501
|
The biofilm-specific antibiotic resistance gene ndvB is important for expression of ethanol oxidation genes in Pseudomonas aeruginosa biofilms. J Bacteriol 2012; 194:3128-36. [PMID: 22505683 DOI: 10.1128/jb.06178-11] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Bacteria growing in biofilms are responsible for a large number of persistent infections and are often more resistant to antibiotics than are free-floating bacteria. In a previous study, we identified a Pseudomonas aeruginosa gene, ndvB, which is important for the formation of periplasmic glucans. We established that these glucans function in biofilm-specific antibiotic resistance by sequestering antibiotic molecules away from their cellular targets. In this study, we investigate another function of ndvB in biofilm-specific antibiotic resistance. DNA microarray analysis identified 24 genes that were responsive to the presence of ndvB. A subset of 20 genes, including 8 ethanol oxidation genes (ercS', erbR, exaA, exaB, eraR, pqqB, pqqC, and pqqE), was highly expressed in wild-type biofilm cells but not in ΔndvB biofilms, while 4 genes displayed the reciprocal expression pattern. Using quantitative real-time PCR, we confirmed the ndvB-dependent expression of the ethanol oxidation genes and additionally demonstrated that these genes were more highly expressed in biofilms than in planktonic cultures. Expression of erbR in ΔndvB biofilms was restored after the treatment of the biofilm with periplasmic extracts derived from wild-type biofilm cells. Inactivation of ethanol oxidation genes increased the sensitivity of biofilms to tobramycin. Together, these results reveal that ndvB affects the expression of multiple genes in biofilms and that ethanol oxidation genes are linked to biofilm-specific antibiotic resistance.
Collapse
|
502
|
Kwasny SM, Opperman TJ. Static biofilm cultures of Gram-positive pathogens grown in a microtiter format used for anti-biofilm drug discovery. ACTA ACUST UNITED AC 2012; Chapter 13:Unit 13A.8. [PMID: 22294365 DOI: 10.1002/0471141755.ph13a08s50] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
An in vitro assay is presented for culturing staphylococcal biofilms and biofilms of nonmotile Gram-positive bacteria under static conditions in microtiter assay plates, and for the quantification of biofilm growth, using a simple staining procedure that measures amounts of bacterial cells and extracellular matrix. This basic assay can be adapted readily to study several aspects of biofilm formation, for high-throughput screening to identify small molecule inhibitors of biofilm formation or biofilm-defective mutants, and for quantifying the anti-biofilm activity of biofilm inhibitors.
Collapse
Affiliation(s)
- Steven M Kwasny
- Microbiotix, Anti-Infectives R&D, Worcester, Massachusetts, USA
| | | |
Collapse
|
503
|
Crusz SA, Popat R, Rybtke MT, Cámara M, Givskov M, Tolker-Nielsen T, Diggle SP, Williams P. Bursting the bubble on bacterial biofilms: a flow cell methodology. BIOFOULING 2012; 28:835-42. [PMID: 22877233 PMCID: PMC3438488 DOI: 10.1080/08927014.2012.716044] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 07/24/2012] [Indexed: 05/21/2023]
Abstract
The flow cell biofilm system is an important and widely used tool for the in vitro cultivation and evaluation of bacterial biofilms under hydrodynamic conditions of flow. This paper provides an introduction to the background and use of such systems, accompanied by a detailed guide to the assembly of the apparatus including the description of new modifications which enhance its performance. As such, this is an essential guide for the novice biofilm researcher as well as providing valuable trouble-shooting techniques for even the most experienced laboratories. The adoption of a common and reliable methodology amongst researchers would enable findings to be shared and replicated amongst the biofilm research community, with the overall aim of advancing understanding and management of these complex and widespread bacterial communities.
Collapse
Affiliation(s)
- Shanika A Crusz
- School of Molecular Medical Sciences, Centre for Biomolecular Sciences, University of Nottingham, Nottingham NG7 2RD, UK.
| | | | | | | | | | | | | | | |
Collapse
|
504
|
O'May C, Ciobanu A, Lam H, Tufenkji N. Tannin derived materials can block swarming motility and enhance biofilm formation in Pseudomonas aeruginosa. BIOFOULING 2012; 28:1063-1076. [PMID: 23020753 DOI: 10.1080/08927014.2012.725130] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Surface-associated swarming motility is implicated in enhanced bacterial spreading and virulence, hence it follows that anti-swarming effectors could have clinical benefits. When investigating potential applications of anti-swarming materials it is important to consider whether the lack of swarming corresponds with an enhanced sessile biofilm lifestyle and resistance to antibiotics. In this study, well-defined tannins present in multiple plant materials (tannic acid (TA) and epigallocathecin gallate (EGCG)) and undefined cranberry powder (CP) were found to block swarming motility and enhance biofilm formation and resistance to tobramycin in Pseudomonas aeruginosa. In contrast, gallic acid (GA) did not completely block swarming motility and did not affect biofilm formation or tobramycin resistance. These data support the theory that nutritional conditions can elicit an inverse relationship between swarming motility and biofilm formation capacities. Although anti-swarmers exhibit the potential to yield clinical benefits, it is important to be aware of possible implications regarding biofilm formation and antibiotic resistance.
Collapse
Affiliation(s)
- Che O'May
- Department of Chemical Engineering, McGill University, Montreal, Canada
| | | | | | | |
Collapse
|
505
|
Taylor JD, Zhou Y, Salgado PS, Patwardhan A, McGuffie M, Pape T, Grabe G, Ashman E, Constable SC, Simpson PJ, Lee WC, Cota E, Chapman MR, Matthews SJ. Atomic resolution insights into curli fiber biogenesis. Structure 2011; 19:1307-16. [PMID: 21893289 PMCID: PMC3173608 DOI: 10.1016/j.str.2011.05.015] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Revised: 05/26/2011] [Accepted: 05/28/2011] [Indexed: 11/24/2022]
Abstract
Bacteria produce functional amyloid fibers called curli in a controlled, noncytotoxic manner. These extracellular fimbriae enable biofilm formation and promote pathogenicity. Understanding curli biogenesis is important for appreciating microbial lifestyles and will offer clues as to how disease-associated human amyloid formation might be ameliorated. Proteins encoded by the curli specific genes (csgA-G) are required for curli production. We have determined the structure of CsgC and derived the first structural model of the outer-membrane subunit translocator CsgG. Unexpectedly, CsgC is related to the N-terminal domain of DsbD, both in structure and oxido-reductase capability. Furthermore, we show that CsgG belongs to the nascent class of helical outer-membrane macromolecular exporters. A cysteine in a CsgG transmembrane helix is a potential target of CsgC, and mutation of this residue influences curli assembly. Our study provides the first high-resolution structural insights into curli biogenesis.
Collapse
Affiliation(s)
- Jonathan D Taylor
- Division of Molecular Biosciences, Faculty of Natural Sciences, Imperial College London, London, SW7 2AZ, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
506
|
Stockwell SB, Kuzmiak-Ngiam H, Beach NM, Miyamoto D, Fernandez R, Temple L. The autotransporter protein from Bordetella avium, Baa1, is involved in host cell attachment. Microbiol Res 2011; 167:55-60. [PMID: 21632225 PMCID: PMC3182290 DOI: 10.1016/j.micres.2011.04.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Revised: 04/21/2011] [Accepted: 04/27/2011] [Indexed: 11/23/2022]
Abstract
Bordetella avium is a Gram negative upper respiratory tract pathogen of birds. B. avium infection of commercially raised turkeys is an agriculturally significant problem. Here we describe the functional analysis of the first characterized B. avium autotransporter protein, Baa1. Autotransporters comprise a large family of proteins found in all groups of Gram negative bacteria. Although not unique to pathogenic bacteria, autotransporters have been shown to perform a variety of functions implicated in virulence. To test the hypothesis that Baa1 is a B. avium virulence factor, unmarked baa1 deletion mutants (Δbaa1) were created and tested phenotypically. It was found that baa1 mutants have wild-type levels of serum sensitivity and infectivity, yet significantly lower levels of turkey tracheal cell attachment in vitro. Likewise, semi-purified recombinant His-tagged Baa1, expressed in Escherichia coli, was shown to bind specifically to turkey tracheal cells via western blot analysis. Taken together, we conclude that Baa1 acts as a host cell attachment factor and thus plays a role B. avium virulence.
Collapse
Affiliation(s)
- S B Stockwell
- Department of Integrated Science and Technology, James Madison University, Harrisonburg, VA 22807, United States.
| | | | | | | | | | | |
Collapse
|
507
|
Chavez-Dozal A, Nishiguchi MK. Variation in biofilm formation among symbiotic and free-living strains of Vibrio fischeri. J Basic Microbiol 2011; 51:452-8. [PMID: 21656812 PMCID: PMC3815655 DOI: 10.1002/jobm.201000426] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Accepted: 02/01/2011] [Indexed: 12/24/2022]
Abstract
Persistence and survival under various environmental stresses has been attributed to the capacity of most bacteria to form biofilms. In aquatic environments, the symbiotic bacterium Vibrio fischeri survives variable abiotic conditions during its free-living stage that dictates its ability to colonize the squid host. In the present study, the influence of different abiotic factors such as salt concentration, temperature, static/dynamic conditions, and carbon source availability were tested to determine whether biofilm formation occurred in 26 symbiotic and free-living V. fischeri strains. Statistical analysis indicate that most strains examined were strong biofilm producers under salinity concentrations that ranged between 1-5%, mesophilic temperatures (25-30 °C) and static conditions. Moreover, free-living strains are generally better biofilm formers than the symbiotically competent ones. Geographical location (strain origin) also correlated with biofilm formation. These findings provide evidence that abiotic growth conditions are important for determining whether mutualistic V. fischeri have the capacity to produce complex biofilms, allowing for increased competency and specificity during symbiosis.
Collapse
Affiliation(s)
- Alba Chavez-Dozal
- Department of Biology, New Mexico State University, Las Cruces, New Mexico 88003-8001, USA
| | | |
Collapse
|
508
|
Wilksch JJ, Yang J, Clements A, Gabbe JL, Short KR, Cao H, Cavaliere R, James CE, Whitchurch CB, Schembri MA, Chuah MLC, Liang ZX, Wijburg OL, Jenney AW, Lithgow T, Strugnell RA. MrkH, a novel c-di-GMP-dependent transcriptional activator, controls Klebsiella pneumoniae biofilm formation by regulating type 3 fimbriae expression. PLoS Pathog 2011; 7:e1002204. [PMID: 21901098 PMCID: PMC3161979 DOI: 10.1371/journal.ppat.1002204] [Citation(s) in RCA: 161] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Accepted: 06/24/2011] [Indexed: 12/17/2022] Open
Abstract
Klebsiella pneumoniae causes significant morbidity and mortality worldwide, particularly amongst hospitalized individuals. The principle mechanism for pathogenesis in hospital environments involves the formation of biofilms, primarily on implanted medical devices. In this study, we constructed a transposon mutant library in a clinical isolate, K. pneumoniae AJ218, to identify the genes and pathways implicated in biofilm formation. Three mutants severely defective in biofilm formation contained insertions within the mrkABCDF genes encoding the main structural subunit and assembly machinery for type 3 fimbriae. Two other mutants carried insertions within the yfiN and mrkJ genes, which encode GGDEF domain- and EAL domain-containing c-di-GMP turnover enzymes, respectively. The remaining two isolates contained insertions that inactivated the mrkH and mrkI genes, which encode for novel proteins with a c-di-GMP-binding PilZ domain and a LuxR-type transcriptional regulator, respectively. Biochemical and functional assays indicated that the effects of these factors on biofilm formation accompany concomitant changes in type 3 fimbriae expression. We mapped the transcriptional start site of mrkA, demonstrated that MrkH directly activates transcription of the mrkA promoter and showed that MrkH binds strongly to the mrkA regulatory region only in the presence of c-di-GMP. Furthermore, a point mutation in the putative c-di-GMP-binding domain of MrkH completely abolished its function as a transcriptional activator. In vivo analysis of the yfiN and mrkJ genes strongly indicated their c-di-GMP-specific function as diguanylate cyclase and phosphodiesterase, respectively. In addition, in vitro assays showed that purified MrkJ protein has strong c-di-GMP phosphodiesterase activity. These results demonstrate for the first time that c-di-GMP can function as an effector to stimulate the activity of a transcriptional activator, and explain how type 3 fimbriae expression is coordinated with other gene expression programs in K. pneumoniae to promote biofilm formation to implanted medical devices. Biofilms are surface-associated communities of microorganisms. Biofilm-associated bacteria are protected from host defenses and antibiotics and are the cause of many infections. Klebsiella pneumoniae is primarily a hospital-acquired bacterial pathogen that causes pneumonia, urinary tract infections and septicemia. Its success is related to its ability to form biofilms on medical devices, such as catheters. In K. pneumoniae, biofilm formation is mediated by type 3 fimbriae – hair-like, protein appendages extending out from the cell surface that adhere to surfaces. This study investigated how K. pneumoniae regulates the expression of these fimbriae. We identified a protein, MrkH, which behaves as a “biofilm switch” that turns on the expression of genes responsible for producing type 3 fimbriae. MrkH works by binding to regulatory regions of DNA nearby to these genes and initiates their expression. Importantly, MrkH binds to DNA strongly only when the protein is stimulated by a small molecule, c-di-GMP. Furthermore, we identified bacterial enzymes that either produce or break down c-di-GMP to control its concentration within the cell, and thus modulate MrkH activity. Understanding the molecular basis for these processes may lead to the development of therapeutic compounds, possibly for incorporation into medical device materials to inhibit biofilm formation and pathogenesis.
Collapse
Affiliation(s)
- Jonathan J Wilksch
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, Victoria, Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
509
|
Dwyer BE, Newton KL, Kisiela D, Sokurenko EV, Clegg S. Single nucleotide polypmorphisms of fimH associated with adherence and biofilm formation by serovars of Salmonella enterica. MICROBIOLOGY-SGM 2011; 157:3162-3171. [PMID: 21852351 DOI: 10.1099/mic.0.051425-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Type 1 fimbriae produced by serovars of Salmonella are characterized by their ability to agglutinate guinea pig erythrocytes in the absence of d-mannose but not in its presence. The FimH protein is the adhesin that mediates this reaction; it is distinct from the major fimbrial protei.n (FimA) that composes the fimbrial shaft. Avian-adapted serovars of Salmonella produce non-haemagglutinating fimbriae that have been reported to mediate adherence to avian cells. A single amino acid substitution is present in the FimH adhesin of these strains compared to that of a Typhimurium isolate. Also, previous studies have shown that single nucleotide polymorphisms in two strains of the Typhimurium fimH alter the binding specificity. We therefore investigated the allelic variation of fimH from a range of serotypes (both host-adapted and non-host-adapted) and isolates of Salmonella. Most FimH adhesins mediated the mannose-sensitive haemagglutination of guinea pig erythrocytes, but many did not facilitate adherence to HEp-2 cells. A small number of isolates also produced fimbriae but did not mediate adherence to either cell type. Transformants possessing cloned fimH genes exhibited a number of different substitutions within the predicted amino acid sequence of the FimH polypeptide. No identical FimH amino sequence was found between strains that adhere to erythrocytes and/or HEp-2 cells and those produced by non-adherent strains. FimH-mediated adherence to HEp-2 cells was invariably associated with the ability to form biofilms on mannosylated bovine serum albumin.
Collapse
Affiliation(s)
- Brett E Dwyer
- Department of Microbiology, University of Iowa College of Medicine, Iowa City, IA 52240, USA
| | - Karly L Newton
- Department of Microbiology, University of Iowa College of Medicine, Iowa City, IA 52240, USA
| | - Dagmara Kisiela
- Department of Microbiology, University of Washington, Seattle, WA 98105, USA
| | - Evgeni V Sokurenko
- Department of Microbiology, University of Washington, Seattle, WA 98105, USA
| | - Steven Clegg
- Department of Microbiology, University of Iowa College of Medicine, Iowa City, IA 52240, USA
| |
Collapse
|
510
|
Son MS, Taylor RK. Genetic Screens and Biochemical Assays to Characterize Vibrio cholerae O1 Biotypes: Classical and El Tor. ACTA ACUST UNITED AC 2011; 22A:6A.2.1-6A.2.17. [PMID: 25419260 DOI: 10.1002/9780471729259.mc06a02s22] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Vibrio cholerae serogroup O1 has two biotypes, classical and El Tor, the latter of which has displaced the prior and has been the causative agent for the ongoing seventh pandemic. However, reports since 2001 have identified clinical isolates of El Tor that have classical O1 biotype genetic and phenotypic characteristics. These El Tor variants have been emerging in clinical settings with increased frequency, including the 2010 cholera outbreak in Haiti. The emergence of El Tor variants warrants the proper and timely identification of clinical (or environmental) isolates' biotype. This unit describes some quick and simple genetic screens and phenotypic assays (biochemical characterization), to be performed simultaneously, commonly used to distinguish biotype and initiate characterization of any clinical (or environmental) isolates of Vibrio cholerae O1.
Collapse
Affiliation(s)
- Mike S Son
- Dartmouth Medical School, Hanover, New Hampshire
| | | |
Collapse
|
511
|
Antunes LCS, Imperi F, Carattoli A, Visca P. Deciphering the multifactorial nature of Acinetobacter baumannii pathogenicity. PLoS One 2011; 6:e22674. [PMID: 21829642 PMCID: PMC3148234 DOI: 10.1371/journal.pone.0022674] [Citation(s) in RCA: 184] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Accepted: 06/29/2011] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Acinetobacter baumannii is an emerging bacterial pathogen that causes a broad array of infections, particularly in hospitalized patients. Many studies have focused on the epidemiology and antibiotic resistance of A. baumannii, but little is currently known with respect to its virulence potential. METHODOLOGY/PRINCIPAL FINDINGS The aim of this work was to analyze a number of virulence-related traits of four A. baumannii strains of different origin and clinical impact for which complete genome sequences were available, in order to tentatively identify novel determinants of A. baumannii pathogenicity. Clinical strains showed comparable virulence in the Galleria mellonella model of infection, irrespective of their status as outbreak or sporadic strains, whereas a non-human isolate was avirulent. A combined approach of genomic and phenotypic analyses led to the identification of several virulence factors, including exoproducts with hemolytic, phospholipase, protease and iron-chelating activities, as well as a number of multifactorial phenotypes, such as biofilm formation, surface motility and stress resistance, which were differentially expressed and could play a role in A. baumannii pathogenicity. CONCLUSION/SIGNIFICANCE This work provides evidence of the multifactorial nature of A. baumannii virulence. While A. baumannii clinical isolates could represent a selected population of strains adapted to infect the human host, subpopulations of highly genotypically and phenotypically diverse A. baumannii strains may exist outside the hospital environment, whose relevance and distribution deserve further investigation.
Collapse
Affiliation(s)
| | | | - Alessandra Carattoli
- Department of Infectious, Parasitic and Immune-Mediated Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Paolo Visca
- Department of Biology, University Roma Tre, Rome, Italy
| |
Collapse
|
512
|
Development of a low-cost sterilization biological indicator using Bacillus atrophaeus by solid-state fermentation. Appl Microbiol Biotechnol 2011; 93:151-8. [PMID: 21785930 DOI: 10.1007/s00253-011-3491-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 07/03/2011] [Accepted: 07/15/2011] [Indexed: 10/18/2022]
Abstract
The production of biological indicators involving bacterial sporulation and multi-step downstream processes has been described. The goal of the present work was to use fermented material as the final product in a biological indicator, thereby reducing processing steps and costs. The performance of three different inexpensive supports (vermiculite, sand, and sugarcane bagasse) was assessed by determining Bacillus atrophaeus sporulation during solid-state fermentation and by assessing the direct use of the fermentation products in the subsequent steps of the process. All three supports allowed spore production of between 10(7) and 10(9) CFU g(-1). Sand proved to be the best inert support enabling the direct use of the fermented product due to its easy homogenization, filling properties, and compatibility with recovery medium. Bacterial adhesion to the sand surface was supported by biofilm formation. The resistance to sterilization of the dried fermentation product was evaluated. For dry-heat resistance (160°C), the D value was 6.6 min, and for ethylene oxide resistance (650 mg/L), the D value was 6.5 min. The cost reduction of this process was at least 48%. No previous studies have been published on the application of sand as a support in solid-state fermentation for the production of biological indicators.
Collapse
|
513
|
Pseudomonas aeruginosa tssC1 links type VI secretion and biofilm-specific antibiotic resistance. J Bacteriol 2011; 193:5510-3. [PMID: 21784934 DOI: 10.1128/jb.00268-11] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Biofilm-specific antibiotic resistance is influenced by multiple factors. We demonstrated that Pseudomonas aeruginosa tssC1, a gene implicated in type VI secretion (T6S), is important for resistance of biofilms to a subset of antibiotics. We showed that tssC1 expression is induced in biofilms and confirmed that tssC1 is required for T6S.
Collapse
|
514
|
Development of a method for markerless gene deletion in Pseudomonas putida. Appl Environ Microbiol 2011; 77:5549-52. [PMID: 21666018 DOI: 10.1128/aem.05055-11] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We developed a negative counterselection system for Pseudomonas putida based on uracil phosphoribosyltransferase (UPRTase) and sensitivity against the antimetabolite 5-fluorouracil (5-FU). We constructed a P. putida strain that is resistant to 5-FU and constructed vectors for the deletion of the surface adhesion protein gene, the flagellum biosynthesis operon, and two endonuclease genes. The genes were efficiently disrupted and left a markerless chromosomal in-frame deletion.
Collapse
|
515
|
Zanaroli G, Negroni A, Calisti C, Ruzzi M, Fava F. Selection of commercial hydrolytic enzymes with potential antifouling activity in marine environments. Enzyme Microb Technol 2011; 49:574-9. [PMID: 22142734 DOI: 10.1016/j.enzmictec.2011.05.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 04/26/2011] [Accepted: 05/05/2011] [Indexed: 11/24/2022]
Abstract
In this work, the marine antifouling potential of some commercially available hydrolytic enzymes acting on the main constituents of extracellular polymeric substances (EPS) involved in bacterial biofilm formation was determined. The selected protease (i.e., alpha-chymotrypsin from bovine pancreas), carbohydrase (i.e., alpha-amylase from porcine pancreas) and lipase (from porcine pancreas) exhibited remarkable hydrolytic activities towards target macromolecules typically composing EPS under a wide range of pHs (6.5-9.0 for alpha-chymotrysin and alpha-amylase; 7.0-8.5 for the lipase) and temperatures (from 10 °C to 30 °C), as well as relevant half-lives (from about 2 weeks to about 2 months), in a marine synthetic water. The activity displayed by each enzyme was poorly affected by the co-presence of the other enzymes, thus indicating their suitability to be employed in combination. None of the enzymes was able to inhibit the formation of biofilm by an actual site marine microbial community when applied singly. However, a mixture of the same enzymes reduced biofilm formation by about 90% without affecting planktonic growth of the same microbial community. This indicates that multiple hydrolytic activities are required to efficiently prevent biofilm formation by complex microbial communities, and that the mixture of enzymes selected in this study has the potential to be employed as an environmental friendly antifouling agent in marine antifouling coatings.
Collapse
Affiliation(s)
- Giulio Zanaroli
- Department of Civil, Environmental and Materials Engineering, University of Bologna, via Terracini 28, 40131 Bologna, Italy.
| | | | | | | | | |
Collapse
|
516
|
Colvin KM, Gordon VD, Murakami K, Borlee BR, Wozniak DJ, Wong GCL, Parsek MR. The pel polysaccharide can serve a structural and protective role in the biofilm matrix of Pseudomonas aeruginosa. PLoS Pathog 2011; 7:e1001264. [PMID: 21298031 PMCID: PMC3029257 DOI: 10.1371/journal.ppat.1001264] [Citation(s) in RCA: 354] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Accepted: 12/28/2010] [Indexed: 11/18/2022] Open
Abstract
Bacterial extracellular polysaccharides are a key constituent of the extracellular matrix material of biofilms. Pseudomonas aeruginosa is a model organism for biofilm studies and produces three extracellular polysaccharides that have been implicated in biofilm development, alginate, Psl and Pel. Significant work has been conducted on the roles of alginate and Psl in biofilm development, however we know little regarding Pel. In this study, we demonstrate that Pel can serve two functions in biofilms. Using a novel assay involving optical tweezers, we demonstrate that Pel is crucial for maintaining cell-to-cell interactions in a PA14 biofilm, serving as a primary structural scaffold for the community. Deletion of pelB resulted in a severe biofilm deficiency. Interestingly, this effect is strain-specific. Loss of Pel production in the laboratory strain PAO1 resulted in no difference in attachment or biofilm development; instead Psl proved to be the primary structural polysaccharide for biofilm maturity. Furthermore, we demonstrate that Pel plays a second role by enhancing resistance to aminoglycoside antibiotics. This protection occurs only in biofilm populations. We show that expression of the pel gene cluster and PelF protein levels are enhanced during biofilm growth compared to liquid cultures. Thus, we propose that Pel is capable of playing both a structural and a protective role in P. aeruginosa biofilms. Most bacteria live within biofilm communities, which are a complex population of microorganisms that attach to surfaces and produce copious amounts of extracellular matrix material. Exopolysaccharides are a key feature of the extracellular matrix and are found in many forms, ranging from structurally simple linear homopolymers to structurally complex branched heteropolymers. Exopolysaccharides carry out a wide range of functions involving adherence to surfaces and other cells, structural support and protection against host and environmental stress. The goal of our study was to examine the functional importance of polysaccharide production in the model biofilm organism, Pseudomonas aeruginosa. Using a deletion and over expression strategy, we characterized the function of one polysaccharide, Pel, and demonstrated that this polysaccharide has two roles, a structural role and a protective role, against an important class of antibiotics, aminioglycosides.
Collapse
Affiliation(s)
- Kelly M. Colvin
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - Vernita D. Gordon
- Department of Physics, University of Texas, Austin, Austin, Texas, United States of America
| | - Keiji Murakami
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - Bradley R. Borlee
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - Daniel J. Wozniak
- Department of Microbiology, Ohio State University, Columbus, Ohio, United States of America
| | - Gerard C. L. Wong
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Matthew R. Parsek
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
517
|
Dashiff A, Junka RA, Libera M, Kadouri DE. Predation of human pathogens by the predatory bacteria Micavibrio aeruginosavorus and Bdellovibrio bacteriovorus. J Appl Microbiol 2010; 110:431-44. [PMID: 21114596 DOI: 10.1111/j.1365-2672.2010.04900.x] [Citation(s) in RCA: 156] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
AIMS The focus of this study was to evaluate the potential use of the predatory bacteria Bdellovibrio bacteriovorus and Micavibrio aeruginosavorus to control the pathogens associated with human infection. METHODS AND RESULTS By coculturing B. bacteriovorus 109J and M. aeruginosavorus ARL-13 with selected pathogens, we have demonstrated that predatory bacteria are able to attack bacteria from the genus Acinetobacter, Aeromonas, Bordetella, Burkholderia, Citrobacter, Enterobacter, Escherichia, Klebsiella, Listonella, Morganella, Proteus, Pseudomonas, Salmonella, Serratia, Shigella, Vibrio and Yersinia. Predation was measured in single and multispecies microbial cultures as well as on monolayer and multilayer preformed biofilms. Additional experiments aimed at assessing the optimal predation characteristics of M. aeruginosavorus demonstrated that the predator is able to prey at temperatures of 25-37°C but is unable to prey under oxygen-limiting conditions. In addition, an increase in M. aeruginosavorus ARL-13 prey range was also observed. CONCLUSIONS Bdellovibrio bacteriovorus and M. aeruginosavorus have an ability to prey and reduce many of the multidrug-resistant pathogens associated with human infection. SIGNIFICANCE AND IMPACT OF THE STUDY Infectious complications caused by micro-organisms that have become resistant to drug therapy are an increasing problem in medicine, with more infections becoming difficult to treat using traditional antimicrobial agents. The work presented here highlights the potential use of predatory bacteria as a biological-based agent for eradicating multidrug-resistant bacteria, with the hope of paving the way for future studies in animal models.
Collapse
Affiliation(s)
- A Dashiff
- Department of Oral Biology, University of Medicine and Dentistry of New Jersey, Newark, NJ 07101, USA
| | | | | | | |
Collapse
|
518
|
Abstract
Periodontal diseases are multifactorial infections elicited by a complex of primarily gram-negative bacteria that interact with host tissues and lead to the destruction of the periodontal structures. Bdellovibrio bacteriovorus is a gram-negative bacterium that preys upon other gram-negative bacteria. It was previously shown that B. bacteriovorus has an ability to attack and remove surface-attached bacteria or biofilms. In this study, we examined the host specificity of B. bacteriovorus strain 109J and its ability to prey on oral pathogens associated with periodontitis, including; Aggregatibacter actinomycetemcomitans, Eikenella corrodens, Fusobacterium nucleatum, Prevotella intermedia, Porphyromonas gingivalis and Tannerella forsythia. We further demonstrated that B. bacteriovorus 109J has an ability to remove biofilms of Ei. corrodens as well as biofilms composed of A. actinomycetemcomitans. Bdellovibrio bacteriovorus was able to remove A. actinomycetemcomitans biofilms developed on hydroxyapatite surfaces and in the presence of saliva, as well as to detach metabolically inactive biofilms. Experiments aimed at enhancing the biofilm removal aptitude of B. bacteriovorus with the aid of extracellular-polymeric-substance-degrading enzymes demonstrated that proteinase-K inhibits predation. However, treating A. actinomycetemcomitans biofilms with DspB, a poly-N-acetylglucosamine (PGA) -hydrolysing enzyme, increased biofilm removal. Increased biofilm removal was also recorded when A. actinomycetemcomitans PGA-defective mutants were used as host cells, suggesting that PGA degradation could enhance the removal of A. actinomycetemcomitans biofilm by B. bacteriovorus.
Collapse
Affiliation(s)
- A Dashiff
- Department of Oral Biology, University of Medicine and Dentistry of New Jersey, Newark, NJ, USA
| | | |
Collapse
|
519
|
Beaudoin T, Aaron SD, Giesbrecht-Lewis T, Vandemheen K, Mah TF. Characterization of clonal strains of Pseudomonas aeruginosa isolated from cystic fibrosis patients in Ontario, Canada. Can J Microbiol 2010; 56:548-57. [PMID: 20651854 DOI: 10.1139/w10-043] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that can form biofilms in the lungs and airways of cystic fibrosis (CF) patients, resulting in chronic endobronchial infection. Two clonal strains of P. aeruginosa, named type A and type B, have recently been identified and have been found to infect more than 20% of CF patients in Ontario, Canada. In this study, 4 type A and 4 type B isolates retrieved from 8 CF patients in Ontario, Canada, were characterized. All 8 isolates grew well in rich medium and formed biofilms in vitro. Antibiotic resistance profiles of bacteria grown in biofilms and planktonic culture were studied via minimal bactericidal concentration assays for tobramycin, gentamicin, and ciprofloxacin. Compared to laboratory strains of P. aeruginosa, all 8 isolates showed increased resistance to all antibiotics studied in both biofilm and planktonic assays. Gene expression analysis of mexX, representing the MexXY-OprM efflux pump, and mexA, representing MexAB-OprM, revealed that these genes were up-regulated in the 8 clinical isolates. These results suggest clonal type A and type B isolates of P. aeruginosa isolated from CF patients in Ontario, Canada, show a multidrug resistance pattern that can be partially explained as being due to the increased expression of common antibiotic efflux systems.
Collapse
Affiliation(s)
- Trevor Beaudoin
- University of Ottawa, Department of Biochemistry, Microbiology and Immunology, ON, Canada
| | | | | | | | | |
Collapse
|
520
|
Moreau-Marquis S, Redelman CV, Stanton BA, Anderson GG. Co-culture models of Pseudomonas aeruginosa biofilms grown on live human airway cells. J Vis Exp 2010:2186. [PMID: 20972407 DOI: 10.3791/2186] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Bacterial biofilms have been associated with a number of different human diseases, but biofilm development has generally been studied on non-living surfaces. In this paper, we describe protocols for forming Pseudomonas aeruginosa biofilms on human airway epithelial cells (CFBE cells) grown in culture. In the first method (termed the Static Co-culture Biofilm Model), P. aeruginosa is incubated with CFBE cells grown as confluent monolayers on standard tissue culture plates. Although the bacterium is quite toxic to epithelial cells, the addition of arginine delays the destruction of the monolayer long enough for biofilms to form on the CFBE cells. The second method (termed the Flow Cell Co-culture Biofilm Model), involves adaptation of a biofilm flow cell apparatus, which is often used in biofilm research, to accommodate a glass coverslip supporting a confluent monolayer of CFBE cells. This monolayer is inoculated with P. aeruginosa and a peristaltic pump then flows fresh medium across the cells. In both systems, bacterial biofilms form within 6-8 hours after inoculation. Visualization of the biofilm is enhanced by the use of P. aeruginosa strains constitutively expressing green fluorescent protein (GFP). The Static and Flow Cell Co-culture Biofilm assays are model systems for early P. aeruginosa infection of the Cystic Fibrosis (CF) lung, and these techniques allow different aspects of P. aeruginosa biofilm formation and virulence to be studied, including biofilm cytotoxicity, measurement of biofilm CFU, and staining and visualizing the biofilm.
Collapse
|
521
|
Nagano K, Hasegawa Y, Murakami Y, Nishiyama S, Yoshimura F. FimB regulates FimA fimbriation in Porphyromonas gingivalis. J Dent Res 2010; 89:903-8. [PMID: 20530728 DOI: 10.1177/0022034510370089] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The periodontitis-associated pathogen Porphyromonas gingivalis colonizes and forms a biofilm in gingival crevices through fimbriae. It is known that the often-used strains ATCC 33277 and 381 produce long FimA fimbriae. We found a possible nonsense mutation within fimB, immediately downstream from fimA, coding a major subunit of FimA fimbriae of the strains. Indeed, P. gingivalis strains, except for ATCC 33277 and 381, universally expressed FimB, the gene product of fimB. Electron micrographs revealed that a FimB-restored strain had short and dense, "toothbrush"-like, FimA fimbriae. FimA overexpression elongated the fimbriae, whereas FimB overexpression shortened them. FimB restoration increased production of FimA and its accessory proteins. Thus, FimB regulates the length and expression of FimA fimbriae. Additionally, FimB restoration significantly reduced the release of FimA fimbriae from the cell surface, suggesting that FimB functions as an anchor of the fimbriae. The restoration enhanced adherent activity as well.
Collapse
Affiliation(s)
- K Nagano
- Department of Microbiology, School of Dentistry, Aichi-Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, Aichi 464-8650, Japan.
| | | | | | | | | |
Collapse
|
522
|
Role of MrkJ, a phosphodiesterase, in type 3 fimbrial expression and biofilm formation in Klebsiella pneumoniae. J Bacteriol 2010; 192:3944-50. [PMID: 20511505 DOI: 10.1128/jb.00304-10] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Klebsiella pneumoniae is an opportunistic pathogen that has been shown to adhere to human extracellular matrices using the type 3 fimbriae. Introduction of plasmids carrying genes known to alter intracellular cyclic-di-GMP pools in Vibrio parahaemolyticus revealed that these genes also altered type 3 fimbrial surface expression in K. pneumoniae. Immediately adjacent to the type 3 fimbrial gene cluster is a gene, mrkJ, that is related to a family of bacterial genes encoding phosphodiesterases. We identify here a role for MrkJ, a functional phosphodiesterase exhibiting homology to EAL domain-containing proteins, in controlling type 3 fimbria production and biofilm formation in K. pneumoniae. Deletion of mrkJ resulted in an increase in type 3 fimbria production and biofilm formation as a result of the accumulation of intracellular cyclic-di-GMP. This gene was shown to encode a functional phosphodiesterase via restoration of motility in a V. parahaemolyticus strain previously shown to accumulate cyclic-di-GMP and in vitro using phosphodiesterase activity assays. The effect of the mrkJ mutation on type 3 fimbrial expression was shown to be at the level of mrkA gene transcription by using quantitative reverse transcription-PCR. These results reveal a previously unknown role for cyclic-di-GMP in type 3 fimbrial production.
Collapse
|
523
|
Persistence of uropathogenic Escherichia coli in the face of multiple antibiotics. Antimicrob Agents Chemother 2010; 54:1855-63. [PMID: 20231390 DOI: 10.1128/aac.00014-10] [Citation(s) in RCA: 255] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Numerous antibiotics have proven to be effective at ameliorating the clinical symptoms of urinary tract infections (UTIs), but recurrent and chronic infections continue to plague many individuals. Most UTIs are caused by strains of uropathogenic Escherichia coli (UPEC), which can form both extra- and intracellular biofilm-like communities within the bladder. UPEC also persist inside host urothelial cells in a more quiescent state, sequestered within late endosomal compartments. Here, we tested a panel of 17 different antibiotics, representing seven distinct functional classes, for their effects on the survival of the reference UPEC isolate UTI89 within both biofilms and host bladder urothelial cells. All but one of the tested antibiotics prevented UTI89 growth in broth culture, and most were at least modestly effective against bacteria present within in vitro-grown biofilms. In contrast, only a few of the antibiotics, including nitrofurantoin and the fluoroquinolones ciprofloxacin and sparfloxacin, were able to eliminate intracellular bacteria in bladder cell culture-based assays. However, in a mouse UTI model system in which these antibiotics reached concentrations in the urine specimens that far exceeded minimal inhibitory doses, UPEC reservoirs in bladder tissues were not effectively eradicated. We conclude that the persistence of UPEC within the bladder, regardless of antibiotic treatments, is likely facilitated by a combination of biofilm formation, entry of UPEC into a quiescent or semiquiescent state within host cells, and the stalwart permeability barrier function associated with the bladder urothelium.
Collapse
|
524
|
Malone JG, Jaeger T, Spangler C, Ritz D, Spang A, Arrieumerlou C, Kaever V, Landmann R, Jenal U. YfiBNR mediates cyclic di-GMP dependent small colony variant formation and persistence in Pseudomonas aeruginosa. PLoS Pathog 2010; 6:e1000804. [PMID: 20300602 PMCID: PMC2837407 DOI: 10.1371/journal.ppat.1000804] [Citation(s) in RCA: 164] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Accepted: 02/03/2010] [Indexed: 11/29/2022] Open
Abstract
During long-term cystic fibrosis lung infections, Pseudomonas aeruginosa undergoes genetic adaptation resulting in progressively increased persistence and the generation of adaptive colony morphotypes. This includes small colony variants (SCVs), auto-aggregative, hyper-adherent cells whose appearance correlates with poor lung function and persistence of infection. The SCV morphotype is strongly linked to elevated levels of cyclic-di-GMP, a ubiquitous bacterial second messenger that regulates the transition between motile and sessile, cooperative lifestyles. A genetic screen in PA01 for SCV-related loci identified the yfiBNR operon, encoding a tripartite signaling module that regulates c-di-GMP levels in P. aeruginosa. Subsequent analysis determined that YfiN is a membrane-integral diguanylate cyclase whose activity is tightly controlled by YfiR, a small periplasmic protein, and the OmpA/Pal-like outer-membrane lipoprotein YfiB. Exopolysaccharide synthesis was identified as the principal downstream target for YfiBNR, with increased production of Pel and Psl exopolysaccharides responsible for many characteristic SCV behaviors. An yfi-dependent SCV was isolated from the sputum of a CF patient. Consequently, the effect of the SCV morphology on persistence of infection was analyzed in vitro and in vivo using the YfiN-mediated SCV as a representative strain. The SCV strain exhibited strong, exopolysaccharide-dependent resistance to nematode scavenging and macrophage phagocytosis. Furthermore, the SCV strain effectively persisted over many weeks in mouse infection models, despite exhibiting a marked fitness disadvantage in vitro. Exposure to sub-inhibitory concentrations of antibiotics significantly decreased both the number of suppressors arising, and the relative fitness disadvantage of the SCV mutant in vitro, suggesting that the SCV persistence phenotype may play a more important role during antimicrobial chemotherapy. This study establishes YfiBNR as an important player in P. aeruginosa persistence, and implicates a central role for c-di-GMP, and by extension the SCV phenotype in chronic infections. During long-term chronic infections of cystic fibrosis patients, Pseudomonas aeruginosa adapts to the lung environment, generating various different morphotypes including small colony variants (SCVs), small, strongly adherent colonies whose appearance correlates with persistence of infection. The SCV morphology is strongly associated with increased levels of the signaling molecule cyclic di-GMP. In this study we investigated the connection between cyclic di-GMP, SCV and persistence of infection. Following a genetic screen for mutants that displayed SCV morphologies, we identified and characterized the YfiBNR system. YfiN is a membrane-bound cyclic di-GMP producing enzyme, whose activity is tightly controlled by YfiR and YfiB. Cyclic di-GMP produced by YfiN boosts exopolysaccharide synthesis, generating an SCV morphotype upon YfiR-mediated release of YfiN repression. The resulting YfiN-mediated SCV morphotype is highly resistant to macrophage phagocytosis in vitro, suggesting a role for the SCV phenotype in immune system evasion. Consistent with this, YfiN de-repression increased the persistence of P. aeruginosa in long-term infections in a mouse model. The observation that the addition of antibiotics decreased the number of suppressors, and the relative fitness disadvantage of the YfiN-mediated SCV morphotype in liquid culture, suggested that SCV-mediated persistence might be favored during antimicrobial chemotherapy.
Collapse
Affiliation(s)
- Jacob G. Malone
- Biozentrum, University of Basel, Basel, Switzerland
- * E-mail: (JGM); (UJ)
| | - Tina Jaeger
- Biozentrum, University of Basel, Basel, Switzerland
| | | | - Daniel Ritz
- Actelion Pharmaceuticals Ltd., Allschwil, Switzerland
| | - Anne Spang
- Biozentrum, University of Basel, Basel, Switzerland
| | | | - Volkhard Kaever
- Institute of Pharmacology, Hannover Medical School, Hannover, Germany
| | - Regine Landmann
- Department of Biomedicine, University Hospital, Basel, Switzerland
| | - Urs Jenal
- Biozentrum, University of Basel, Basel, Switzerland
- * E-mail: (JGM); (UJ)
| |
Collapse
|
525
|
Labrie J, Pelletier-Jacques G, Deslandes V, Ramjeet M, Auger E, Nash JHE, Jacques M. Effects of growth conditions on biofilm formation by Actinobacillus pleuropneumoniae. Vet Res 2009; 41:3. [PMID: 19737507 PMCID: PMC2762130 DOI: 10.1051/vetres/2009051] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Accepted: 09/08/2009] [Indexed: 11/26/2022] Open
Abstract
Biofilm formation is an important virulence trait of many bacterial pathogens. It has been reported in the literature that only two of the reference strains of the swine pathogen Actinobacillus pleuropneumoniae, representing serotypes 5b and 11, were able to form biofilm in vitro. In this study, we compared biofilm formation by the serotype 1 reference strain S4074 of A. pleuropneumoniae grown in five different culture media. We observed that strain S4074 of A. pleuropneumoniae is able to form biofilms after growth in one of the culture conditions tested brain heart infusion (BHI medium, supplier B). Confocal laser scanning microscopy using a fluorescent probe specific to the poly-N-acetylglucosamine (PGA) polysaccharide further confirmed biofilm formation. In accordance, biofilm formation was susceptible to dispersin B, a PGA hydrolase. Transcriptional profiles of A. pleuropneumoniae S4074 following growth in BHI-B, which allowed a robust biofilm formation, and in BHI-A, in which only a slight biofilm formation was observed, were compared. Genes such as tadC, tadD, genes with homology to autotransporter adhesins as well as genes pgaABC involved in PGA biosynthesis and genes involved in zinc transport were up-regulated after growth in BHI-B. Interestingly, biofilm formation was inhibited by zinc, which was found to be more present in BHI-A (no or slight biofilm) than in BHI-B. We also observed biofilm formation in reference strains representing serotypes 3, 4, 5a, 12 and 14 as well as in 20 of the 37 fresh field isolates tested. Our data indicate that A. pleuropneumoniae has the ability to form biofilms under appropriate growth conditions and transition from a biofilm-positive to a biofilm-negative phenotype was reversible.
Collapse
Affiliation(s)
- Josée Labrie
- Groupe de recherche sur les maladies infectieuses du porc et Centre de recherche en infectiologie porcine, Faculté de médecine vétérinaire, Université de Montréal, 3200 Sicotte, St-Hyacinthe, Québec, Canada
| | | | | | | | | | | | | |
Collapse
|
526
|
Chanbusarakum LJ, Ullman DE. Distribution and ecology of Frankliniella occidentalis (Thysanoptera: Thripidae) bacterial symbionts. ENVIRONMENTAL ENTOMOLOGY 2009; 38:1069-1077. [PMID: 19689885 DOI: 10.1603/022.038.0414] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Bacterial populations in Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae) collected in diverse California environments consisted of two bacterial symbionts: BFo-1 and BFo-2 (B = bacteria, Fo = Frankliniella occidentalis, numbers reflect different types). Dual infections of BFo-1 and BFo-2 were found in 50% of the thrips, 18% had neither bacterium, and 24 and 8% were infected solely with BFo-1 and BFo-2, respectively. No other bacteria consistently infected F. occidentalis. Dual infections occurred more often in male thrips and in thrips of both sexes from southern mountain and valley sites. As average collection year or month minimum temperature decreased, infections of BFo-1, alone or in dual infections, increased significantly. As yearly precipitation increased, infection with BFo-1 alone also increased. F. occidentalis color morphology did not affect bacterial infection. BFo-1 created weak biofilms at 25 and 32 degrees C; BFo-2 made strong biofilms at 25 degrees C and no biofilms at 32 degrees C. When the bacteria were grown in culture together, weak biofilms formed at both temperatures studied, although there was no way to determine what each bacterium contributed to the biofilm. BFo-1 and BFo-2 grew at similar rates at 25 and 30 degrees C. Our data show BFo-1 and BFo-2 occur in natural populations of F. occidentalis and support the hypothesis BFo have a symbiotic relationship with F. occidentalis. Regional differences in bacterial prevalence suggest bacterial infection is associated with environmental conditions, and altitude, temperature, and precipitation may be important factors.
Collapse
|
527
|
Inhibitory effects of lactoferrin on growth and biofilm formation of Porphyromonas gingivalis and Prevotella intermedia. Antimicrob Agents Chemother 2009; 53:3308-16. [PMID: 19451301 DOI: 10.1128/aac.01688-08] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lactoferrin (LF) is an iron-binding antimicrobial protein present in saliva and gingival crevicular fluids, and it is possibly associated with host defense against oral pathogens, including periodontopathic bacteria. In the present study, we evaluated the in vitro effects of LF-related agents on the growth and biofilm formation of two periodontopathic bacteria, Porphyromonas gingivalis and Prevotella intermedia, which reside as biofilms in the subgingival plaque. The planktonic growth of P. gingivalis and P. intermedia was suppressed for up to 5 h by incubation with >or=130 microg/ml of human LF (hLF), iron-free and iron-saturated bovine LF (apo-bLF and holo-bLF, respectively), and >or=6 microg/ml of bLF-derived antimicrobial peptide lactoferricin B (LFcin B); but those effects were weak after 8 h. The biofilm formation of P. gingivalis and P. intermedia over 24 h was effectively inhibited by lower concentrations (>or=8 microg/ml) of various iron-bound forms (the apo, native, and holo forms) of bLF and hLF but not LFcin B. A preformed biofilm of P. gingivalis and P. intermedia was also reduced by incubation with various iron-bound bLFs, hLF, and LFcin B for 5 h. In an examination of the effectiveness of native bLF when it was used in combination with four antibiotics, it was found that treatment with ciprofloxacin, clarithromycin, and minocycline in combination with native bLF for 24 h reduced the amount of a preformed biofilm of P. gingivalis compared with the level of reduction achieved with each agent alone. These results demonstrate the antibiofilm activity of LF with lower iron dependency against P. gingivalis and P. intermedia and the potential usefulness of LF for the prevention and treatment of periodontal diseases and as adjunct therapy for periodontal diseases.
Collapse
|
528
|
Merritt JH, Brothers KM, Kuchma SL, O'Toole GA. SadC reciprocally influences biofilm formation and swarming motility via modulation of exopolysaccharide production and flagellar function. J Bacteriol 2007; 189:8154-64. [PMID: 17586642 PMCID: PMC2168701 DOI: 10.1128/jb.00585-07] [Citation(s) in RCA: 200] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2007] [Accepted: 06/11/2007] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa has served as an important organism in the study of biofilm formation; however, we still lack an understanding of the mechanisms by which this microbe transitions to a surface lifestyle. A recent study of the early stages of biofilm formation implicated the control of flagellar reversals and production of an exopolysaccharide (EPS) as factors in the establishment of a stable association with the substratum and swarming motility. Here we present evidence that SadC (PA4332), an inner membrane-localized diguanylate cyclase, plays a role in controlling these cellular functions. Deletion of the sadC gene results in a strain that is defective in biofilm formation and a hyperswarmer, while multicopy expression of this gene promotes sessility. A DeltasadC mutant was additionally found to be deficient in EPS production and display altered reversal behavior while swimming in high-viscosity medium, two behaviors proposed to influence biofilm formation and swarming motility. Epistasis analysis suggests that the sadC gene is part of a genetic pathway that allows for the concomitant regulation of these aspects of P. aeruginosa surface behavior. We propose that SadC and the phosphodiesterase BifA (S. L. Kuchma et al., J. Bacteriol. 189:8165-8178, 2007), via modulating levels of the signaling molecule cyclic-di-GMP, coregulate swarming motility and biofilm formation as P. aeruginosa transitions from a planktonic to a surface-associated lifestyle.
Collapse
Affiliation(s)
- Judith H Merritt
- Department of Microbiology and Immunology, Rm. 505, Vail Building, Dartmouth Medical School, Hanover, NH 03755, USA
| | | | | | | |
Collapse
|
529
|
Pearson MM, Hansen EJ. Identification of gene products involved in biofilm production by Moraxella catarrhalis ETSU-9 in vitro. Infect Immun 2007; 75:4316-25. [PMID: 17562762 PMCID: PMC1951151 DOI: 10.1128/iai.01347-06] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Moraxella catarrhalis ETSU-9 was subjected to random transposon insertion mutagenesis to identify genes encoding products involved in the ability of the organism to form biofilms in vitro. Screening of approximately 3,000 transposon insertion mutants in the crystal violet-based biofilm assay system yielded six mutants that exhibited greatly reduced abilities to form biofilms. Three of these mutants had transposon insertions in the uspA2H gene, which encodes a surface protein previously shown to be involved in the ability of M. catarrhalis to both attach to human cell lines in vitro and resist killing by normal human serum. Random insertion mutagenesis of the uspA2H gene, involving the introduction of a 15-nucleotide fragment encoding 5 amino acids, was used to attempt to identify the domain(s) necessary for biofilm formation. Most of these insertions adversely affected biofilm formation, whereas the abilities of these same mutants to attach to Chang conjunctival epithelial cells in vitro were usually not reduced. Gain-of-function experiments showed that introduction of the M. catarrhalis ETSU-9 uspA2H gene into Escherichia coli conferred biofilm formation ability on this recombinant strain. Two of the other three M. catarrhalis ETSU-9 transposon insertion mutants that had greatly reduced abilities to form biofilms were shown to have insertions in genes encoding products predicted to be directly or indirectly involved in cell wall metabolism.
Collapse
Affiliation(s)
- Melanie M Pearson
- Department of Microbiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9048, USA
| | | |
Collapse
|
530
|
Kadouri D, Venzon NC, O'Toole GA. Vulnerability of pathogenic biofilms to Micavibrio aeruginosavorus. Appl Environ Microbiol 2006; 73:605-14. [PMID: 17098913 PMCID: PMC1796979 DOI: 10.1128/aem.01893-06] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The host specificity of the gram-negative exoparasitic predatory bacterium Micavibrio aeruginosavorus was examined. M. aeruginosavorus preyed on Pseudomonas aeruginosa, as previously reported, as well as Burkholderia cepacia, Klebsiella pneumoniae, and numerous clinical isolates of these species. In a static assay, a reduction in biofilm biomass was observed as early as 3 hours after exposure to M. aeruginosavorus, and an approximately 100-fold reduction in biofilm cell viability was detected following a 24-h exposure to the predator. We observed that an initial titer of Micavibrio as low as 10 PFU/well or a time of exposure to the predator as short as 30 min was sufficient to reduce a P. aeruginosa biofilm. The ability of Micavibrio to reduce an existing biofilm was confirmed by scanning electron microscopy. In static and flow cell experiments, M. aeruginosavorus was able to modify the overall P. aeruginosa biofilm structure and markedly decreased the viability of P. aeruginosa. The altered biofilm structure was likely caused by an increase in cell-cell interactions brought about by the presence of the predator or active predation. We also conducted a screen to identify genes important for P. aeruginosa-Micavibrio interaction, but no candidates were isolated among the approximately 10,000 mutants tested.
Collapse
Affiliation(s)
- Daniel Kadouri
- Department of Oral Biology, University of Medicine and Dentistry of New Jersey, Newark, NJ 07103, USA.
| | | | | |
Collapse
|