501
|
Chiaranunt P, Ferrara JLM, Byersdorfer CA. Rethinking the paradigm: How comparative studies on fatty acid oxidation inform our understanding of T cell metabolism. Mol Immunol 2015; 68:564-74. [PMID: 26359186 PMCID: PMC11523081 DOI: 10.1016/j.molimm.2015.07.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 06/15/2015] [Accepted: 07/19/2015] [Indexed: 02/09/2023]
Abstract
The classic paradigm of T cell metabolism posits that activated Teff cells utilize glycolysis to keep pace with increased energetic demands, while resting and Tmem cells rely on the oxidation of fat. In contrast, Teff cells during graft-versus-host disease (GVHD) increase their reliance on oxidative metabolism and, in particular, on fatty acid oxidation (FAO). To explore the potential mechanisms driving adoption of this alternative metabolism, we first review key pathways regulating FAO across a variety of disparate tissue types, including liver, heart, and skeletal muscle. Based upon these comparative studies, we then outline a consensus network of transcriptional and signaling pathways that predict a model for regulating FAO in Teff cells during GVHD. This model raises important implications about the dynamic nature of metabolic reprogramming in T cells and suggests exciting future directions for further study of in vivo T cell metabolism.
Collapse
Affiliation(s)
- Pailin Chiaranunt
- Division of Blood and Marrow Transplant and Cellular Therapies, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, United States
| | - James L M Ferrara
- The Tisch Cancer Institute & Division of Hematology/Medical Oncology, Icahn School of Medicine, Hess Center for Science and Medicine, New York, NY 10029, United States
| | - Craig A Byersdorfer
- Division of Blood and Marrow Transplant and Cellular Therapies, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, United States.
| |
Collapse
|
502
|
Ubaldi M, Cannella N, Ciccocioppo R. Emerging targets for addiction neuropharmacology: From mechanisms to therapeutics. PROGRESS IN BRAIN RESEARCH 2015; 224:251-84. [PMID: 26822362 DOI: 10.1016/bs.pbr.2015.07.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Drug abuse represents a considerable burden of disease and has enormous economic impacts on societies. Over the years, few medications have been developed for clinical use. Their utilization is endowed with several limitations, including partial efficacy or significant side effects. On the other hand, the successful advancement of these compounds provides an important proof of concept for the feasibility of drug development programs in addiction. In recent years, a wealth of information has been generated on the psychological mechanisms, genetic or epigenetic predisposing factors, and neurobiological adaptations induced by drug consumption that interact with each other to contribute to disease progression. It is now clear that addiction develops through phases, from initial recreational use to excessive consumption and compulsive drug seeking, with a shift from positive to negative reinforcement driving motivated behaviors. A greater understanding of these mechanisms has opened new vistas in drug development programs. Researchers' attention has been shifted from investigation of classical targets associated with reward to biological substrates responsible for negative reinforcement, impulse loss of control, and maladaptive mechanisms resulting from protracted drug use. From this research, several new biological targets for the development of innovative therapies have started to emerge. This chapter offers an overview of targets currently under scrutiny for the development of new medications for addiction. This work is not exhaustive but rather it provides a few examples of how this research has advanced in recent years by virtue of studies carried out in our laboratory.
Collapse
Affiliation(s)
- Massimo Ubaldi
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, Italy
| | - Nazzareno Cannella
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
| | - Roberto Ciccocioppo
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, Italy.
| |
Collapse
|
503
|
Gardner LA, Levin MC. Importance of Apolipoprotein A-I in Multiple Sclerosis. Front Pharmacol 2015; 6:278. [PMID: 26635608 PMCID: PMC4654019 DOI: 10.3389/fphar.2015.00278] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 11/04/2015] [Indexed: 12/12/2022] Open
Abstract
Jean-Martin Charcot has first described multiple sclerosis (MS) as a disease of the central nervous system (CNS) over a century ago. MS remains incurable today, and treatment options are limited to disease modifying drugs. Over the years, significant advances in understanding disease pathology have been made in autoimmune and neurodegenerative components. Despite the fact that brain is the most lipid rich organ in human body, the importance of lipid metabolism has not been extensively studied in this disorder. In MS, the CNS is under attack by a person's own immune system. Autoantigens and autoantibodies are known to cause devastation of myelin through up regulation of T-cells and cytokines, which penetrate through the blood-brain barrier to cause inflammation and myelin destruction. The anti-inflammatory role of high-density lipoproteins (HDLs) has been implicated in a plethora of biological processes: vasodilation, immunity to infection, oxidation, inflammation, and apoptosis. However, it is not known what role HDL plays in neurological function and myelin repair in MS. Understanding of lipid metabolism in the CNS and in the periphery might unveil new therapeutic targets and explain the partial success of some existing MS therapies.
Collapse
Affiliation(s)
- Lidia A. Gardner
- Research Service, VA Medical Center, Memphis, TN, USA
- Department of Neurology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Michael C. Levin
- Research Service, VA Medical Center, Memphis, TN, USA
- Department of Neurology, University of Tennessee Health Science Center, Memphis, TN, USA
- Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
504
|
Acute Respiratory Distress Syndrome: Role of Oleic Acid-Triggered Lung Injury and Inflammation. Mediators Inflamm 2015; 2015:260465. [PMID: 26640323 PMCID: PMC4660020 DOI: 10.1155/2015/260465] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 10/25/2015] [Indexed: 01/22/2023] Open
Abstract
Lung injury especially acute respiratory distress syndrome (ARDS) can be triggered by diverse stimuli, including fatty acids and microbes. ARDS affects thousands of people worldwide each year, presenting high mortality rate and having an economic impact. One of the hallmarks of lung injury is edema formation with alveoli flooding. Animal models are used to study lung injury. Oleic acid-induced lung injury is a widely used model resembling the human disease. The oleic acid has been linked to metabolic and inflammatory diseases; here we focus on lung injury. Firstly, we briefly discuss ARDS and secondly we address the mechanisms by which oleic acid triggers lung injury and inflammation.
Collapse
|
505
|
PPARα Is Required for PPARδ Action in Regulation of Body Weight and Hepatic Steatosis in Mice. PPAR Res 2015; 2015:927057. [PMID: 26604919 PMCID: PMC4641930 DOI: 10.1155/2015/927057] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 09/09/2015] [Indexed: 12/24/2022] Open
Abstract
Peroxisome proliferator activated receptors alpha (PPARα) and delta (PPARδ) belong to the nuclear receptor superfamily. PPARα is a target of well established lipid-lowering drugs. PPARδ (also known as PPARβ/δ) has been investigated as a promising antidiabetic drug target; however, the evidence in the literature on PPARδ effect on hepatic lipid metabolism is inconsistent. Mice conditionally expressing human PPARδ demonstrated pronounced weight loss and promoted hepatic steatosis when treated with GW501516 (PPARδ-agonist) when compared to wild type mice. This effect was completely absent in mice with either a dominant negative form of PPARδ or deletion of the DNA binding domain of PPARδ. This confirmed the absolute requirement for PPARδ in the physiological actions of GW501516 and confirmed the potential utility against the human form of this receptor. Surprisingly the genetic deletion of PPARα also abrogated the effect of GW501516 in terms of both weight loss and hepatic lipid accumulation. Also the levels of the PPARα endogenous agonist 16:0/18:1-GPC were shown to be modulated by PPARδ in wild type mice. Our results show that both PPARδ and PPARα receptors are essential for GW501516-driven adipose tissue reduction and subsequently hepatic steatosis, with PPARα working downstream of PPARδ.
Collapse
|
506
|
Peroxisome Proliferator-Activated Receptors and the Heart: Lessons from the Past and Future Directions. PPAR Res 2015; 2015:271983. [PMID: 26587015 PMCID: PMC4637490 DOI: 10.1155/2015/271983] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 10/05/2015] [Indexed: 12/17/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) belong to the nuclear family of ligand activated transcriptional factors and comprise three different isoforms, PPAR-α, PPAR-β/δ, and PPAR-γ. The main role of PPARs is to regulate the expression of genes involved in lipid and glucose metabolism. Several studies have demonstrated that PPAR agonists improve dyslipidemia and glucose control in animals, supporting their potential as a promising therapeutic option to treat diabetes and dyslipidemia. However, substantial differences exist in the therapeutic or adverse effects of specific drug candidates, and clinical studies have yielded inconsistent data on their cardioprotective effects. This review summarizes the current knowledge regarding the molecular function of PPARs and the mechanisms of the PPAR regulation by posttranslational modification in the heart. We also describe the results and lessons learned from important clinical trials on PPAR agonists and discuss the potential future directions for this class of drugs.
Collapse
|
507
|
Díaz P, Harris J, Rosario FJ, Powell TL, Jansson T. Increased placental fatty acid transporter 6 and binding protein 3 expression and fetal liver lipid accumulation in a mouse model of obesity in pregnancy. Am J Physiol Regul Integr Comp Physiol 2015; 309:R1569-77. [PMID: 26491104 DOI: 10.1152/ajpregu.00385.2015] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 10/19/2015] [Indexed: 02/07/2023]
Abstract
Obesity in pregnancy is associated with increased fetal growth and adiposity, which, in part, is determined by transplacental nutrient supply. Trophoblast uptake and intracellular trafficking of lipids are dependent on placental fatty acid transport proteins (FATP), translocase (FAT/CD36), and fatty acid binding proteins (FABP). We hypothesized that maternal obesity in mice leads to increased placental expression of FAT/CD36, FATPs, and FABPs, and lipid accumulation in the fetal liver. C57/BL6J female mice were fed either a control (C; n = 10) or an obesogenic (OB; n = 10) high-fat, high-sugar diet before mating and throughout pregnancy. At E18.5, placentas and fetal livers were collected. Trophoblast plasma membranes (TPM) were isolated from placental homogenates. Expression of FAT/CD36 and FATP (TPM) and FABP (homogenates) was determined by immunoblotting. Gene expression was assessed by RT-quantitative PCR. Sections of fetal livers were stained for Oil Red O, and lipid droplets were quantified. TPM protein expression of FAT/CD36, FATP 2, and FATP 4 was comparable between C and OB groups. Conversely, TPM FATP 6 expression was increased by 35% in OB compared with C placentas without changes in mRNA expression. FABPs 1, 3-5 and PPARγ were expressed in homogenates, and FABP 3 expression increased 27% in OB compared with C placentas; however, no changes were observed in mRNA expression. Lipid droplet accumulation was 10-fold higher in the livers of fetuses from OB compared with C group. We propose that increased lipid transport capacity in obese mice promotes transplacental fatty acid transport and contributes to excess lipid accumulation in the fetal liver.
Collapse
Affiliation(s)
- Paula Díaz
- Department of Pediatrics, Section of Neonatology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado; Department of Obstetrics and Gynecology, University of Texas Health Science Center San Antonio, San Antonio, Texas
| | - Jessica Harris
- Department of Obstetrics and Gynecology, University of Texas Health Science Center San Antonio, San Antonio, Texas
| | - Fredrick J Rosario
- Department of Obstetrics and Gynecology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado; and
| | - Theresa L Powell
- Department of Pediatrics, Section of Neonatology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado; Department of Obstetrics and Gynecology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado; and
| | - Thomas Jansson
- Department of Obstetrics and Gynecology, University of Colorado, Anschutz Medical Campus, Aurora, Colorado; and
| |
Collapse
|
508
|
Frenzel E, Wrenger S, Brügger B, Salipalli S, Immenschuh S, Aggarwal N, Lichtinghagen R, Mahadeva R, Marcondes AMQ, Dinarello CA, Welte T, Janciauskiene S. α1-Antitrypsin Combines with Plasma Fatty Acids and Induces Angiopoietin-like Protein 4 Expression. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2015; 195:3605-16. [PMID: 26363050 PMCID: PMC6232844 DOI: 10.4049/jimmunol.1500740] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 08/06/2015] [Indexed: 11/19/2022]
Abstract
α1-Antitrypsin (A1AT) purified from human plasma upregulates expression and release of angiopoietin-like protein 4 (Angptl4) in adherent human blood monocytes and in human lung microvascular endothelial cells, providing a mechanism for the broad immune-regulatory properties of A1AT independent of its antiprotease activity. In this study, we demonstrate that A1AT (Prolastin), a potent inducer of Angptl4, contains significant quantities of the fatty acids (FA) linoleic acid (C18:2) and oleic acid (C18:1). However, only trace amounts of FAs were present in preparations that failed to increase Angplt4 expression, for example, A1AT (Zemaira) or M-type A1AT purified by affinity chromatography. FA pull-down assays with Western blot analysis revealed a FA-binding ability of A1AT. In human blood-adherent monocytes, A1AT-FA conjugates upregulated expression of Angptl4 (54.9-fold, p < 0.001), FA-binding protein 4 (FABP4) (11.4-fold, p < 0.001), and, to a lesser degree, FA translocase (CD36) (3.1-fold, p < 0.001) relative to A1AT devoid of FA (A1AT-0). These latter effects of A1AT-FA were blocked by inhibitors of peroxisome proliferator-activated receptor (PPAR) β/δ (ST247) and PPARγ (GW9662). When compared with controls, cell pretreatment with ST247 diminished the effect of A1AT-LA on Angptl4 mRNA (11.6- versus 4.1-fold, p < 0.001) and FABP4 mRNA (5.4- versus 2.8-fold, p < 0.001). Similarly, preincubation of cells with GW9662 inhibited inducing effect of A1AT-LA on Angptl4 mRNA (by 2-fold, p < 0.001) and FABP4 mRNA (by 3-fold, p < 0.001). Thus, A1AT binds to FA, and it is this form of A1AT that induces Angptl4 and FABP4 expression via a PPAR-dependent pathway. These findings provide a mechanism for the unexplored area of A1AT biology independent of its antiprotease properties.
Collapse
Affiliation(s)
- Eileen Frenzel
- Department of Respiratory Medicine, Hannover Medical School, 30625 Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hannover, Member of the German Center for Lung Research, 30626 Hannover, Germany
| | - Sabine Wrenger
- Department of Respiratory Medicine, Hannover Medical School, 30625 Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hannover, Member of the German Center for Lung Research, 30626 Hannover, Germany
| | - Britta Brügger
- Biochemistry Center, Heidelberg University, 69120 Heidelberg, Germany
| | - Sandeep Salipalli
- Department of Respiratory Medicine, Hannover Medical School, 30625 Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hannover, Member of the German Center for Lung Research, 30626 Hannover, Germany
| | - Stephan Immenschuh
- Institute for Transfusion Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Nupur Aggarwal
- Department of Respiratory Medicine, Hannover Medical School, 30625 Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hannover, Member of the German Center for Lung Research, 30626 Hannover, Germany
| | - Ralf Lichtinghagen
- Institute of Clinical Chemistry, Hannover Medical School, 30625 Hannover, Germany
| | - Ravi Mahadeva
- Department of Respiratory Medicine, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
| | - A Mario Q Marcondes
- Department of Medicine, University of Washington, Seattle, WA 98195; Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Charles A Dinarello
- Department of Medicine, University of Colorado Denver, Aurora, CO 80045; and Department of Medicine, Radboud University Medical Centre, Nijmegen 30625, the Netherlands
| | - Tobias Welte
- Department of Respiratory Medicine, Hannover Medical School, 30625 Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hannover, Member of the German Center for Lung Research, 30626 Hannover, Germany
| | - Sabina Janciauskiene
- Department of Respiratory Medicine, Hannover Medical School, 30625 Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hannover, Member of the German Center for Lung Research, 30626 Hannover, Germany;
| |
Collapse
|
509
|
Dymond MK. Mammalian phospholipid homeostasis: Homeoviscous adaptation deconstructed by lipidomic data driven modelling. Chem Phys Lipids 2015; 191:136-46. [DOI: 10.1016/j.chemphyslip.2015.09.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 07/14/2015] [Accepted: 09/11/2015] [Indexed: 12/14/2022]
|
510
|
Schoiswohl G, Stefanovic-Racic M, Menke MN, Wills RC, Surlow BA, Basantani MK, Sitnick MT, Cai L, Yazbeck CF, Stolz DB, Pulinilkunnil T, O'Doherty RM, Kershaw EE. Impact of Reduced ATGL-Mediated Adipocyte Lipolysis on Obesity-Associated Insulin Resistance and Inflammation in Male Mice. Endocrinology 2015; 156. [PMID: 26196542 PMCID: PMC4588821 DOI: 10.1210/en.2015-1322] [Citation(s) in RCA: 141] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Emerging evidence suggests that impaired regulation of adipocyte lipolysis contributes to the proinflammatory immune cell infiltration of metabolic tissues in obesity, a process that is proposed to contribute to the development and exacerbation of insulin resistance. To test this hypothesis in vivo, we generated mice with adipocyte-specific deletion of adipose triglyceride lipase (ATGL), the rate-limiting enzyme catalyzing triacylglycerol hydrolysis. In contrast to previous models, adiponectin-driven Cre expression was used for targeted ATGL deletion. The resulting adipocyte-specific ATGL knockout (AAKO) mice were then characterized for metabolic and immune phenotypes. Lean and diet-induced obese AAKO mice had reduced adipocyte lipolysis, serum lipids, systemic lipid oxidation, and expression of peroxisome proliferator-activated receptor alpha target genes in adipose tissue (AT) and liver. These changes did not increase overall body weight or fat mass in AAKO mice by 24 weeks of age, in part due to reduced expression of genes involved in lipid uptake, synthesis, and adipogenesis. Systemic glucose and insulin tolerance were improved in AAKO mice, primarily due to enhanced hepatic insulin signaling, which was accompanied by marked reduction in diet-induced hepatic steatosis as well as hepatic immune cell infiltration and activation. In contrast, although adipocyte ATGL deletion reduced AT immune cell infiltration in response to an acute lipolytic stimulus, it was not sufficient to ameliorate, and may even exacerbate, chronic inflammatory changes that occur in AT in response to diet-induced obesity.
Collapse
Affiliation(s)
- Gabriele Schoiswohl
- Division of Endocrinology and Metabolism (G.S., M.S.-R., R.C.W., B.A.S., M.K.B., M.T.S., L.C., C.F.Y., R.M.O., E.E.K.), Department of Medicine, and Department of Cell Biology (D.B.S.), University of Pittsburgh, Pittsburgh, Pennsylvania 15261; Department of Obstetrics, Gynecology, and Reproductive Sciences (M.N.M.), Magee-Womens Hospital, University of Pittsburgh, Pittsburgh, Pennsylvania 15213; and Department of Biochemistry and Molecular Biology (T.P.), Dalhousie Medicine New Brunswick, Dalhousie University, St John, Canada NB E2L 4L5
| | - Maja Stefanovic-Racic
- Division of Endocrinology and Metabolism (G.S., M.S.-R., R.C.W., B.A.S., M.K.B., M.T.S., L.C., C.F.Y., R.M.O., E.E.K.), Department of Medicine, and Department of Cell Biology (D.B.S.), University of Pittsburgh, Pittsburgh, Pennsylvania 15261; Department of Obstetrics, Gynecology, and Reproductive Sciences (M.N.M.), Magee-Womens Hospital, University of Pittsburgh, Pittsburgh, Pennsylvania 15213; and Department of Biochemistry and Molecular Biology (T.P.), Dalhousie Medicine New Brunswick, Dalhousie University, St John, Canada NB E2L 4L5
| | - Marie N Menke
- Division of Endocrinology and Metabolism (G.S., M.S.-R., R.C.W., B.A.S., M.K.B., M.T.S., L.C., C.F.Y., R.M.O., E.E.K.), Department of Medicine, and Department of Cell Biology (D.B.S.), University of Pittsburgh, Pittsburgh, Pennsylvania 15261; Department of Obstetrics, Gynecology, and Reproductive Sciences (M.N.M.), Magee-Womens Hospital, University of Pittsburgh, Pittsburgh, Pennsylvania 15213; and Department of Biochemistry and Molecular Biology (T.P.), Dalhousie Medicine New Brunswick, Dalhousie University, St John, Canada NB E2L 4L5
| | - Rachel C Wills
- Division of Endocrinology and Metabolism (G.S., M.S.-R., R.C.W., B.A.S., M.K.B., M.T.S., L.C., C.F.Y., R.M.O., E.E.K.), Department of Medicine, and Department of Cell Biology (D.B.S.), University of Pittsburgh, Pittsburgh, Pennsylvania 15261; Department of Obstetrics, Gynecology, and Reproductive Sciences (M.N.M.), Magee-Womens Hospital, University of Pittsburgh, Pittsburgh, Pennsylvania 15213; and Department of Biochemistry and Molecular Biology (T.P.), Dalhousie Medicine New Brunswick, Dalhousie University, St John, Canada NB E2L 4L5
| | - Beth A Surlow
- Division of Endocrinology and Metabolism (G.S., M.S.-R., R.C.W., B.A.S., M.K.B., M.T.S., L.C., C.F.Y., R.M.O., E.E.K.), Department of Medicine, and Department of Cell Biology (D.B.S.), University of Pittsburgh, Pittsburgh, Pennsylvania 15261; Department of Obstetrics, Gynecology, and Reproductive Sciences (M.N.M.), Magee-Womens Hospital, University of Pittsburgh, Pittsburgh, Pennsylvania 15213; and Department of Biochemistry and Molecular Biology (T.P.), Dalhousie Medicine New Brunswick, Dalhousie University, St John, Canada NB E2L 4L5
| | - Mahesh K Basantani
- Division of Endocrinology and Metabolism (G.S., M.S.-R., R.C.W., B.A.S., M.K.B., M.T.S., L.C., C.F.Y., R.M.O., E.E.K.), Department of Medicine, and Department of Cell Biology (D.B.S.), University of Pittsburgh, Pittsburgh, Pennsylvania 15261; Department of Obstetrics, Gynecology, and Reproductive Sciences (M.N.M.), Magee-Womens Hospital, University of Pittsburgh, Pittsburgh, Pennsylvania 15213; and Department of Biochemistry and Molecular Biology (T.P.), Dalhousie Medicine New Brunswick, Dalhousie University, St John, Canada NB E2L 4L5
| | - Mitch T Sitnick
- Division of Endocrinology and Metabolism (G.S., M.S.-R., R.C.W., B.A.S., M.K.B., M.T.S., L.C., C.F.Y., R.M.O., E.E.K.), Department of Medicine, and Department of Cell Biology (D.B.S.), University of Pittsburgh, Pittsburgh, Pennsylvania 15261; Department of Obstetrics, Gynecology, and Reproductive Sciences (M.N.M.), Magee-Womens Hospital, University of Pittsburgh, Pittsburgh, Pennsylvania 15213; and Department of Biochemistry and Molecular Biology (T.P.), Dalhousie Medicine New Brunswick, Dalhousie University, St John, Canada NB E2L 4L5
| | - Lingzhi Cai
- Division of Endocrinology and Metabolism (G.S., M.S.-R., R.C.W., B.A.S., M.K.B., M.T.S., L.C., C.F.Y., R.M.O., E.E.K.), Department of Medicine, and Department of Cell Biology (D.B.S.), University of Pittsburgh, Pittsburgh, Pennsylvania 15261; Department of Obstetrics, Gynecology, and Reproductive Sciences (M.N.M.), Magee-Womens Hospital, University of Pittsburgh, Pittsburgh, Pennsylvania 15213; and Department of Biochemistry and Molecular Biology (T.P.), Dalhousie Medicine New Brunswick, Dalhousie University, St John, Canada NB E2L 4L5
| | - Cynthia F Yazbeck
- Division of Endocrinology and Metabolism (G.S., M.S.-R., R.C.W., B.A.S., M.K.B., M.T.S., L.C., C.F.Y., R.M.O., E.E.K.), Department of Medicine, and Department of Cell Biology (D.B.S.), University of Pittsburgh, Pittsburgh, Pennsylvania 15261; Department of Obstetrics, Gynecology, and Reproductive Sciences (M.N.M.), Magee-Womens Hospital, University of Pittsburgh, Pittsburgh, Pennsylvania 15213; and Department of Biochemistry and Molecular Biology (T.P.), Dalhousie Medicine New Brunswick, Dalhousie University, St John, Canada NB E2L 4L5
| | - Donna B Stolz
- Division of Endocrinology and Metabolism (G.S., M.S.-R., R.C.W., B.A.S., M.K.B., M.T.S., L.C., C.F.Y., R.M.O., E.E.K.), Department of Medicine, and Department of Cell Biology (D.B.S.), University of Pittsburgh, Pittsburgh, Pennsylvania 15261; Department of Obstetrics, Gynecology, and Reproductive Sciences (M.N.M.), Magee-Womens Hospital, University of Pittsburgh, Pittsburgh, Pennsylvania 15213; and Department of Biochemistry and Molecular Biology (T.P.), Dalhousie Medicine New Brunswick, Dalhousie University, St John, Canada NB E2L 4L5
| | - Thomas Pulinilkunnil
- Division of Endocrinology and Metabolism (G.S., M.S.-R., R.C.W., B.A.S., M.K.B., M.T.S., L.C., C.F.Y., R.M.O., E.E.K.), Department of Medicine, and Department of Cell Biology (D.B.S.), University of Pittsburgh, Pittsburgh, Pennsylvania 15261; Department of Obstetrics, Gynecology, and Reproductive Sciences (M.N.M.), Magee-Womens Hospital, University of Pittsburgh, Pittsburgh, Pennsylvania 15213; and Department of Biochemistry and Molecular Biology (T.P.), Dalhousie Medicine New Brunswick, Dalhousie University, St John, Canada NB E2L 4L5
| | - Robert M O'Doherty
- Division of Endocrinology and Metabolism (G.S., M.S.-R., R.C.W., B.A.S., M.K.B., M.T.S., L.C., C.F.Y., R.M.O., E.E.K.), Department of Medicine, and Department of Cell Biology (D.B.S.), University of Pittsburgh, Pittsburgh, Pennsylvania 15261; Department of Obstetrics, Gynecology, and Reproductive Sciences (M.N.M.), Magee-Womens Hospital, University of Pittsburgh, Pittsburgh, Pennsylvania 15213; and Department of Biochemistry and Molecular Biology (T.P.), Dalhousie Medicine New Brunswick, Dalhousie University, St John, Canada NB E2L 4L5
| | - Erin E Kershaw
- Division of Endocrinology and Metabolism (G.S., M.S.-R., R.C.W., B.A.S., M.K.B., M.T.S., L.C., C.F.Y., R.M.O., E.E.K.), Department of Medicine, and Department of Cell Biology (D.B.S.), University of Pittsburgh, Pittsburgh, Pennsylvania 15261; Department of Obstetrics, Gynecology, and Reproductive Sciences (M.N.M.), Magee-Womens Hospital, University of Pittsburgh, Pittsburgh, Pennsylvania 15213; and Department of Biochemistry and Molecular Biology (T.P.), Dalhousie Medicine New Brunswick, Dalhousie University, St John, Canada NB E2L 4L5
| |
Collapse
|
511
|
Liu TW, Heden TD, Matthew Morris E, Fritsche KL, Vieira-Potter VJ, Thyfault JP. High-Fat Diet Alters Serum Fatty Acid Profiles in Obesity Prone Rats: Implications for In Vitro Studies. Lipids 2015; 50:997-1008. [PMID: 26318121 DOI: 10.1007/s11745-015-4061-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 08/10/2015] [Indexed: 12/27/2022]
Abstract
High-fat diets (HFD) are commonly used in rodents to induce obesity, increase serum fatty acids and induce lipotoxicity in various organs. In vitro studies commonly utilize individual free fatty acids (FFA) to study lipid exposure in an effort to model what is occurring in vivo; however, these approaches are not physiological as tissues are exposed to multiple fatty acids in vivo. Here we characterize circulating lipids in obesity-prone rats fed an HFD in both fasted and fed states with the goal of developing physiologically relevant fatty acid mixtures for subsequent in vitro studies. Rats were fed an HFD (60% kcal fat) or a control diet (10% kcal fat) for 3 weeks; liver tissue and both portal and systemic blood were collected. Fatty acid profiles and absolute concentrations of triglycerides (TAG) and FFA in the serum and TAG, diacylglycerol (DAG) and phospholipids in the liver were measured. Surprisingly, both systemic and portal serum TAG were ~40% lower in HFD-fed compared to controls. Overall, compared to the control diet, HFD feeding consistently induced an increase in the proportion of circulating polyunsaturated fatty acids (PUFA) with a concomitant decline in monounsaturated fatty acids (MUFA) and saturated fatty acids (SFA) in both serum TAG and FFA. The elevations of PUFA were mostly attributed to increases in n-6 PUFA, linoleic acid and arachidonic acid. In conclusion, fatty acid mixtures enriched with linoleic and arachidonic acid in addition to SFA and MUFA should be utilized for in vitro studies attempting to model lipid exposures that occur during in vivo HFD conditions.
Collapse
Affiliation(s)
- Tzu-Wen Liu
- Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, 65211, USA. .,Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| | - Timothy D Heden
- Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, 65211, USA. .,Department of Kinesiology, East Carolina University, Greenville, NC, 27843, USA.
| | - E Matthew Morris
- Molecular and Integrative Physiology, University of Kansas Medical Center, 2067 Hemenway Life Sciences and Innovation Center, MS: 3043, 3901 Rainbow Blvd, Kansas, KS, 66160, USA.
| | - Kevin L Fritsche
- Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, 65211, USA. .,Animal Sciences, University of Missouri, Columbia, MO, 65211, USA.
| | | | - John P Thyfault
- Molecular and Integrative Physiology, University of Kansas Medical Center, 2067 Hemenway Life Sciences and Innovation Center, MS: 3043, 3901 Rainbow Blvd, Kansas, KS, 66160, USA. .,Research Service, Kansas City VA Medical Center, Kansas, MO, 64128, USA.
| |
Collapse
|
512
|
Gelin M, Delfosse V, Allemand F, Hoh F, Sallaz-Damaz Y, Pirocchi M, Bourguet W, Ferrer JL, Labesse G, Guichou JF. Combining 'dry' co-crystallization and in situ diffraction to facilitate ligand screening by X-ray crystallography. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2015; 71:1777-87. [PMID: 26249358 DOI: 10.1107/s1399004715010342] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 05/29/2015] [Indexed: 12/16/2023]
Abstract
X-ray crystallography is an established technique for ligand screening in fragment-based drug-design projects, but the required manual handling steps - soaking crystals with ligand and the subsequent harvesting - are tedious and limit the throughput of the process. Here, an alternative approach is reported: crystallization plates are pre-coated with potential binders prior to protein crystallization and X-ray diffraction is performed directly 'in situ' (or in-plate). Its performance is demonstrated on distinct and relevant therapeutic targets currently being studied for ligand screening by X-ray crystallography using either a bending-magnet beamline or a rotating-anode generator. The possibility of using DMSO stock solutions of the ligands to be coated opens up a route to screening most chemical libraries.
Collapse
Affiliation(s)
- Muriel Gelin
- CNRS, UMR5048 - Université de Montpellier, Centre de Biochimie Structurale, 34090 Montpellier, France
| | - Vanessa Delfosse
- CNRS, UMR5048 - Université de Montpellier, Centre de Biochimie Structurale, 34090 Montpellier, France
| | - Frédéric Allemand
- CNRS, UMR5048 - Université de Montpellier, Centre de Biochimie Structurale, 34090 Montpellier, France
| | - François Hoh
- CNRS, UMR5048 - Université de Montpellier, Centre de Biochimie Structurale, 34090 Montpellier, France
| | | | | | - William Bourguet
- CNRS, UMR5048 - Université de Montpellier, Centre de Biochimie Structurale, 34090 Montpellier, France
| | | | - Gilles Labesse
- CNRS, UMR5048 - Université de Montpellier, Centre de Biochimie Structurale, 34090 Montpellier, France
| | - Jean François Guichou
- CNRS, UMR5048 - Université de Montpellier, Centre de Biochimie Structurale, 34090 Montpellier, France
| |
Collapse
|
513
|
Yan S, Zhang H, Zheng F, Sheng N, Guo X, Dai J. Perfluorooctanoic acid exposure for 28 days affects glucose homeostasis and induces insulin hypersensitivity in mice. Sci Rep 2015; 5:11029. [PMID: 26066376 PMCID: PMC4464286 DOI: 10.1038/srep11029] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 05/13/2015] [Indexed: 01/09/2023] Open
Abstract
Perfluoroalkyl acids (PFAAs) are widely used in many applications due to their unique physical and chemical characteristics. Because of the increasing prevalence of metabolic syndromes, including obesity, dyslipidemia and insulin resistance, concern has arisen about the roles of environmental pollutants in such diseases. Earlier epidemiologic studies showed a potential association between perfluorooctanoic acid (PFOA) and glucose metabolism, but how PFOA influences glucose homeostasis is still unknown. Here, we report on the modulation of the phosphatidylinositol 3-kinase-serine/threonine protein kinase (PI3K-AKT) signaling pathway in the livers of mice after 28 d of exposure to PFOA. Compared with normal mice, PFOA exposure significantly decreased the expression of the phosphatase and tensin homologue (PTEN) protein and affected the PI3K-AKT signaling pathway in the liver. Tolerance tests further indicated that PFOA exposure induced higher insulin sensitivity and glucose tolerance in mice. Biochemical analysis revealed that PFOA exposure reduced hepatic glycogen synthesis, which might be attributed to gluconeogenesis inhibition. The levels of several circulating proteins were altered after PFOA exposure, including proteins potentially related to diabetes and liver disease. Our results suggest that PFOA affected glucose metabolism and induced insulin hypersensitivity in mice.
Collapse
Affiliation(s)
- Shengmin Yan
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Hongxia Zhang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Fei Zheng
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Medicine, Shanxi Agricultural University, Taigu 030801, P.R. China
| | - Nan Sheng
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Xuejiang Guo
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, P.R. China
| | - Jiayin Dai
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P.R. China
| |
Collapse
|
514
|
Wawrzyniak M, Pich C, Gross B, Schütz F, Fleury S, Quemener S, Sgandurra M, Bouchaert E, Moret C, Mury L, Rommens C, Mottaz H, Dombrowicz D, Michalik L. Endothelial, but not smooth muscle, peroxisome proliferator-activated receptor β/δ regulates vascular permeability and anaphylaxis. J Allergy Clin Immunol 2015; 135:1625-35.e5. [DOI: 10.1016/j.jaci.2014.11.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 10/21/2014] [Accepted: 11/04/2014] [Indexed: 01/07/2023]
|
515
|
Eriksson P, Aine M, Veerla S, Liedberg F, Sjödahl G, Höglund M. Molecular subtypes of urothelial carcinoma are defined by specific gene regulatory systems. BMC Med Genomics 2015; 8:25. [PMID: 26008846 PMCID: PMC4446831 DOI: 10.1186/s12920-015-0101-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 05/20/2015] [Indexed: 12/13/2022] Open
Abstract
Background Molecular stratification of bladder cancer has revealed gene signatures differentially expressed across tumor subtypes. While these signatures provide important insights into subtype biology, the transcriptional regulation that governs these signatures is not well characterized. Methods In this study, we use publically available ChIP-Seq data on regulatory factor binding in order to link transcription factors to gene signatures defining molecular subtypes of urothelial carcinoma. Results We identify PPARG and STAT3, as well as ADIRF, a novel regulator of fatty acid metabolism, as putative mediators of the SCC-like phenotype. We link the PLK1-FOXM1 axis to the rapidly proliferating Genomically Unstable and SCC-like subtypes and show that differentiation programs involving PPARG/RXRA, FOXA1/GATA3 and HOXA/HOXB are differentially expressed in UC molecular subtypes. We show that gene signatures and regulatory systems defined in urothelial carcinoma operate in breast cancer in a subtype specific manner, suggesting similarities at the gene regulatory level of these two tumor types. Conclusions At the gene regulatory level Urobasal, Genomically Unstable and SCC-like tumors represents three fundamentally different tumor types. Urobasal tumors maintain an apparent urothelial differentiation axis composed of PPARG/RXRA, FOXA1/GATA3 and anterior HOXA and HOXB genes. Genomically Unstable and SCC-like tumors differ from Urobasal tumors by a strong increase of proliferative activity through the PLK1-FOXM1 axis operating in both subtypes. However, whereas SCC-like tumors evade urothelial differentiation by a block in differentiation through strong downregulation of PPARG/RXRA, FOXA1/GATA3, our data indicates that Genomically Unstable tumors evade differentiation in a more dynamic manner. Electronic supplementary material The online version of this article (doi:10.1186/s12920-015-0101-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Pontus Eriksson
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, Lund, Skåne, SE-223 81, Sweden.
| | - Mattias Aine
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, Lund, Skåne, SE-223 81, Sweden.
| | - Srinivas Veerla
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, Lund, Skåne, SE-223 81, Sweden.
| | - Fredrik Liedberg
- Division of Urological Research, Department of Clinical Sciences Malmö, Lund University, Malmö, Skåne, SE-205 02, Sweden.
| | - Gottfrid Sjödahl
- Division of Urological Research, Department of Clinical Sciences Malmö, Lund University, Malmö, Skåne, SE-205 02, Sweden.
| | - Mattias Höglund
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, Lund, Skåne, SE-223 81, Sweden.
| |
Collapse
|
516
|
A metabolomic study of the PPARδ agonist GW501516 for enhancing running endurance in Kunming mice. Sci Rep 2015; 5:9884. [PMID: 25943561 PMCID: PMC4421799 DOI: 10.1038/srep09884] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 03/24/2015] [Indexed: 11/12/2022] Open
Abstract
Exercise can increase peroxisome proliferator-activated receptor-δ (PPARδ) expression in skeletal muscle. PPARδ regulates muscle metabolism and reprograms muscle fibre types to enhance running endurance. This study utilized metabolomic profiling to examine the effects of GW501516, a PPARδ agonist, on running endurance in mice. While training alone increased the exhaustive running performance, GW501516 treatment enhanced running endurance and the proportion of succinate dehydrogenase (SDH)-positive muscle fibres in both trained and untrained mice. Furthermore, increased levels of intermediate metabolites and key enzymes in fatty acid oxidation pathways were observed following training and/or treatment. Training alone increased serum inositol, glucogenic amino acids, and branch chain amino acids. However, GW501516 increased serum galactose and β-hydroxybutyrate, independent of training. Additionally, GW501516 alone raised serum unsaturated fatty acid levels, especially polyunsaturated fatty acids, but levels increased even more when combined with training. These findings suggest that mechanisms behind enhanced running capacity are not identical for GW501516 and training. Training increases energy availability by promoting catabolism of proteins, and gluconeogenesis, whereas GW501516 enhances specific consumption of fatty acids and reducing glucose utilization.
Collapse
|
517
|
Lecca D, Nevin DK, Mulas G, Casu MA, Diana A, Rossi D, Sacchetti G, Fayne D, Carta AR. Neuroprotective and anti-inflammatory properties of a novel non-thiazolidinedione PPARγ agonist in vitro and in MPTP-treated mice. Neuroscience 2015; 302:23-35. [PMID: 25907448 DOI: 10.1016/j.neuroscience.2015.04.026] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 03/12/2015] [Accepted: 04/11/2015] [Indexed: 11/29/2022]
Abstract
Peroxisome proliferator-activated receptor (PPAR)γ is a potential pharmacological target for disease-modification in Parkinson's disease (PD), mainly acting by modulating the neuroinflammatory response. However, currently available agonists thiazolidinediones (TZDs) present limitations due to safety concerns. We evaluated a novel thiobarbituric-like compound MDG548, which acts as a functional PPARγ agonist displaying higher and selective binding affinity as compared to TZDs. Neuroprotection by MDG548 was tested in vitro and in a mouse MPTP model of PD, and neuroinflammation was investigated as a putative underlying mechanism. Viability assay on rat cortical neurons showed lack of cytotoxic effect in the dose-range of 100 nM-10 μM, which was therefore used for testing in vitro protection against H2O2 and MPP+ neurotoxicity. MDG548 dose-dependently increased cell viability of rat cortical neurons co-treated with H2O2 or pre-exposed to MDG548 prior to H2O2. Moreover, MDG548 induced neuroprotection in MPP+-treated PC12 cells. NF-kB activation was investigated to assess anti-inflammatory activity. MDG548 dose-dependently decreased NF-kB activation induced by LPS (100 ng/100ml) in HEK-Blue-hTLR4 cells. Given the supposed cancer risk of other PPARγ agonists, Ames test for genotoxicity was performed in Salmonella typhimurium TA100 and TA98 strains, showing that MDG548 was not genotoxic. In vivo, BL/6J mice were treated with MPTP (20mg/kg i.p. once/day for 4 days) in association with saline or MDG548 (2, 5, 10 mg/kg i.p.). Stereological counting showed that MDG548 prevented the MPTP-induced reduction in TH-positive cells in the substantia nigra compacta (SNc) at all doses tested. Moreover, MDG548 reduced reactive microglia and iNOS induction in the SNc. MDG548, being a non-TZD compound with high PPARγ affinity, void of genotoxicity, and with in vitro as well as in vivo neuroprotective properties, provides a promising alternative in the search for safer PPARγ agonists to be tested as potential disease-modifying drugs in PD.
Collapse
Affiliation(s)
- D Lecca
- Department of Biomedical Sciences, University of Cagliari, Italy
| | - D K Nevin
- School of Biochemistry & Immunology, Trinity College, Dublin, Ireland
| | - G Mulas
- Department of Biomedical Sciences, University of Cagliari, Italy
| | - M A Casu
- CNR-Institute of Translational Pharmacology, U.O.S. of Cagliari, Italy
| | - A Diana
- Department of Biomedical Sciences, University of Cagliari, Italy
| | - D Rossi
- Department of Life Science and Biotechnology, University of Ferrara, Italy
| | - G Sacchetti
- Department of Life Science and Biotechnology, University of Ferrara, Italy
| | | | - A R Carta
- Department of Biomedical Sciences, University of Cagliari, Italy
| |
Collapse
|
518
|
Maresca V, Flori E, Picardo M. Skin phototype: a new perspective. Pigment Cell Melanoma Res 2015; 28:378-89. [DOI: 10.1111/pcmr.12365] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 03/16/2015] [Indexed: 12/21/2022]
Affiliation(s)
- Vittoria Maresca
- Laboratory of Cutaneous Physiopathology and Integrated Centre of Metabolomics Research; San Gallicano Dermatologic Institute; Rome Italy
| | - Enrica Flori
- Laboratory of Cutaneous Physiopathology and Integrated Centre of Metabolomics Research; San Gallicano Dermatologic Institute; Rome Italy
| | - Mauro Picardo
- Laboratory of Cutaneous Physiopathology and Integrated Centre of Metabolomics Research; San Gallicano Dermatologic Institute; Rome Italy
| |
Collapse
|
519
|
Ann SJ, Chung JH, Park BH, Kim SH, Jang J, Park S, Kang SM, Lee SH. PPARα agonists inhibit inflammatory activation of macrophages through upregulation of β-defensin 1. Atherosclerosis 2015; 240:389-97. [PMID: 25881202 DOI: 10.1016/j.atherosclerosis.2015.04.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 03/10/2015] [Accepted: 04/02/2015] [Indexed: 11/30/2022]
Abstract
BACKGROUND Effects of peroxisome proliferator-activated receptor alpha (PPARα) agonists on cardiovascular outcome have been controversial. Although these agents primarily affect lipoprotein metabolism, their pleiotropic anti-inflammatory effect is one of the potential anti-atherosclerotic mechanisms. This study aimed to evaluate the effect of fenofibrate and gemfibrozil on inflammation in macrophages and reveal pathways these agents may affect. METHODS AND RESULTS The two PPARα agonists inhibited secretion of CXCL2, TNF-α, IL-6, activation of p65 of NF-κB, ERK, and TLR4 expression. These changes occurred simultaneously with upregulation and secretion of β-defensin 1, an inflammation-modulating peptide. To demonstrate the role of β-defensin 1, it was knocked-down by target-specific siRNA. The effects of PPARα agonists on TLR4 expression and chemokine secretion were obviously abrogated with this treatment. In experiments investigating whether β-defensin 1 acts extracellularly, inflammatory chemokines decreased significantly after the addition of recombinant β-defensin 1 or conditioned media to cells. In experiments designed to clarify if the effects of the two agents are PPARα-dependent, induction of mRNA and secretion β-defensin 1 and inhibition of chemokine release were clearly reduced with GW6471, a PPARα blocker. CONCLUSIONS Our results reveal the pathways by which fenofibrate and gemfibrozil inhibit LPS-induced inflammatory activation of macrophages. This study elucidated a novel anti-inflammatory mechanism that acts through PPARα, β-defensin 1, and TLR4 pathways.
Collapse
Affiliation(s)
- Soo-Jin Ann
- Division of Cardiology, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ji Hyung Chung
- Department of Applied Bioscience, School of Biomedical Science, Cha University, Seongnam, Republic of Korea
| | - Byung Hee Park
- Division of Cardiology, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Soo Hyuk Kim
- Division of Cardiology, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jiyoung Jang
- Department of Microbiology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sungha Park
- Division of Cardiology, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea; Cardiovascular Research Institute, Yonsei University Health System, Seoul, Republic of Korea
| | - Seok-Min Kang
- Division of Cardiology, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea; Cardiovascular Research Institute, Yonsei University Health System, Seoul, Republic of Korea
| | - Sang-Hak Lee
- Division of Cardiology, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea; Cardiovascular Research Institute, Yonsei University Health System, Seoul, Republic of Korea.
| |
Collapse
|
520
|
Boss M, Kemmerer M, Brüne B, Namgaladze D. FABP4 inhibition suppresses PPARγ activity and VLDL-induced foam cell formation in IL-4-polarized human macrophages. Atherosclerosis 2015; 240:424-30. [PMID: 25897794 DOI: 10.1016/j.atherosclerosis.2015.03.042] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 02/26/2015] [Accepted: 03/30/2015] [Indexed: 01/06/2023]
Abstract
OBJECTIVE Macrophages, converted to lipid-loaded foam cells, accumulate in atherosclerotic lesions. Macrophage lipid metabolism is transcriptionally regulated by peroxisome proliferator-activated receptor gamma (PPARγ), and its target gene fatty acid binding protein 4 (FABP4) accelerates the progression of atherosclerosis in mouse models. Since expression of PPARγ and FABP4 is increased upon interleukin-4 (IL-4)-induced macrophage polarization, we aimed to investigate the role of FABP4 in human IL-4-polarized macrophages. METHODS AND RESULTS We investigated the impact of FABP4 on PPARγ-dependent gene expression in primary human monocytes differentiated to macrophages in the presence of IL-4. IL-4 increased PPARγ and its target genes lipoprotein lipase (LPL) and FABP4 compared to non-polarized or LPS/interferon γ-stimulated macrophages. LPL expression correlated with increased very low density lipoprotein (VLDL)-induced triglyceride accumulation in IL-4-polarized macrophages, which was sensitive to inhibition of lipolysis or PPARγ antagonism. Inhibition of FABP4 during differentiation using chemical inhibitors BMS309403 and HTS01037 or FABP4 siRNA decreased the expression of FABP4 and LPL, and reduced lipid accumulation in macrophages treated with VLDL. FABP4 or LPL inhibition also reduced the expression of inflammatory mediators chemokine (C-C motif) ligand 2 (CCL2) and IL-1β in response to VLDL in IL-4-polarized macrophages. PPARγ luciferase reporter assays confirmed that FABP4 supports fatty acid-induced PPARγ activation. CONCLUSION Our findings suggest that IL-4 induces a lipid-accumulating macrophage phenotype by activating PPARγ and subsequent LPL expression. Inhibition of FABP4 decreases VLDL-induced foam cell formation, indicating that anti-atherosclerotic effects achieved by FABP4 inhibition in mouse models may be feasible in the human system as well.
Collapse
Affiliation(s)
- Marcel Boss
- Institute of Biochemistry 1, Faculty of Medicine, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Marina Kemmerer
- Institute of Biochemistry 1, Faculty of Medicine, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Bernhard Brüne
- Institute of Biochemistry 1, Faculty of Medicine, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Dmitry Namgaladze
- Institute of Biochemistry 1, Faculty of Medicine, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany.
| |
Collapse
|
521
|
Manor ML, Cleveland BM, Kenney PB, Yao J, Leeds T. Differences in growth, fillet quality, and fatty acid metabolism-related gene expression between juvenile male and female rainbow trout. FISH PHYSIOLOGY AND BIOCHEMISTRY 2015; 41:533-47. [PMID: 25673423 DOI: 10.1007/s10695-015-0027-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 02/02/2015] [Indexed: 05/09/2023]
Abstract
Sexual maturation occurs at the expense of stored energy and nutrients, including lipids; however, little is known regarding sex effects on nutrient regulatory mechanisms in rainbow trout prior to maturity. Thirty-two, 14-month-old, male and female rainbow trout were sampled for growth, carcass yield, fillet composition, and gene expression of liver, white muscle, and visceral adipose tissue. Growth parameters, including gonadosomatic index, were not affected by sex. Females had higher percent separable muscle yield, but there were no sex effects on fillet proximate composition. Fillet shear force indicated females produce firmer fillets than males. Male livers had greater expression of three cofactors within the mTOR signaling pathway that act to inhibit TORC1 assembly; mo25, rictor, and pras40. Male liver also exhibited increased expression of β-oxidation genes cpt1b and ehhadh. These findings are indicative of increased mitochondrial β-oxidation in male liver. Females exhibited increased expression of the mTOR cofactor raptor in white muscle and had higher expression levels of several genes within the fatty acid synthesis pathway, including gpat, srebp1, scd1, and cd36. Female muscle also had increased expression of β-oxidation genes cpt1d and cpt2. Increased expression of both fatty acid synthesis and β-oxidation genes suggests female muscle may have greater fatty acid turnover. Differences between sexes were primarily associated with variation of gene expression within the mTOR signaling pathway. Overall, data suggest there is differential regulation of gene expression in male and female rainbow trout tissues prior to the onset of sexual maturity that may lead to nutrient repartitioning during maturation.
Collapse
Affiliation(s)
- Meghan L Manor
- Division of Animal and Nutritional Sciences, Davis College of Agriculture, Forestry, and Consumer Sciences, West Virginia University, 1042 Agricultural Sciences Building, PO Box 6108, Morgantown, WV, 26505-6108, USA,
| | | | | | | | | |
Collapse
|
522
|
Selection of reference genes for gene expression studies related to intramuscular fat deposition in Capra hircus skeletal muscle. PLoS One 2015; 10:e0121280. [PMID: 25794179 PMCID: PMC4368700 DOI: 10.1371/journal.pone.0121280] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 01/29/2015] [Indexed: 01/12/2023] Open
Abstract
The identification of suitable reference genes is critical for obtaining reliable results from gene expression studies using quantitative real-time PCR (qPCR) because the expression of reference genes may vary considerably under different experimental conditions. In most cases, however, commonly used reference genes are employed in data normalization without proper validation, which may lead to incorrect data interpretation. Here, we aim to select a set of optimal reference genes for the accurate normalization of gene expression associated with intramuscular fat (IMF) deposition during development. In the present study, eight reference genes (PPIB, HMBS, RPLP0, B2M, YWHAZ, 18S, GAPDH and ACTB) were evaluated by three different algorithms (geNorm, NormFinder and BestKeeper) in two types of muscle tissues (longissimus dorsi muscle and biceps femoris muscle) across different developmental stages. All three algorithms gave similar results. PPIB and HMBS were identified as the most stable reference genes, while the commonly used reference genes 18S and GAPDH were the most variably expressed, with expression varying dramatically across different developmental stages. Furthermore, to reveal the crucial role of appropriate reference genes in obtaining a reliable result, analysis of PPARG expression was performed by normalization to the most and the least stable reference genes. The relative expression levels of PPARG normalized to the most stable reference genes greatly differed from those normalized to the least stable one. Therefore, evaluation of reference genes must be performed for a given experimental condition before the reference genes are used. PPIB and HMBS are the optimal reference genes for analysis of gene expression associated with IMF deposition in skeletal muscle during development.
Collapse
|
523
|
Gao D, Zhang YL, Xu P, Lin YX, Yang FQ, Liu JH, Zhu HW, Xia ZN. In vitro evaluation of dual agonists for PPARγ/β from the flower of Edgeworthia gardneri (wall.) Meisn. JOURNAL OF ETHNOPHARMACOLOGY 2015; 162:14-19. [PMID: 25557029 DOI: 10.1016/j.jep.2014.12.034] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 09/17/2014] [Accepted: 12/22/2014] [Indexed: 06/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE In Tibet, the flower of Edgeworthia gardneri (Wall.) Meisn., locally named "Lvluohua, [symbols: see text]", has been traditionally used to treat diabetes mellitus for many years. AIM OF THIS STUDY To evaluate the activity of dual agonists for PPARγ/β from the flower of E.gardneri in vitro. MATERIALS AND METHODS HeLa cells were transiently co-transfected with the re-constructed plasmids of pBIND-PPARγ-LBD or pBIND-PPARβ-LBD and rL4.35. The activities of crude extracts, secondary fractions and compounds from the flower of E.gardneri were evaluated with the transfected cells. Rosiglitazone (at 0.5 μg/mL) and L-165041 (at 0.5 μg/mL) were used as the positive controls for PPARγ and PPARβ respectively. RESULTS The results demonstrated that n-hexane, ethyl acetate and n-butanol extracts from the flower of E.gardneri were able to significantly activate PPARγ and PPARβ respectively, and the activity of ethyl acetate extract was much better. We further observed that, among the 11 secondary fractions of ethyl acetate extract, the fr. 9 could activate PPARγ and PPARβ significantly. Moreover, umbelliferone (from fr.9) and pentadecanoic acid could activate PPARγ and PPARβ at the same time. CONCLUSIONS The extracts from the flower of E.gardneri could significantly activate PPARγ and PPARβ. Besides, umbelliferone and pentadecanoic acid isolated from the flower of E.gardneri were the new agonists for PPARγ and PPARβ.
Collapse
Affiliation(s)
- Die Gao
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400030, China
| | - Yong-lan Zhang
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400030, China
| | - Pan Xu
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400030, China
| | - Ye-xin Lin
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400030, China
| | - Feng-qing Yang
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400030, China
| | - Jian-hui Liu
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Hai-wen Zhu
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400030, China
| | - Zhi-ning Xia
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400030, China.
| |
Collapse
|
524
|
Wang X, Kulka M. n-3 Polyunsaturated fatty acids and mast cell activation. J Leukoc Biol 2015; 97:859-871. [DOI: 10.1189/jlb.2ru0814-388r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Revised: 02/04/2015] [Accepted: 02/19/2015] [Indexed: 01/18/2023] Open
|
525
|
Chen L, Bi B, Zeng J, Zhou Y, Yang P, Guo Y, Zhu J, Yang Q, Zhu N, Liu T. Rosiglitazone ameliorates senescence-like phenotypes in a cellular photoaging model. J Dermatol Sci 2015; 77:173-81. [DOI: 10.1016/j.jdermsci.2015.01.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 11/18/2014] [Accepted: 01/19/2015] [Indexed: 11/24/2022]
|
526
|
Jeon Y, Jung Y, Youm JK, Kang KS, Kim YK, Kim SN. Abietic acid inhibits UVB-induced MMP-1 expression in human dermal fibroblast cells through PPARα/γdual activation. Exp Dermatol 2015; 24:140-5. [DOI: 10.1111/exd.12616] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2014] [Indexed: 12/26/2022]
Affiliation(s)
- Youngsic Jeon
- Natural Skinomics Team; KIST Gangneung Institute of Natural Products; Gangneung Korea
| | - Yujung Jung
- Natural Skinomics Team; KIST Gangneung Institute of Natural Products; Gangneung Korea
| | | | - Ki Sung Kang
- College of Korean Medicine; Gachon University; Seongnam Korea
| | - Yong Kee Kim
- College of Pharmacy; Sookmyung Women's University; Seoul Korea
| | - Su-Nam Kim
- Natural Skinomics Team; KIST Gangneung Institute of Natural Products; Gangneung Korea
| |
Collapse
|
527
|
Delfosse V, Maire AL, Balaguer P, Bourguet W. A structural perspective on nuclear receptors as targets of environmental compounds. Acta Pharmacol Sin 2015; 36:88-101. [PMID: 25500867 DOI: 10.1038/aps.2014.133] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 11/03/2014] [Indexed: 12/13/2022] Open
Abstract
Nuclear receptors (NRs) are members of a large superfamily of evolutionarily related transcription factors that control a plethora of biological processes. NRs orchestrate complex events such as development, organ homeostasis, metabolism, immune function, and reproduction. Approximately one-half of the 48 human NRs have been shown to act as ligand-regulated transcription factors and respond directly to a large variety of endogenous hormones and metabolites that are generally hydrophobic and small in size (eg, retinoic acid or estradiol). The second half of the NR family comprises the so-called orphan receptors, for which regulatory ligands are still unknown or may not exist despite the presence of a C-terminal ligand-binding domain, which is the hallmark of all NRs. Several chemicals released into the environment (eg, bisphenols, phthalates, parabens, etc) share some physicochemical properties with natural ligands, allowing them to bind to NRs and activate or inhibit their action. Collectively referred to as endocrine disruptors or endocrine-disrupting chemicals (EDCs), these environmental pollutants are highly suspected to cause a wide range of developmental, reproductive, neurological, or metabolic defects in humans and wildlife. Crystallographic studies are revealing unanticipated mechanisms by which chemically diverse EDCs interact with the ligand-binding domain of NRs. These studies thereby provide a rational basis for designing novel chemicals with lower impacts on human and animal health. In this review, we provide a structural and mechanistic view of endocrine disrupting action using estrogen receptors α and β, (ERα/β), peroxisome proliferator activated receptor γ (PPARγ), and their respective environmental ligands as representative examples.
Collapse
|
528
|
Manor ML, Cleveland BM, Weber GM, Kenney PB. Effects of sexual maturation and feeding level on fatty acid metabolism gene expression in muscle, liver, and visceral adipose tissue of diploid and triploid rainbow trout, Oncorhynchus mykiss. Comp Biochem Physiol B Biochem Mol Biol 2015; 179:17-26. [DOI: 10.1016/j.cbpb.2014.09.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 08/30/2014] [Accepted: 09/10/2014] [Indexed: 01/11/2023]
|
529
|
Grimaldi M, Boulahtouf A, Delfosse V, Thouennon E, Bourguet W, Balaguer P. Reporter Cell Lines for the Characterization of the Interactions between Human Nuclear Receptors and Endocrine Disruptors. Front Endocrinol (Lausanne) 2015; 6:62. [PMID: 26029163 PMCID: PMC4426785 DOI: 10.3389/fendo.2015.00062] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 04/09/2015] [Indexed: 01/11/2023] Open
Abstract
Endocrine-disrupting chemicals (EDCs) are exogenous substances interfering with hormone biosynthesis, metabolism, or action, and consequently causing disturbances in the endocrine system. Various pathways are activated by EDCs, including interactions with nuclear receptors (NRs), which are primary targets of numerous environmental contaminants. The main NRs targeted by environmental contaminants are the estrogen (ER α, β) and the androgen (AR) receptors. ERs and AR have pleiotropic regulatory roles in a diverse range of tissues, notably in the mammary gland, the uterus, and the prostate. Thus, dysfunctional ERs and AR signaling due to inappropriate exposure to environmental pollutants may lead to hormonal cancers and infertility. The pregnane X receptor (PXR) is also recognized by many environmental molecules. PXR has a protective role of the body through its ability to regulate proteins involved in the metabolism, the conjugation, and the transport of many exogenous and endogenous compounds. However, the permanent activation of this receptor by xenobiotics may lead to premature drug metabolism, the formation, and accumulation of toxic metabolites and defects in hormones homeostasis. The activity of other NRs can also be affected by environmental molecules. Compounds capable of inhibiting or activating the estrogen related (ERRγ), the thyroid hormone (TRα, β), the retinoid X receptors (RXRα, β, γ), and peroxisome proliferator-activated (PPAR α, γ) receptors have been identified and are highly suspected to promote developmental, reproductive, neurological, or metabolic diseases in humans and wildlife. In this review, we provide an overview of reporter cell lines established to characterize the human NR activities of a large panel of EDCs including natural as well as industrial compounds such as pesticides, plasticizers, surfactants, flame retardants, and cosmetics.
Collapse
Affiliation(s)
- Marina Grimaldi
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, France
- U1194, INSERM, Montpellier, France
- Université Montpellier, Montpellier, France
- ICM, Institut Régional du Cancer de Montpellier, Montpellier, France
| | - Abdelhay Boulahtouf
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, France
- U1194, INSERM, Montpellier, France
- Université Montpellier, Montpellier, France
- ICM, Institut Régional du Cancer de Montpellier, Montpellier, France
| | - Vanessa Delfosse
- Université Montpellier, Montpellier, France
- U1054, INSERM, Montpellier, France
- CNRS UMR5048, Centre de Biochimie Structurale, Montpellier, France
| | - Erwan Thouennon
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, France
- U1194, INSERM, Montpellier, France
- Université Montpellier, Montpellier, France
- ICM, Institut Régional du Cancer de Montpellier, Montpellier, France
| | - William Bourguet
- Université Montpellier, Montpellier, France
- U1054, INSERM, Montpellier, France
- CNRS UMR5048, Centre de Biochimie Structurale, Montpellier, France
| | - Patrick Balaguer
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, France
- U1194, INSERM, Montpellier, France
- Université Montpellier, Montpellier, France
- ICM, Institut Régional du Cancer de Montpellier, Montpellier, France
- *Correspondence: Patrick Balaguer, U1194, IRCM, INSERM, ICM, Parc Euromédecine, 208 rue des Apothicaires, Montpellier 34090, France,
| |
Collapse
|
530
|
Gao AW, Cantó C, Houtkooper RH. Mitochondrial response to nutrient availability and its role in metabolic disease. EMBO Mol Med 2014; 6:580-9. [PMID: 24623376 PMCID: PMC4023882 DOI: 10.1002/emmm.201303782] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Metabolic inflexibility is defined as an impaired capacity to switch between different energy substrates and is a hallmark of insulin resistance and type 2 diabetes mellitus (T2DM). Hence, understanding the mechanisms underlying proper metabolic flexibility is key to prevent the development of metabolic disease and physiological deterioration. An important downstream player in the effects of metabolic flexibility is the mitochondrion. The objective of this review was to describe how mitochondrial metabolism adapts to limited nutrient situations or caloric excess by changes in mitochondrial function or biogenesis, as well as to define the mechanisms propelling these changes. Altogether, this should pinpoint key regulatory points by which metabolic flexibility might be ameliorated in situations of metabolic disease.
Collapse
Affiliation(s)
- Arwen W Gao
- Laboratory Genetic Metabolic Diseases, Academic Medical Center, Amsterdam, The Netherlands
| | | | | |
Collapse
|
531
|
Benesch F, Dengler F, Masur F, Pfannkuche H, Gäbel G. Monocarboxylate transporters 1 and 4: expression and regulation by PPARα in ovine ruminal epithelial cells. Am J Physiol Regul Integr Comp Physiol 2014; 307:R1428-37. [DOI: 10.1152/ajpregu.00408.2013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In the intact rumen epithelium, isoforms 1 and 4 of the monocarboxylate transporter (MCT1 and MCT4) are thought to play key roles in mediating transcellular and intracellular permeation of short-chain fatty acids and their metabolites and in maintaining intracellular pH. We examined whether both MCT1 and MCT4 are expressed at mRNA and protein levels in ovine ruminal epithelial cells (REC) maintained in primary culture and whether they are regulated by peroxisome proliferator-activated receptor-α (PPARα). Because both transporters have been characterized to function coupled to protons, the influence of PPARα on the recovery of intracellular pH after l-lactate exposure was evaluated by spectrofluorometry. MCT1 and MCT4 were detected using immunocytochemistry both at the cell margins and intracellularly in cultured REC. To test regulation by PPARα, cells were exposed to WY 14.643, a selective ligand of PPARα, for 48 h. The subsequent qPCR analysis resulted in a dose-dependent upregulation of MCT1 and PPARα target genes, whereas response of MCT4 was not uniform. Protein expression of MCT1 and MCT4 quantified by Western blot analysis was not altered by WY 14.643 treatment. l-Lactate-dependent proton export was blocked almost completely by pHMB, a specific inhibitor of MCT1 and MCT4. However, l-lactate-dependent, pHMB-inhibited proton export in WY 14.643-treated cells was not significantly altered compared with cells not treated with WY 14.643. These data suggest that PPARα is particularly regulating MCT1 but not MCT4 expression. Extent of lactate-coupled proton export indicates that MCT1 is already working on a high level even under unstimulated conditions.
Collapse
Affiliation(s)
- Franziska Benesch
- Institute of Veterinary Physiology, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - Franziska Dengler
- Institute of Veterinary Physiology, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - Franziska Masur
- Institute of Veterinary Physiology, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - Helga Pfannkuche
- Institute of Veterinary Physiology, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - Gotthold Gäbel
- Institute of Veterinary Physiology, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| |
Collapse
|
532
|
Li T, Chen H, Yang Z, Wang W, Wang YT, Zhang LM, Zhao JH, Zhou X, Li YM. A novel Pseudolaric acid B derivative, Hexahydropseudolaric acid B, exterts an immunomodulatory effect in vitro/in vivo evaluation. Eur J Pharmacol 2014; 745:10-8. [PMID: 25446920 DOI: 10.1016/j.ejphar.2014.10.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Revised: 10/01/2014] [Accepted: 10/06/2014] [Indexed: 02/02/2023]
Abstract
Identification of immunosuppressants from natural sources has a proven track record in immune mediated disorders. Pseudolaric acid B is a diterpenoid isolated from the roots of Pseudolarix amabilis, possessing potent immunomodulatory effect. However, the cytotoxicity limits its future clinical application. The purpose of this study was to investigate the immunosuppressive activity of Hexahydropseudolaric acid B, a Pseudolaric acid B derivative, on T cell-mediated immune response both in vitro and in vivo, and investigated its immunomodulatory effect to develop a more ascendant immunosuppressive agent. The results showed that Hexahydropseudolaric acid B could exert more preferable immunosuppressive activity and lower cytotoxicity than Pseudolaric acid B. Hexahydropseudolaric acid B significantly inhibited T cell proliferation activated by mitogen and alloantigen without obvious cytotoxicity in vitro. Furthermore, Hexahydropseudolaric acid B could ameliorate ear swelling in a mouse model of 2,4-dinitrofluorobenzene-induced delayed-type hypersensitivity in vivo. Mechanistic study revealed that Hexahydropseudolaric acid B could enhance regulatory T cells via promoting Foxp3 expression and TGF-β level, accompanied by attenuating Akt activation, blocking p38MAPK/MK2-HSP27 signal cascades, and up-regulating PPAR-γ expression. Taken together, these results suggest that Hexahydropseudolaric acid B exerts more preferable immunosuppressive activity than its precursor Pseudolaric acid B by affecting multiple targets, which support the need for continued efforts to characterize the efficacy of HPAB as a promising and safe candidate to treat immune-related diseases.
Collapse
Affiliation(s)
- Tan Li
- Department of Pathogen Biology and Immunology, Logistics University of the Chinese People׳s Armed Police Force, Tianjin 300309, China; Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, Institute of Cardiovascular Disease and Heart Center, The Affiliated Hospital of Logistics University of the Chinese People׳s Armed Police Force, Tianjin 300162, China.
| | - Hong Chen
- Department of Pharmacognosy and Pharmaceutics, Logistics University of the Chinese People׳s Armed Police Force, Tianjin 300309, China; Tianjin Key Laboratory for Prevention and Control of Occupational and Environmental Hazard, Logistics University of the Chinese People׳s Armed Police Force, Tianjin 300309, China.
| | - Zhen Yang
- Pingjin Hospital, Logistics University of the Chinese People׳s Armed Police Force, Tianjin 300162, China
| | - Wei Wang
- Pingjin Hospital, Logistics University of the Chinese People׳s Armed Police Force, Tianjin 300162, China
| | - Yi-teng Wang
- Department of Pharmacognosy and Pharmaceutics, Logistics University of the Chinese People׳s Armed Police Force, Tianjin 300309, China
| | - Li-ming Zhang
- Department of Pharmacognosy and Pharmaceutics, Logistics University of the Chinese People׳s Armed Police Force, Tianjin 300309, China
| | - Ji-hong Zhao
- Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, Institute of Cardiovascular Disease and Heart Center, The Affiliated Hospital of Logistics University of the Chinese People׳s Armed Police Force, Tianjin 300162, China; Pingjin Hospital, Logistics University of the Chinese People׳s Armed Police Force, Tianjin 300162, China
| | - Xin Zhou
- Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, Institute of Cardiovascular Disease and Heart Center, The Affiliated Hospital of Logistics University of the Chinese People׳s Armed Police Force, Tianjin 300162, China; Pingjin Hospital, Logistics University of the Chinese People׳s Armed Police Force, Tianjin 300162, China
| | - Yu-ming Li
- Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, Institute of Cardiovascular Disease and Heart Center, The Affiliated Hospital of Logistics University of the Chinese People׳s Armed Police Force, Tianjin 300162, China; Pingjin Hospital, Logistics University of the Chinese People׳s Armed Police Force, Tianjin 300162, China
| |
Collapse
|
533
|
Li T, Wang W, Zhao JH, Zhou X, Li YM, Chen H. Pseudolaric acid B inhibits T-cell mediated immune response in vivo via p38MAPK signal cascades and PPARγ activation. Life Sci 2014; 121:88-96. [PMID: 25497712 DOI: 10.1016/j.lfs.2014.11.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 11/03/2014] [Accepted: 11/26/2014] [Indexed: 11/25/2022]
Abstract
AIMS Pseudolaric acid B (PAB) has been prescribed for its potent immunomodulatory effect. However, the detail of mechanism remains to be demonstrated. The purpose of this study is to further clarify the mechanism of PAB on T-cell mediated immune response in vivo. MAIN METHODS Investigations were carried to ascertain the pharmacological effect of PAB in a delayed-type hypersensitivity (DTH) mouse model of T-cell mediated immune response. Histological assessment was examined by hematoxylin and eosin staining. Affymetrix GeneChip® Mouse Genome 430 2.0 arrays were employed to evaluate the expression profile of PAB. Western blot was performed to detect p38MAPK signal cascades, including p38MAPK, ATF-2, MK2, and HSP27. Finally, TNF-α level was analyzed by ELISA, and Jurkat T cells were treated with PAB to determine its role on PPARγ activation using a reporter gene assay. KEY FINDINGS The results showed that PAB (5, 10, and 20mg/kg) could lead to a marked improvement for ear swelling and inflammatory infiltrate in DTH mice dose-dependently. According to the associated biological pathways from microarray analysis, PAB resulted in the restoration of abnormal immune-related gene expression linked to MAPK and PPAR signaling pathways. Moreover, PAB inhibited the activation of p38MAPK, ATF-2, MK2, and HSP27 significantly, as well as the production of TNF-α, which was reversed by GW9662, a specific antagonist for PPARγ. In addition, treatment with PAB also increased the transcriptional activity of PPARγ in a dose-dependent manner. SIGNIFICANCE These results provide us with novel insights into pharmacological action of PAB as a potential immunomodulator for the treatment of immune-related diseases.
Collapse
Affiliation(s)
- Tan Li
- Department of Pathogen Biology and Immunology, Logistics University of the Chinese People's Armed Police Force, Tianjin, PR China; Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, Logistics University of the Chinese People's Armed Police Force, Tianjin, PR China.
| | - Wei Wang
- Pingjin Hospital, Logistics University of the Chinese People's Armed Police Forces, Tianjin, PR China
| | - Ji-hong Zhao
- Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, Logistics University of the Chinese People's Armed Police Force, Tianjin, PR China; Pingjin Hospital, Logistics University of the Chinese People's Armed Police Forces, Tianjin, PR China
| | - Xin Zhou
- Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, Logistics University of the Chinese People's Armed Police Force, Tianjin, PR China; Pingjin Hospital, Logistics University of the Chinese People's Armed Police Forces, Tianjin, PR China
| | - Yu-ming Li
- Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, Logistics University of the Chinese People's Armed Police Force, Tianjin, PR China
| | - Hong Chen
- Department of Pharmacognosy and Pharmaceutics, Logistics University of the Chinese People's Armed Police Force, Tianjin, PR China; Tianjin Key Laboratory for Prevention and Control of Occupational and Environmental Hazard, Logistics University of the Chinese People's Armed Police Force, Tianjin, PR China.
| |
Collapse
|
534
|
Jennings P, Schwarz M, Landesmann B, Maggioni S, Goumenou M, Bower D, Leonard MO, Wiseman JS. SEURAT-1 liver gold reference compounds: a mechanism-based review. Arch Toxicol 2014; 88:2099-133. [DOI: 10.1007/s00204-014-1410-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 10/01/2014] [Indexed: 12/20/2022]
|
535
|
Wright MB, Bortolini M, Tadayyon M, Bopst M. Minireview: Challenges and opportunities in development of PPAR agonists. Mol Endocrinol 2014; 28:1756-68. [PMID: 25148456 PMCID: PMC5414793 DOI: 10.1210/me.2013-1427] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Accepted: 08/08/2014] [Indexed: 01/06/2023] Open
Abstract
The clinical impact of the fibrate and thiazolidinedione drugs on dyslipidemia and diabetes is driven mainly through activation of two transcription factors, peroxisome proliferator-activated receptors (PPAR)-α and PPAR-γ. However, substantial differences exist in the therapeutic and side-effect profiles of specific drugs. This has been attributed primarily to the complexity of drug-target complexes that involve many coregulatory proteins in the context of specific target gene promoters. Recent data have revealed that some PPAR ligands interact with other non-PPAR targets. Here we review concepts used to develop new agents that preferentially modulate transcriptional complex assembly, target more than one PPAR receptor simultaneously, or act as partial agonists. We highlight newly described on-target mechanisms of PPAR regulation including phosphorylation and nongenomic regulation. We briefly describe the recently discovered non-PPAR protein targets of thiazolidinediones, mitoNEET, and mTOT. Finally, we summarize the contributions of on- and off-target actions to select therapeutic and side effects of PPAR ligands including insulin sensitivity, cardiovascular actions, inflammation, and carcinogenicity.
Collapse
Affiliation(s)
- Matthew B Wright
- F. Hoffmann-La Roche Pharmaceuticals (M.B.W., M.Bor., M.Bop.), CH-4070 Basel, Switzerland; and MediTech Media (M.T.), London EC1V 9AZ, United Kingdom
| | | | | | | |
Collapse
|
536
|
Picco R, Tomasella A, Fogolari F, Brancolini C. Transcriptomic analysis unveils correlations between regulative apoptotic caspases and genes of cholesterol homeostasis in human brain. PLoS One 2014; 9:e110610. [PMID: 25330190 PMCID: PMC4199739 DOI: 10.1371/journal.pone.0110610] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 09/23/2014] [Indexed: 01/09/2023] Open
Abstract
Regulative circuits controlling expression of genes involved in the same biological processes are frequently interconnected. These circuits operate to coordinate the expression of multiple genes and also to compensate dysfunctions in specific elements of the network. Caspases are cysteine-proteases with key roles in the execution phase of apoptosis. Silencing of caspase-2 expression in cultured glioblastoma cells allows the up-regulation of a limited number of genes, among which some are related to cholesterol homeostasis. Lysosomal Acid Lipase A (LIPA) was up-regulated in two different cell lines in response to caspase-2 down-regulation and cells silenced for caspase-2 exhibit reduced cholesterol staining in the lipid droplets. We expanded this observation by large-scale analysis of mRNA expression. All caspases were analyzed in terms of co-expression in comparison with 166 genes involved in cholesterol homeostasis. In the brain, hierarchical clustering has revealed that the expression of regulative apoptotic caspases (CASP2, CASP8 CASP9, CASP10) and of the inflammatory CASP1 is linked to several genes involved in cholesterol homeostasis. These correlations resulted in altered GBM (Glioblastoma Multiforme), in particular for CASP1. We have also demonstrated that these correlations are tissue specific being reduced (CASP9 and CASP10) or different (CASP2) in the liver. For some caspases (CASP1, CASP6 and CASP7) these correlations could be related to brain aging.
Collapse
Affiliation(s)
- Raffaella Picco
- Department of Medical and Biological Sciences, Università degli Studi di Udine, Udine, Italy
| | - Andrea Tomasella
- Department of Medical and Biological Sciences, Università degli Studi di Udine, Udine, Italy
| | - Federico Fogolari
- Department of Medical and Biological Sciences, Università degli Studi di Udine, Udine, Italy
| | - Claudio Brancolini
- Department of Medical and Biological Sciences, Università degli Studi di Udine, Udine, Italy
- * E-mail:
| |
Collapse
|
537
|
López-Domínguez JA, Ramsey JJ, Tran D, Imai DM, Koehne A, Laing ST, Griffey SM, Kim K, Taylor SL, Hagopian K, Villalba JM, López-Lluch G, Navas P, McDonald RB. The Influence of Dietary Fat Source on Life Span in Calorie Restricted Mice. J Gerontol A Biol Sci Med Sci 2014; 70:1181-8. [PMID: 25313149 DOI: 10.1093/gerona/glu177] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 08/20/2014] [Indexed: 01/22/2023] Open
Abstract
Calorie restriction (CR) without malnutrition extends life span in several animal models. It has been proposed that a decrease in the amount of polyunsaturated fatty acids (PUFAs), and especially n-3 fatty acids, in membrane phospholipids may contribute to life span extension with CR. Phospholipid PUFAs are sensitive to dietary fatty acid composition, and thus, the purpose of this study was to determine the influence of dietary lipids on life span in CR mice. C57BL/6J mice were assigned to four groups (a 5% CR control group and three 40% CR groups) and fed diets with soybean oil (high in n-6 PUFAs), fish oil (high in n-3 PUFAs), or lard (high in saturated and monounsaturated fatty acids) as the primary lipid source. Life span was increased (p < .05) in all CR groups compared to the Control mice. Life span was also increased (p < .05) in the CR lard mice compared to animals consuming either the CR fish or soybean oil diets. These results indicate that dietary lipid composition can influence life span in mice on CR, and suggest that a diet containing a low proportion of PUFAs and high proportion of monounsaturated and saturated fats may maximize life span in animals maintained on CR.
Collapse
Affiliation(s)
| | | | | | - Denise M Imai
- Comparative Pathology Laboratory, School of Veterinary Medicine, and
| | - Amanda Koehne
- Comparative Pathology Laboratory, School of Veterinary Medicine, and
| | - Steven T Laing
- Comparative Pathology Laboratory, School of Veterinary Medicine, and
| | - Stephen M Griffey
- Comparative Pathology Laboratory, School of Veterinary Medicine, and
| | - Kyoungmi Kim
- Department of Public Health Sciences, School of Medicine, University of California, Davis
| | - Sandra L Taylor
- Department of Public Health Sciences, School of Medicine, University of California, Davis
| | | | - José M Villalba
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Campus de Excelencia Internacional Agroalimentario, ceiA3, Córdoba, Spain
| | - Guillermo López-Lluch
- Centro Andaluz de Biología del Desarrollo (CABD), Universidad Pablo de Olavide-CSIC, CIBERER, Instituto de Salud Carlos III, Sevilla, Spain
| | - Plácido Navas
- Centro Andaluz de Biología del Desarrollo (CABD), Universidad Pablo de Olavide-CSIC, CIBERER, Instituto de Salud Carlos III, Sevilla, Spain
| | | |
Collapse
|
538
|
Lo JH, Lin CM, Chen MJ, Chen TT. Altered gene expression patterns of innate and adaptive immunity pathways in transgenic rainbow trout harboring Cecropin P1 transgene. BMC Genomics 2014; 15:887. [PMID: 25306446 PMCID: PMC4201688 DOI: 10.1186/1471-2164-15-887] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 10/03/2014] [Indexed: 12/21/2022] Open
Abstract
Background We have recently developed several homozygous families of transgenic rainbow trout harbouring cecropin P1 transgene. These fish exhibit resistance characteristic to infection by Aeromonas salmonicida and infectious hematopoietic necrosis virus (IHNV). In our earlier studies we have reported that treatment of a rainbow trout macrophage cell line (RTS11) with a linear cationic α-helical antimicrobial peptide (e.g., cecropin B) resulted in elevated levels of expression of two pro-inflammatory relevant genes (e.g., IL-1β and COX-2). Therefore, we hypothesized that in addition to the direct antimicrobial activity of cecropin P1 in the disease resistant transgenic rainbow trout, this antimicrobial peptide may also affect the expression of immune relevant genes in the host. To confirm this hypothesis, we launched a study to determine the global gene expression profiles in three immune competent organs of cecropin P1 transgenic rainbow trout by using a 44k salmonid microarray. Results From the microarray data, a total of 2480 genes in the spleen, 3022 in the kidney, and 2102 in the liver were determined as differentially expressed genes (DEGs) in the cecropin P1 transgenic rainbow trout when compared to the non-transgenics. There were 478 DEGs in common among three tissues. Enrichment analyses conducted by two different bioinformatics tools revealed a tissue specific profile of functional pathway perturbation. Many of them were directly related to innate immune system such as phagocytosis, lysosomal processing, complement activation, antigen processing/presentation, and leukocyte migration. Perturbation of other biological functions that might contribute indirectly to host immunity was also observed. Conclusions The gene product of cecropin P1 transgene produced in the disease resistant transgenic rainbow trout not only can kill the pathogens directly but also exert multifaceted immunomodulatory properties to boost host immunity. The identified genes involved in different pathways related to immune function are valuable indicators associated with enhanced host immunity. These genes may serve as markers for selective breeding of rainbow trout or other aquaculture important fish species bearing traits of disease resistance. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-887) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | - Thomas T Chen
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA.
| |
Collapse
|
539
|
Samokhvalov V, Zlobine I, Jamieson KL, Jurasz P, Chen C, Lee KSS, Hammock BD, Seubert JM. PPARδ signaling mediates the cytotoxicity of DHA in H9c2 cells. Toxicol Lett 2014; 232:10-20. [PMID: 25300478 DOI: 10.1016/j.toxlet.2014.09.029] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 09/22/2014] [Accepted: 09/24/2014] [Indexed: 12/28/2022]
Abstract
Docosahexaenoic acid (22:6n3, DHA) is an n-3 polyunsaturated fatty acid (PUFA) known to affect numerous biological functions. While DHA possesses many properties that impact cell survival such as suppressing cell growth and inducing apoptosis, the exact molecular and cellular mechanism(s) remain unknown. Peroxisome proliferator-activated receptors (PPARs) are a family of nuclear receptors that regulate many cell pathways including cell death. As DHA acts as a ligand to PPARs the aim of this study was to examine the involvement of PPARδ in DHA-mediated cytotoxicity toward H9c2 cells. Treatment with DHA (100μM) resulted in a significant decline in cell viability, cellular metabolic activity and total antioxidant capacity coinciding with increased total proteasome activities and activity of released lactate dehydrogenase (LDH). No changes in reactive oxygen species (ROS) production or accumulation of lipid peroxidation products were observed but DHA promoted apoptotic cell death as detected by flow cytometry, increased caspase-3 activity and decreased phosphorylation of Akt. Importantly, DHA enhanced PPARδ DNA binding activity in H9c2 cells strongly signifying that the cytotoxic effect of DHA might be mediated via PPARδ signaling. Co-treatment with the selective PPARδ antagonist GSK 3787 (1μM) abolished the cytotoxic effects of DHA in H9c2 cells. Cytotoxic effects of DHA were attenuated by co-treatment with myriocin, a selective inhibitor of serine palmitoyl transferase (SPT), preventing de novo ceramide biosynthesis. LC/MS analysis revealed that treatment with DHA resulted in the accumulation of ceramide, which was blocked by GSK 3787. Interestingly, inhibition of cytochrome P450 (CYP) oxidase with MS-PPOH (50μM) abolished DHA-mediated cytotoxicity suggesting downstream metabolites as the active mediators. We further demonstrate that CYP oxidase metabolites of DHA, methyl epoxy docosapentaenoate (EDP methyl esters, 1μM) (mix 1:1:1:1:1:1; 4,5-, 7,8-, 10,11-, 13,14-, 16,17- and 19,20-EDP methyl esters) and 19,20-EDP cause cytotoxicity via activation of PPARδ signaling leading to increased levels of intracellular ceramide. These results illustrate novel pathways for DHA-induced cytotoxicity that suggest an important role for CYP-derived metabolites, EDPs.
Collapse
Affiliation(s)
- Victor Samokhvalov
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Igor Zlobine
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Kristi L Jamieson
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Paul Jurasz
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada; Department of Pharmacology, Faculty of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Christopher Chen
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Kin Sing Stephen Lee
- Department of Entomology and Nematology, University of California, Davis, CA, USA; UCD Comprehensive Cancer Center, University of California, Davis, CA, USA
| | - Bruce D Hammock
- Department of Entomology and Nematology, University of California, Davis, CA, USA; UCD Comprehensive Cancer Center, University of California, Davis, CA, USA
| | - John M Seubert
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada; Department of Pharmacology, Faculty of Medicine, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
540
|
Alexander SPH, Benson HE, Faccenda E, Pawson AJ, Sharman JL, Spedding M, Peters JA, Harmar AJ. The Concise Guide to PHARMACOLOGY 2013/14: nuclear hormone receptors. Br J Pharmacol 2014; 170:1652-75. [PMID: 24528240 PMCID: PMC3892290 DOI: 10.1111/bph.12448] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The Concise Guide to PHARMACOLOGY 2013/14 provides concise overviews of the key properties of over 2000 human drug targets with their pharmacology, plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. The full contents can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.12444/full. Nuclear hormone receptors are one of the seven major pharmacological targets into which the Guide is divided, with the others being G protein-coupled receptors, ligand-gated ion channels, ion channels, catalytic receptors, transporters and enzymes. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. A new landscape format has easy to use tables comparing related targets. It is a condensed version of material contemporary to late 2013, which is presented in greater detail and constantly updated on the website www.guidetopharmacology.org, superseding data presented in previous Guides to Receptors and Channels. It is produced in conjunction with NC-IUPHAR and provides the official IUPHAR classification and nomenclature for human drug targets, where appropriate. It consolidates information previously curated and displayed separately in IUPHAR-DB and the Guide to Receptors and Channels, providing a permanent, citable, point-in-time record that will survive database updates.
Collapse
Affiliation(s)
- Stephen P H Alexander
- School of Life Sciences, University of Nottingham Medical School, Nottingham, NG7 2UH, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
541
|
Carta AR, Simuni T. Thiazolidinediones under preclinical and early clinical development for the treatment of Parkinson's disease. Expert Opin Investig Drugs 2014; 24:219-27. [PMID: 25227476 DOI: 10.1517/13543784.2015.963195] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Current treatment of Parkinson's disease (PD) is limited to symptomatic dopaminergic therapy, while no interventions have been shown to slow down disease progression. AREAS COVERED The following article highlights a group of PPAR-γ agonists called thiazolidinediones (TZDs), which are currently being tested for a putative disease-modifying benefit in PD, using pioglitazone as a prototypic compound. PPAR-γ is highly expressed in neurons of the substantia nigra and CNS immune cells. Preclinical data in rodent and primate support an effect of TZDs in preventing and/or arresting neurodegeneration and development of motor symptoms. Although no data on the neuroprotective effect of TZDs is currently available, a clinical trial is ongoing where the primary objective is to assess pioglitazone's impact on the progression of PD. The trial is also evaluating the drug's safety concerns. EXPERT OPINION The efficacy data from clinical trials must be carefully weighed against the safety concerns. However, given the solid preclinical data, and since the safety data are not yet fully conclusive and limited to the diabetic population, PPAR-γ research in PD can continue with caution. Ideally, drug discovery and development efforts will lead to the identification of new compounds with reduced risk of peripheral side effects.
Collapse
Affiliation(s)
- Anna R Carta
- University of Cagliari, Department of Biomedical Sciences , via Ospedale 72, 09124, Cagliari , Italy +39 0706758662 ; +39 0706758665 ;
| | | |
Collapse
|
542
|
Polvani S, Tarocchi M, Tempesti S, Galli A. Nuclear receptors and pathogenesis of pancreatic cancer. World J Gastroenterol 2014; 20:12062-12081. [PMID: 25232244 PMCID: PMC4161795 DOI: 10.3748/wjg.v20.i34.12062] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 04/03/2014] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a devastating disease with a median overall survival time of 5 mo and the five years survival less than 5%, a rate essentially unchanged over the course of the years. A well defined progression model of accumulation of genetic alterations ranging from single point mutations to gross chromosomal abnormalities has been introduced to describe the origin of this disease. However, due to the its subtle nature and concurring events PDAC cure remains elusive. Nuclear receptors (NR) are members of a large superfamily of evolutionarily conserved ligand-regulated DNA-binding transcription factors functionally involved in important cellular functions ranging from regulation of metabolism, to growth and development. Given the nature of their ligands, NR are very tempting drug targets and their pharmacological modulation has been widely exploited for the treatment of metabolic and inflammatory diseases. There are now clear evidences that both classical ligand-activated and orphan NR are involved in the pathogenesis of PDAC from its very early stages; nonetheless many aspects of their role are not fully understood. The purpose of this review is to highlight the striking connections that link peroxisome proliferator activated receptors, retinoic acid receptors, retinoid X receptor, androgen receptor, estrogen receptors and the orphan NR Nur, chicken ovalbumin upstream promoter transcription factor II and the liver receptor homologue-1 receptor to PDAC development, connections that could lead to the identification of novel therapies for this disease.
Collapse
|
543
|
Neels JG, Grimaldi PA. Physiological functions of peroxisome proliferator-activated receptor β. Physiol Rev 2014; 94:795-858. [PMID: 24987006 DOI: 10.1152/physrev.00027.2013] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The peroxisome proliferator-activated receptors, PPARα, PPARβ, and PPARγ, are a family of transcription factors activated by a diversity of molecules including fatty acids and fatty acid metabolites. PPARs regulate the transcription of a large variety of genes implicated in metabolism, inflammation, proliferation, and differentiation in different cell types. These transcriptional regulations involve both direct transactivation and interaction with other transcriptional regulatory pathways. The functions of PPARα and PPARγ have been extensively documented mainly because these isoforms are activated by molecules clinically used as hypolipidemic and antidiabetic compounds. The physiological functions of PPARβ remained for a while less investigated, but the finding that specific synthetic agonists exert beneficial actions in obese subjects uplifted the studies aimed to elucidate the roles of this PPAR isoform. Intensive work based on pharmacological and genetic approaches and on the use of both in vitro and in vivo models has considerably improved our knowledge on the physiological roles of PPARβ in various cell types. This review will summarize the accumulated evidence for the implication of PPARβ in the regulation of development, metabolism, and inflammation in several tissues, including skeletal muscle, heart, skin, and intestine. Some of these findings indicate that pharmacological activation of PPARβ could be envisioned as a therapeutic option for the correction of metabolic disorders and a variety of inflammatory conditions. However, other experimental data suggesting that activation of PPARβ could result in serious adverse effects, such as carcinogenesis and psoriasis, raise concerns about the clinical use of potent PPARβ agonists.
Collapse
Affiliation(s)
- Jaap G Neels
- Institut National de la Santé et de la Recherche Médicale U 1065, Mediterranean Center of Molecular Medicine (C3M), Team "Adaptive Responses to Immuno-metabolic Dysregulations," Nice, France; and Faculty of Medicine, University of Nice Sophia-Antipolis, Nice, France
| | - Paul A Grimaldi
- Institut National de la Santé et de la Recherche Médicale U 1065, Mediterranean Center of Molecular Medicine (C3M), Team "Adaptive Responses to Immuno-metabolic Dysregulations," Nice, France; and Faculty of Medicine, University of Nice Sophia-Antipolis, Nice, France
| |
Collapse
|
544
|
Dranse HJ, Kelly MEM, Hudson BD. Drugs or diet?--Developing novel therapeutic strategies targeting the free fatty acid family of GPCRs. Br J Pharmacol 2014; 170:696-711. [PMID: 23937426 DOI: 10.1111/bph.12327] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Revised: 07/17/2013] [Accepted: 07/29/2013] [Indexed: 02/07/2023] Open
Abstract
Free fatty acids (FFAs) are metabolic intermediates that may be obtained through the diet, synthesized endogenously, or produced via fermentation of carbohydrates by gut microbiota. In addition to serving as an important source of energy, FFAs are known to produce a variety of both beneficial and detrimental effects on metabolic and inflammatory processes. While historically, FFAs were believed to produce these effects only through intracellular targets such as peroxisome proliferator-activated receptors, it has now become clear that FFAs are also agonists for several GPCRs, including a family of four receptors now termed FFA1-4. Increasing evidence suggests that FFA1-4 mediate many of the beneficial properties of FFAs and not surprisingly, this has generated significant interest in the potential of these receptors as therapeutic targets for the treatment of a variety of metabolic and inflammatory disorders. In addition to the traditional strategy of developing small-molecule therapeutics targeting these receptors, there has also been some consideration given to alternate therapeutic approaches, specifically by manipulating endogenous FFA concentrations through alteration of either dietary intake, or production by gut microbiota. In this review, the current state of knowledge for FFA1-4 will be discussed, together with their potential as therapeutic targets in the treatment of metabolic and inflammatory disorders. In particular, the evidence in support of small molecule versus dietary and microbiota-based therapeutic approaches will be considered to provide insight into the development of novel multifaceted strategies targeting the FFA receptors for the treatment of metabolic and inflammatory disorders.
Collapse
Affiliation(s)
- H J Dranse
- Department of Pharmacology, Dalhousie University, Halifax, NS, Canada
| | | | | |
Collapse
|
545
|
Briganti S, Flori E, Bellei B, Picardo M. Modulation of PPARγ provides new insights in a stress induced premature senescence model. PLoS One 2014; 9:e104045. [PMID: 25101957 PMCID: PMC4125176 DOI: 10.1371/journal.pone.0104045] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 07/06/2014] [Indexed: 11/18/2022] Open
Abstract
Peroxisome proliferator-activated receptor gamma (PPARγ) may be involved in a key mechanism of the skin aging process, influencing several aspects related to the age-related degeneration of skin cells, including antioxidant unbalance. Therefore, we investigated whether the up-modulation of this nuclear receptor exerts a protective effect in a stress-induced premature senescence (SIPS) model based on a single exposure of human dermal fibroblasts to 8-methoxypsoralen plus + ultraviolet-A-irradiation (PUVA). Among possible PPARγ modulators, we selected 2,4,6-octatrienoic acid (Octa), a member of the parrodiene family, previously reported to promote melanogenesis and antioxidant defense in normal human melanocytes through a mechanism involving PPARγ activation. Exposure to PUVA induced an early and significant decrease in PPARγ expression and activity. PPARγ up-modulation counteracted the antioxidant imbalance induced by PUVA and reduced the expression of stress response genes with a synergistic increase of different components of the cell antioxidant network, such as catalase and reduced glutathione. PUVA-treated fibroblasts grown in the presence of Octa are partially but significantly rescued from the features of the cellular senescence-like phenotype, such as cytoplasmic enlargement, the expression of senescence-associated-β-galactosidase, matrix-metalloproteinase-1, and cell cycle proteins. Moreover, the alterations in the cell membrane lipids, such as the decrease in the polyunsaturated fatty acid content of phospholipids and the increase in cholesterol levels, which are typical features of cell aging, were prevented. Our data suggest that PPARγ is one of the targets of PUVA-SIPS and that its pharmacological up-modulation may represent a novel therapeutic approach for the photooxidative skin damage.
Collapse
Affiliation(s)
- Stefania Briganti
- Laboratory of Cutaneous Physiopathology, San Gallicano Dermatologic Institute, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Enrica Flori
- Laboratory of Cutaneous Physiopathology, San Gallicano Dermatologic Institute, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Barbara Bellei
- Laboratory of Cutaneous Physiopathology, San Gallicano Dermatologic Institute, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Mauro Picardo
- Laboratory of Cutaneous Physiopathology, San Gallicano Dermatologic Institute, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| |
Collapse
|
546
|
Yan S, Wang J, Dai J. Activation of sterol regulatory element-binding proteins in mice exposed to perfluorooctanoic acid for 28 days. Arch Toxicol 2014; 89:1569-78. [DOI: 10.1007/s00204-014-1322-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 07/21/2014] [Indexed: 12/17/2022]
|
547
|
Zar Kalai F, Han J, Ksouri R, Abdelly C, Isoda H. Oral administration of Nitraria retusa ethanolic extract enhances hepatic lipid metabolism in db/db mice model 'BKS.Cg-Dock7(m)+/+ Lepr(db/)J' through the modulation of lipogenesis-lipolysis balance. Food Chem Toxicol 2014; 72:247-56. [PMID: 25086370 DOI: 10.1016/j.fct.2014.07.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 06/30/2014] [Accepted: 07/22/2014] [Indexed: 11/26/2022]
Abstract
The medicinal plants can be used in the prevention or treatment of many diseases. Several studies concerning the potential of bioactive components in plants and food products and their link to obesity and related metabolic disorders, have been gaining big interest. Diabetes is a serious metabolic syndrome. Searching for alternative natural bioactive molecules is considered main strategy to manage diabetes through weight management. In the present study, an edible halophyte Nitraria retusa was selected and in vivo experiment was conducted using db/db model mice. We orally administrated its ethanol extract (NRE) to BKS.Cg-Dock7(m)+/+ Lepr(db/)J mice model for a period of 4 weeks. The effect was evaluated on the body weight and adiposity changes and on the biochemical parameters of db/db NRE-treated mice. The molecular mechanism underlying the anti-obesity effect was investigated by testing the gene expression related to hepatic lipid metabolism. NRE was found to significantly supress increases in body and fat mass weight, decreases triglycerides and LDL-cholesterol levels and enhances gene expression related to lipid homeostasis in liver showing anti-obesity actions. Our findings, indicate that NRE possesses potential anti-obesity effects in BKS.Cg-Dock7(m)+/+ Lepr(db/)J model mice and may relieve obesity-related symptoms including hyperlipidemia through modulating the lipolysis-lipogenesis balance.
Collapse
Affiliation(s)
- Feten Zar Kalai
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Junkyu Han
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan; Alliance for Research on North Africa (ARENA), University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Riadh Ksouri
- Laboratoire des plantes Extrêmophiles, Centre de Biotechnologie à la Technopole de BorjCédria (CBBC), BP 901, 2050 Hammam-lif, Tunisia
| | - Chedly Abdelly
- Laboratoire des plantes Extrêmophiles, Centre de Biotechnologie à la Technopole de BorjCédria (CBBC), BP 901, 2050 Hammam-lif, Tunisia
| | - Hiroko Isoda
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan; Alliance for Research on North Africa (ARENA), University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan.
| |
Collapse
|
548
|
Cathcart MK, Bhattacharjee A. Monoamine oxidase A (MAO-A): a signature marker of alternatively activated monocytes/macrophages. INFLAMMATION AND CELL SIGNALING 2014; 1. [PMID: 26052543 DOI: 10.14800/ics.161] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Monocytes/macrophages are versatile cells centrally involved in host defense and immunity. Th1 cytokines induce a classical activation program in monocytes/macrophages leading to a proinflammatory M1 macrophage phenotype while Th2 cytokines IL-4 and IL-13 promote monocyte differentiation into an alternatively activated, anti-inflammatory M2 macrophage phenotype. Although monoamine oxidase A (MAO-A) is primarily known for its action in the nervous system, several recent studies have identified MAO-A as a signature marker of alternative activation of monocytes/macrophages. In this brief review we explore the signaling pathways/molecules that regulate MAO-A expression in alternatively activated monocytes/macrophages. We further discuss the contribution of MAO-A to the resolution of inflammation and identify potential therapeutic targets for controlling inflammation. Altogether this review provides deeper insight into the role of MAO-A in alternative activation of monocytes/macrophages and their participation in the inflammatory response.
Collapse
Affiliation(s)
- Martha K Cathcart
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH 44195, USA
| | - Ashish Bhattacharjee
- Department of Biotechnology, National Institute of Technology, Durgapur-713209, West Bengal, India
| |
Collapse
|
549
|
Gamu D, Bombardier E, Smith IC, Fajardo VA, Tupling AR. Sarcolipin Provides a Novel Muscle-Based Mechanism for Adaptive Thermogenesis. Exerc Sport Sci Rev 2014; 42:136-42. [DOI: 10.1249/jes.0000000000000016] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
550
|
Anti-Obesity Effect and Action Mechanism ofAdenophora triphyllaRoot Ethanol Extract in C57BL/6 Obese Mice Fed a High-Fat Diet. Biosci Biotechnol Biochem 2014; 77:544-50. [DOI: 10.1271/bbb.120667] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|