factors, and summarize the complications of globus pallidus deep brain stimulation (GPi-DBS) treating early-onset dystonia. METHODS Three electronic databases (PubMed, Embase, and Cochrane databases) were searched with no publication data restriction. The primary outcomes were the improvements in Burke-Fahn-Marsden Dystonia Rating Scale motor (BFMDRS-M) and disability (BFMDRS-D) score. Pearson's correlation coefficients and a metaregression analysis were used to identify the potential predictive factors. This article was registered in Prospero (CRD42020188527). RESULTS Fifty-four studies (231 patients) were included. Patients showed significant improvement rate in BFMDRS-M (60.6%, p < 0.001) and BFMDRS-D (57.5%, p < 0.001) scores after treatment with GPi-DBS. BFMDRS-M score improved greater in the DYT-1-positive (p = 0.001) and DYT-11-positive (p = 0.008) patients compared to DYT-6-positive patients. BFMDRS-D score improved greater in the DYT-11 (+) compared to DYT-6 (+) patients (p = 0.010). The relative change of BFMDRS-M (p = 0.002) and BFMDRS-D (p = 0.010) scores was negatively correlated with preoperative BFMDRS-M score. In the metaregression analysis, the best predictive model showed that preoperative BFMDRS-M, disease duration (p = 0.047), and the age at symptom onset (p = 0.027) were important. CONCLUSION Patients with early-onset dystonia have a significant effect after GPi-DBS treatment, and DYT-1 (+) and DYT-11 (+) patients are better candidates for GPi-DBS. Lower preoperative score, later age of onset, and an earlier age at surgery probably predict better clinical outcomes.
Collapse
Affiliation(s)
- Wenxiu Chen
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- The First Clinical Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Houyou Fan
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- The First Clinical Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Guohui Lu
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
539
|
Pancancer Analysis of Neurovascular-Related NRP Family Genes as Potential Prognostic Biomarkers of Bladder Urothelial Carcinoma. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5546612. [PMID: 33937395 PMCID: PMC8062179 DOI: 10.1155/2021/5546612] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/08/2021] [Accepted: 03/20/2021] [Indexed: 12/14/2022]
Abstract
Background Neurovascular-related genes have been implicated in the development of cancer. Studies have shown that a high expression of neuropilins (NRPs) promotes tumourigenesis and tumour malignancy. Method A multidimensional bioinformatics analysis was performed to examine the relationship between NRP genes and prognostic and pathological features, tumour mutational burden (TMB), microsatellite instability (MSI), and immunological features based on public databases and find the potential prognostic value of NRPs in pancancer. Results Survival analysis revealed that a low NRP1 expression in adrenocortical carcinoma (ACC), cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC), low-grade glioma (LGG), and stomach adenocarcinoma (STAD) was associated with poor prognosis. A high NRP2 expression in bladder urothelial carcinoma (BLCA), kidney renal papillary cell carcinoma (KIRP), and mesothelioma (MESO) was associated with poor prognosis. Moreover, NRP1 and NRP2 were associated with TMB and MSI. Subsequent analyses showed that NRP1 and NRP2 were correlated with immune infiltration and immune checkpoints. Genome-wide association analysis revealed that the NRP1 expression was strongly associated with kidney renal clear cell carcinoma (KIRC), whereas the NRP2 expression was closely associated with BLCA. Ultimately, NRP2 was found to be involved in the development of BLCA. Conclusions Neurovascular-related NRP family genes are significantly correlated with cancer prognosis, TME, and immune infiltration, particularly in BLCA.
Collapse
|
540
|
Protective Effect of Triphala against Oxidative Stress-Induced Neurotoxicity. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6674988. [PMID: 33898626 PMCID: PMC8052154 DOI: 10.1155/2021/6674988] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 03/04/2021] [Accepted: 03/27/2021] [Indexed: 11/17/2022]
Abstract
Background Oxidative stress is implicated in the progression of many neurological diseases, which could be induced by various chemicals, such as hydrogen peroxide (H2O2) and acrylamide. Triphala is a well-recognized Ayurvedic medicine that possesses different therapeutic properties (e.g., antihistamine, antioxidant, anticancer, anti-inflammatory, antibacterial, and anticariogenic effects). However, little information is available regarding the neuroprotective effect of Triphala on oxidative stress. Materials and Methods An in vitro H2O2-induced SH-SY5Y cell model and an in vivo acrylamide-induced zebrafish model were established. Cell viability, apoptosis, and proliferation were examined by MTT assay, ELISA, and flow cytometric analysis, respectively. The molecular mechanism underlying the antioxidant activity of Triphala against H2O2 was investigated dose dependently by Western blotting. The in vivo neuroprotective effect of Triphala on acrylamide-induced oxidative injury in Danio rerio was determined using immunofluorescence staining. Results The results indicated that Triphala plays a neuroprotective role against H2O2 toxicity in inhibiting cell apoptosis and promoting cell proliferation. Furthermore, Triphala pretreatment suppressed the phosphorylation of the mitogen-activated protein kinase (MARK) signal pathway (p-Erk1/2, p-JNK1/2, and p-p38), whereas it restored the activities of antioxidant enzymes (superoxide dismutase 1 (SOD1) and catalase) in the H2O2-treated SH-SY5Y cells. Consistently, similar protective effects of Triphala were observed in declining neuroapoptosis and scavenging free radicals in the zebrafish central neural system, possessing a critical neuroprotective property against acrylamide-induced oxidative stress. Conclusion In summary, Triphala is a promising neuroprotective agent against oxidative stress in SH-SY5Y cells and zebrafishes with significant antiapoptosis and antioxidant activities.
Collapse
|
541
|
Salivary Biomarkers of Oxidative Stress and Inflammation in Stroke Patients: From Basic Research to Clinical Practice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5545330. [PMID: 33897941 PMCID: PMC8052150 DOI: 10.1155/2021/5545330] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/25/2021] [Accepted: 03/27/2021] [Indexed: 12/11/2022]
Abstract
Cerebral stroke is a serious worldwide health problem, as can be seen by the global epidemic of the disease. In this disorder, when the blood flow is compromised by ruptures or blocked arteries, sudden death of neurons is observed as a result of a lack of oxygen and nutrients. Numerous severe problems and frequent complications also exist in stroke patients; therefore, there is an urgent need to develop new therapeutic, diagnostic, and prognostic methods for the disease. At present, the diagnosis of stroke is based on a neurological examination, medical history, and neuroimaging, due to the fact that rapid and noninvasive diagnostic tests are unavailable. Nevertheless, oxidative stress and inflammation are considered key factors in stroke pathogenesis. Oxygen free radicals are responsible for oxidation of lipids, proteins, and DNA/RNA, which in turn contributes to oxidative damage of the brain. Toxic products of the oxidation reactions act cytostatically on the cell by damaging cell membranes and leading to neuronal death by apoptosis or necrosis. Thus, it seems that redox/inflammatory biomarkers might be used in the diagnosis of the disease. Nowadays, saliva is of increasing interest in clinical laboratory medicine. Redox biomarkers could be obtained easily, noninvasively, cheaply, and stress-free from saliva. This minireview is aimed at presenting the current knowledge concerning the use of salivary biomarkers of oxidative stress and inflammation in the diagnosis and prognosis of stroke.
Collapse
|
542
|
IL-33 as a Novel Serum Prognostic Marker of Intracerebral Hemorrhage. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5597790. [PMID: 33854693 PMCID: PMC8019392 DOI: 10.1155/2021/5597790] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/12/2021] [Accepted: 03/16/2021] [Indexed: 02/08/2023]
Abstract
Objective Interleukin 33 (IL-33) is a key cytokine involved in inflammation and oxidative stress. The significance of serum IL-33 levels on the prognosis of patients with intracerebral hemorrhage (ICH) has not been well studied. The purpose of this study is to determine whether there is a relationship between the serum IL-33 level and the prognosis of patients with ICH upon admission. Methods A total of 402 patients with confirmed ICH were included in this study. Their demographic data, medical history, laboratory data, imaging data, and clinical scores on admission were collected. At the same time, enzyme-linked immunoassay (ELISA) was used to detect the serum IL-33 levels of patients. The prognosis of patients was evaluated by mRS scale after 3 months, and mRS > 2 was defined as poor prognosis. Results Among 402 patients with ICH, the number of patients with good prognosis and poor prognosis after 3 months was 148 and 254, respectively. Compared with the ICH group with poor prognosis, the ICH group with good prognosis had lower baseline NHISS scores (p = 0.039) and hematoma volume (p = 0.025) and higher GCS scores (p < 0.001) and serum IL-33 levels (p < 0.001). The results of linear correlation analysis showed that serum IL-33 levels were significantly negatively correlated with baseline NHISS scores (r = −0.224, p = 0.033) and hematoma volume (r = −0.253, p = 0.046) but were significantly positively correlated with baseline GCS scores (r = 0.296, p = 0.020). The receiver operating characteristic curve (ROC) analysis showed that the sensitivity and specificity of serum IL-33 level in evaluating the prognosis of ICH were 72.1% and 74.3%, respectively. A cut-off value of serum IL-33 level < 109.3 pg/mL may indicate a poor prognosis for ICH. Conclusions Serum IL-33 level on admission may be a prognostic indicator of ICH, and its underlying mechanism needs further study.
Collapse
|
543
|
Liu L, Xia G, Li P, Wang Y, Zhao Q. Sirt-1 Regulates Physiological Process and Exerts Protective Effects against Oxidative Stress. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5542545. [PMID: 33834065 PMCID: PMC8012122 DOI: 10.1155/2021/5542545] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/05/2021] [Accepted: 03/10/2021] [Indexed: 01/30/2023]
Abstract
BACKGROUND Recent studies suggest a correlation between the reduced Sirt-1 expression with Alzheimer's diseases (AD) and depression, respectively, suggesting a possible pathogenic role of the altered Sirt-1 expression in neuronal degenerative diseases, such as AD and depression. However, the molecular mechanisms underlying how Sirt-1 reduction impairs neuronal functions remain unknown. METHODS We used the SK-N-SH neuroblastoma cells to study the role of Sirt-1 expression on physiological roles in neuronal cells. Gain of Sirt-1 was achieved by transiently transfecting Sirt-1 expression plasmid. Sirt-1-specific shRNA was used to elucidate the role of Sirt-1 loss of function. CCK-8 (Cell Counting Kit-8) assay and flow cytometry were used to evaluate cell proliferation. Semiquantitative western blotting was used to detect relative protein levels. A further luciferase reporter gene assay was employed to examine the effect of Sirt-1 expression on the transcriptional activity of p53. RT-qPCR was used to determine the mRNA levels of p21, Bax, and Bcl-2, which were the downstream target genes of p53. RESULTS Sirt-1 suppressed the p53 downstream gene p21 transcription, while shRNA-mediated Sirt-1 knockdown resulted in a significant increase in p21 expression, implying a possibility that Sirt-1 promotes neuron proliferation through suppressing p53 transcriptional activity. The mRNA and protein levels of p53 were not affected by the altered Sirt-1 expression, suggesting that Sirt-1 regulates the transcriptional regulatory activity of p53 rather than p53 expression. Indeed, we further confirmed that Sirt-1 appeared to inhibit p53 transcriptional activity by attenuating its acetylation and resulted in a decrease of p53's binding to the p21 promoter. Overexpressed Sirt-1 scavenged reactive oxygen species (ROS) production in SK-N-SH with H2O2. Knockdown of Sirt-1 presented opposite effect; the addition of EX527 (Sirt-1 inhibitor) increased ROS accumulation. CONCLUSIONS Oxidative stress induces Sirt-1 in neuron cells, and Sirt-1 promotes proliferation in SK-N-SH cells, which protects them from oxidative stress-induced cell death, potentially via suppressing the transcriptional activity of p53. These results provide a molecular explanation underlying how the reduced Sirt-1 potentially causes the AD and depression-related diseases, supporting the idea that Sirt-1 can possibly be used as a diagnostic biomarker and/or therapeutic drug target for the AD and depression-related diseases.
Collapse
Affiliation(s)
- Lei Liu
- Department of Mental Health and Psychiatry, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China 215006
- Department of Psychiatry, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China 550025
- Department of Psychiatry, Zaozhuang Mental Health Center, Zaozhuang, Shandong, China 277103
| | - Guangyuan Xia
- Department of Psychiatry, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China 550025
- College Students' Mental Health Education and Counseling Center, Guizhou Medical University, Guiyang, Guizhou, China 550004
| | - Peifan Li
- Department of Psychiatry, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China 550025
| | - Yiming Wang
- Department of Psychiatry, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China 550025
- College Students' Mental Health Education and Counseling Center, Guizhou Medical University, Guiyang, Guizhou, China 550004
| | - Qian Zhao
- Department of Nuclear Medicine, General Hospital of Ningxia Medical University, Ningxia, Ningxia Hui Autonomous Region, China 750004
| |
Collapse
|
544
|
Dolgushin II, Genkel VV, Baturina IL, Emelyanov IV, Savochkina AY, Shaposhnik II. Association of the increased circulating CD62LloCXCR4hi neutrophil count with carotid atherosclerosis. JOURNAL OF MICROBIOLOGY, EPIDEMIOLOGY AND IMMUNOBIOLOGY 2021. [DOI: 10.36233/0372-9311-67] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Introduction. The role of neutrophils in the initiation and progression of atherosclerosis as well as in the development of its complications has received scientific attention only in the recent years. Today, there is growing evidence to support a role of the CXCL12/CXCR4 axis in sustained inflammation during different chronic inflammatory diseases by retaining neutrophils at inflammatory sites.The aim of the study is to assess the diagnostic and prognostic significance of circulating CD62LloCXCR4 hi neutrophils in patients with carotid atherosclerosis.Materials and methods. A total of 75 patients (52% of men and 48% of women) aged 40 to 64 years were examined. None of them were diagnosed with atherosclerotic cardiovascular diseases. All the patients underwent carotid artery duplex scanning. The flow cytometry and CD16, CD11b, CD62L, CD182 (CXCR2) and CD184 (CXCR4) conjugated monoclonal antibodies were used for phenotyping and differentiation of neutrophil subpopulations.Results. Atherosclerotic plaques in carotid arteries were detected in 72% of the patients; most of the patients were diagnosed with stenosis development in more than one of the carotid arteries (CA). The elevated levels of circulating CXCR4h neutrophils were associated with the levels of total cholesterol (r = 0.377; p = 0.001), low-density lipoprotein (LDL) cholesterol (r = 0.293; p = 0.014) and triglycerides (r = 0.388; p = 0.003). The study revealed direct correlation between the circulating CXCR4 hi neutrophil count and the cumulative percentage of CA stenosis (r = 0.300; p = 0.011), including the number of stenosed CA (r = 0.291; p = 0.034). It was also found that CXCR4 hi neutrophil counts demonstrated a statistically significant increase along with the increased number of stenosed CA (p = 0.025). The ROC analysis findings show that the elevated CXCR4 hi neutrophil counts ≥260 cells/μL made it possible to diagnose stenotic lesion of 4 CAs with a sensitivity of 71.4% and specificity reaching 76.6%.Conclusion. In patients with carotid atherosclerosis, the increased count of circulating CD62LloCXCR4 hi neutrophils was associated with the increased number of stenosed CAs, while no significant changes were observed in the other examined subpopulations of neutrophil granulocytes. The increased CD62LloCXCR4 hi neutrophil count made it possible to diagnose stenotic lesion of 4 CAs with a sufficient sensitivity and specificity.
Collapse
|
545
|
Serum ICAM-1 as a Predictor of Prognosis in Patients with Acute Ischemic Stroke. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5539304. [PMID: 33791362 PMCID: PMC7997739 DOI: 10.1155/2021/5539304] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/09/2021] [Accepted: 03/11/2021] [Indexed: 02/07/2023]
Abstract
Objective Inflammation is one of the key mechanisms involved in functional impairment after stroke. Intercellular adhesion molecule-1 (ICAM-1) is an important inflammatory molecule in the body. The purpose of our study was to determine the correlation between ICAM-1 and the prognosis of acute ischemic stroke (AIS). Methods 286 AIS patients treated at Beijing Tiantan Hospital were continuously included in the study. The demographic data of the patients were collected, and the fasting blood within 24 hours of admission was collected to detect the clinical indicators. The functional prognosis was measured using the modified Rankin Scale (mRS) 3 months after stroke. The poor prognosis is defined as mRS ≥ 3. The enzyme-linked immunosorbent assay (ELISA) was used to determine the serum ICAM-1 levels. Results The serum ICAM-1 levels of patients with poor prognosis were significantly higher than that of patients with good prognosis (144.2 ± 14.8 vs 117.5 ± 12.1 pg/ml). Receiver operating characteristic curve (ROC) analysis showed that the sensitivity and specificity of serum ICAM-1 for predicting the prognosis of AIS were 74% and 76%, respectively. In logistic regression analysis, the serum ICAM-1 level is still an independent predictor of poor prognosis (odds ratio [OR]: 0.52; 95% confidence interval [CI]: 0.318-0.839). Conclusions Higher serum ICAM-1 levels on admission in AIS patients might increase the risk of poor prognosis.
Collapse
|
546
|
Zhou Z, Zhong S, Liang Y, Zhang X, Zhang R, Kang K, Qu H, Xu Y, Zhao C, Zhao M. Serum Uric Acid and the Risk of Dementia: A Systematic Review and Meta-Analysis. Front Aging Neurosci 2021; 13:625690. [PMID: 33716713 PMCID: PMC7947796 DOI: 10.3389/fnagi.2021.625690] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 01/29/2021] [Indexed: 12/12/2022] Open
Abstract
Background: This meta-analysis aimed to evaluate the relationship between serum uric acid (UA) and the risk of dementia and its subtypes. Methods: Embase, PubMed, and Web of Science were searched from inception to July 2020. Random-effect models were employed to analyze the standard mean difference (SMD) with the corresponding 95% confidence intervals (CI). Results: Twenty-three eligible studies involving 5,575 participants were identified. The overall results showed lower levels of UA in dementia relative to non-dementia controls [SMD = −0.32 (−0.64; −0.01) p = 0.04]. The subgroup analysis of the type of dementia demonstrated a significant association of UA with Alzheimer's disease (AD) [SMD = −0.58 (−1.02; −0.15) p = 0.009] and Parkinson's disease with dementia (PDD) [SMD = −0.33 (−0.52; −0.14) p = 0.001] but not with vascular dementia (VaD). The stratification analysis of the concentrations of UA revealed that the UA quartile 1–2 was negatively correlated with dementia and neurodegenerative subtypes (p < 0.05), whereas a positive correlation of UA quartile 4 with dementia was noted (p = 0.028). Additionally, the meta-regression analysis on confounders showed that not age, body mass index, diabetes mellitus, hypertension, or smoking but education (p = 0.003) exerted an influence of the UA in the risk estimate of dementia. Conclusions: Low concentrations of UA (< 292 μmol/L or 4.91 mg/dL) is a potential risk factor for AD and PDD but not for VaD. The mechanism of different concentrations of the UA in dementia needs to be confirmed through further investigation.
Collapse
Affiliation(s)
- Zhike Zhou
- Department of Geriatrics, The First Affiliated Hospital, China Medical University, Shenyang, China
| | - Shanshan Zhong
- Department of Neurology, The First Affiliated Hospital, China Medical University, Shenyang, China
| | - Yifan Liang
- Department of Neurology, The First Affiliated Hospital, China Medical University, Shenyang, China
| | - Xiaoqian Zhang
- Department of Neurology, The First Affiliated Hospital, China Medical University, Shenyang, China
| | - Rongwei Zhang
- Department of Geriatrics, The First Affiliated Hospital, China Medical University, Shenyang, China
| | - Kexin Kang
- Department of Geriatrics, The First Affiliated Hospital, China Medical University, Shenyang, China
| | - Huiling Qu
- Department of Neurology, People's Hospital of Liaoning Province, Shenyang, China
| | - Ying Xu
- Computational Systems Biology Laboratory, Department of Biochemistry and Molecular Biology and Institute of Bioinformatics, The University of Georgia, Athens, GA, United States.,Cancer Systems Biology Center, The China-Japan Union Hospital, Jilin University, Changchun, China
| | - Chuansheng Zhao
- Department of Neurology, The First Affiliated Hospital, China Medical University, Shenyang, China
| | - Mei Zhao
- Department of Cardiology, The Shengjing Affiliated Hospital, China Medical University, Shenyang, China
| |
Collapse
|
547
|
Hou K, Li G, Yu J, Xu K, Wu W. Receptors, Channel Proteins, and Enzymes Involved in Microglia-mediated Neuroinflammation and Treatments by Targeting Microglia in Ischemic Stroke. Neuroscience 2021; 460:167-180. [PMID: 33609636 DOI: 10.1016/j.neuroscience.2021.02.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/09/2021] [Accepted: 02/11/2021] [Indexed: 12/12/2022]
Abstract
Stroke is the largest contributor to global neurological disability-adjusted life-years, posing a huge economic and social burden to the world. Though pharmacological recanalization with recombinant tissue plasminogen activator and mechanical thrombectomy have greatly improved the prognosis of patients with ischemic stroke, clinically, there is still no effective treatment for the secondary injury caused by cerebral ischemia. In recent years, more and more evidences show that neuroinflammation plays a pivotal role in the pathogenesis and progression of ischemic cerebral injury. Microglia are brain resident innate immune cells and act the role peripheral macrophages. They play critical roles in mediating neuroinflammation after ischemic stroke. Microglia-mediated neuroinflammation is not an isolated process and has complex relationships with other pathophysiological processes as oxidative/nitrative stress, excitotoxicity, necrosis, apoptosis, pyroptosis, autophagy, and adaptive immune response. Upon activation, microglia differentially express various receptors, channel proteins, and enzymes involved in promoting or inhibiting the inflammatory processes, making them the targets of intervention for ischemic stroke. To inhibit microglia-related neuroinflammation and promote neurological recovery after ischemic stroke, numerous biochemical agents, cellular therapies, and physical methods have been demonstrated to have therapeutic potentials. Though accumulating experimental evidences have demonstrated that targeting microglia is a promising approach in the treatment of ischemic stroke, the clinical progress is slow. Till now, no clinical study could provide convincing evidence that any biochemical or physical therapies could exert neuroprotective effect by specifically targeting microglia following ischemic stroke.
Collapse
Affiliation(s)
- Kun Hou
- Department of Neurosurgery, The First Hospital of Jilin University, 1 Xinmin Avenue, 130021 Changchun, China.
| | - Guichen Li
- Department of Neurology, The First Hospital of Jilin University, 1 Xinmin Avenue, 130021 Changchun, China.
| | - Jinlu Yu
- Department of Neurosurgery, The First Hospital of Jilin University, 1 Xinmin Avenue, 130021 Changchun, China.
| | - Kan Xu
- Department of Neurosurgery, The First Hospital of Jilin University, 1 Xinmin Avenue, 130021 Changchun, China.
| | - Wei Wu
- Department of Neurosurgery, The First Hospital of Jilin University, 1 Xinmin Avenue, 130021 Changchun, China.
| |
Collapse
|
548
|
Xu M, He XY, Huang P. The Relationship between Serum Amyloid A Level and Cognitive Dysfunction in Patients with Vascular Dementia: Preliminary Findings. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6676144. [PMID: 33644229 PMCID: PMC7902129 DOI: 10.1155/2021/6676144] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 01/25/2021] [Accepted: 02/03/2021] [Indexed: 12/21/2022]
Abstract
OBJECTIVE This study was aimed at investigating the relationship between serum amyloid A (SAA) levels and cognitive dysfunction in patients with vascular dementia (VAD). METHODS Using cross-sectional research methods, 146 patients with VAD were selected as the VAD group and 70 normal people were selected as the NC group. Upon admission, the clinical and biochemical characteristics of the two groups of study subjects were collected, and the MMSE scale was used to assess cognitive function. A sandwich enzyme-linked immunosorbent assay was used to detect SAA levels. RESULTS There was no significant difference in clinical data and biochemical characteristics in the VAD group (p > 0.05). Compared with the VAD group, the NC group has a higher level of education (p < 0.05). The SAA level of the VAD group was higher than that of the NC group, and there was a significant difference (p < 0.05). Spearman correlation analysis showed that SAA and MMSE in the VAD group were negatively correlated. Further multiple regression analysis showed that the serum amyloid A level is an independent risk factor for cognitive dysfunction in VAD patients. CONCLUSION The level of SAA in VAD patients is significantly increased, which can be used as a potential peripheral blood marker to predict cognitive impairment in VAD patients.
Collapse
Affiliation(s)
- Min Xu
- Department of Neurology, The Second People's Hospital of Deyang City, No. 340 Minjiang West Road, Deyang, Sichuan 618000, China
| | - Xiao-ying He
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, No. 25 Taiping Street, Luzhou, Sichuan 646000, China
| | - Pan Huang
- Department of Neurology, People's Hospital of Deyang City, No. 173 TaiShan North Road, Deyang, Sichuan 618000, China
| |
Collapse
|
549
|
Xu Y, Wang K, Wang Q, Ma Y, Liu X. The Antioxidant Enzyme PON1: A Potential Prognostic Predictor of Acute Ischemic Stroke. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6677111. [PMID: 33628379 PMCID: PMC7884154 DOI: 10.1155/2021/6677111] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/26/2021] [Accepted: 01/28/2021] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Paraoxonase 1 (PON1) is an antioxidant enzyme, which has been proved to be involved in the pathophysiological process of oxidative stress and various neurological diseases in recent years. Although reduced PON1 activity has been reported in patients with acute ischemic stroke (AIS), the prognostic value of PON1 in AIS has not been clearly established. The purpose of this study was to determine whether the baseline serum PON1 activity level is related to the functional outcome of AIS patients. METHODS From July 2017 to June 2020, AIS patients within 3 days of symptom onset were continuously prospectively included in the study. On admission, clinical and laboratory data were recorded, and serum PON1 activity was tested. The National Institute of Health Stroke Scale (NIHSS) score was used to evaluate the initial neurologic deficit at admission, and the modified Rankin scale (mRS) was used to evaluate the functional outcome at 3 months. A multiple logistic regression model was used to analyze the relationship between the baseline PON1 activity level and the prognosis of AIS. RESULTS A total of 336 AIS patients were finally included in this study. The serum PON1 activity of AIS patients with good outcomes was significantly higher than that of patients with poor outcomes (193.4 ± 16.3 U/mL vs. 127.2 ± 14.9 U/mL, p < 0.001). However, the comparison of other clinical and laboratory data between AIS patients with good and poor outcomes was not significant (p > 0.05). There was a significant decrease in the mRS score in patients with AIS across serum PON1 quartiles (3.0 ± 1.6, 2.6 ± 1.5, 2.4 ± 1.4, and 2.4 ± 1.3, p = 0.007). Multivariate logistic regression analysis showed that the 3-month functional outcome of AIS patients was significantly correlated with the quartile of serum PON1 activity. CONCLUSIONS This study suggests that the serum PON1 activity may be an independent predictor of the functional outcome of AIS patients.
Collapse
Affiliation(s)
- Yuzhen Xu
- Department of Neurology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Kai Wang
- Department of Neurology, Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Qian Wang
- Department of Central Laboratory, Taian City Central Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong Province, China
| | - Yihong Ma
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Xueyuan Liu
- Department of Neurology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
550
|
Kim J, Choi JW, Namkung J. Expression Profile of Mouse Gm20594, Nuclear-Encoded Humanin-Like Gene. J Lifestyle Med 2021; 11:13-22. [PMID: 33763338 PMCID: PMC7957044 DOI: 10.15280/jlm.2021.11.1.13] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 11/29/2020] [Indexed: 12/21/2022] Open
Abstract
Background Mitochondrial-derived peptides (MDPs) such as MOTS-c and humanin have been studied for their cytoprotective functions. In mice, humanin-encoding Mtrnr2 is a mitochondrial pseudogene, and the humanin-like peptide is encoded by the nuclear Gm20594 gene. However, endogenous tissue-specific expression profiles of Gm20594 have not yet been identified. Methods Mtrnr1 and Gm20594 expression was profiled via reverse transcription using only oligo(dT) primers from tissues of C57BL6/J mice. To analyze altered expression upon mitochondrial biogenesis, C2C12 myocytes and brown adipocytes were differentiated. Mitochondrial DNA copy numbers were quantified for normalization. Results Both Mtrnr1 and Gm20594 were highly expressed in brown adipose tissue. When normalized against mitochondrial content, Mtrnr1 was identified as being highly expressed in the duodenum, followed by the jejunum. In models of mitochondrial biogenesis, both Mtrnr1 and Gm20594 were upregulated during myocyte and brown adipocyte differentiation. Increased Mtrnr1 expression during brown adipocyte differentiation remained significant after normalization against mitochondrial DNA copy number, whereas myocyte differentiation exhibited biphasic upregulation and downregulation in early and late phases, respectively. Conclusion Nuclear-encoded Gm20594 showed similar expression patterns of mitochondrial-encoded Mtrnr1. Brown adipose tissue presented the highest basal expression levels of Gm20594 and Mtrnr1. When normalized against mitochondrial DNA copy number, gut tissues exhibited the highest expression of Mtrnr1. Upregulation of Mtrnr1 during mitochondrial biogenesis is independent of mitochondrial content.
Collapse
Affiliation(s)
- Jihye Kim
- Department of Biochemistry, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Jong-Whan Choi
- Department of Biochemistry, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Jun Namkung
- Department of Biochemistry, Yonsei University Wonju College of Medicine, Wonju, Korea
| |
Collapse
|