501
|
Burke ML, McManus DP, Ramm GA, Duke M, Li Y, Jones MK, Gobert GN. Temporal expression of chemokines dictates the hepatic inflammatory infiltrate in a murine model of schistosomiasis. PLoS Negl Trop Dis 2010; 4:e598. [PMID: 20161726 PMCID: PMC2817718 DOI: 10.1371/journal.pntd.0000598] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2009] [Accepted: 12/16/2009] [Indexed: 12/20/2022] Open
Abstract
Schistosomiasis continues to be an important cause of parasitic morbidity and mortality world-wide. Determining the molecular mechanisms regulating the development of granulomas and fibrosis will be essential for understanding how schistosome antigens interact with the host environment. We report here the first whole genome microarray analysis of the murine liver during the progression of Schistosoma japonicum egg-induced granuloma formation and hepatic fibrosis. Our results reveal a distinct temporal relationship between the expression of chemokine subsets and the recruitment of cells to the infected liver. Genes up-regulated earlier in the response included T- and B-cell chemoattractants, reflecting the early recruitment of these cells illustrated by flow cytometry. The later phases of the response corresponded with peak recruitment of eosinophils, neutrophils, macrophages and myofibroblasts/hepatic stellate cells (HSCs) and the expression of chemokines with activity for these cells including CCL11 (eotaxin 1), members of the Monocyte-chemoattractant protein family (CCL7, CCL8, CCL12) and the Hepatic Stellate Cell/Fibrocyte chemoattractant CXCL1. Peak expression of macrophage chemoattractants (CCL6, CXCL14) and markers of alternatively activated macrophages (e.g. Retnla) during this later phase provides further evidence of a role for these cells in schistosome-induced pathology. Additionally, we demonstrate that CCL7 immunolocalises to the fibrotic zone of granulomas. Furthermore, striking up-regulation of neutrophil markers and the localisation of neutrophils and the neutrophil chemokine S100A8 to fibrotic areas suggest the involvement of neutrophils in S. japonicum-induced hepatic fibrosis. These results further our understanding of the immunopathogenic and, especially, chemokine signalling pathways that regulate the development of S. japonicum-induced granulomas and fibrosis and may provide correlative insight into the pathogenesis of other chronic inflammatory diseases of the liver where fibrosis is a common feature. Schistosomiasis, a disease caused by parasitic worms, is a significant cause of illness and death in the developing world. Furthermore, recent reports suggest that the global burden of disease due to schistosomiasis has been significantly underestimated. Schistosomiasis of the liver arises due to inflammation and the deposition of scar tissue around parasite eggs trapped in this organ. In the current study we analysed the gene-expression profile of the mouse liver at several time points following infection with a virulent strain of Schistosoma japonicum to better understand the mechanisms that regulate this process. Progression of disease was associated with increased expression of different groups of genes with distinct biological functions. Specifically, we identified several genes encoding chemical signalling molecules that contribute to different phases of the response by recruiting key cell types to the site of inflammation. This study represents the most comprehensive report to date of the gene expression profile in the liver during schistosomiasis. These results provide further insight into the mechanisms that regulate the development of schistosome-induced inflammation and scarring and will aid in the development of novel treatments to alleviate the burden of disease caused by this parasite.
Collapse
Affiliation(s)
- Melissa L. Burke
- Molecular Parasitology Laboratory, Queensland Institute of Medical Research, Herston, Queensland, Australia
- The School of Population Health, The University of Queensland, Herston, Queensland, Australia
| | - Donald P. McManus
- Molecular Parasitology Laboratory, Queensland Institute of Medical Research, Herston, Queensland, Australia
| | - Grant A. Ramm
- Hepatic Fibrosis Laboratory, Queensland Institute of Medical Research, Herston, Queensland, Australia
| | - Mary Duke
- Molecular Parasitology Laboratory, Queensland Institute of Medical Research, Herston, Queensland, Australia
| | - Yuesheng Li
- Molecular Parasitology Laboratory, Queensland Institute of Medical Research, Herston, Queensland, Australia
| | - Malcolm K. Jones
- Parasite Cell Biology Laboratory, Queensland Institute of Medical Research, Herston, Queensland, Australia
- The School of Veterinary Science, The University of Queensland, St Lucia, Queensland, Australia
| | - Geoffrey N. Gobert
- Molecular Parasitology Laboratory, Queensland Institute of Medical Research, Herston, Queensland, Australia
- * E-mail:
| |
Collapse
|
502
|
Toll-like receptor 2/6 stimulation promotes angiogenesis via GM-CSF as a potential strategy for immune defense and tissue regeneration. Blood 2010; 115:2543-52. [PMID: 20056792 DOI: 10.1182/blood-2009-05-224402] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Toll-like receptors (TLRs) are known primarily as pathogen recognition receptors of the innate immunity, initiating inflammatory pathways to organize the immune defense. More recently, an involvement of TLRs in various physiologic and pathologic processes has been reported. Because many of these processes implicate angiogenesis, we here elucidated the role of a TLR2/6-dependent pathway on angiogenesis using the TLR2/6 agonist macrophage-activating lipopeptide of 2 kDa (MALP-2), a common bacterial lipopeptide. In vivo and in vitro Matrigel assays demonstrated that MALP-2 promoted angiogenesis in a TLR2/6-dependent manner. Moreover, MALP-2 induced endothelial cell proliferation and migration and a strong secretion of granulocyte-macrophage colony-stimulating factor (GM-CSF). GM-CSF release in response to MALP-2 from isolated vascular segments was completely prevented when the endothelium was removed. MALP-2 containing Matrigel implants exhibited vascular structures as well as CD45(+) cells. MALP-2 induced migration of leukocytes and likewise GM-CSF release, particularly from the monocyte population. Inhibition of GM-CSF by siRNA or antibodies suppressed MALP-2-induced angiogenesis in vitro and in vivo. These results clearly identified a TLR2/6-dependent induction of angiogenesis by the bacterial lipopeptide MALP-2, which is mediated by GM-CSF. This might represent a general mechanism to enhance or restore blood flow and recruit immune cells for pathogen defense and tissue regeneration.
Collapse
|
503
|
Lee Y, Friedman SL. Fibrosis in the Liver. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2010; 97:151-200. [DOI: 10.1016/b978-0-12-385233-5.00006-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
504
|
Abstract
MicroRNAs are a class of small non-coding RNAs that are found in plants, animals, and some viruses. They modulate the gene function at the post-transcriptional level and act as a fine tuner of various processes, such as development, proliferation, cell signaling, and apoptosis. They are associated with different types and stages of cancer. Recent studies have shown the involvement of microRNAs in liver diseases caused by various factors, such as Hepatitis C, Hepatitis B, metabolic disorders, and by drug abuse. This review highlights the role of microRNAs in liver diseases and their potential use as therapeutic molecules.
Collapse
|
505
|
Toll-like receptor activated human and murine hepatic stellate cells are potent regulators of hepatitis C virus replication. J Hepatol 2009; 51:1037-45. [PMID: 19716616 DOI: 10.1016/j.jhep.2009.06.020] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Revised: 06/03/2009] [Accepted: 06/23/2009] [Indexed: 12/14/2022]
Abstract
BACKGROUND/AIMS While hepatic stellate cells (HSC) are known to be key mediators of liver fibrosis, only little is known about their functional role in the innate immune system of the liver. METHODS To address this question, murine HSC were isolated from livers of C57BL/6J mice and human HSC were isolated from liver samples obtained from resections and liver explants. HSC were stimulated with Toll-like receptor (TLR) 1-9 ligands for 20 h. Supernatants were harvested and used in virus protection assays (encephalomyocarditis virus, EMCV) as well as in human and murine hepatitis C virus (HCV) replicon systems. Expression of interferon (IFN), retinoic acid-inducible gene-I (RIG-I), and interferon-stimulated genes (ISGs) was assessed by quantitative reverse transcription polymerase chain reaction. RESULTS While all TLRs were detectable in HSC, in murine HSC only TLR 3 and -4 agonists could induce cytokines that had an antiviral effect upon EMCV and HCV replication. IFN-beta was the main cytokine mediating the antiviral activity of TLR 3-stimulated HSC whereas other cytokines of undefined nature were involved in TLR 4-mediated antiviral effects. In human HSC, only TLR 3 stimulation led to production of antiviral cytokines. The antiviral effect was related to the up-regulation of ISGs and RIG-I in target cells. CONCLUSIONS These data demonstrate that murine and human HSC have as yet unrecognized antiviral properties when activated through the TLR-system and TLR 3/HCV in particular. This sheds new light on their role in the innate immune system of the liver and their participation in the control of HCV replication.
Collapse
|
506
|
Hikita H, Takehara T, Kodama T, Shimizu S, Hosui A, Miyagi T, Tatsumi T, Ishida H, Ohkawa K, Li W, Kanto T, Hiramatsu N, Hennighausen L, Yin XM, Hayashi N. BH3-only protein bid participates in the Bcl-2 network in healthy liver cells. Hepatology 2009; 50:1972-80. [PMID: 19839062 PMCID: PMC3560855 DOI: 10.1002/hep.23207] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
UNLABELLED Bcl-2 homology domain 3 (BH3)-only protein Bid is posttranslationally cleaved by caspase-8 into its truncated form (tBid) and couples with stress signals to the mitochondrial cell death pathway. However, the physiological relevance of Bid is not clearly understood. Hepatocyte-specific knockout (KO) of Bcl-xL leads to naturally-occurring apoptosis despite co-expression of Mcl-1, which shares a similar anti-apoptotic function. We generated Bcl-xL KO, Bcl-xL/Bid double KO, Bcl-xL/Bak double KO, Bcl-xL/Bax double KO, and Bcl-xL/Bak/Bax triple KO mice and found that hepatocyte apoptosis caused by Bcl-xL deficiency was completely dependent on Bak and Bax, and surprisingly on Bid. This indicated that, in the absence of Bid, Bcl-xL is not required for the integrity of differentiated hepatocytes, suggesting a complicated interaction between core Bcl-2 family proteins and BH3-only proteins even in a physiological setting. Indeed, a small but significant level of tBid was present in wild-type liver under physiological conditions. tBid was capable of binding to Bcl-xL and displacing Bak and Bax from Bcl-xL, leading to release of cytochrome c from wild-type mitochondria. Bcl-xL-deficient mitochondria were more susceptible to tBid-induced cytochrome c release. Finally, administration of ABT-737, a pharmacological inhibitor of Bcl-2/Bcl-xL, caused Bak/Bax-dependent liver injury, but this was clearly ameliorated with a Bid KO background. CONCLUSION Bid, originally considered to be a sensor for apoptotic stimuli, is constitutively active in healthy liver cells and is involved in the Bak/Bax-dependent mitochondrial cell death pathway. Healthy liver cells are addicted to a single Bcl-2-like molecule because of BH3 stresses, and therefore special caution may be required for the use of the Bcl-2 inhibitor for cancer therapy.
Collapse
Affiliation(s)
- Hayato Hikita
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Tetsuo Takehara
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Takahiro Kodama
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Satoshi Shimizu
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Atsushi Hosui
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Takuya Miyagi
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Tomohide Tatsumi
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hisashi Ishida
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kazuyoshi Ohkawa
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Wei Li
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Tatsuya Kanto
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Naoki Hiramatsu
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Lothar Hennighausen
- Laboratory of Genetics and Physiology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institute of Health, Bethesda, MD
| | - Xiao-Ming Yin
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Norio Hayashi
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
507
|
Wu J, Meng Z, Jiang M, Zhang E, Trippler M, Broering R, Bucchi A, Krux F, Dittmer U, Yang D, Roggendorf M, Gerken G, Lu M, Schlaak JF. Toll-like receptor-induced innate immune responses in non-parenchymal liver cells are cell type-specific. Immunology 2009; 129:363-74. [PMID: 19922426 DOI: 10.1111/j.1365-2567.2009.03179.x] [Citation(s) in RCA: 163] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Little is known of how the Toll-like receptor (TLR) system can modulate the function of non-parenchymal liver cells (NPC) as a major component of the innate and adaptive immune system of the liver. To investigate the diversification of TLR signalling pathways in NPC, we isolated Kupffer cells (KC) and liver sinusoidal endothelial cells (LSEC) from wild-type C57BL/6 mice and examined their responses to TLR1 to TLR9 agonists. The data show that KC respond to all TLR ligands by producing tumour necrosis factor-alpha (TNF-alpha) or interleukin-6 (IL-6), to TLR3 and TLR4 ligands only by producing interferon-beta (IFN-beta), to TLR1 and TLR8 ligands by significantly up-regulating major histocompatibility complex (MHC) class II and costimulatory molecules, and to TLR1, -2, -4 and -6 ligands by inducing high levels of T-cell proliferation and IFN-gamma production in the mixed lymphocyte reaction (MLR). Similarly, LSEC respond to TLR1 to -4, -6, -8 and -9 ligands by producing TNF-alpha, to TLR3 and -4 ligands by producing IL-6, and to TLR3 ligands by producing IFN-beta. Interestingly, despite significant up-regulation of MHC class II and co-stimulatory molecules in response to TLR8 ligands, LSEC stimulated by TLR1, -2 or -6 could stimulate allogeneic T cells as assessed by MLR. By contrast, myeloid dendritic cells, used as positive control for classical antigen-presenting cells, respond to TLR1, -2, -4 and -9 ligands by both up-regulation of CD40 and activation of allogeneic T cells. In conclusion, NPC display a restricted TLR-mediated activation profile when compared with 'classical' antigen-presenting cells which may, at least in part, explain their tolerogenic function in the liver.
Collapse
Affiliation(s)
- Jun Wu
- Department of Gastroenterology and Hepatology, University Hospital of Essen, University Duisburg-Essen, Essen, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
508
|
Wu J, Meng Z, Jiang M, Zhang E, Trippler M, Broering R, Bucchi A, Krux F, Dittmer U, Yang D, Roggendorf M, Gerken G, Lu M, Schlaak JF. Toll-like receptor-induced innate immune responses in non-parenchymal liver cells are cell type-specific. Immunology 2009. [PMID: 19922426 DOI: 10.1111/j.1365-2567.2009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Little is known of how the Toll-like receptor (TLR) system can modulate the function of non-parenchymal liver cells (NPC) as a major component of the innate and adaptive immune system of the liver. To investigate the diversification of TLR signalling pathways in NPC, we isolated Kupffer cells (KC) and liver sinusoidal endothelial cells (LSEC) from wild-type C57BL/6 mice and examined their responses to TLR1 to TLR9 agonists. The data show that KC respond to all TLR ligands by producing tumour necrosis factor-alpha (TNF-alpha) or interleukin-6 (IL-6), to TLR3 and TLR4 ligands only by producing interferon-beta (IFN-beta), to TLR1 and TLR8 ligands by significantly up-regulating major histocompatibility complex (MHC) class II and costimulatory molecules, and to TLR1, -2, -4 and -6 ligands by inducing high levels of T-cell proliferation and IFN-gamma production in the mixed lymphocyte reaction (MLR). Similarly, LSEC respond to TLR1 to -4, -6, -8 and -9 ligands by producing TNF-alpha, to TLR3 and -4 ligands by producing IL-6, and to TLR3 ligands by producing IFN-beta. Interestingly, despite significant up-regulation of MHC class II and co-stimulatory molecules in response to TLR8 ligands, LSEC stimulated by TLR1, -2 or -6 could stimulate allogeneic T cells as assessed by MLR. By contrast, myeloid dendritic cells, used as positive control for classical antigen-presenting cells, respond to TLR1, -2, -4 and -9 ligands by both up-regulation of CD40 and activation of allogeneic T cells. In conclusion, NPC display a restricted TLR-mediated activation profile when compared with 'classical' antigen-presenting cells which may, at least in part, explain their tolerogenic function in the liver.
Collapse
Affiliation(s)
- Jun Wu
- Department of Gastroenterology and Hepatology, University Hospital of Essen, University Duisburg-Essen, Essen, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
509
|
Conceição TM, El-Bacha T, Villas-Bôas CSA, Coello G, Ramírez J, Montero-Lomeli M, Da Poian AT. Gene expression analysis during dengue virus infection in HepG2 cells reveals virus control of innate immune response. J Infect 2009; 60:65-75. [PMID: 19837110 DOI: 10.1016/j.jinf.2009.10.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Revised: 09/22/2009] [Accepted: 10/13/2009] [Indexed: 01/22/2023]
Abstract
OBJECTIVES Liver damage occurs during Dengue Virus infection and constitutes a characteristic of severe forms of the disease. The present study was focused on the modulation of gene expression in a human hepatic cell lineage, HepG2, in response to Dengue Virus infection. METHODS The global gene expression changes in HepG2 cells after 6, 24 and 48h of infection with Dengue Virus were investigated using a new tool of microarray data analysis and real-time PCR. RESULTS HepG2 cells infected with Dengue Virus showed alterations in several signaling pathways involved in innate immune response. The analysis of pattern recognition pathways genes demonstrated that TLR3, TLR8, RIG-I and MDA5 mRNAs were up-regulated during Dengue Virus infection along with an increase in the expression of the type I interferon, IFN-beta and pro-inflammatory cytokines IL-6, IL-8 and RANTES genes. CONCLUSIONS Our results suggest that innate immune pathways are involved in the recognition of Dengue Virus by HepG2 cells. These observations may contribute to the understanding of the inflammatory responses induced by Dengue Virus-hepatocytes interaction during dengue diseases.
Collapse
Affiliation(s)
- Thaís M Conceição
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | | | | | | | | | | |
Collapse
|
510
|
Woo CW, Cui D, Arellano J, Dorweiler B, Harding H, Fitzgerald KA, Ron D, Tabas I. Adaptive suppression of the ATF4-CHOP branch of the unfolded protein response by toll-like receptor signalling. Nat Cell Biol 2009; 11:1473-80. [PMID: 19855386 PMCID: PMC2787632 DOI: 10.1038/ncb1996] [Citation(s) in RCA: 221] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2009] [Accepted: 07/28/2009] [Indexed: 12/14/2022]
Abstract
The endoplasmic reticulum (ER) Unfolded Protein Response (UPR) restores equilibrium to the ER, but prolonged expression of the UPR effector CHOP (GADD153) is cytotoxic. We found that ER stress-induced CHOP expression was suppressed by prior engagement of toll-like receptor (TLR) 3 or 4 through a TRIF-dependent pathway. TLR engagement did not suppress phosphorylation of PERK or eIF-2α, which are upstream of CHOP, but phospho-eIF-2α failed to promote translation of the CHOP activator ATF4. In mice subjected to systemic ER stress, pre-treatment with low-dose lipopolysaccharide (LPS), a TLR4 ligand, suppressed CHOP expression and apoptosis in splenic macrophages, renal tubule cells, and hepatocytes, and prevented renal dysfunction and hepatosteatosis. This protective effect of LPS did not occur in Trif−/− mice nor in wild-type mice in which CHOP expression was genetically restored. Thus, TRIF-mediated signals from TLRs selectively attenuate translational activation of ATF4 and its downstream target gene CHOP. We speculate that this mechanism evolved to promote survival of TLR-expressing cells that experience prolonged levels of physiologic ER stress in the course of the host response to invading pathogens.
Collapse
Affiliation(s)
- Connie W Woo
- Department of Medicine, Columbia University, New York, NY 10032, USA
| | | | | | | | | | | | | | | |
Collapse
|
511
|
Spruss A, Kanuri G, Wagnerberger S, Haub S, Bischoff SC, Bergheim I. Toll-like receptor 4 is involved in the development of fructose-induced hepatic steatosis in mice. Hepatology 2009; 50:1094-104. [PMID: 19637282 DOI: 10.1002/hep.23122] [Citation(s) in RCA: 417] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
UNLABELLED A link between dietary fructose intake, gut-derived endotoxemia, and nonalcoholic fatty liver disease (NAFLD) has been suggested by the results of human and animal studies. To further investigate the role of gut-derived endotoxin in the onset of fructose-induced NAFLD, Toll-like receptor (TLR-) 4-mutant (C3H/HeJ) mice and wildtype (C3H/HouJ) mice were either fed plain water or water enriched with 30% fructose for 8 weeks. Hepatic steatosis, plasma alanine aminotransferase (ALT), and markers of insulin resistance as well as portal endotoxin levels were determined. Hepatic levels of myeloid differentiation factor 88 (MyD88), interferon regulatory factor (IRF) 3 and 7, and tumor necrosis factor alpha (TNFalpha) as well as markers of lipid peroxidation were assessed. Chronic intake of 30% fructose solution caused a significant increase in hepatic steatosis and plasma ALT levels in wildtype animals in comparison to water controls. In fructose-fed TLR-4 mutant mice, hepatic triglyceride accumulation was significantly reduced by approximately 40% in comparison to fructose-fed wildtype mice and plasma ALT levels were at the level of water-fed controls. No difference in portal endotoxin concentration between fructose-fed wildtype and TLR-4-mutant animals was detected. In contrast, hepatic lipid peroxidation, MyD88, and TNFalpha levels were significantly decreased in fructose-fed TLR-4-mutant mice in comparison to fructose-fed wildtype mice, whereas IRF3 and IRF7 expression remained unchanged. Markers of insulin resistance (e.g., plasma TNFalpha, retinol binding protein 4, and hepatic phospho-AKT) were only altered in fructose-fed wildtype animals. CONCLUSION Taken together, these data further support the hypothesis that in mice the onset of fructose-induced NAFLD is associated with intestinal bacterial overgrowth and increased intestinal permeability, subsequently leading to an endotoxin-dependent activation of hepatic Kupffer cells.
Collapse
Affiliation(s)
- Astrid Spruss
- Department of Nutritional Medicine (180 a), University of Hohenheim, Stuttgart, Germany
| | | | | | | | | | | |
Collapse
|
512
|
Hui W, Jinxiang Z, Heshui W, Zhuoya L, Qichang Z. Bone marrow and non-bone marrow TLR4 regulates hepatic ischemia/reperfusion injury. Biochem Biophys Res Commun 2009; 389:328-32. [PMID: 19723506 DOI: 10.1016/j.bbrc.2009.08.149] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2009] [Accepted: 08/26/2009] [Indexed: 01/04/2023]
Abstract
Hepatic ischemia-reperfusion injury (IRI) is a highly coordinated process often observed during liver transplantation, liver surgery, and hemorrhagic shock. Signaling through toll-like receptor 4 (TLR4), which is widely expressed on all kinds of liver cells, appears critical in the pathogenesis of IRI. Although the role of TLR4 expressed on non-parenchymal cells (NPCs) of the liver, including Kupffer cells and neutrophils, in IRI has been widely studied, TLR4 signaling on liver sinusoidal endothelial cells (LSECs) or hepatocytes in the process of IRI, and their coordination with bone marrow derived TLR4 in the late reperfusion stage, is largely unknown. We produced TLR4 chimeric mice that received hepatic IRI, and examined the degree of liver injury and the underlying mechanisms of injury. Results indicated that mutation of TLR4 on bone-marrow or non-bone marrow derived cells reduced hepatic IRI in the late reperfusion stage via cytokine release and neutrophil infiltration, while non-bone marrow derived TLR4 regulated the expression of ICAM-1 on hepatocytes and LSECs, exacerbating their injury. In conclusion, both TLR4 on bone marrow derived and non-bone marrow derived cells were necessary in the process of hepatic IRI.
Collapse
Affiliation(s)
- Wang Hui
- Department of Medical Genetics, Tongji Medical College Affiliated to Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | | | | | | | | |
Collapse
|
513
|
Xiao X, Zhao P, Rodriguez-Pinto D, Qi D, Henegariu O, Alexopoulou L, Flavell RA, Wong FS, Wen L. Inflammatory regulation by TLR3 in acute hepatitis. THE JOURNAL OF IMMUNOLOGY 2009; 183:3712-9. [PMID: 19710451 DOI: 10.4049/jimmunol.0901221] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
TLR3 is known to respond to dsRNA from viruses, apoptotic cells, and/or necrotic cells. Dying cells are a rich source of ligands that can activate TLRs, such as TLR3. TLR3 expressed in the liver is likely to be a mediator of innate activation and inflammation in the liver. The importance of this function of TLR3 during acute hepatitis has not previously been fully explored. We used the mouse model of Con A-induced hepatitis and observed a novel role for TLR3 in hepatocyte damage in the absence of an exogenous viral stimulus. Interestingly, TLR3 expression in liver mononuclear cells and sinus endothelial cells was up-regulated after Con A injection and TLR3(-/-) mice were protected from Con A-induced hepatitis. Moreover, splenocytes from TLR3(-/-) mice proliferated less to Con A stimulation in the presence of RNA derived from damaged liver tissue compared with wild-type (WT) mice. To determine the relative contribution of TLR3 expression by hematopoietic cells or nonhematopoietic to liver damage during Con A-induced hepatitis, we generated bone marrow chimeric mice. TLR3(-/-) mice engrafted with WT hematopoietic cells were protected in a similar manner to WT mice reconstituted with TLR3(-/-) bone marrow, indicating that TLR3 signaling in both nonhematopoietic and hematopoietic cells plays an important role in mediating liver damage. In summary, our data suggest that TLR3 signaling is necessary for Con A-induced liver damage in vivo and that TLR3 regulates inflammation and the adaptive T cell immune response in the absence of viral infection.
Collapse
Affiliation(s)
- Xiaoyan Xiao
- Section of Endocrinology, Department of Internal Medicine
| | | | | | | | | | | | | | | | | |
Collapse
|
514
|
Skovgaard K, Mortensen S, Boye M, Hedegaard J, Heegaard PM. Hepatic gene expression changes in pigs experimentally infected with the lung pathogen Actinobacillus pleuropneumoniae as analysed with an innate immunity focused microarray. Innate Immun 2009; 16:343-53. [DOI: 10.1177/1753425909342730] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Knowledge on gene expression in the liver during respiratory infections is limited although it is well-established that this organ is an important site of synthesis of several systemic innate immune components as response to infections. In the present study, the early transcriptional hepatic response of genes associated with innate immune responses was studied in pigs 14—18 h after intranasal inoculation with Actinobacillus pleuropneumoniae, using innate immune focused microarrays and quantitative real-time PCR (qPCR). The microarray analysis of liver tissue established that 51 genes were differentially expressed. A large group of these genes encoded proteins involved in the acute phase response, including serum amyloid A, C-reactive protein, fibrinogen, haptoglobin and tumor necrosis factor-α the expression of which were all found to be up-regulated and glutathione S-transferase, transthyretin, transferrin and albumin which were down-regulated. Additional genes associated with innate immune responses were investigated using qPCR; genes encoding interleukin-(IL-)1, IL-6, IL-8, lipopolysaccharide binding protein, lactotransferrin, and PigMAP were up-regulated and interferon 1α, α1-acid glycoprotein, mannan-binding lectin A, surfactant protein D, and surfactant protein A1 were down-regulated in the liver of infected animals. Down-regulation of α1-acid glycoprotein during infection has not been described previously in any species. These results confirm that the liver plays an important role in initiating and orchestrating the innate immune response to A. pleuropneumoniae infection.
Collapse
Affiliation(s)
- Kerstin Skovgaard
- National Veterinary Institute, Technical University of Denmark, Copenhagen, Denmark,
| | - Shila Mortensen
- National Veterinary Institute, Technical University of Denmark, Copenhagen, Denmark
| | - Mette Boye
- National Veterinary Institute, Technical University of Denmark, Copenhagen, Denmark
| | - Jakob Hedegaard
- Faculty of Agricultural Sciences, Aarhus University, Tjele, Denmark
| | - Peter M.H. Heegaard
- National Veterinary Institute, Technical University of Denmark, Copenhagen, Denmark
| |
Collapse
|
515
|
Abstract
Hepatitis C virus (HCV) infection remains a large-scale and significant health concern. The combination of subcutaneously administered pegylated interferon and oral ribavirin is the FDA-approved regimen for the treatment of chronic HCV infection. Combination therapy may result in a sustained virologic response leading to HCV eradication, with a reduction in risk for cirrhosis, hepatic decompensation, and hepatocellular carcinoma. However, the combination of PEG-IFN and ribavirin does not universally result in cure in all patients who undergo treatment. In this article, the authors discuss immunomodulatory therapies and clinical trials in the treatment of HCV infection.
Collapse
|
516
|
Imamura M, Tsutsui H, Yasuda K, Uchiyama R, Yumikura-Futatsugi S, Mitani K, Hayashi S, Akira S, Taniguchi SI, Van Rooijen N, Tschopp J, Yamamoto T, Fujimoto J, Nakanishi K. Contribution of TIR domain-containing adapter inducing IFN-beta-mediated IL-18 release to LPS-induced liver injury in mice. J Hepatol 2009; 51:333-41. [PMID: 19501931 DOI: 10.1016/j.jhep.2009.03.027] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Revised: 02/28/2009] [Accepted: 03/12/2009] [Indexed: 12/13/2022]
Abstract
BACKGROUND/AIMS After treatment with heat-killed Propionibacterium acnes mice show dense hepatic granuloma formation. Such mice develop liver injury in an interleukin (IL)-18-dependent manner after challenge with a sublethal dose LPS. As previously shown, LPS-stimulated Kupffer cells secrete IL-18 depending on caspase-1 and Toll-like receptor (TLR)-4 but independently of its signal adaptor myeloid differentiation factor 88 (MyD88), suggesting importance of another signal adaptor TIR domain-containing adapter inducing IFN-beta (TRIF). Nalp3 inflammasome reportedly controls caspase-1 activation. Here we investigated the roles of MyD88 and TRIF in P. acnes-induced hepatic granuloma formation and LPS-induced caspase-1 activation for IL-18 release. METHODS Mice were sequentially treated with P. acnes and LPS, and their serum IL-18 levels and liver injuries were determined by ELISA and ALT/AST measurement, respectively. Active caspase-1 in LPS-stimulated Kupffer cells was determined by Western blotting. RESULTS Macrophage-ablated mice lacked P. acnes-induced hepatic granuloma formation and LPS-induced serum IL-18 elevation and liver injury. Myd88(-/-) Kupffer cells, but not Trif(-/-) cells, exhibited normal caspase-1 activation upon TLR4 engagement in vitro. Myd88(-/-) mice failed to develop hepatic granulomas after P. acnes treatment and liver injury induced by LPS challenge. In contrast, Trif(-/-) mice normally formed the hepatic granulomas, but could not release IL-18 or develop the liver injury. Nalp3(-/-) mice showed the same phenotypes of Trif(-/-) mice. CONCLUSIONS Propionibacterium acnes treatment MyD88-dependently induced hepatic granuloma formation. Subsequent LPS TRIF-dependently activated caspase-1 via Nalp3 inflammasome and induced IL-18 release, eventually leading to the liver injury.
Collapse
Affiliation(s)
- Michiko Imamura
- Department of Surgery, Hyogo College of Medicine, Nishinomiya, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
517
|
Zhang X, Meng Z, Qiu S, Xu Y, Yang D, Schlaak JF, Roggendorf M, Lu M. Lipopolysaccharide-induced innate immune responses in primary hepatocytes downregulates woodchuck hepatitis virus replication via interferon-independent pathways. Cell Microbiol 2009; 11:1624-37. [PMID: 19573162 DOI: 10.1111/j.1462-5822.2009.01353.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Our previous studies have shown that Toll-like receptor (TLR) ligands, Poly I:C and lipopolysaccharide (LPS), are able to activate non-parenchymal liver cells and trigger the production of interferon (IFN) to inhibit hepatitis B virus replication in vivo and in vitro. However, little is known about TLR-mediated cellular responses in primary hepatocytes. By the model of woodchuck hepatitis virus (WHV) infected primary woodchuck hepatocytes (PWHs), Poly I:C and LPS stimulation resulted in upregulation of cellular antiviral genes and relevant TLRs mRNA expression respectively. LPS stimulation led to a pronounced reduction of WHV replicative intermediates without a significant IFN induction. Poly I:C transfection resulted in the production of IFN and a highly increased expression of antiviral genes in PWHs and slight inhibitory effect on WHV replication. LPS could activate nuclear factor kappa B, MAPK and PI-3k/Akt pathways in PWHs. Further, inhibitors of MAPK-ERK and PI-3k/Akt pathways, but not that of IFN signalling pathway, were able to block the antiviral effect of LPS. These results indicate that IFN- independent pathways which activated by LPS are able to downregulate hepadnaviral replication in hepatocytes.
Collapse
Affiliation(s)
- Xiaoyong Zhang
- Institute of Virology, Taihe Hospital, Yunyang Medical College, Shiyan, China
| | | | | | | | | | | | | | | |
Collapse
|
518
|
Abstract
Non-alcoholic fatty liver disease (NAFLD) has become the most common liver disorder of our times. Simple steatosis, a seemingly innocent manifestation of NAFLD, may progress into steatohepatitis and cirrhosis, but this process is not well understood. Since NAFLD is associated with obesity and insulin resistance, mechanisms that link lipid metabolism to inflammation offer insights into the pathogenesis. An important parallel between obesity-related pathology of adipose tissue and liver pertains to the emerging role of macrophages and evidence is growing that Kupffer cells critically contribute to progression of NAFLD. Toll-like receptors, in particular TLR4, represent a major conduit for danger recognition linked to Kupffer cell activation and this process may be perturbed at multiple steps in NAFLD. Steatosis may interfere with sinusoid microcirculation and hepatocellular clearance of microbial and host-derived danger signals, enhancing responsiveness of Kupffer cells. Altered lipid homeostasis in NAFLD may unfavourably affect TLR4 receptor complex assembly and sorting, interfere with signalling flux redistribution, promote amplification loops, and impair negative regulation including alternative activation of Kupffer cells. These events are further promoted by altered adipokine secretion and reactive oxygen species production. Specific targeting of these interactions may provide more effective strategies in the treatment of NAFLD.
Collapse
Affiliation(s)
- György Baffy
- Brigham and Women's Hospital and VA Boston Healthcare System, Harvard Medical School, Section of Gastroenterology, 150 S. Huntington Ave., Boston, MA 02130, USA.
| |
Collapse
|
519
|
Zorde-Khvalevsky E, Abramovitch R, Barash H, Spivak-Pohis I, Rivkin L, Rachmilewitz J, Galun E, Giladi H. Toll-like receptor 3 signaling attenuates liver regeneration. Hepatology 2009; 50:198-206. [PMID: 19441101 DOI: 10.1002/hep.22973] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
UNLABELLED The current model for liver regeneration suggests that cell damage triggers Toll-like receptor (TLR) signaling via MyD88, leading to the induction of nuclear factor kappaB (NF-kappaB) and secretion of inflammatory cytokines that in turn prime liver regeneration. TLR3 is unique among TLRs in that it signals through TRIF (TIR domain-containing adaptor-inducing interferon-beta), not through MyD88, and may lead to activation of either the inflammatory or apoptotic pathway. The inflammatory pathway leads to NF-kappaB activation, whereas the apoptotic pathway, believed to be mediated by Rip3, leads to caspase-8 activation. In this study, we explored the role of TLR3 in liver regeneration by comparing the response to 70% partial hepatectomy of TLR3(wt) and TLR3(-/-) mice. We found that following partial hepatectomy, TLR3(-/-) mice demonstrated earlier hepatocyte proliferation. Furthermore, within the first hours, we observed a dramatic TLR3-dependent NF-kappaB activation and an increase in Rip3 levels in hepatocytes, accompanied by caspase-8 activation but without an apoptotic outcome. CONCLUSION TLR3 plays an inhibitory role in the priming of liver regeneration, thus reinforcing the role of the innate immune system in balancing tissue regeneration.
Collapse
Affiliation(s)
- Elina Zorde-Khvalevsky
- Goldyne Savad Institute for Gene Therapy, Human Biology Research Center Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | | | | | | | | | | | | | | |
Collapse
|
520
|
Askar E, Bregadze R, Mertens J, Schweyer S, Rosenberger A, Ramadori G, Mihm S. TLR3 gene polymorphisms and liver disease manifestations in chronic hepatitis C. J Med Virol 2009; 81:1204-11. [DOI: 10.1002/jmv.21491] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
521
|
Katsargyris A, Klonaris C, Alexandrou A, Giakoustidis AE, Vasileiou I, Theocharis S. Toll-like receptors in liver ischemia reperfusion injury: a novel target for therapeutic modulation? Expert Opin Ther Targets 2009; 13:427-42. [PMID: 19335065 DOI: 10.1517/14728220902794939] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND There is increasing evidence that Toll-like receptors (TLRs) sense host tissue damage by engaging with endogenous ligands. TLRs are considered to be involved in many primarily non-immune-related diseases. Hepatic ischemia reperfusion injury (IRI) represents one of these disorders. OBJECTIVE To present the latest findings supporting the involvement of TLRs in liver IRI and to explore their role as potential targets for therapeutic intervention. METHODS A review of the literature summarizing the latest advances in TLR signaling, the role of TLRs in each hepatic cell population and the involvement of TLRs in the pathophysiology of hepatic IRI. The potential role of TLR-targeting treatment strategies in liver IRI is discussed. CONCLUSIONS Recent experimental evidence suggests that TLR activation on Kupffer cells provides the triggering signal for pro-inflammatory responses that lead to liver IRI. Modulating TLR signaling could have a beneficial effect in patients with liver IRI.
Collapse
|
522
|
Abstract
The pathogenesis of alcoholic liver injury involves interactions of several intracellular signalling pathways in different cell types of the liver. Alcohol-induced sensitization of liver macrophages to portal endotoxin/lipopolysaccharide (LPS) is considered a hallmark of alcoholic liver disease (ALD). Intracellular mechanisms associated with LPS-induced signalling play a crucial role in the initiation and progression of alcoholic liver injury, and are being extensively explored. LPS recognition by Toll-like receptor 4 (TLR4) on macrophages and other cell types in the liver, activation of downstream signalling pathways culminating in activation of transcription factors such as NFkappaB, AP-1 leads to increased inflammatory cytokine production in ALD. In addition, LPS-induced MAPK such as ERK and p38 also contribute to liver injury. The importance of alcohol-induced reactive oxygen species and interactions with TLR pathways in macrophages leading to inflammation is becoming increasingly evident. Collectively, these signalling pathways induce pro- and anti-inflammatory cytokines that play an important role in ALD. In this review we describe the key signalling intermediates leading to alcohol-induced inflammation in alcoholic liver disease.
Collapse
Affiliation(s)
- Pranoti Mandrekar
- Department of Medicine, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA.
| | | |
Collapse
|
523
|
Abstract
The innate immune response to invading pathogens is centred upon a family of non-clonal, germline-encoded pattern recognition receptors (PRRs), the Toll-like receptors (TLRs). These provide specificity for a vast range of microbial pathogens, and offer an immediate anti-microbial response system. Thirteen mammalian TLRs have been described; 10 are expressed in humans, each responsible for the recognition of distinct, invariant microbial structures originating from bacteria, viruses, fungi and protozoa. The two most thoroughly studied are TLR4 and TLR2, the PRRs for Gram-negative and Gram-positive bacterial products, respectively. TLR4 is also the major receptor recognising endogenous ligands released from damaged or dying cells. Activation of a TLR by its relevant ligand rapidly ignites a complex intracellular signaling cascade that ultimately results in upregulation of inflammatory genes and production of proinflammatory cytokines, interferons and recruitment of myeloid cells. It also stimulates expression, upon antigen presenting cells, of co-stimulatory molecules required to induce an adaptive immune response. Whilst a robust TLR response is critical for survival and defence against invading pathogens, inappropriate signaling in response to alterations in the local microflora environment can be detrimental. Such 'unhelpful TLR responses' could form the basis for a large number of gastrointestinal and liver disorders, including inflammatory bowel disease, viral hepatitis, autoimmune liver diseases and hepatic fibrosis. As our understanding of TLRs expands, the pathogenesis of a number of gastrointestinal disorders will be further elucidated, and this offers potential for specific therapies aimed directly at TLR signaling.
Collapse
Affiliation(s)
- Adam G Testro
- Innate Immunity Laboratory, Department of Medicine, Monash University, Monash, Australia.
| | | |
Collapse
|
524
|
Aron JH, Bowlus CL. The immunobiology of primary sclerosing cholangitis. Semin Immunopathol 2009; 31:383-97. [PMID: 19468733 PMCID: PMC2758173 DOI: 10.1007/s00281-009-0154-7] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2009] [Accepted: 05/06/2009] [Indexed: 12/15/2022]
Abstract
Primary sclerosing cholangitis (PSC) is a chronic cholestatic liver disease histologically characterized by the presence of intrahepatic and/or extrahepatic biliary duct concentric, obliterative fibrosis, eventually leading to cirrhosis. Approximately 75% of patients with PSC have inflammatory bowel disease. The male predominance of PSC, the lack of a defined, pathogenic autoantigen, and the potential role of the innate immune system suggest that it may be due to dysregulation of immunity rather than a classic autoimmune disease. However, PSC is associated with several classic autoimmune diseases, and the strongest genetic link to PSC identified to date is with the human leukocyte antigen DRB01*03 haplotype. The precise immunopathogenesis of PSC is largely unknown but likely involves activation of the innate immune system by bacterial components delivered to the liver via the portal vein. Induction of adhesion molecules and chemokines leads to the recruitment of intestinal lymphocytes. Bile duct injury results from the sustained inflammation and production of inflammatory cytokines. Biliary strictures may cause further damage as a result of bile stasis and recurrent secondary bacterial cholangitis. Currently, there is no effective therapy for PSC and developing a rational therapeutic strategy demands a better understanding of the disease.
Collapse
Affiliation(s)
- Jonathan H Aron
- Department of Internal Medicine, University of California Davis Medical Center, 4150 V Street, PSSB 3100, Sacramento, CA 95817, USA
| | | |
Collapse
|
525
|
Ishibashi H, Nakamura M, Komori A, Migita K, Shimoda S. Liver architecture, cell function, and disease. Semin Immunopathol 2009; 31:399-409. [PMID: 19468732 DOI: 10.1007/s00281-009-0155-6] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2009] [Accepted: 05/06/2009] [Indexed: 02/07/2023]
Abstract
The liver is an organ consisting of the largest reticulo-endothelial cell network in the body and playing an important role in host defense against invading microorganisms. The organ is comprised of parenchymal cells and many different types of non-parenchymal cells, all of which play a significant role. Even biliary epithelial cells are not only the target in autoimmune liver diseases but also have central role in orchestrating several immune cells involved in both innate and acquired immunity. Tissue damage caused by various agents results in inflammation, necrosis, fibrosis, and, eventually, distortion of normal hepatic architecture, cirrhosis, and functional deterioration.
Collapse
Affiliation(s)
- Hiromi Ishibashi
- Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.
| | | | | | | | | |
Collapse
|
526
|
Berasain C, Perugorria MJ, Latasa MU, Castillo J, Goñi S, Santamaría M, Prieto J, Avila MA. The epidermal growth factor receptor: a link between inflammation and liver cancer. Exp Biol Med (Maywood) 2009; 234:713-25. [PMID: 19429859 DOI: 10.3181/0901-mr-12] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Epidemiological studies have established that many tumours occur in association with persistent inflammation. One clear example of inflammation-related cancer is hepatocellular carcinoma (HCC). HCC slowly unfolds on a background of chronic inflammation triggered by exposure to infectious agents (hepatotropic viruses), toxic compounds (ethanol), or metabolic impairment. The molecular links that connect inflammation and cancer are not completely known, but evidence gathered over the past few years is beginning to define the precise mechanisms. A central role for cytokines such as interleukin-6 (IL-6) and IL-1 (alpha and beta) in liver cancer has been established in experimental models. Besides these inflammatory mediators, mounting evidence points to the dysregulation of specific growth and survival-related pathways in HCC development. Among them is the pathway governed by the epidermal growth factor receptor (EGFR), which can be bound and activated by a broad family of ligands. Of special relevance is the fact that the EGFR engages in extensive crosstalk with other signaling pathways, serving as a "signaling hub" for an increasing list of growth factors, cytokines, and inflammatory mediators. In this review, we summarize the most recent evidences supporting a role for the EGFR system in inflammation-related cell signaling, with special emphasis in liver inflammation and HCC. The molecular dissection of the pathways connecting the inflammatory reaction and neoplasia will facilitate the development of novel and more effective antitumor strategies.
Collapse
Affiliation(s)
- Carmen Berasain
- Division of Hepatology and Gene Therapy, CIMA-Universidad de Navarra, 31008 Pamplona, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
527
|
Berasain C, Castillo J, Perugorria MJ, Latasa MU, Prieto J, Avila MA. Inflammation and liver cancer: new molecular links . Ann N Y Acad Sci 2009; 1155:206-21. [PMID: 19250206 DOI: 10.1111/j.1749-6632.2009.03704.x] [Citation(s) in RCA: 289] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A connection between inflammation and cancer has been long suspected. Epidemiological studies have established that many tumors occur in association with chronic infectious diseases, and it is also known that persistent inflammation in the absence of infections increases the risk and accelerates the development of cancer. One clear example of inflammation-related cancer is hepatocellular carcinoma (HCC). HCC is a type tumor that slowly unfolds on a background of chronic inflammation mainly triggered by exposure to infectious agents (hepatotropic viruses) or to toxic compounds (ethanol). The molecular links that connect inflammation and cancer are not completely known, but evidences gathered over the past few years are beginning to define the precise mechanisms. In this article we review the most compelling evidences on the role of transcription factors such as NF-kappaB and STAT3, cytokines like IL-6 and IL-1alpha, ligands of the EGF receptor and other inflammatory mediators in cancer development, with special emphasis in HCC. The molecular dissection of the pathways connecting the inflammatory reaction and neoplasia will pave the way for better therapies to treat cancers.
Collapse
Affiliation(s)
- C Berasain
- Division of Hepatology and Gene Therapy, CIMA-Universidad de Navarra, Pamplona, Spain
| | | | | | | | | | | |
Collapse
|
528
|
Moreno M, Bataller R. Cytokines and renin-angiotensin system signaling in hepatic fibrosis. Clin Liver Dis 2008; 12:825-52, ix. [PMID: 18984469 DOI: 10.1016/j.cld.2008.07.013] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Hepatic fibrosis is the result of a complex interplay between resident hepatic cells, infiltrating inflammatory cells, and a number of locally acting peptides called cytokines. Key mediators include transforming growth factor b1, vasoactive substances, adipokines, inflammatory cytokines and chemokines. Angiotensin II, the main effector of the renin-angiotensin system, is a true cytokine that plays a major role in liver fibrosis. Angiotensin II is locally synthesized in the injured liver and induces profibrogenic actions in hepatic stellate cells. Drugs blocking the renin-angiotensin system are promising antifibrotic agents. There are multiple signal transduction pathways involved in cytokine signaling. Drugs interfering intracellular pathways involved in increased collagen production are potential therapies for liver fibrosis.
Collapse
Affiliation(s)
- Montserrat Moreno
- Liver Unit, Institut Clínic de Malalties Digestives i Metabòliques, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Catalonia, Spain
| | | |
Collapse
|
529
|
Hepatic steatosis: a mediator of the metabolic syndrome. Lessons from animal models. Arterioscler Thromb Vasc Biol 2004; 721:87-97. [PMID: 14715643 DOI: 10.1007/978-1-4614-0650-1_6] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Epidemiological studies in humans, as well as experimental studies in animal models, have shown an association between visceral obesity and dyslipidemia, insulin resistance, and type 2 diabetes mellitus. Recently, attention has been focused on the excessive accumulation of triglycerides (TG) in the liver as part of this syndrome. In this review, important principles of the pathophysiological involvement of the liver in the metabolic syndrome obtained in rodent models are summarized. We focus on non-alcoholic causes of steatosis, because the animal experiments we refer to did not include alcohol as an experimental condition. In general, there is continuous cycling and redistribution of non-oxidized fatty acids between different organs. The amount of TG in an intrinsically normal liver is not fixed but can readily be increased by nutritional, metabolic, and endocrine interactions involving TG/free fatty acid (FFA) partitioning and TG/FFA metabolism. Several lines of evidence indicate that hepatic TG accumulation is also a causative factor involved in hepatic insulin resistance. Complex interactions between endocrine, metabolic, and transcriptional pathways are involved in TG-induced hepatic insulin resistance. Therefore, the liver participates passively and actively in the metabolic derangements of the metabolic syndrome. We speculate that similar mechanisms may also be involved in human pathophysiology.
Collapse
|