501
|
Darrigues E, Elberson BW, De Loose A, Lee MP, Green E, Benton AM, Sink LG, Scott H, Gokden M, Day JD, Rodriguez A. Brain Tumor Biobank Development for Precision Medicine: Role of the Neurosurgeon. Front Oncol 2021; 11:662260. [PMID: 33981610 PMCID: PMC8108694 DOI: 10.3389/fonc.2021.662260] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 03/29/2021] [Indexed: 12/18/2022] Open
Abstract
Neuro-oncology biobanks are critical for the implementation of a precision medicine program. In this perspective, we review our first year experience of a brain tumor biobank with integrated next generation sequencing. From our experience, we describe the critical role of the neurosurgeon in diagnosis, research, and precision medicine efforts. In the first year of implementation of the biobank, 117 patients (Female: 62; Male: 55) had 125 brain tumor surgeries. 75% of patients had tumors biobanked, and 16% were of minority race/ethnicity. Tumors biobanked were as follows: diffuse gliomas (45%), brain metastases (29%), meningioma (21%), and other (5%). Among biobanked patients, 100% also had next generation sequencing. Eleven patients qualified for targeted therapy based on identification of actionable gene mutations. One patient with a hereditary cancer predisposition syndrome was also identified. An iterative quality improvement process was implemented to streamline the workflow between the operating room, pathology, and the research laboratory. Dedicated tumor bank personnel in the department of neurosurgery greatly improved standard operating procedure. Intraoperative selection and processing of tumor tissue by the neurosurgeon was integral to increasing success with cell culture assays. Currently, our institutional protocol integrates standard histopathological diagnosis, next generation sequencing, and functional assays on surgical specimens to develop precision medicine protocols for our patients. This perspective reviews the critical role of neurosurgeons in brain tumor biobank implementation and success as well as future directions for enhancing precision medicine efforts.
Collapse
Affiliation(s)
- Emilie Darrigues
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, United States.,Department of Neurosurgery, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Benjamin W Elberson
- Department of Neurosurgery, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Annick De Loose
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, United States.,Department of Neurosurgery, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Madison P Lee
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, United States.,Department of Neurosurgery, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Ebonye Green
- Department of Neurosurgery, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Ashley M Benton
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Ladye G Sink
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Hayden Scott
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Murat Gokden
- Division of Neuropathology, Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - John D Day
- Department of Neurosurgery, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Analiz Rodriguez
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, United States.,Department of Neurosurgery, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| |
Collapse
|
502
|
Rahnama S, Bakhshinejad B, Farzam F, Bitaraf A, Ghazimoradi MH, Babashah S. Identification of dysregulated competing endogenous RNA networks in glioblastoma: A way toward improved therapeutic opportunities. Life Sci 2021; 277:119488. [PMID: 33862117 DOI: 10.1016/j.lfs.2021.119488] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/16/2021] [Accepted: 04/04/2021] [Indexed: 12/17/2022]
Abstract
Glioblastoma is recognized as one of the leading causes of death worldwide. Although there have been considerable advancements in understanding the causative molecular mechanisms of this malignancy, effective therapeutic strategies are still in limited use. It has been revealed that non-coding RNAs (ncRNAs) play critical roles in glioblastoma development, while interactions between the regulatory molecules such as long ncRNAs (lncRNAs), microRNAs (miRNAs), transcribed pseudogenes, and circular RNAs (circRNAs) remain to be fully deciphered. Over the recent years, researchers have discovered a new category of RNA molecules called competing endogenous RNA (ceRNA). This kind of RNA can contribute to molecular interactions in the form of ceRNA networks (ceRNETs). Multiple lines of evidence have demonstrated that dysregulation of various ceRNA networks is involved in glioblastoma development. Therefore, gaining insights into these dysregulations might offer potential for the early diagnosis of glioblastoma patients and identification of efficient therapeutic targets. In this review, we provide an overview of recent discoveries on ceRNA networks and the involvement of dysregulated networks in posing limitations to temozolomide therapy. We also describe signaling pathways relevant to the progression of glioblastoma.
Collapse
Affiliation(s)
- Saghar Rahnama
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Babak Bakhshinejad
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Farnoosh Farzam
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Amirreza Bitaraf
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Sadegh Babashah
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
503
|
Studzińska-Sroka E, Majchrzak-Celińska A, Zalewski P, Szwajgier D, Baranowska-Wójcik E, Żarowski M, Plech T, Cielecka-Piontek J. Permeability of Hypogymnia physodes Extract Component-Physodic Acid through the Blood-Brain Barrier as an Important Argument for Its Anticancer and Neuroprotective Activity within the Central Nervous System. Cancers (Basel) 2021; 13:cancers13071717. [PMID: 33916370 PMCID: PMC8038629 DOI: 10.3390/cancers13071717] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/20/2021] [Accepted: 04/01/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Central nervous system (CNS) diseases, including tumors such as glioblastomas and neurodegenerative diseases, such as Alzheimer’s disease, are some of the greatest challenges of modern medicine. Therefore, our study aimed to evaluate the anticancer and neuroprotective activity of the extract from a common European lichen Hypogymnia physodes and of its compound-physodic acid. The examined substances were cytotoxic against the glioblastoma cell lines A-172, T98G, and U-138 MG. Both substances strongly inhibited hyaluronidase, and diminished cyclooxygenase-2 activity (H. physodes extract), enzymes expressed in patients with malignant glioma. Furthermore, H. physodes extract inhibited tyrosinase activity, the enzyme linked to neurodegenerative diseases. The tested substances exhibited antioxidant activity, however, acetylcholinesterase and butyrylcholinesterase inhibitory activity were not high. We proved that physodic acid can cross the blood–brain barrier. We conclude that physodic acid and H. physodes extract should be regarded as promising agents with anticancer, chemopreventive, and neuroprotective activities, especially concerning CNS. Abstract Lichen secondary metabolites are characterized by huge pharmacological potential. Our research focused on assessing the anticancer and neuroprotective activity of Hypogymnia physodes acetone extract (HP extract) and physodic acid, its major component. The antitumor properties were evaluated by cytotoxicity analysis using A-172, T98G, and U-138 MG glioblastoma cell lines and by hyaluronidase and cyclooxygenase-2 (COX-2) inhibition. The neuroprotective potential was examined using COX-2, tyrosinase, acetylcholinesterase (AChE), and butyrylcholinesterase (BChE) activity tests. Moreover, the antioxidant potential of the tested substances was examined, and the chemical composition of the extract was analyzed. For physodic acid, the permeability through the blood–brain barrier using Parallel Artificial Membrane Permeability Assay for the Blood–Brain Barrier assay (PAMPA-BBB) was assessed. Our study shows that the tested substances strongly inhibited glioblastoma cell proliferation and hyaluronidase activity. Besides, HP extract diminished COX-2 and tyrosinase activity. However, the AChE and BChE inhibitory activity of HP extract and physodic acid were mild. The examined substances exhibited strong antioxidant activity. Importantly, we proved that physodic acid crosses the blood–brain barrier. We conclude that physodic acid and H. physodes should be regarded as promising agents with anticancer, chemopreventive, and neuroprotective activities, especially regarding the central nervous system diseases.
Collapse
Affiliation(s)
- Elżbieta Studzińska-Sroka
- Department of Pharmacognosy, Poznan University of Medical Sciences, Święcicki 4 Str, 60-781 Poznań, Poland; (P.Z.); (J.C.-P.)
- Correspondence:
| | - Aleksandra Majchrzak-Celińska
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, Święcicki 4 Str, 60-781 Poznań, Poland;
| | - Przemysław Zalewski
- Department of Pharmacognosy, Poznan University of Medical Sciences, Święcicki 4 Str, 60-781 Poznań, Poland; (P.Z.); (J.C.-P.)
| | - Dominik Szwajgier
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences in Lublin, Skromna 8 Str, 20‐704 Lublin, Poland; (D.S.); (E.B.-W.)
| | - Ewa Baranowska-Wójcik
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences in Lublin, Skromna 8 Str, 20‐704 Lublin, Poland; (D.S.); (E.B.-W.)
| | - Marcin Żarowski
- Department of Developmental Neurology, Poznan University of Medical Sciences, Przybyszewski 49 Str, 60-355 Poznań, Poland;
| | - Tomasz Plech
- Department of Pharmacology, Medical University of Lublin, Chodźki 4a Str, Lublin, Poland;
| | - Judyta Cielecka-Piontek
- Department of Pharmacognosy, Poznan University of Medical Sciences, Święcicki 4 Str, 60-781 Poznań, Poland; (P.Z.); (J.C.-P.)
| |
Collapse
|
504
|
Janjua TI, Rewatkar P, Ahmed-Cox A, Saeed I, Mansfeld FM, Kulshreshtha R, Kumeria T, Ziegler DS, Kavallaris M, Mazzieri R, Popat A. Frontiers in the treatment of glioblastoma: Past, present and emerging. Adv Drug Deliv Rev 2021; 171:108-138. [PMID: 33486006 DOI: 10.1016/j.addr.2021.01.012] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/13/2020] [Accepted: 01/09/2021] [Indexed: 12/13/2022]
Abstract
Glioblastoma (GBM) is one of the most aggressive cancers of the brain. Despite extensive research over the last several decades, the survival rates for GBM have not improved and prognosis remains poor. To date, only a few therapies are approved for the treatment of GBM with the main reasons being: 1) significant tumour heterogeneity which promotes the selection of resistant subpopulations 2) GBM induced immunosuppression and 3) fortified location of the tumour in the brain which hinders the delivery of therapeutics. Existing therapies for GBM such as radiotherapy, surgery and chemotherapy have been unable to reach the clinical efficacy necessary to prolong patient survival more than a few months. This comprehensive review evaluates the current and emerging therapies including those in clinical trials that may potentially improve both targeted delivery of therapeutics directly to the tumour site and the development of agents that may specifically target GBM. Particular focus has also been given to emerging delivery technologies such as focused ultrasound, cellular delivery systems nanomedicines and immunotherapy. Finally, we discuss the importance of developing novel materials for improved delivery efficacy of nanoparticles and therapeutics to reduce the suffering of GBM patients.
Collapse
|
505
|
Assessing fatty acid-induced lipotoxicity and its therapeutic potential in glioblastoma using stimulated Raman microscopy. Sci Rep 2021; 11:7422. [PMID: 33795756 PMCID: PMC8016949 DOI: 10.1038/s41598-021-86789-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 03/16/2021] [Indexed: 01/15/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most aggressive primary brain tumor. The effectiveness of traditional therapies for GBM is limited and therefore new therapies are highly desired. Previous studies show that lipid metabolism reprogramming may be a potential therapeutic target in GBM. This study aims to evaluate the therapeutic potential of free fatty acid-induced lipotoxicity for the suppression of glioma growth. U87 glioma cells are treated with three fatty acids (FAs): palmitic acid (PA), oleic acid (OA), and eicosapentaenoic acid (EPA). Uptake of the FAs and formation of lipid droplets (LDs) are imaged and quantified using a lab-built stimulated Raman scattering (SRS) microscope. Our results show that a supply of 200 µM PA, OA, and EPA leads to efficient LDs accumulation in glioma cells. We find that inhibition of triglycerides (TAGs) synthesis depletes LDs and enhances lipotoxicity, which is evidenced by the reduced cell proliferation rates. In particular, our results suggest that EPA treatment combined with depletion of LDs significantly reduces the survival rate of glioma cells by more than 50%, indicating the therapeutic potential of this approach. Future work will focus on understanding the metabolic mechanism of EPA-induced lipotoxicity to further enhance its anticancer effects.
Collapse
|
506
|
Zhong B, Yu J, Hou Y, Ai N, Ge W, Lu JJ, Chen X. A novel strategy for glioblastoma treatment by induction of noptosis, an NQO1-dependent necrosis. Free Radic Biol Med 2021; 166:104-115. [PMID: 33600944 DOI: 10.1016/j.freeradbiomed.2021.02.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 02/04/2021] [Accepted: 02/07/2021] [Indexed: 01/02/2023]
Abstract
Glioblastoma (GBM) is one of the most prevalent malignant primary tumors in the human brain. Temozolomide (TMZ), the chemotherapeutic drug for GBM treatment, induces apoptosis. Unfortunately, apoptosis-resistance to TMZ results in treatment failure. GBM shows enhanced expression of NAD(P)H: quinone oxidoreductase 1 (NQO1). Recently, noptosis, a type of NQO1-dependent necrosis, was proposed. Here, we identified that tanshindiol B (TSB) inhibits GBM growth by induction of noptosis. TSB triggered significant cell death, which did not fit the criteria of apoptosis but oxidative stress-induced necrosis. Molecular docking, cellular thermal shift assay, and NQO1 activity assay revealed that TSB bind to and promptly activated NQO1 enzyme activity. As the substrate of NQO1, TSB induced oxidative stress, which resulted in dramatic DNA damage, poly (ADP-ribose) polymerase 1 (PARP1) hyperactivation, and NAD+ depletion, leading to necrotic cell death. These effects of TSB were completely abolished by specific NQO1 inhibitor dicoumarol (DIC). Furthermore, the c-Jun N-terminal kinase 1/2 (JNK1/2) plays an essential role in mediating TSB-induced cell death. Besides, TSB significantly suppressed tumor growth in a zebrafish xenograft model mediated by NQO1. In conclusion, these results showed that TSB was an NQO1 substrate and triggered noptosis of GBM. TSB exhibited anti-tumor potentials in GBM both in vitro and in vivo. This study provides a novel strategy for fighting GBM through the induction of noptosis.
Collapse
Affiliation(s)
- Bingling Zhong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, China
| | - Jie Yu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, China
| | - Ying Hou
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, China
| | - Nana Ai
- Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Wei Ge
- Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Jin-Jian Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, China
| | - Xiuping Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, China.
| |
Collapse
|
507
|
Munisamy M, Munisamy S, Kumar JP, Jose A, Thomas L, Baburaj G, Subbiah V. Pharmacogenetics of ATP binding cassette transporter MDR1(1236C>T) gene polymorphism with glioma patients receiving Temozolomide-based chemoradiation therapy in Indian population. THE PHARMACOGENOMICS JOURNAL 2021; 21:262-272. [PMID: 33589792 DOI: 10.1038/s41397-021-00206-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 12/18/2020] [Accepted: 01/15/2021] [Indexed: 01/31/2023]
Abstract
Temozolomide (TMZ), an alkylating agent with a broad-spectrum antitumor activity, ability to cross blood-brain barrier (BBB), shown to be effective against malignant glioma. This study aims to investigate the effect of 1236C>T (rs1128503) single-nucleotide gene polymorphisms of ABCB1 (MDR1) in north-Indian patients diagnosed with glioma undergoing TMZ-based chemoradiotherapy. Genotyping was performed in 100 patients diagnosed with malignant glioma (50 anaplastic astrocytoma (AA) patients and 50 glioblastoma multiforme (GBM) patients) and 150 age and sex-matched controls by polymerase chain reaction-restriction fragment length polymorphisms (PCR-RFLP) method, followed by sanger sequencing. TMZ plasma levels were analyzed by reverse phase HPLC method. Glioma patient's survival time was analyzed by Kaplan-Meier's curve. Results of MDR1 gene 1236C>T polymorphism showed significant allelic and genotypic frequency association between glioma patients and controls. The plasma TMZ levels between metabolizers group in Grade III and Grade IV were found to be statistically significant (p < 0.05). The mutant genotype (TT) has less survival benefit compared with other genotypes (CT/CC) and the survival difference between AA and GBM was found to be statistically significant (p < 0.05). Though CT and TT polymorphisms have significant association with lower TMZ levels in both Grade III (AA) and IV (GBM) tumors, the survival difference seems to be mainly among patients with Grade III tumors. Our findings suggest that the MDR1 gene polymorphism plays a role in plasma TMZ levels and in survival time of glioma patients and, hence, TMZ therapy in malignant glioma can be predicted by genotyping MDR1 (1236C>T) gene polymorphism.
Collapse
Affiliation(s)
- Murali Munisamy
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India.,Department of Neuro Biochemistry, Neuroscience Centre, All India Institute of Medical Sciences, New Delhi, India
| | - Srinivasan Munisamy
- Department of Neuro Biochemistry, Neuroscience Centre, All India Institute of Medical Sciences, New Delhi, India
| | - Julka Pramod Kumar
- Department of Radiotherapy, Dr. B.R.A Institute-Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Anmi Jose
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Levin Thomas
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Gayathri Baburaj
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Vivekanandhan Subbiah
- Department of Neuro Biochemistry, Neuroscience Centre, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
508
|
Long, Noncoding RNA Dysregulation in Glioblastoma. Cancers (Basel) 2021; 13:cancers13071604. [PMID: 33807183 PMCID: PMC8037018 DOI: 10.3390/cancers13071604] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/20/2021] [Accepted: 03/24/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Developing effective therapies for glioblastoma (GBM), the most common primary brain cancer, remains challenging due to the heterogeneity within tumors and therapeutic resistance that drives recurrence. Noncoding RNAs are transcribed from a large proportion of the genome and remain largely unexplored in their contribution to the evolution of GBM tumors. Here, we will review the general mechanisms of long, noncoding RNAs and the current knowledge of how these impact heterogeneity and therapeutic resistance in GBM. A better understanding of the molecular drivers required for these aggressive tumors is necessary to improve the management and outcomes of this challenging disease. Abstract Transcription occurs across more than 70% of the human genome and more than half of currently annotated genes produce functional noncoding RNAs. Of these transcripts, the majority—long, noncoding RNAs (lncRNAs)—are greater than 200 nucleotides in length and are necessary for various roles in the cell. It is increasingly appreciated that these lncRNAs are relevant in both health and disease states, with the brain expressing the largest number of lncRNAs compared to other organs. Glioblastoma (GBM) is an aggressive, fatal brain tumor that demonstrates remarkable intratumoral heterogeneity, which has made the development of effective therapies challenging. The cooperation between genetic and epigenetic alterations drives rapid adaptation that allows therapeutic evasion and recurrence. Given the large repertoire of lncRNAs in normal brain tissue and the well-described roles of lncRNAs in molecular and cellular processes, these transcripts are important to consider in the context of GBM heterogeneity and treatment resistance. Herein, we review the general mechanisms and biological roles of lncRNAs, with a focus on GBM, as well as RNA-based therapeutics currently in development.
Collapse
|
509
|
New insights into cytotoxic mechanisms of bozepinib against glioblastoma. Eur J Pharm Sci 2021; 162:105823. [PMID: 33781855 DOI: 10.1016/j.ejps.2021.105823] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 02/18/2021] [Accepted: 03/22/2021] [Indexed: 02/06/2023]
Abstract
Glioblastoma (GBM) is the most frequent and aggressive brain tumor in adults and the current treatments only have a modest effect on patient survival. Recent studies show that bozepinib (BZP), a purine derivative, has potential applications in cancer treatment. The aim of this study was to evaluate the effect of BZP against GBM cells, specially concerning the purinergic system. Thus, GBM cells (C6 and U138 cell lines) were treated with BZP and cell viability, cell cycle, and annexin/PI assays, and active caspase-3 measurements were carried out. Besides, the effect of BZP over the purinergic system was also evaluated in silico and in vitro. Finally, we evaluate the action of BZP against important markers related to cancer progression, such as Akt, NF-κB, and CD133. We demonstrate here that BZP reduces GBM cell viability (IC50 = 5.7 ± 0.3 µM and 12.7 ± 1.5 µM, in C6 and U138 cells, respectively), inducing cell death through caspase-dependent apoptosis, autophagosome formation, activation of NF-κB, without any change in cell cycle progression or on the Akt pathway. Also, BZP modulates the purinergic system, inducing an increase in CD39 enzyme expression and activity, while inhibiting CD73 activity and adenosine formation, without altering CD73 enzyme expression. Curiously, one cycle of treatment resulted in enrichment of GBM cells expressing NF-κB and CD133+, suggesting resistant cells selection. However, after another treatment round, the resistant cells were eliminated. Altogether, BZP presented in vitro anti-glioma activity, encouraging further in vivo studies in order to better understand its mechanism of action.
Collapse
|
510
|
Khan MB, Ruggieri R, Jamil E, Tran NL, Gonzalez C, Mugridge N, Gao S, MacDiarmid J, Brahmbhatt H, Sarkaria JN, Boockvar J, Symons M. Nanocell-mediated delivery of miR-34a counteracts temozolomide resistance in glioblastoma. Mol Med 2021; 27:28. [PMID: 33765907 PMCID: PMC7993499 DOI: 10.1186/s10020-021-00293-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 03/17/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Glioblastoma is the most common primary brain tumor and remains uniformly fatal, highlighting the dire need for developing effective therapeutics. Significant intra- and inter-tumor heterogeneity and inadequate delivery of therapeutics across blood-brain barrier continue to be significant impediments towards developing therapies which can significantly enhance survival. We hypothesize that microRNAs have the potential to serve as effective therapeutics for glioblastoma as they modulate the activity of multiple signaling pathways, and hence can counteract heterogeneity if successfully delivered. METHODS Using a computational approach, we identified microRNA-34a as a microRNA that maximally reduces the activation status of the three core signaling networks (the receptor tyrosine kinase, p53 and Rb networks) that have been found to be deregulated in most glioblastoma tumors. Glioblastoma cultures were transfected with microRNA-34a or control microRNA to assess biological function and therapeutic potential in vitro. Nanocells were derived from genetically modified bacteria and loaded with microRNA-34a for intravenous administration to orthotopic patient-derived glioblastoma xenografts in mice. RESULTS Overexpression of microRNA-34a strongly reduced the activation status of the three core signaling networks. microRNA-34a transfection also inhibited the survival of multiple established glioblastoma cell lines, as well as primary patient-derived xenograft cultures representing the proneural, mesenchymal and classical subtypes. Transfection of microRNA-34a enhanced temozolomide (TMZ) response in in vitro cultures of glioblastoma cells with primary TMZ sensitivity, primary TMZ resistance and acquired TMZ resistance. Mechanistically, microRNA-34a downregulated multiple therapeutic resistance genes which are associated with worse survival in glioblastoma patients and are enriched in specific tumor spatial compartments. Importantly, intravenous administration of nanocells carrying miR-34a and targeted to epidermal growth factor receptor (EGFR) strongly enhanced TMZ sensitivity in an orthotopic patient-derived xenograft mouse model of glioblastoma. CONCLUSIONS Targeted bacterially-derived nanocells are an effective vehicle for the delivery of microRNA-34a to glioblastoma tumors. microRNA-34a inhibits survival and strongly sensitizes a wide range of glioblastoma cell cultures to TMZ, suggesting that combination therapy of TMZ with microRNA-34a loaded nanocells may serve as a novel therapeutic approach for the treatment of glioblastoma tumors.
Collapse
Affiliation(s)
- Muhammad Babar Khan
- The Elmezzi Graduate School of Molecular Medicine, Northwell Health, Manhasset, NY, USA.
- Karches Center for Oncology, The Institute of Molecular Medicine, The Feinstein Institutes for Medical Research at Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA.
| | - Rosamaria Ruggieri
- Karches Center for Oncology, The Institute of Molecular Medicine, The Feinstein Institutes for Medical Research at Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
- Department of Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, USA
| | - Eesha Jamil
- Karches Center for Oncology, The Institute of Molecular Medicine, The Feinstein Institutes for Medical Research at Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Nhan L Tran
- Department of Cancer Biology, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Camila Gonzalez
- Karches Center for Oncology, The Institute of Molecular Medicine, The Feinstein Institutes for Medical Research at Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
| | | | | | | | | | - Jann N Sarkaria
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, USA
| | - John Boockvar
- Brain Tumor Center, Lenox Hill Hospital, New York, NY, USA
- Department of Neurosurgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, USA
| | - Marc Symons
- Karches Center for Oncology, The Institute of Molecular Medicine, The Feinstein Institutes for Medical Research at Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
- Department of Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, USA
- Department of Neurosurgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY, USA
| |
Collapse
|
511
|
Mahinfar P, Baradaran B, Davoudian S, Vahidian F, Cho WCS, Mansoori B. Long Non-Coding RNAs in Multidrug Resistance of Glioblastoma. Genes (Basel) 2021; 12:455. [PMID: 33806782 PMCID: PMC8004794 DOI: 10.3390/genes12030455] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/17/2021] [Accepted: 03/19/2021] [Indexed: 12/11/2022] Open
Abstract
Glioblastoma, also known as glioblastoma multiforme, is the most aggressive brain tumor in adults. Despite the huge advance in developing novel therapeutic strategies for patients with glioblastoma, the appearance of multidrug resistance (MDR) against the common chemotherapeutic agents, including temozolomide, is considered as one of the important causes for the failure of glioblastoma treatment. On the other hand, recent studies have demonstrated the critical roles of long non-coding RNAs (lncRNAs), particularly in the development of MDR in glioblastoma. Therefore, this article aimed to review lncRNA's contribution to the regulation of MDR and elucidate the underlying mechanisms in glioblastoma, which will open up new lines of inquiry in the treatment of glioblastoma.
Collapse
Affiliation(s)
- Parvaneh Mahinfar
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran; (P.M.); (B.B.); (F.V.)
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran; (P.M.); (B.B.); (F.V.)
| | - Sadaf Davoudian
- Humanitas Clinical and Research Center—IRCCS, 20089 Milan, Italy;
| | - Fatemeh Vahidian
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran; (P.M.); (B.B.); (F.V.)
| | | | - Behzad Mansoori
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran; (P.M.); (B.B.); (F.V.)
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, 5230 Odense, Denmark
| |
Collapse
|
512
|
Menyhárt O, Fekete JT, Győrffy B. Gene expression-based biomarkers designating glioblastomas resistant to multiple treatment strategies. Carcinogenesis 2021; 42:804-813. [PMID: 33754151 PMCID: PMC8215594 DOI: 10.1093/carcin/bgab024] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 03/01/2021] [Accepted: 03/19/2021] [Indexed: 12/17/2022] Open
Abstract
Despite advances in molecular characterization of glioblastoma multiforme (GBM), only a handful of predictive biomarkers exist with limited clinical relevance. We aimed to identify differentially expressed genes in tumor samples collected at surgery associated with response to subsequent treatment, including temozolomide (TMZ) and nitrosoureas. Gene expression was collected from multiple independent datasets. Patients were categorized as responders/nonresponders based on their survival status at 16 months postsurgery. For each gene, the expression was compared between responders and nonresponders with a Mann-Whitney U-test and receiver operating characteristic. The package 'roc' was used to calculate the area under the curve (AUC). The integrated database comprises 454 GBM patients from 3 independent datasets and 10 103 genes. The highest proportion of responders (68%) were among patients treated with TMZ combined with nitrosoureas, where FCGR2B upregulation provided the strongest predictive value (AUC = 0.72, P < 0.001). Elevated expression of CSTA and MRPS17 was associated with a lack of response to multiple treatment strategies. DLL3 upregulation was present in subsequent responders to any treatment combination containing TMZ. Three genes (PLSCR1, MX1 and MDM2) upregulated both in the younger cohort and in patients expressing low MGMT delineate a subset of patients with worse prognosis within a population generally associated with a favorable outcome. The identified transcriptomic changes provide biomarkers of responsiveness, offer avenues for preclinical studies and may enhance future GBM patient stratifications. The described methodology provides a reliable pipeline for the initial testing of potential biomarker candidates for future validation studies.
Collapse
Affiliation(s)
- Otília Menyhárt
- Semmelweis University, Department of Bioinformatics and 2nd Department of Pediatrics, Budapest, Hungary.,Research Centre for Natural Sciences, Cancer Biomarker Research Group, Institute of Enzymology, Magyar tudósok körútja, Budapest, Hungary
| | - János Tibor Fekete
- Semmelweis University, Department of Bioinformatics and 2nd Department of Pediatrics, Budapest, Hungary.,Research Centre for Natural Sciences, Cancer Biomarker Research Group, Institute of Enzymology, Magyar tudósok körútja, Budapest, Hungary
| | - Balázs Győrffy
- Semmelweis University, Department of Bioinformatics and 2nd Department of Pediatrics, Budapest, Hungary.,Research Centre for Natural Sciences, Cancer Biomarker Research Group, Institute of Enzymology, Magyar tudósok körútja, Budapest, Hungary
| |
Collapse
|
513
|
Fulbert C, Chabardès S, Ratel D. Adjuvant therapeutic potential of moderate hypothermia for glioblastoma. J Neurooncol 2021; 152:467-482. [PMID: 33740164 DOI: 10.1007/s11060-021-03704-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 01/16/2021] [Indexed: 11/28/2022]
Abstract
PURPOSE Glioblastoma is the most common malignant brain tumor, currently treated by surgery followed by concomitant radiotherapy and temozolomide-based chemotherapy. Despite these treatments, median survival is only 15 months as a result of tumor recurrence in the resection margins. Here, we propose therapeutic hypothermia - known to have neuroprotective effects - as an adjuvant treatment to maintain residual glioblastoma cells in a dormant state, and thus prevent tumor recurrence. METHODS In vitro experiments were performed on healthy tissue with primary human astrocytes, and four human glioblastoma cell lines: A172, U251, U87, and T98G. We explored the adjuvant potential of moderate hypothermia (28 °C) by studying the reversibility of its inhibitory effects on cell proliferation and comparing them to currently used temozolomide. RESULTS Moderate hypothermia reduced healthy cell growth, but also inhibited glioblastoma cell proliferation even after rewarming. Indeed, hypothermic preconditioning duration strongly enhanced inhibitory effects from 35% after 3 days to 100% after 30 days. In contrast, moderate (28 °C) and severe (23 °C) preconditioning induced similar results. Finally, moderate hypothermia had more uniform inhibitory effects than temozolomide, which reduced proliferation by between 15% and 95%, and also potentiated the effects of the latter. CONCLUSION Moderate hypothermia shows promise as an adjuvant therapy for glioblastoma through its inhibition of cell proliferation beyond direct conditioning and potentiation of the effects of chemotherapy. If in vivo preclinical results corroborate our findings, therapeutic hypothermia applied at the resection margins could probably inhibit tumor growth, delay tumor recurrence and reduce inter-patient variability.
Collapse
Affiliation(s)
| | - Stéphan Chabardès
- Univ. Grenoble Alpes, CEA, LETI, Clinatec, 38000, Grenoble, France.,Neurosurgery Department, CHU Grenoble Alpes, 38000, Grenoble, France.,Univ. Grenoble Alpes, Inserm U1216, Grenoble Institut des Neurosciences, 38000, Grenoble, France
| | - David Ratel
- Univ. Grenoble Alpes, CEA, LETI, Clinatec, 38000, Grenoble, France.
| |
Collapse
|
514
|
Zhang L, Fu R, Duan D, Li Z, Li B, Ming Y, Li L, Ni R, Chen J. Cyclovirobuxine D Induces Apoptosis and Mitochondrial Damage in Glioblastoma Cells Through ROS-Mediated Mitochondrial Translocation of Cofilin. Front Oncol 2021; 11:656184. [PMID: 33816313 PMCID: PMC8018288 DOI: 10.3389/fonc.2021.656184] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 02/26/2021] [Indexed: 12/11/2022] Open
Abstract
Background Cyclovirobuxine D (CVBD), a steroidal alkaloid, has multiple pharmacological activities, including anti-cancer activity. However, the anti-cancer effect of CVBD on glioblastoma (GBM) has seldom been investigated. This study explores the activity of CVBD in inducing apoptosis of GBM cells, and examines the related mechanism in depth. Methods GBM cell lines (T98G, U251) and normal human astrocytes (HA) were treated with CVBD. Cell viability was examined by CCK-8 assay, and cell proliferation was evaluated by cell colony formation counts. Apoptosis and mitochondrial superoxide were measured by flow cytometry. All protein expression levels were determined by Western blotting. JC-1 and CM-H2DCFDA probes were used to evaluate the mitochondrial membrane potential (MMP) change and intracellular ROS generation, respectively. The cell ultrastructure was observed by transmission electron microscope (TEM). Colocalization of cofilin and mitochondria were determined by immunofluorescence assay. Results CVBD showed a greater anti-proliferation effect on the GBM cell lines, T98G and U251, than normal human astrocytes in dose- and time-dependent manners. CVBD induced apoptosis and mitochondrial damage in GBM cells. We found that CVBD led to mitochondrial translocation of cofilin. Knockdown of cofilin attenuated CVBD-induced apoptosis and mitochondrial damage. Additionally, the generation of ROS and mitochondrial superoxide was also induced by CVBD in a dose-dependent manner. N-acetyl-L-cysteine (NAC) and mitoquinone (MitoQ) pre-treatment reverted CVBD-induced apoptosis and mitochondrial damage. MitoQ pretreatment was able to block the mitochondrial translocation of cofilin caused by CVBD. Conclusions Our data revealed that CVBD induced apoptosis and mitochondrial damage in GBM cells. The underlying mechanism is related to mitochondrial translocation of cofilin caused by mitochondrial oxidant stress.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| | - Ruoqiu Fu
- Department of Pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| | - Dongyu Duan
- Department of Pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| | - Ziwei Li
- Department of Pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| | - Bin Li
- Department of Pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| | - Yue Ming
- Department of Pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| | - Li Li
- Department of Pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| | - Rui Ni
- Department of Pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| | - Jianhong Chen
- Department of Pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
515
|
Singh N, Miner A, Hennis L, Mittal S. Mechanisms of temozolomide resistance in glioblastoma - a comprehensive review. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2021; 4:17-43. [PMID: 34337348 PMCID: PMC8319838 DOI: 10.20517/cdr.2020.79] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Glioblastoma (GBM) is the most common primary malignant brain tumor in adults and has an exceedingly low median overall survival of only 15 months. Current standard-of-care for GBM consists of gross total surgical resection followed by radiation with concurrent and adjuvant chemotherapy. Temozolomide (TMZ) is the first-choice chemotherapeutic agent in GBM; however, the development of resistance to TMZ often becomes the limiting factor in effective treatment. While O6-methylguanine-DNA methyltransferase repair activity and uniquely resistant populations of glioma stem cells are the most well-known contributors to TMZ resistance, many other molecular mechanisms have come to light in recent years. Key emerging mechanisms include the involvement of other DNA repair systems, aberrant signaling pathways, autophagy, epigenetic modifications, microRNAs, and extracellular vesicle production. This review aims to provide a comprehensive overview of the clinically relevant molecular mechanisms and their extensive interconnections to better inform efforts to combat TMZ resistance.
Collapse
Affiliation(s)
- Neha Singh
- Division of Neurosurgery, Virginia Tech Carilion School of Medicine, Roanoke, VA 24014, USA.,Fralin Biomedical Research Institute at VTC, Roanoke, VA 24014, USA
| | - Alexandra Miner
- Division of Neurosurgery, Virginia Tech Carilion School of Medicine, Roanoke, VA 24014, USA.,Fralin Biomedical Research Institute at VTC, Roanoke, VA 24014, USA
| | - Lauren Hennis
- Division of Neurosurgery, Virginia Tech Carilion School of Medicine, Roanoke, VA 24014, USA.,Fralin Biomedical Research Institute at VTC, Roanoke, VA 24014, USA
| | - Sandeep Mittal
- Division of Neurosurgery, Virginia Tech Carilion School of Medicine, Roanoke, VA 24014, USA.,Fralin Biomedical Research Institute at VTC, Roanoke, VA 24014, USA.,Carilion Clinic - Neurosurgery, Roanoke, VA 24014, USA
| |
Collapse
|
516
|
Pellecchia S, De Martino M, Esposito F, Quintavalle C, Fusco A, Pallante P. MPPED2 is downregulated in glioblastoma, and its restoration inhibits proliferation and increases the sensitivity to temozolomide of glioblastoma cells. Cell Cycle 2021; 20:716-729. [PMID: 33734003 DOI: 10.1080/15384101.2021.1901042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Glioblastoma (GBM) is the most aggressive and lethal neoplasia of the central nervous system in adults. Based on the molecular signature genes, GBM has been classified in proneural, neural, mesenchymal and classical subtypes. The Metallophosphoesterase-domain-containing protein 2 (MPPED2) gene encodes a metallophosphodiesterase protein highly conserved throughout the evolution. MPPED2 downregulation, likely due to its promoter hypermethylation, has been found in several malignant neoplasias and correlated with a poor prognosis. In this study, we aimed to investigate the expression and the functional role of MPPED2 in GBM. TCGA and Gravendeel databases were employed to explore the MPPED2 expression levels in this type of tumor. We have found that MPPED2 expression is downregulated in GBM patients, showing a positive correlation with survival. Moreover, TCGA and Gravendeel data also revealed that MPPED2 expression negatively correlates with the most aggressive mesenchymal subtype. Additionally, the restoration of MPPED2 expression in U251 and GLI36 GBM cell lines decreases cell growth, migration and enhanced the sensitivity to the temozolomide, inducing apoptotic cell death, of GBM cells. These findings suggest that the restoration of MPPED2 function can be taken into consideration for an innovative GBM therapy.
Collapse
Affiliation(s)
- Simona Pellecchia
- Institute for Experimental Endocrinology and Oncology (IEOS) "G. Salvatore", National Research Council (CNR), Naples, Italy.,Department of Molecular Medicine and Medical Biotechnology (DMMBM), University of Naples "Federico II", Naples, Italy
| | - Marco De Martino
- Institute for Experimental Endocrinology and Oncology (IEOS) "G. Salvatore", National Research Council (CNR), Naples, Italy.,Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Francesco Esposito
- Institute for Experimental Endocrinology and Oncology (IEOS) "G. Salvatore", National Research Council (CNR), Naples, Italy.,Department of Molecular Medicine and Medical Biotechnology (DMMBM), University of Naples "Federico II", Naples, Italy
| | - Cristina Quintavalle
- Institute for Experimental Endocrinology and Oncology (IEOS) "G. Salvatore", National Research Council (CNR), Naples, Italy
| | - Alfredo Fusco
- Institute for Experimental Endocrinology and Oncology (IEOS) "G. Salvatore", National Research Council (CNR), Naples, Italy.,Department of Molecular Medicine and Medical Biotechnology (DMMBM), University of Naples "Federico II", Naples, Italy
| | - Pierlorenzo Pallante
- Institute for Experimental Endocrinology and Oncology (IEOS) "G. Salvatore", National Research Council (CNR), Naples, Italy
| |
Collapse
|
517
|
Anticancer Mechanism of Curcumin on Human Glioblastoma. Nutrients 2021; 13:nu13030950. [PMID: 33809462 PMCID: PMC7998496 DOI: 10.3390/nu13030950] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma (GBM) is the most malignant brain tumor and accounts for most adult brain tumors. Current available treatment options for GBM are multimodal, which include surgical resection, radiation, and chemotherapy. Despite the significant advances in diagnostic and therapeutic approaches, GBM remains largely resistant to treatment, with a poor median survival rate between 12 and 18 months. With increasing drug resistance, the introduction of phytochemicals into current GBM treatment has become a potential strategy to combat GBM. Phytochemicals possess multifarious bioactivities with multitarget sites and comparatively marginal toxicity. Among them, curcumin is the most studied compound described as a potential anticancer agent due to its multi-targeted signaling/molecular pathways properties. Curcumin possesses the ability to modulate the core pathways involved in GBM cell proliferation, apoptosis, cell cycle arrest, autophagy, paraptosis, oxidative stress, and tumor cell motility. This review discusses curcumin’s anticancer mechanism through modulation of Rb, p53, MAPK, P13K/Akt, JAK/STAT, Shh, and NF-κB pathways, which are commonly involved and dysregulated in preclinical and clinical GBM models. In addition, limitation issues such as bioavailability, pharmacokinetics perspectives strategies, and clinical trials were discussed.
Collapse
|
518
|
Chakravarty M, Ganguli P, Murahari M, Sarkar RR, Peters GJ, Mayur YC. Study of Combinatorial Drug Synergy of Novel Acridone Derivatives With Temozolomide Using in-silico and in-vitro Methods in the Treatment of Drug-Resistant Glioma. Front Oncol 2021; 11:625899. [PMID: 33791212 PMCID: PMC8006935 DOI: 10.3389/fonc.2021.625899] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 02/16/2021] [Indexed: 12/13/2022] Open
Abstract
Drug resistance is one of the critical challenges faced in the treatment of Glioma. There are only limited drugs available in the treatment of Glioma and among them Temozolomide (TMZ) has shown some effectiveness in treating Glioma patients, however, the rate of recovery remains poor due to the inability of this drug to act on the drug resistant tumor sub-populations. Hence, in this study three novel Acridone derivative drugs AC2, AC7, and AC26 have been proposed. These molecules when combined with TMZ show major tumor cytotoxicity that is effective in suppressing growth of cancer cells in both drug sensitive and resistant sub-populations of a tumor. In this study a novel mathematical model has been developed to explore the various drug combinations that may be useful for the treatment of resistant Glioma and show that the combinations of TMZ and Acridone derivatives have a synergistic effect. Also, acute toxicity studies of all three acridone derivatives were carried out for 14 days and were found safe for oral administration of 400 mg/kg body weight on albino Wistar rats. Molecular Docking studies of acridone derivatives with P-glycoprotein (P-gp), multiple resistant protein (MRP), and O6-methylguanine-DNA methyltransferase (MGMT) revealed different binding affinities to the transporters contributing to drug resistance. It is observed that while the Acridone derivatives bind with these drug resistance causing proteins, the TMZ can produce its cytotoxicity at a much lower concentration leading to the synergistic effect. The in silico analysis corroborate well with our experimental findings using TMZ resistant (T-98) and drug sensitive (U-87) Glioma cell lines and we propose three novel drug combinations (TMZ with AC2, AC7, and AC26) and dosages that show high synergy, high selectivity and low collateral toxicity for the use in the treatment of drug resistant Glioma, which could be future drugs in the treatment of Glioblastoma.
Collapse
Affiliation(s)
- Malobika Chakravarty
- Department of Pharmaceutical Chemistry, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS, Mumbai, India
| | - Piyali Ganguli
- Chemical Engineering and Process Development Division, CSIR-National Chemical Laboratory, Pune, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Manikanta Murahari
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Bengaluru, India
| | - Ram Rup Sarkar
- Chemical Engineering and Process Development Division, CSIR-National Chemical Laboratory, Pune, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Godefridus Johannes Peters
- Department of Biochemistry, Medical University of Gdansk, Gdansk, Poland.,Laboratory Medical Oncology, Amsterdam University Medical Centers, Location VUMC, Amsterdam, Netherlands
| | - Y C Mayur
- Department of Pharmaceutical Chemistry, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS, Mumbai, India
| |
Collapse
|
519
|
Vural S, Palmisano A, Reinhold WC, Pommier Y, Teicher BA, Krushkal J. Association of expression of epigenetic molecular factors with DNA methylation and sensitivity to chemotherapeutic agents in cancer cell lines. Clin Epigenetics 2021; 13:49. [PMID: 33676569 PMCID: PMC7936435 DOI: 10.1186/s13148-021-01026-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 02/10/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Altered DNA methylation patterns play important roles in cancer development and progression. We examined whether expression levels of genes directly or indirectly involved in DNA methylation and demethylation may be associated with response of cancer cell lines to chemotherapy treatment with a variety of antitumor agents. RESULTS We analyzed 72 genes encoding epigenetic factors directly or indirectly involved in DNA methylation and demethylation processes. We examined association of their pretreatment expression levels with methylation beta-values of individual DNA methylation probes, DNA methylation averaged within gene regions, and average epigenome-wide methylation levels. We analyzed data from 645 cancer cell lines and 23 cancer types from the Cancer Cell Line Encyclopedia and Genomics of Drug Sensitivity in Cancer datasets. We observed numerous correlations between expression of genes encoding epigenetic factors and response to chemotherapeutic agents. Expression of genes encoding a variety of epigenetic factors, including KDM2B, DNMT1, EHMT2, SETDB1, EZH2, APOBEC3G, and other genes, was correlated with response to multiple agents. DNA methylation of numerous target probes and gene regions was associated with expression of multiple genes encoding epigenetic factors, underscoring complex regulation of epigenome methylation by multiple intersecting molecular pathways. The genes whose expression was associated with methylation of multiple epigenome targets encode DNA methyltransferases, TET DNA methylcytosine dioxygenases, the methylated DNA-binding protein ZBTB38, KDM2B, SETDB1, and other molecular factors which are involved in diverse epigenetic processes affecting DNA methylation. While baseline DNA methylation of numerous epigenome targets was correlated with cell line response to antitumor agents, the complex relationships between the overlapping effects of each epigenetic factor on methylation of specific targets and the importance of such influences in tumor response to individual agents require further investigation. CONCLUSIONS Expression of multiple genes encoding epigenetic factors is associated with drug response and with DNA methylation of numerous epigenome targets that may affect response to therapeutic agents. Our findings suggest complex and interconnected pathways regulating DNA methylation in the epigenome, which may both directly and indirectly affect response to chemotherapy.
Collapse
Affiliation(s)
- Suleyman Vural
- Biometric Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, 9609 Medical Center Dr., Rockville, MD, 20850, USA
| | - Alida Palmisano
- Biometric Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, 9609 Medical Center Dr., Rockville, MD, 20850, USA
- General Dynamics Information Technology (GDIT), 3150 Fairview Park Drive, Falls Church, VA, 22042, USA
| | - William C Reinhold
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Yves Pommier
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Beverly A Teicher
- Molecular Pharmacology Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Julia Krushkal
- Biometric Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, 9609 Medical Center Dr., Rockville, MD, 20850, USA.
| |
Collapse
|
520
|
Stakišaitis D, Damanskienė E, Curkūnavičiūtė R, Juknevičienė M, Alonso MM, Valančiūtė A, Ročka S, Balnytė I. The Effectiveness of Dichloroacetate on Human Glioblastoma Xenograft Growth Depends on Na+ and Mg2+ Cations. Dose Response 2021; 19:1559325821990166. [PMID: 33716589 PMCID: PMC7923996 DOI: 10.1177/1559325821990166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/02/2021] [Accepted: 01/05/2021] [Indexed: 01/03/2023] Open
Abstract
The study's aim was to investigate the effectiveness of sodium dichloroacetate (NaDCA) or magnesium dichloroacetate (MgDCA) on adult U87 MG and pediatric PBT24 cell lines glioblastoma (GB) xenografts in a chicken chorioallantoic membrane (CAM) model. The study groups were: treated with 10 mM, 5 mM of NaDCA, and 5 mM, 2.5 mM of MgDCA, and controls. The U87 MG and PBT24 xenografts growth, frequency of tumor invasion into CAM, CAM thickening, and the number of blood vessels in CAM differed depending on the dichloroacetate salt treatment. NaDCA impact on U87 MG and PBT24 tumor on proliferating cell nunclear antigen (PCNA) and enhancer of zeste homolog 2 (EZH2) expression in the tumor was different, depending on the NaDCA dose. The 5 mM MgDCA impact was more potent and had similar effects on U87 MG and PBT24 tumors, and its impact was also reflected in changes in PCNA and EZH2 expression in tumor cells. The U87 MG and PBT24 tumor response variations to treatment with different NaDCA concentration on tumor growth or a contrast between NaDCA and MgDCA effectiveness may reflect some differences in U87 MG and PBT24 cell biology.
Collapse
Affiliation(s)
- Donatas Stakišaitis
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania.,Laboratory of Molecular Oncology, National Cancer Institute, Vilnius, Lithuania
| | - Eligija Damanskienė
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Rūta Curkūnavičiūtė
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Milda Juknevičienė
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Marta Maria Alonso
- Department of Pediatrics, Clínica Universidad de Navarra, University of Navarra, Pamplona, Spain
| | - Angelija Valančiūtė
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Saulius Ročka
- Centre of Neurosurgery, Clinic of Neurology and Neurosurgery, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Ingrida Balnytė
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| |
Collapse
|
521
|
Goenka A, Tiek D, Song X, Huang T, Hu B, Cheng SY. The Many Facets of Therapy Resistance and Tumor Recurrence in Glioblastoma. Cells 2021; 10:cells10030484. [PMID: 33668200 PMCID: PMC7995978 DOI: 10.3390/cells10030484] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/19/2021] [Accepted: 02/19/2021] [Indexed: 12/14/2022] Open
Abstract
Glioblastoma (GBM) is the most lethal type of primary brain cancer. Standard care using chemo- and radio-therapy modestly increases the overall survival of patients; however, recurrence is inevitable, due to treatment resistance and lack of response to targeted therapies. GBM therapy resistance has been attributed to several extrinsic and intrinsic factors which affect the dynamics of tumor evolution and physiology thus creating clinical challenges. Tumor-intrinsic factors such as tumor heterogeneity, hypermutation, altered metabolomics and oncologically activated alternative splicing pathways change the tumor landscape to facilitate therapy failure and tumor progression. Moreover, tumor-extrinsic factors such as hypoxia and an immune-suppressive tumor microenvironment (TME) are the chief causes of immunotherapy failure in GBM. Amid the success of immunotherapy in other cancers, GBM has occurred as a model of resistance, thus focusing current efforts on not only alleviating the immunotolerance but also evading the escape mechanisms of tumor cells to therapy, caused by inter- and intra-tumoral heterogeneity. Here we review the various mechanisms of therapy resistance in GBM, caused by the continuously evolving tumor dynamics as well as the complex TME, which cumulatively contribute to GBM malignancy and therapy failure; in an attempt to understand and identify effective therapies for recurrent GBM.
Collapse
Affiliation(s)
| | | | | | | | | | - Shi-Yuan Cheng
- Correspondence: ; Tel.: +1-312-503-3043; Fax: +1-312-503-5603
| |
Collapse
|
522
|
Nguyen HM, Saha D. The Current State of Oncolytic Herpes Simplex Virus for Glioblastoma Treatment. Oncolytic Virother 2021; 10:1-27. [PMID: 33659221 PMCID: PMC7917312 DOI: 10.2147/ov.s268426] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 01/18/2021] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma (GBM) is a lethal primary malignant brain tumor with no current effective treatments. The recent emergence of immuno-virotherapy and FDA approval of T-VEC have generated a great expectation towards oncolytic herpes simplex viruses (oHSVs) as a promising treatment option for GBM. Since the generation and testing of the first genetically engineered oHSV in glioma in the early 1990s, oHSV-based therapies have shown a long way of great progress in terms of anti-GBM efficacy and safety, both preclinically and clinically. Here, we revisit the literature to understand the recent advancement of oHSV in the treatment of GBM. In addition, we discuss current obstacles to oHSV-based therapies and possible strategies to overcome these pitfalls.
Collapse
Affiliation(s)
- Hong-My Nguyen
- Department of Immunotherapeutics and Biotechnology, Texas Tech University Health Sciences Center, School of Pharmacy, Abilene, TX, 79601, USA
| | - Dipongkor Saha
- Department of Immunotherapeutics and Biotechnology, Texas Tech University Health Sciences Center, School of Pharmacy, Abilene, TX, 79601, USA
| |
Collapse
|
523
|
Lo Dico A, Martelli C, Diceglie C, Ottobrini L. The Multifaceted Role of CMA in Glioma: Enemy or Ally? Int J Mol Sci 2021; 22:2217. [PMID: 33672324 PMCID: PMC7926390 DOI: 10.3390/ijms22042217] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/18/2021] [Accepted: 02/20/2021] [Indexed: 12/14/2022] Open
Abstract
Chaperone-mediated autophagy (CMA) is a catabolic pathway fundamental for cell homeostasis, by which specific damaged or non-essential proteins are degraded. CMA activity has three main levels of regulation. The first regulatory level is based on the targetability of specific proteins possessing a KFERQ-like domain, which can be recognized by specific chaperones and delivered to the lysosomes. Target protein unfolding and translocation into the lysosomal lumen constitutes the second level of CMA regulation and is based on the modulation of Lamp2A multimerization. Finally, the activity of some accessory proteins represents the third regulatory level of CMA activity. CMA's role in oncology has not been fully clarified covering both pro-survival and pro-death roles in different contexts. Taking all this into account, it is possible to comprehend the actual complexity of both CMA regulation and the cellular consequences of its activity allowing it to be elected as a modulatory and not only catabolic machinery. In this review, the role covered by CMA in oncology is discussed with a focus on its relevance in glioma. Molecular correlates of CMA importance in glioma responsiveness to treatment are described to identify new early efficacy biomarkers and new therapeutic targets to overcome resistance.
Collapse
Affiliation(s)
- Alessia Lo Dico
- Department of Pathophysiology and Transplantation, University of Milan, Via F.Cervi 93, Segrate, 20090 Milan, Italy; (A.L.D.); (C.M.); (C.D.)
| | - Cristina Martelli
- Department of Pathophysiology and Transplantation, University of Milan, Via F.Cervi 93, Segrate, 20090 Milan, Italy; (A.L.D.); (C.M.); (C.D.)
| | - Cecilia Diceglie
- Department of Pathophysiology and Transplantation, University of Milan, Via F.Cervi 93, Segrate, 20090 Milan, Italy; (A.L.D.); (C.M.); (C.D.)
| | - Luisa Ottobrini
- Department of Pathophysiology and Transplantation, University of Milan, Via F.Cervi 93, Segrate, 20090 Milan, Italy; (A.L.D.); (C.M.); (C.D.)
- Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), Via F.Cervi 93, Segrate, 20090 Milan, Italy
| |
Collapse
|
524
|
Chelliah SS, Paul EAL, Kamarudin MNA, Parhar I. Challenges and Perspectives of Standard Therapy and Drug Development in High-Grade Gliomas. Molecules 2021; 26:1169. [PMID: 33671796 PMCID: PMC7927069 DOI: 10.3390/molecules26041169] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 02/05/2021] [Accepted: 02/06/2021] [Indexed: 12/18/2022] Open
Abstract
Despite their low incidence rate globally, high-grade gliomas (HGG) remain a fatal primary brain tumor. The recommended therapy often is incapable of resecting the tumor entirely and exclusively targeting the tumor leads to tumor recurrence and dismal prognosis. Additionally, many HGG patients are not well suited for standard therapy and instead, subjected to a palliative approach. HGG tumors are highly infiltrative and the complex tumor microenvironment as well as high tumor heterogeneity often poses the main challenges towards the standard treatment. Therefore, a one-fit-approach may not be suitable for HGG management. Thus, a multimodal approach of standard therapy with immunotherapy, nanomedicine, repurposing of older drugs, use of phytochemicals, and precision medicine may be more advantageous than a single treatment model. This multimodal approach considers the environmental and genetic factors which could affect the patient's response to therapy, thus improving their outcome. This review discusses the current views and advances in potential HGG therapeutic approaches and, aims to bridge the existing knowledge gap that will assist in overcoming challenges in HGG.
Collapse
Affiliation(s)
- Shalini Sundramurthi Chelliah
- Brain Research Institute Monash Sunway, Jeffrey Cheah School of Medicine and Health Science, Monash University Malaysia, Bandar Sunway 47500, Malaysia; (S.S.C.); (E.A.L.P.); (M.N.A.K.)
- School of Science, Monash University Malaysia, Bandar Sunway 47500, Malaysia
| | - Ervin Ashley Lourdes Paul
- Brain Research Institute Monash Sunway, Jeffrey Cheah School of Medicine and Health Science, Monash University Malaysia, Bandar Sunway 47500, Malaysia; (S.S.C.); (E.A.L.P.); (M.N.A.K.)
| | - Muhamad Noor Alfarizal Kamarudin
- Brain Research Institute Monash Sunway, Jeffrey Cheah School of Medicine and Health Science, Monash University Malaysia, Bandar Sunway 47500, Malaysia; (S.S.C.); (E.A.L.P.); (M.N.A.K.)
| | - Ishwar Parhar
- Brain Research Institute Monash Sunway, Jeffrey Cheah School of Medicine and Health Science, Monash University Malaysia, Bandar Sunway 47500, Malaysia; (S.S.C.); (E.A.L.P.); (M.N.A.K.)
| |
Collapse
|
525
|
Wang L, Mohammadnejad A, Li W, Lund J, Li S, Clemmensen S, Timofeeva M, Soerensen M, Mengel-From J, Christensen K, Hjelmborg J, Tan Q. Genetic and environmental determinants of O 6-methylguanine DNA-methyltransferase (MGMT) gene methylation: a 10-year longitudinal study of Danish twins. Clin Epigenetics 2021; 13:35. [PMID: 33588926 PMCID: PMC7885436 DOI: 10.1186/s13148-021-01009-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 01/07/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Epigenetic inactivation of O6-methylguanine DNA-methyltransferase (MGMT) is associated with increased sensitivity to alkylating chemotherapeutic agents in glioblastoma patients. The genetic background underlying MGMT gene methylation may explain individual differences in treatment response and provide a clue to a personalized treatment strategy. Making use of the longitudinal twin design, we aimed, for the first time, to estimate the genetic contributions to MGMT methylation in a Danish twin cohort. METHODS DNA-methylation from whole blood (18 monozygotic (MZ) and 25 dizygotic (DZ) twin pairs) repeated 10 years apart from the Longitudinal Study of Aging Danish Twins (LSADT) were used to search for genetic and environmental contributions to DNA-methylation at 170 CpG sites of across the MGMT gene. Both univariate and bivariate twin models were applied. The intraclass correlations, performed on cross-sectional data (246 MZ twin pairs) from an independent study population, the Middle-Aged Danish Twins (MADT), were used to assess the genetic influence at each CpG site of MGMT for replication. RESULTS Univariate twin model revealed twelve CpG sites showing significantly high heritability at intake (wave 1, h2 > 0.43), and seven CpG sites with significant heritability estimates at end of follow-up (wave 2, h2 > 0.5). There were six significant CpG sites, located at the gene body region, that overlapped among the two waves (h2 > 0.5), of which five remained significant in the bivariate twin model, which was applied to both waves. Within MZ pair correlation in these six CpGs from MADT demarks top level of genetic influence. There were 11 CpGs constantly have substantial common environmental component over the 10 years. CONCLUSIONS We have identified 6 CpG sites linked to the MGMT gene with strong and persistent genetic control based on their DNA methylation levels. The genetic basis of MGMT gene methylation could help to explain individual differences in glioblastoma treatment response and most importantly, provide references for mapping the methylation Quantitative Trait Loci (meQTL) underlying the genetic regulation.
Collapse
Affiliation(s)
- Lijie Wang
- Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, J.B. Winsløws Vej 9 B., 5000, Odense C, Denmark.,Department of Epidemiology and Health Statistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Afsaneh Mohammadnejad
- Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, J.B. Winsløws Vej 9 B., 5000, Odense C, Denmark
| | - Weilong Li
- Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, J.B. Winsløws Vej 9 B., 5000, Odense C, Denmark.,Population Research Unit, Faculty of Social Sciences, University of Helsinki, Helsinki, Finland
| | - Jesper Lund
- Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, J.B. Winsløws Vej 9 B., 5000, Odense C, Denmark.,Digital Health and Machine Learning Research Group, Hasso Plattner Institute for Digital Engineering, Potsdam, Germany
| | - Shuxia Li
- Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, J.B. Winsløws Vej 9 B., 5000, Odense C, Denmark
| | - Signe Clemmensen
- Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, J.B. Winsløws Vej 9 B., 5000, Odense C, Denmark
| | - Maria Timofeeva
- Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, J.B. Winsløws Vej 9 B., 5000, Odense C, Denmark
| | - Mette Soerensen
- Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, J.B. Winsløws Vej 9 B., 5000, Odense C, Denmark
| | - Jonas Mengel-From
- Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, J.B. Winsløws Vej 9 B., 5000, Odense C, Denmark
| | - Kaare Christensen
- Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, J.B. Winsløws Vej 9 B., 5000, Odense C, Denmark.,Unit of Human Genetics, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Jacob Hjelmborg
- Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, J.B. Winsløws Vej 9 B., 5000, Odense C, Denmark
| | - Qihua Tan
- Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, J.B. Winsløws Vej 9 B., 5000, Odense C, Denmark. .,Unit of Human Genetics, Department of Clinical Research, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
526
|
Che Mat MF, Mohamad Hanif EA, Abdul Murad NA, Ibrahim K, Harun R, Jamal R. Silencing of ZFP36L2 increases sensitivity to temozolomide through G2/M cell cycle arrest and BAX mediated apoptosis in GBM cells. Mol Biol Rep 2021; 48:1493-1503. [PMID: 33590411 DOI: 10.1007/s11033-021-06144-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 01/11/2021] [Indexed: 12/15/2022]
Abstract
Despite the advancements in primary brain tumour diagnoses and treatments, the mortality rate remains high, particularly in glioblastoma (GBM). Chemoresistance, predominantly in recurrent cases, results in decreased mean survival of patients with GBM. We aimed to determine the chemosensitisation and oncogenic characteristics of zinc finger protein 36-like 2 (ZFP36L2) in LN18 GBM cells via RNA interference (RNAi) delivery. We conducted a meta-analysis of microarray datasets and RNAi screening using pooled small interference RNA (siRNA) to identify the druggable genes responsive to GBM chemosensitivity. Temozolomide-resistant LN18 cells were used to evaluate the effects of gene silencing on chemosensitisation to the sub-lethal dose (1/10 of the median inhibitory concentration [IC50]) of temozolomide. ZFP36L2 protein expression was detected by western blotting. Cell viability, proliferation, cell cycle and apoptosis assays were carried out using commercial kits. A human apoptosis array kit was used to determine the apoptosis pathway underlying chemosensitisation by siRNA against ZFP36L2 (siZFP36L2). Statistical analyses were performed using one-way analysis of variance; p > 0.05 was considered significant. The meta-analysis and RNAi screening identified ZFP36L2 as a potential marker of GBM. ZFP36L2 knockdown significantly induced apoptosis (p < 0.05). Moreover, ZFP36L2 inhibition led to increased cell cycle arrest and decreased cell proliferation. Downstream analysis showed that the sub-lethal dose of temozolomide and siZFP26L2 caused major upregulation of BCL2-associated X, apoptosis regulator (BAX). ZFP36L2 has oncogenic and chemosensitive characteristics and may play an important role in gliomagenesis through cell proliferation, cell cycle arrest and apoptosis. This suggests that RNAi combined with chemotherapy treatment such as temozolomide may be a potential GBM therapeutic intervention in the future.
Collapse
Affiliation(s)
- Mohd Firdaus Che Mat
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Medical Centre, Jalan Ya'acob Latiff, Bandar Tun Razak, 56000, Cheras, Kuala Lumpur, Malaysia
| | - Ezanee Azlina Mohamad Hanif
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Medical Centre, Jalan Ya'acob Latiff, Bandar Tun Razak, 56000, Cheras, Kuala Lumpur, Malaysia
| | - Nor Azian Abdul Murad
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Medical Centre, Jalan Ya'acob Latiff, Bandar Tun Razak, 56000, Cheras, Kuala Lumpur, Malaysia
| | - Kamariah Ibrahim
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Medical Centre, Jalan Ya'acob Latiff, Bandar Tun Razak, 56000, Cheras, Kuala Lumpur, Malaysia
| | - Roslan Harun
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Medical Centre, Jalan Ya'acob Latiff, Bandar Tun Razak, 56000, Cheras, Kuala Lumpur, Malaysia.
| | - Rahman Jamal
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Medical Centre, Jalan Ya'acob Latiff, Bandar Tun Razak, 56000, Cheras, Kuala Lumpur, Malaysia.
| |
Collapse
|
527
|
Li Y, Orahoske CM, Geldenhuys WJ, Bhattarai A, Sabbagh A, Bobba V, Salem FM, Zhang W, Shukla GC, Lathia JD, Wang B, Su B. Small-Molecule HSP27 Inhibitor Abolishes Androgen Receptors in Glioblastoma. J Med Chem 2021; 64:1570-1583. [PMID: 33523674 PMCID: PMC8284899 DOI: 10.1021/acs.jmedchem.0c01537] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Androgen receptor (AR) contributes to the progression of glioblastoma (GBM), and antiandrogen agents have the potential to be used for the treatment of GBM. However, AR mutation commonly happens in GBM, which makes the antiandrogen agents less effective. Heat shock 27 kDa protein (HSP27) is a well-documented chaperone protein to stabilize ARs. Inhibition of HSP27 results in AR degradation regardless of the mutation status of ARs, which makes HSP27 a good target to abolish ARs in GBM. Compound I is a HSP27 inhibitor that significantly induces AR degradation in GBM cells via the proteasomal pathway, and it selectively inhibits AR-overexpressed GBM cell growth with IC50 values around 5 nM. The compound also significantly inhibits in vivo GBM xenograft at 20 mg/kg and does not cause toxicity to mice up to 80 mg/kg. These results suggest that targeting HSP27 to induce AR degradation in GBM is a promising and novel treatment.
Collapse
Affiliation(s)
- Yaxin Li
- Department of Chemistry, Center for Gene Regulation in Health and Disease, College of Sciences and Health Professions, Cleveland State University, 2121 Euclid Avenue, Cleveland, Ohio 44115, United States
| | - Cody M Orahoske
- Department of Chemistry, Center for Gene Regulation in Health and Disease, College of Sciences and Health Professions, Cleveland State University, 2121 Euclid Avenue, Cleveland, Ohio 44115, United States
| | - Werner J Geldenhuys
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Asmita Bhattarai
- Department of Biological, Geological, and Environmental Sciences, Center for Gene Regulation in Health and Disease, College of Sciences and Health Professions, Cleveland State University, 2121 Euclid Avenue, Cleveland, Ohio 44115, United States
| | - Abboud Sabbagh
- Department of Chemistry, Center for Gene Regulation in Health and Disease, College of Sciences and Health Professions, Cleveland State University, 2121 Euclid Avenue, Cleveland, Ohio 44115, United States
| | - Viharika Bobba
- Department of Chemistry, Center for Gene Regulation in Health and Disease, College of Sciences and Health Professions, Cleveland State University, 2121 Euclid Avenue, Cleveland, Ohio 44115, United States
| | - Fatma M Salem
- Department of Chemistry, Center for Gene Regulation in Health and Disease, College of Sciences and Health Professions, Cleveland State University, 2121 Euclid Avenue, Cleveland, Ohio 44115, United States
| | - Wenjing Zhang
- Department of Chemistry, Center for Gene Regulation in Health and Disease, College of Sciences and Health Professions, Cleveland State University, 2121 Euclid Avenue, Cleveland, Ohio 44115, United States
| | - Girish C Shukla
- Department of Biological, Geological, and Environmental Sciences, Center for Gene Regulation in Health and Disease, College of Sciences and Health Professions, Cleveland State University, 2121 Euclid Avenue, Cleveland, Ohio 44115, United States
| | - Justin D Lathia
- Department of Biological, Geological, and Environmental Sciences, Center for Gene Regulation in Health and Disease, College of Sciences and Health Professions, Cleveland State University, 2121 Euclid Avenue, Cleveland, Ohio 44115, United States
- Department of Molecular Medicine, Lerner Research Institute, Cleveland Clinic, and Case Comprehensive Cancer Center, Cleveland, Ohio 44195, United States
| | - Bingcheng Wang
- Rammelkamp Center for Research and Department of Medicine, MetroHealth Campus, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio 44109, United States
| | - Bin Su
- Department of Chemistry, Center for Gene Regulation in Health and Disease, College of Sciences and Health Professions, Cleveland State University, 2121 Euclid Avenue, Cleveland, Ohio 44115, United States
| |
Collapse
|
528
|
Afshari AR, Mollazadeh H, Mohtashami E, Soltani A, Soukhtanloo M, Hosseini A, Jalili-Nik M, Vahedi MM, Roshan MK, Sahebkar A. Protective Role of Natural Products in Glioblastoma Multiforme: A Focus on Nitric Oxide Pathway. Curr Med Chem 2021; 28:377-400. [PMID: 32000638 DOI: 10.2174/0929867327666200130104757] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 11/07/2019] [Accepted: 11/14/2019] [Indexed: 11/22/2022]
Abstract
In spite of therapeutic modalities such as surgical resection, chemotherapy, and radiotherapy, Glioblastoma Multiforme (GBM) remains an incurable fatal disease. This necessitates further therapeutic options that could enhance the efficacy of existing modalities. Nitric Oxide (NO), a short-lived small molecule, has been revealed to play a crucial role in the pathophysiology of GBM. Several studies have demonstrated that NO is involved in apoptosis, metastasis, cellular proliferation, angiogenesis, invasion, and many other processes implicated in GBM pathobiology. Herein, we elaborate on the role of NO as a therapeutic target in GBM and discuss some natural products affecting the NO signaling pathway.
Collapse
Affiliation(s)
- Amir R Afshari
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Hamid Mollazadeh
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Elmira Mohtashami
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arash Soltani
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Soukhtanloo
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Azar Hosseini
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Jalili-Nik
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Mahdi Vahedi
- Department of Pharmacology, Faculty of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mostafa Karimi Roshan
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | |
Collapse
|
529
|
Angelucci C, D’Alessio A, Sorrentino S, Biamonte F, Moscato U, Mangiola A, Sica G, Iacopino F. Immunohistochemical Analysis of DNA Repair- and Drug-Efflux-Associated Molecules in Tumor and Peritumor Areas of Glioblastoma. Int J Mol Sci 2021; 22:ijms22041620. [PMID: 33562724 PMCID: PMC7914796 DOI: 10.3390/ijms22041620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/24/2021] [Accepted: 02/01/2021] [Indexed: 01/13/2023] Open
Abstract
Glioblastoma (GBM), the most commonly occurring primary tumor arising within the central nervous system, is characterized by high invasiveness and poor prognosis. In spite of the improvement in surgical techniques, along with the administration of chemo- and radiation therapy and the incessant investigation in search of prospective therapeutic targets, the local recurrence that frequently occurs within the peritumoral brain tissue makes GBM the most malignant and terminal type of astrocytoma. In the current study, we investigated both GBM and peritumoral tissues obtained from 55 hospitalized patients and the expression of three molecules involved in the onset of resistance/unresponsiveness to chemotherapy: O6-methylguanine methyltransferase (MGMT), breast cancer resistance protein (BCRP1), and A2B5. We propose that the expression of these molecules in the peritumoral tissue might be crucial to promoting the development of early tumorigenic events in the tissue surrounding GBM as well as responsible for the recurrence originating in this apparently normal area and, accordingly, for the resistance to treatment with the standard chemotherapeutic regimen. Notably, the inverse correlation found between MGMT expression in peritumoral tissue and patients’ survival suggests a prognostic role for this protein.
Collapse
Affiliation(s)
- Cristiana Angelucci
- Dipartimento di Scienze della Vita e Sanità Pubblica, Sezione di Istologia ed Embriologia, Università Cattolica del Sacro Cuore-Fondazione Policlinico Universitario “Agostino Gemelli”, IRCCS, 00168 Rome, Italy; (C.A.); (S.S.); (G.S.); (F.I.)
| | - Alessio D’Alessio
- Dipartimento di Scienze della Vita e Sanità Pubblica, Sezione di Istologia ed Embriologia, Università Cattolica del Sacro Cuore-Fondazione Policlinico Universitario “Agostino Gemelli”, IRCCS, 00168 Rome, Italy; (C.A.); (S.S.); (G.S.); (F.I.)
- Correspondence:
| | - Silvia Sorrentino
- Dipartimento di Scienze della Vita e Sanità Pubblica, Sezione di Istologia ed Embriologia, Università Cattolica del Sacro Cuore-Fondazione Policlinico Universitario “Agostino Gemelli”, IRCCS, 00168 Rome, Italy; (C.A.); (S.S.); (G.S.); (F.I.)
| | - Filippo Biamonte
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Istituto di Biochimica e Biochimica Clinica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Unità Operativa Complessa di Chimica, Biochimica e Biologia Molecolare, Università Cattolica del Sacro Cuore-Fondazione Policlinico Universitario “Agostino Gemelli”, IRCCS, 00168 Rome, Italy
| | - Umberto Moscato
- Dipartimento di Scienze della Vita e Sanità Pubblica, Sezione di Medicina del Lavoro e Igiene di Sanità Pubblica, Università Cattolica del Sacro Cuore-Fondazione Policlinico Universitario “Agostino Gemelli”, IRCCS, 00168 Rome, Italy;
- Dipartimento delle Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario “A. Gemelli”, IRCCS, 00168 Rome, Italy
| | - Annunziato Mangiola
- Unità Operativa Complessa di Neurochirurgia, Ospedale Santo Spirito, 65124 Pescara, Italy;
- Dipartimento di Neuroscienze, Imaging e Scienze Cliniche, Università “G. D’Annunzio”, 66013 Chieti, Italy
| | - Gigliola Sica
- Dipartimento di Scienze della Vita e Sanità Pubblica, Sezione di Istologia ed Embriologia, Università Cattolica del Sacro Cuore-Fondazione Policlinico Universitario “Agostino Gemelli”, IRCCS, 00168 Rome, Italy; (C.A.); (S.S.); (G.S.); (F.I.)
| | - Fortunata Iacopino
- Dipartimento di Scienze della Vita e Sanità Pubblica, Sezione di Istologia ed Embriologia, Università Cattolica del Sacro Cuore-Fondazione Policlinico Universitario “Agostino Gemelli”, IRCCS, 00168 Rome, Italy; (C.A.); (S.S.); (G.S.); (F.I.)
| |
Collapse
|
530
|
Krushkal J, Negi S, Yee LM, Evans JR, Grkovic T, Palmisano A, Fang J, Sankaran H, McShane LM, Zhao Y, O'Keefe BR. Molecular genomic features associated with in vitro response of the NCI-60 cancer cell line panel to natural products. Mol Oncol 2021; 15:381-406. [PMID: 33169510 PMCID: PMC7858122 DOI: 10.1002/1878-0261.12849] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/29/2020] [Accepted: 11/06/2020] [Indexed: 12/17/2022] Open
Abstract
Natural products remain a significant source of anticancer chemotherapeutics. The search for targeted drugs for cancer treatment includes consideration of natural products, which may provide new opportunities for antitumor cytotoxicity as single agents or in combination therapy. We examined the association of molecular genomic features in the well-characterized NCI-60 cancer cell line panel with in vitro response to treatment with 1302 small molecules which included natural products, semisynthetic natural product derivatives, and synthetic compounds based on a natural product pharmacophore from the Developmental Therapeutics Program of the US National Cancer Institute's database. These compounds were obtained from a variety of plant, marine, and microbial species. Molecular information utilized for the analysis included expression measures for 23059 annotated transcripts, lncRNAs, and miRNAs, and data on protein-changing single nucleotide variants in 211 cancer-related genes. We found associations of expression of multiple genes including SLFN11, CYP2J2, EPHX1, GPC1, ELF3, and MGMT involved in DNA damage repair, NOTCH family members, ABC and SLC transporters, and both mutations in tyrosine kinases and BRAF V600E with NCI-60 responses to specific categories of natural products. Hierarchical clustering identified groups of natural products, which correlated with a specific mechanism of action. Specifically, several natural product clusters were associated with SLFN11 gene expression, suggesting that potential action of these compounds may involve DNA damage. The associations between gene expression or genome alterations of functionally relevant genes with the response of cancer cells to natural products provide new information about potential mechanisms of action of these identified clusters of compounds with potentially similar biological effects. This information will assist in future drug discovery and in design of new targeted cancer chemotherapy agents.
Collapse
Affiliation(s)
- Julia Krushkal
- Biometric Research ProgramDivision of Cancer Treatment and DiagnosisNational Cancer InstituteNIHRockvilleMDUSA
| | - Simarjeet Negi
- Biometric Research ProgramDivision of Cancer Treatment and DiagnosisNational Cancer InstituteNIHRockvilleMDUSA
| | - Laura M. Yee
- Biometric Research ProgramDivision of Cancer Treatment and DiagnosisNational Cancer InstituteNIHRockvilleMDUSA
| | - Jason R. Evans
- Natural Products BranchDevelopmental Therapeutics ProgramDivision of Cancer Treatment and DiagnosisNational Cancer InstituteFrederickMDUSA
| | - Tanja Grkovic
- Natural Products Support GroupFrederick National Laboratory for Cancer ResearchFrederickMDUSA
| | - Alida Palmisano
- Biometric Research ProgramDivision of Cancer Treatment and DiagnosisNational Cancer InstituteNIHRockvilleMDUSA
- General Dynamics Information Technology (GDIT)Falls ChurchVAUSA
| | - Jianwen Fang
- Biometric Research ProgramDivision of Cancer Treatment and DiagnosisNational Cancer InstituteNIHRockvilleMDUSA
| | - Hari Sankaran
- Biometric Research ProgramDivision of Cancer Treatment and DiagnosisNational Cancer InstituteNIHRockvilleMDUSA
| | - Lisa M. McShane
- Biometric Research ProgramDivision of Cancer Treatment and DiagnosisNational Cancer InstituteNIHRockvilleMDUSA
| | - Yingdong Zhao
- Biometric Research ProgramDivision of Cancer Treatment and DiagnosisNational Cancer InstituteNIHRockvilleMDUSA
| | - Barry R. O'Keefe
- Natural Products BranchDevelopmental Therapeutics ProgramDivision of Cancer Treatment and DiagnosisNational Cancer InstituteFrederickMDUSA
- Molecular Targets ProgramCenter for Cancer ResearchNational Cancer InstituteFrederickMDUSA
| |
Collapse
|
531
|
Huang GD, Chen FF, Ma GX, Li WP, Zheng YY, Meng XB, Li ZY, Chen L. Cassane diterpenoid derivative induces apoptosis in IDH1 mutant glioma cells through the inhibition of glutaminase in vitro and in vivo. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 82:153434. [PMID: 33529962 DOI: 10.1016/j.phymed.2020.153434] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/19/2020] [Accepted: 12/02/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Glioblastoma multiforme (GBM) is the most frequent, lethal and aggressive tumour of the central nervous system in adults. The discovery of novel anti-GBM agents based on the isocitrate dehydrogenase (IDH) mutant phenotypes and classifications have attracted comprehensive attention. PURPOSE Diterpenoids are a class of naturally occurring 20-carbon isoprenoid compounds, and have previously been shown to possess high cytotoxicity for a variety of human tumours in many scientific reports. In the present study, 31 cassane diterpenoids of four types, namely, butanolide lactone cassane diterpenoids (I) (1-10), tricyclic cassane diterpenoids (II) (11-15), polyoxybutanolide lactone cassane diterpenoids (III) (16-23), and fused furan ring cassane diterpenoids (IV) (24-31), were tested for their anti-glioblastoma activity and mechanism underlying based on IDH1 mutant phenotypes of primary GBM cell cultures and human oligodendroglioma (HOG) cell lines. RESULTS We confirmed that tricyclic-type (II) and compound 13 (Caesalpin A, CSA) showed the best anti-neoplastic potencies in IDH1 mutant glioma cells compared with the other types and compounds. Furthermore, the structure-relationship analysis indicated that the carbonyl group at C-12 and an α, β-unsaturated ketone unit fundamentally contributed to enhancing the anti-glioma activity. Studies investigating the mechanism demonstrated that CSA induced oxidative stress via causing glutathione reduction and NOS activation by negatively regulating glutaminase (GLS), which proved to be highly dependent on IDH mutant type glioblastoma. Finally, GLS overexpression reversed the CSA-induced anti-glioma effects in vitro and in vivo, which indicated that the reduction of GLS contributed to the CSA-induced proliferation inhibition and apoptosis in HOG-IDH1-mu cells. CONCLUSION Therefore, the present results demonstrated that compared with other diterpenoids, tricyclic-type diterpenoids could be a targeted drug candidate for the treatment of secondary IDH1 mutant type glioblastoma through negatively regulating GLS.
Collapse
Affiliation(s)
- Guo-Dong Huang
- Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, 3002# Sungang Road, Futian District, Shenzhen 518035, China
| | - Fan-Fan Chen
- Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, 3002# Sungang Road, Futian District, Shenzhen 518035, China
| | - Guo-Xu Ma
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Wei-Ping Li
- Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, 3002# Sungang Road, Futian District, Shenzhen 518035, China
| | - Yue-Yang Zheng
- Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, 3002# Sungang Road, Futian District, Shenzhen 518035, China
| | - Xiang-Bao Meng
- Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, 3002# Sungang Road, Futian District, Shenzhen 518035, China
| | - Zong-Yang Li
- Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, 3002# Sungang Road, Futian District, Shenzhen 518035, China.
| | - Lei Chen
- Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, 3002# Sungang Road, Futian District, Shenzhen 518035, China.
| |
Collapse
|
532
|
Hasbum A, Quintanilla J, Jr JA, Ding MH, Levy A, Chew SA. Strategies to better treat glioblastoma: antiangiogenic agents and endothelial cell targeting agents. Future Med Chem 2021; 13:393-418. [PMID: 33399488 PMCID: PMC7888526 DOI: 10.4155/fmc-2020-0289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 11/26/2020] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most prevalent and aggressive form of glioma, with poor prognosis and high mortality rates. As GBM is a highly vascularized cancer, antiangiogenic therapies to halt or minimize the rate of tumor growth are critical to improving treatment. In this review, antiangiogenic therapies, including small-molecule drugs, nucleic acids and proteins and peptides, are discussed. The authors further explore biomaterials that have been utilized to increase the bioavailability and bioactivity of antiangiogenic factors for better antitumor responses in GBM. Finally, the authors summarize the current status of biomaterial-based targeting moieties that target endothelial cells in GBM to more efficiently deliver therapeutics to these cells and avoid off-target cell or organ side effects.
Collapse
Affiliation(s)
- Asbiel Hasbum
- School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX 78541, USA
| | - Jaqueline Quintanilla
- Department of Health & Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, TX 78526, USA
| | - Juan A Amieva Jr
- Department of Health & Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, TX 78526, USA
| | - May-Hui Ding
- Department of Health & Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, TX 78526, USA
| | - Arkene Levy
- Dr Kiran C Patel College of Allopathic Medicine, Nova Southeastern University, FL 33314, USA
| | - Sue Anne Chew
- Department of Health & Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, TX 78526, USA
| |
Collapse
|
533
|
Costagliola di Polidoro A, Zambito G, Haeck J, Mezzanotte L, Lamfers M, Netti PA, Torino E. Theranostic Design of Angiopep-2 Conjugated Hyaluronic Acid Nanoparticles (Thera-ANG-cHANPs) for Dual Targeting and Boosted Imaging of Glioma Cells. Cancers (Basel) 2021; 13:cancers13030503. [PMID: 33525655 PMCID: PMC7865309 DOI: 10.3390/cancers13030503] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/08/2021] [Accepted: 01/22/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Glioblastoma multiforme is the most aggressive malignant brain tumor with poor patient prognosis. The presence of the blood-brain barrier and the complex tumor microenvironment impair the efficient accumulation of drugs and contrast agents, causing late diagnosis, inefficient treatment and monitoring. Functionalized theranostic nanoparticles are a valuable tool to modulate biodistribution of active agents, promoting their active delivery and selective accumulation for an earlier diagnosis and effective treatment, and provide simultaneous therapy and imaging for improved evaluation of treatment efficacy. In this work, we developed angiopep-2 functionalized crosslinked hyaluronic acid nanoparticles encapsulating gadolinium-diethylenetriamine pentaacetic acid (Gd-DTPA) and irinotecan (Thera-ANG-cHANPs) that were shown to boost relaxometric properties of Gd-DTPA by the effect of Hydrodenticity, improve the uptake of nanoparticles by the exploitation of angiopep-2 improved transport properties, and accelerate the therapeutic effect of Irinotecan. Abstract Glioblastoma multiforme (GBM) has a mean survival of only 15 months. Tumour heterogeneity and blood-brain barrier (BBB) mainly hinder the transport of active agents, leading to late diagnosis, ineffective therapy and inaccurate follow-up. The use of hydrogel nanoparticles, particularly hyaluronic acid as naturally occurring polymer of the extracellular matrix (ECM), has great potential in improving the transport of drug molecules and, furthermore, in facilitatating the early diagnosis by the effect of hydrodenticity enabling the T1 boosting of Gadolinium chelates for MRI. Here, crosslinked hyaluronic acid nanoparticles encapsulating gadolinium-diethylenetriamine pentaacetic acid (Gd-DTPA) and the chemotherapeutic agent irinotecan (Thera-cHANPs) are proposed as theranostic nanovectors, with improved MRI capacities. Irinotecan was selected since currently repurposed as an alternative compound to the poorly effective temozolomide (TMZ), generally approved as the gold standard in GBM clinical care. Also, active crossing and targeting are achieved by theranostic cHANPs decorated with angiopep-2 (Thera-ANG-cHANPs), a dual-targeting peptide interacting with low density lipoprotein receptor related protein-1(LRP-1) receptors overexpressed by both endothelial cells of the BBB and glioma cells. Results showed preserving the hydrodenticity effect in the advanced formulation and internalization by the active peptide-mediated uptake of Thera-cHANPs in U87 and GS-102 cells. Moreover, Thera-ANG-cHANPs proved to reduce ironotecan time response, showing a significant cytotoxic effect in 24 h instead of 48 h.
Collapse
Affiliation(s)
- Angela Costagliola di Polidoro
- Department of Chemical, Materials and Production Engineering (DICMaPI), University of Naples Federico II, 80125 Naples, Italy; (A.C.d.P.); (P.A.N.)
- Fondazione Istituto Italiano di Tecnologia, IIT, 80125 Naples, Italy
| | - Giorgia Zambito
- Department of Molecular Genetics, Erasmus Medical Center, 3015 CN Rotterdam, The Netherlands; (G.Z.); (L.M.)
- Medres Medical Research GmBH, 50931 Cologne, Germany
- Department of Radiology and Nuclear Medicine, Erasmus Medical Center, 3015 CN Rotterdam, The Netherlands
| | - Joost Haeck
- AMIE Core Facility, Erasmus Medical Center, 3015 CN Rotterdam, The Netherlands;
| | - Laura Mezzanotte
- Department of Molecular Genetics, Erasmus Medical Center, 3015 CN Rotterdam, The Netherlands; (G.Z.); (L.M.)
- Medres Medical Research GmBH, 50931 Cologne, Germany
| | - Martine Lamfers
- Department of Neurosurgery, Brain Tumor Center, Erasmus Medical Center, 3015 CN Rotterdam, The Netherlands;
| | - Paolo Antonio Netti
- Department of Chemical, Materials and Production Engineering (DICMaPI), University of Naples Federico II, 80125 Naples, Italy; (A.C.d.P.); (P.A.N.)
- Fondazione Istituto Italiano di Tecnologia, IIT, 80125 Naples, Italy
- AMIE Core Facility, Erasmus Medical Center, 3015 CN Rotterdam, The Netherlands;
| | - Enza Torino
- Department of Chemical, Materials and Production Engineering (DICMaPI), University of Naples Federico II, 80125 Naples, Italy; (A.C.d.P.); (P.A.N.)
- Interdisciplinary Research Center on Biomaterials, CRIB, University of Naples Federico II, 80125 Naples, Italy
- Correspondence:
| |
Collapse
|
534
|
Nose-to-brain delivery of disulfiram nanoemulsion in situ gel formulation for glioblastoma targeting therapy. Int J Pharm 2021; 597:120250. [PMID: 33486040 DOI: 10.1016/j.ijpharm.2021.120250] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 12/19/2020] [Accepted: 01/06/2021] [Indexed: 02/03/2023]
Abstract
Glioblastoma (GBM) is a difficult-to-treat cancer, likely attributed to the blood brain barrier and drug resistance. Nose-to-brain drug delivery is a direct and non-invasive pathway for brain targeting with low systemic toxicity. Disulfiram (DSF) has shown its effectiveness against GBM, especially with copper ion (Cu). In this work, we designed a DSF loaded ion-sensitive nanoemulsion in situ gel (DSF-INEG) that was delivered intranasally along with Cu to the rat brains for the GBM treatment. The developed DSF-INEG nanomedicine showed a suitable particle size of 63.4 ± 1.1 nm and zeta potential of -23.5 ± 0.2 mV with a favorable gelling ability and prolonged DSF release. The results in vitro indicate DSF-INEG/Cu effectively inhibited the proliferation of both C6 and U87 cells. Besides, the excellent brain-targeting efficacy via nose-to-brain delivery was proved by the highest fluorescence signal of Cy5.5-INEG in the rat brains. Moreover, GFP imaging showed enhanced tumor growth inhibition of the rats by the DSF-INEG/Cu treatment, and their median survival time was 1.6 and 1.2 folds than those of the rats in the control and DSF/Cu treated groups, respectively, with no obvious histopathological damage to normal tissues. Overall, DSF-INEG/Cu could be a promising intranasal nanomedicine for effective GBM treatment.
Collapse
|
535
|
BATF2 prevents glioblastoma multiforme progression by inhibiting recruitment of myeloid-derived suppressor cells. Oncogene 2021; 40:1516-1530. [PMID: 33452462 PMCID: PMC7906906 DOI: 10.1038/s41388-020-01627-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 11/22/2020] [Accepted: 12/15/2020] [Indexed: 02/05/2023]
Abstract
The basic leucine zipper ATF-like transcription factor 2 (BATF2) has been implicated in inflammatory responses and anti-tumour effects. Little, however, is known regarding its extracellular role in maintaining a non-supportive cancer microenvironment. Here, we show that BATF2 inhibits glioma growth and myeloid-derived suppressor cells (MDSCs) recruitment. Interestingly, extracellular vesicles (EVs) from BATF2-overexpressing glioma cell lines (BATF2-EVs) inhibited MDSCs chemotaxis in vitro. Moreover, BATF2 inhibited intracellular SDF-1α and contributes to decreased SDF-1α in EVs. In addition, BATF2 downregulation-induced MDSCs recruitment were reversed by blocking SDF-1α/CXCR4 signalling upon AMD3100 treatment. Specifically, detection of EVs in 24 pairs of gliomas and healthy donors at different stages revealed that the abundance of BATF2-positive EVs in plasma (BATF2+ plEVs) can distinguish stage III-IV glioma from stage I-II glioma and healthy donors. Taken together, our study identified novel regulatory functions of BATF2 in regulating MDSCs recruitment, providing a prognostic value in terms of the number of BATF2+ plEVs in glioma stage.
Collapse
|
536
|
Current Progress of Phytomedicine in Glioblastoma Therapy. Curr Med Sci 2021; 40:1067-1074. [PMID: 33428134 DOI: 10.1007/s11596-020-2288-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 10/20/2020] [Indexed: 01/13/2023]
Abstract
Glioblastoma multiforme, an intrusive brain cancer, has the lowest survival rate of all brain cancers. The chemotherapy utilized to prevent their proliferation and propagation is limited due to modulation of complex cancer signalling pathways. These complex pathways provide infiltrative and drug evading properties leading to the development of chemotherapy resistance. Therefore, the development and discovery of such interventions or therapies that can bypass all these resistive barriers to ameliorate glioma prognosis and survival is of profound importance. Medicinal plants are comprised of an exorbitant range of phytochemicals that have the broad-spectrum capability to target intrusive brain cancers, modulate anti-cancer pathways and immunological responses to facilitate their eradication, and induce apoptosis. These phytocompounds also interfere with several oncogenic proteins that promote cancer invasiveness and metastasis, chemotherapy resistance and angiogenesis. These plants are extremely vital for promising anti-glioma therapy to avert glioma proliferation and recurrence. In this review, we acquired recent literature on medicinal plants whose extracts/bioactive ingredients are newly exploited in glioma therapeutics, and also highlighted their mode of action and pharmacological profile.
Collapse
|
537
|
The role of E3 ubiquitin ligases in the development and progression of glioblastoma. Cell Death Differ 2021; 28:522-537. [PMID: 33432111 PMCID: PMC7862665 DOI: 10.1038/s41418-020-00696-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 11/17/2020] [Accepted: 11/20/2020] [Indexed: 12/15/2022] Open
Abstract
Despite recent advances in our understanding of the disease, glioblastoma (GB) continues to have limited treatment options and carries a dismal prognosis for patients. Efforts to stratify this heterogeneous malignancy using molecular classifiers identified frequent alterations in targetable proteins belonging to several pathways including the receptor tyrosine kinase (RTK) and mitogen-activated protein kinase (MAPK) signalling pathways. However, these findings have failed to improve clinical outcomes for patients. In almost all cases, GB becomes refractory to standard-of-care therapy, and recent evidence suggests that disease recurrence may be associated with a subpopulation of cells known as glioma stem cells (GSCs). Therefore, there remains a significant unmet need for novel therapeutic strategies. E3 ubiquitin ligases are a family of >700 proteins that conjugate ubiquitin to target proteins, resulting in an array of cellular responses, including DNA repair, pro-survival signalling and protein degradation. Ubiquitin modifications on target proteins are diverse, ranging from mono-ubiquitination through to the formation of polyubiquitin chains and mixed chains. The specificity in substrate tagging and chain elongation is dictated by E3 ubiquitin ligases, which have essential regulatory roles in multiple aspects of brain cancer pathogenesis. In this review, we begin by briefly summarising the histological and molecular classification of GB. We comprehensively describe the roles of E3 ubiquitin ligases in RTK and MAPK, as well as other, commonly altered, oncogenic and tumour suppressive signalling pathways in GB. We also describe the role of E3 ligases in maintaining glioma stem cell populations and their function in promoting resistance to ionizing radiation (IR) and chemotherapy. Finally, we consider how our knowledge of E3 ligase biology may be used for future therapeutic interventions in GB, including the use of blood-brain barrier permeable proteolysis targeting chimeras (PROTACs).
Collapse
|
538
|
Yang Q, Zhou Y, Chen J, Huang N, Wang Z, Cheng Y. Gene Therapy for Drug-Resistant Glioblastoma via Lipid-Polymer Hybrid Nanoparticles Combined with Focused Ultrasound. Int J Nanomedicine 2021; 16:185-199. [PMID: 33447034 PMCID: PMC7802796 DOI: 10.2147/ijn.s286221] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 11/19/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Therapy for glioblastoma (GBM) has always been very challenging, not only because of the presence of the blood-brain barrier (BBB) but also due to susceptibility to drug resistance. Recently, the clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein 9 (CRISPR/Cas9) has revolutionized gene editing technology and is capable of treating a variety of genetic diseases, including human tumors, but there is a lack of safe and effective targeting delivery systems in vivo, especially in the central nervous system (CNS). METHODS Lipid-polymer hybrid nanoparticles (LPHNs-cRGD) were constructed for efficient and targeting delivery of CRISPR/Cas9 plasmids targeting O6-methylguanine-DNA methyltransferase (MGMT), a drug-resistance gene to temozolomide (TMZ). Focused ultrasound (FUS)-microbubbles (MBs) were used to non-invasively and locally open the BBB to further facilitate gene delivery into glioblastoma in vivo. The gene editing efficiency and drug sensitivity changes were evaluated both in vitro and in vivo. RESULTS The gene-loaded LPHNs-cRGD were successfully synthesized and could protect pCas9/MGMT from enzyme degradation. LPHNs-cRGD could target GBM cells and mediate the transfection of pCas9/MGMT to downregulate the expression of MGMT, resulting in an increased sensitivity of GBM cells to TMZ. MBs-LPHNs-cRGD complexes could safely and locally increase the permeability of the BBB with FUS irradiation in vivo and facilitated the accumulation of nanoparticles at the tumor region in orthotopic tumor-bearing mice. Furthermore, the FUS-assisted MBs-LPHNspCas9/MGMT-cRGD enhanced the therapeutic effects of TMZ in glioblastoma, inhibited tumor growth, and prolonged survival of tumor-bearing mice, with a high level of biosafety. CONCLUSION In this work, we constructed LPHNs-cRGD for targeting delivery of the CRISPR/Cas9 system, in combination with FUS-MBs to open the BBB. The MBs-LPHNs-cRGD delivery system could be a potential alternative for efficient targeting gene delivery for the treatment of glioblastoma.
Collapse
Affiliation(s)
- Qiang Yang
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing400010, People’s Republic of China
| | - Yanghao Zhou
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing400010, People’s Republic of China
| | - Jin Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing400010, People’s Republic of China
| | - Ning Huang
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing400010, People’s Republic of China
| | - Zhigang Wang
- Institute of Ultrasound Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing400010, People’s Republic of China
| | - Yuan Cheng
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing400010, People’s Republic of China
| |
Collapse
|
539
|
Wang L, Tang S, Yu Y, Lv Y, Wang A, Yan X, Li N, Sha C, Sun K, Li Y. Intranasal Delivery of Temozolomide-Conjugated Gold Nanoparticles Functionalized with Anti-EphA3 for Glioblastoma Targeting. Mol Pharm 2021; 18:915-927. [PMID: 33417456 DOI: 10.1021/acs.molpharmaceut.0c00911] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Glioblastoma multiforme (GBM) is a highly lethal and aggressive tumor of the brain that carries a poor prognosis. Temozolomide (TMZ) has been widely used as a first-line treatment for GBM. However, poor brain targeting, side effects, and drug resistance limit its application for the treatment of GBM. We designed a Temozolomide-conjugated gold nanoparticle functionalized with an antibody against the ephrin type-A receptor 3 (anti-EphA3-TMZ@GNPs) for targeted GBM therapy via intranasal administration. The system can bypass the blood-brain barrier and target active glioma cells to improve the glioma targeting of TMZ and enhance the treatment efficacy, while reducing the peripheral toxicity and drug resistance. The prepared anti-EphA3-TMZ@GNPs were 46.12 ± 2.0 nm and suitable for intranasal administration, which demonstrated high safety to the nasal mucosa in a toxicity assay. In vitro studies showed that anti-EphA3-TMZ@GNPs exhibited significantly enhanced cellular uptake and toxicity, and a higher cell apoptosis ratio has been seen compared with that of TMZ (54.9 and 14.1%, respectively) toward glioma cells (C6). The results from experiments on TMZ-resistant glioma cells (T98G) demonstrated that the IC50 of anti-EphA3-TMZ@GNPs (64.06 ± 0.16 μM) was 18.5-fold lower than that of TMZ. In addition, Western blot analysis also revealed that anti-EphA3-TMZ@GNPs effectively down-modulated expression of O6-methylguanine-DNA methyltransferase and increased chemosensitivity of T98G to TMZ. The antiglioma efficacy in vivo was investigated in orthotopic glioma-bearing rats, and the results demonstrated that the anti-EphA3-TMZ@GNPs prolonged the median survival time to 42 days and increased tumor-cell apoptosis dramatically compared with TMZ. In conclusion, anti-EphA3-TMZ@GNPs could serve as an intranasal drug delivery system for efficacious treatment of GBM.
Collapse
Affiliation(s)
- Liangxiao Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, P.R. China
| | - Shengnan Tang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, P.R. China
| | - Yawen Yu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, P.R. China
| | - Yanan Lv
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, P.R. China
| | - Aiping Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, P.R. China
| | - Xiuju Yan
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, P.R. China
| | - Nuannuan Li
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, P.R. China
| | - Chunjie Sha
- State Key Laboratory of Long-Acting and Targeting Drug Delivery System, Luye Pharmaceutical Co., Ltd., Yantai 264003, P.R. China
| | - Kaoxiang Sun
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, P.R. China
| | - Youxin Li
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, P.R. China
| |
Collapse
|
540
|
Immanuel SRC, Ghanate AD, Parmar DS, Yadav R, Uthup R, Panchagnula V, Raghunathan A. Integrated genetic and metabolic landscapes predict vulnerabilities of temozolomide resistant glioblastoma cells. NPJ Syst Biol Appl 2021; 7:2. [PMID: 33420045 PMCID: PMC7794364 DOI: 10.1038/s41540-020-00161-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 11/06/2020] [Indexed: 01/22/2023] Open
Abstract
Metabolic reprogramming and its molecular underpinnings are critical to unravel the duality of cancer cell function and chemo-resistance. Here, we use a constraints-based integrated approach to delineate the interplay between metabolism and epigenetics, hardwired in the genome, to shape temozolomide (TMZ) resistance. Differential metabolism was identified in response to TMZ at varying concentrations in both the resistant neurospheroidal (NSP) and the susceptible (U87MG) glioblastoma cell-lines. The genetic basis of this metabolic adaptation was characterized by whole exome sequencing that identified mutations in signaling pathway regulators of growth and energy metabolism. Remarkably, our integrated approach identified rewiring in glycolysis, TCA cycle, malate aspartate shunt, and oxidative phosphorylation pathways. The differential killing of TMZ resistant NSP by Rotenone at low concentrations with an IC50 value of 5 nM, three orders of magnitude lower than for U87MG that exhibited an IC50 value of 1.8 mM was thus identified using our integrated systems-based approach.
Collapse
Affiliation(s)
- Selva Rupa Christinal Immanuel
- Chemical Engineering Division, CSIR-National Chemical Laboratory, Pune, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-National Chemical Laboratory, Pune, 411008, India
- Institute for Systems Biology, 401 Terry Ave N, Seattle, WA, 98109-5263, USA
| | - Avinash D Ghanate
- Chemical Engineering Division, CSIR-National Chemical Laboratory, Pune, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-National Chemical Laboratory, Pune, 411008, India
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Dharmeshkumar S Parmar
- Chemical Engineering Division, CSIR-National Chemical Laboratory, Pune, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-National Chemical Laboratory, Pune, 411008, India
| | - Ritu Yadav
- Chemical Engineering Division, CSIR-National Chemical Laboratory, Pune, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-National Chemical Laboratory, Pune, 411008, India
| | - Riya Uthup
- Chemical Engineering Division, CSIR-National Chemical Laboratory, Pune, 411008, India
| | - Venkateswarlu Panchagnula
- Chemical Engineering Division, CSIR-National Chemical Laboratory, Pune, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-National Chemical Laboratory, Pune, 411008, India
| | - Anu Raghunathan
- Chemical Engineering Division, CSIR-National Chemical Laboratory, Pune, 411008, India.
- Academy of Scientific and Innovative Research (AcSIR), CSIR-National Chemical Laboratory, Pune, 411008, India.
| |
Collapse
|
541
|
Is an Immunosuppressive Microenvironment a Characteristic of Both Intra- and Extraparenchymal Central Nervous Tumors? PATHOPHYSIOLOGY 2021; 28:34-49. [PMID: 35366268 PMCID: PMC8830452 DOI: 10.3390/pathophysiology28010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/31/2020] [Accepted: 01/04/2021] [Indexed: 11/25/2022] Open
Abstract
In spite of intensive research, the survival rates of patients diagnosed with tumors of the central nervous system (CNS) have not improved significantly in the last decade. Immunotherapy as novel and efficacious treatment option in several other malignancies has failed in neuro-oncology likely due to the immunosuppressive property of the brain tissues. Glioblastoma (GBM) is the most aggressive malignant CNS neoplasm, while meningioma (MNG) is a mainly low grade or benign brain tumor originating from the non-glial tissues of the CNS. The aim of the current preliminary study is to compare the immune microenvironment of MNG and GBM as potential target in immunotherapy. Interestingly, the immune microenvironment of MNG and GBM have proved to be similar. In both tumors types the immune suppressive elements including regulatory T cells (Treg), tumor-associated macrophages (TAM) were highly elevated. The cytokine environment supporting Treg differentiation and the presence of indoleamine 2,3-dioxygenase 1 (IDO1) have also increased the immunosuppressive microenvironment. The results of the present study show an immune suppressive microenvironment in both brain tumor types. In a follow-up study with a larger patient cohort can provide detailed background information on the immune status of individual patients and aid selection of the best immune checkpoint inhibitor or other immune modulatory therapy. Immune modulatory treatments in combination with IDO1 inhibitors might even become alternative therapy for relapsed, multiple and/or malignant MNG or chemo-resistant GBM.
Collapse
|
542
|
Senbabaoglu F, Aksu AC, Cingoz A, Seker-Polat F, Borklu-Yucel E, Solaroglu İ, Bagci-Onder T. Drug Repositioning Screen on a New Primary Cell Line Identifies Potent Therapeutics for Glioblastoma. Front Neurosci 2021; 14:578316. [PMID: 33390879 PMCID: PMC7773901 DOI: 10.3389/fnins.2020.578316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 11/18/2020] [Indexed: 12/15/2022] Open
Abstract
Glioblastoma is a malignant brain cancer with limited treatment options and high mortality rate. While established glioblastoma cell line models provide valuable information, they ultimately lose most primary characteristics of tumors under long-term serum culture conditions. Therefore, established cell lines do not necessarily recapitulate genetic and morphological characteristics of real tumors. In this study, in line with the growing interest in using primary cell line models derived from patient tissue, we generated a primary glioblastoma cell line, KUGBM8 and characterized its genetic alterations, long term growth ability, tumor formation capacity and its response to Temozolomide, the front-line chemotherapy utilized clinically. In addition, we performed a drug repurposing screen on the KUGBM8 cell line to identify FDA-approved agents that can be incorporated into glioblastoma treatment regimen and identified Topotecan as a lead drug among 1,200 drugs. We showed Topotecan can induce cell death in KUGBM8 and other primary cell lines and cooperate with Temozolomide in low dosage combinations. Together, our study provides a new primary cell line model that can be suitable for both in vitro and in vivo studies and suggests that Topotecan can offer promise as a therapeutic approach for glioblastoma.
Collapse
Affiliation(s)
- Filiz Senbabaoglu
- Brain Cancer Research and Therapy Laboratory, Koç University School of Medicine, Istanbul, Turkey.,Koç University Research Center for Translational Medicine, Istanbul, Turkey
| | - Ali Cenk Aksu
- Brain Cancer Research and Therapy Laboratory, Koç University School of Medicine, Istanbul, Turkey.,Koç University Research Center for Translational Medicine, Istanbul, Turkey
| | - Ahmet Cingoz
- Brain Cancer Research and Therapy Laboratory, Koç University School of Medicine, Istanbul, Turkey.,Koç University Research Center for Translational Medicine, Istanbul, Turkey
| | - Fidan Seker-Polat
- Brain Cancer Research and Therapy Laboratory, Koç University School of Medicine, Istanbul, Turkey.,Koç University Research Center for Translational Medicine, Istanbul, Turkey
| | - Esra Borklu-Yucel
- Medical Genetics Department and Diagnostic Center for Genetic Diseases, Koç University Hospital, Istanbul, Turkey
| | - İhsan Solaroglu
- Koç University Research Center for Translational Medicine, Istanbul, Turkey.,Department of Neurosurgery, Koç University School of Medicine, Istanbul, Turkey.,Department of Basic Sciences, Loma Linda University, Loma Linda, CA, United States
| | - Tugba Bagci-Onder
- Brain Cancer Research and Therapy Laboratory, Koç University School of Medicine, Istanbul, Turkey.,Koç University Research Center for Translational Medicine, Istanbul, Turkey
| |
Collapse
|
543
|
Low MGMT digital expression is associated with a better outcome of IDH1 wildtype glioblastomas treated with temozolomide. J Neurooncol 2021; 151:135-144. [PMID: 33400009 DOI: 10.1007/s11060-020-03675-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 12/10/2020] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Glioblastoma (GBM) is the deadliest primary brain tumor. The standard treatment consists of surgery, radiotherapy, and temozolomide (TMZ). TMZ response is heterogeneous, and MGMT promoter (MGMTp) methylation has been the major predictive biomarker. We aimed to describe the clinical and molecular data of GBMs treated with TMZ, compare MGMT methylation with MGMT expression, and further associate with patient's outcome. METHODS We evaluate 112 FFPE adult GBM cases. IDH1 and ATRX expression was analyzed by immunohistochemistry, hotspot TERT promoter (TERTp) mutations were evaluated by Sanger or pyrosequencing, and MGMTp methylation was assessed by pyrosequencing and MGMT mRNA expression using the nCounter® Vantage 3D™ DNA damage and repair panel. RESULTS Of the 112 GBMs, 96 were IDH1WT, and 16 were IDH1MUT. Positive ATRX expression was found in 91.6% (88/96) of IDHWT and 43.7% (7/16) of IDHMUT. TERTp mutations were detected in 70.4% (50/71) of IDHWT. MGMTp methylation was found in 55.5% (35/63) of IDHWT and 84.6% (11/13) of IDHMUT, and as expected, MGMTp methylation was significantly associated with a better response to TMZ. MGMT expression was inversely correlated with MGMTp methylation levels (- 0.506, p < 0.0001), and MGMT low expression were significantly associated with better patient survival. It was also observed that integrating MGMTp methylation and expression, significantly improved the prognostication value. CONCLUSIONS MGMT mRNA levels evaluated by digital expression were associated with the outcome of TMZ-treated GBM patients. The combination of MGMT methylation and mRNA expression may provide a more accurate prediction of TMZ response in GBM patients.
Collapse
|
544
|
Osimertinib successfully combats EGFR-negative glioblastoma cells by inhibiting the MAPK pathway. Acta Pharmacol Sin 2021; 42:108-114. [PMID: 32398685 DOI: 10.1038/s41401-020-0418-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 04/12/2020] [Indexed: 01/05/2023] Open
Abstract
Glioblastoma (GBM) patients have extremely poor prognoses, and currently no effective treatment available including surgery, radiation, and chemotherapy. MAPK-interacting kinases (MNK1/2) as the downstream of the MAPK-signaling pathway regulate protein synthesis in normal and tumor cells. Research has shown that targeting MNKs may be an effective strategy to treat GBM. In this study we investigated the antitumor activity of osimertinib, an FDA-approved epidermal growth factor receptor (EGFR) inhibitor, against patient-derived primary GBM cells. Using high-throughput screening approach, we screened the entire panel of FDA-approved drugs against primary cancer cells derived from glioblastoma patients, found that osimertinib (3 μM) suppressed the proliferation of a subset (10/22) of EGFR-negative GBM cells (>50% growth inhibition). We detected the gene expression difference between osimertinib-sensitive and -resistant cells, found that osimertinib-sensitive GBM cells displayed activated MAPK-signaling pathway. We further showed that osimertinib potently inhibited the MNK kinase activities with IC50 values of 324 nM and 48.6 nM, respectively, against MNK1 and MNK2 kinases; osimertinib (0.3-3 μM) dose-dependently suppressed the phosphorylation of eukaryotic translation initiation factor 4E (eIF4E). In GBM patient-derived xenografts mice, oral administration of osimertinib (40 mg· kg-1 ·d-1, for 18 days) significantly suppressed the tumor growth (TGI = 74.5%) and inhibited eIF4E phosphorylation in tumor cells. Given the fact that osimertinib could cross the blood-brain barrier and its toxicity was well tolerated in patients, our results suggest that osimertinib could be a new and effective drug candidate for the EGFR-negative GBM patients.
Collapse
|
545
|
Zheng S, Wu Y, Li Z. Integrating cullin2-RING E3 ligase as a potential biomarker for glioblastoma multiforme prognosis and radiosensitivity profiling. Radiother Oncol 2021; 154:36-44. [DOI: 10.1016/j.radonc.2020.09.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 08/30/2020] [Accepted: 09/01/2020] [Indexed: 12/25/2022]
|
546
|
Temozolomide treatment outcomes and immunotherapy efficacy in brain tumor. J Neurooncol 2021; 151:55-62. [PMID: 32813186 PMCID: PMC9833842 DOI: 10.1007/s11060-020-03598-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 08/08/2020] [Indexed: 01/13/2023]
Abstract
INTRODUCTION Glioblastoma (GBM) has a survival rate of around 2 years with aggressive current standard of care. While other tumors have responded favorably to trials combining immunotherapy and chemotherapy, GBM remains uniformly deadly with minimal increases in overall survival. GBM differ from others due to being isolated behind the blood brain barrier, increased heterogeneity and mutational burden, and immunosuppression from the brain environment and tumor itself. METHODS We have reviewed clinical and preclinical studies investigating how different doses (dose intense (DI) and metronomic) and timing of immunotherapy following TMZ treatment can eradicate tumor cells, alter tumor mutational burden, and change immune cells. RESULTS Recent clinical trials with standard of care (SoC), DI and metronomic TMZ regimes are no able to completely eradicate GBM. Elevated TMZ levels in DI treatment can overcome MGMT resistance but may result in hypermutation of surviving tumor cells. Higher levels of TMZ will also generate a higher degree of lymphopenia compared to SoC and metronomic regimes in preclinical studies. CONCLUSION The different levels of lymphopenia and tumor eradication discussed in this review suggest possible beneficial pairings between immunotherapy and TMZ treatment. Treatments resulting in profound lymphopenia will allow for expansion of vaccine specific T cells or of CAT T cells. Clinical and preclinical studies are currently comparing different combinations of TMZ and immunotherapy timing to treat GBM through a balance between tumor killing and immune cell expansion. More frequent immune monitoring time points in ongoing clinical trials are crucial for further development of these combinations.
Collapse
|
547
|
Damato AR, Luo J, Katumba RGN, Talcott GR, Rubin JB, Herzog ED, Campian JL. Temozolomide chronotherapy in patients with glioblastoma: a retrospective single-institute study. Neurooncol Adv 2021; 3:vdab041. [PMID: 33959716 PMCID: PMC8086242 DOI: 10.1093/noajnl/vdab041] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Chronotherapy is an innovative approach to improving survival through timed delivery of anti-cancer treatments according to patient daily rhythms. Temozolomide (TMZ) is a standard-of-care chemotherapeutic agent for glioblastoma (GBM). Whether timing of TMZ administration affects GBM patient outcome has not previously been studied. We sought to evaluate maintenance TMZ chronotherapy on GBM patient survival. METHODS This retrospective study reviewed patients with newly diagnosed GBM from January 1, 2010 to December 31, 2018 at Washington University School of Medicine who had surgery, chemoradiation, and were prescribed TMZ to be taken in the morning or evening. The Kaplan-Meier method and Cox regression model were used for overall survival (OS) analyses. The propensity score method accounted for potential observational study biases. The restricted mean survival time (RMST) method was performed where the proportional hazard assumption was violated. RESULTS We analyzed 166 eligible GBM patients with a median follow-up of 5.07 years. Patients taking morning TMZ exhibited longer OS compared to evening (median OS, 95% confidence interval [CI] = 1.43, 1.12-1.92 vs 1.13, 0.84-1.58 years) with a significant year 1 RMST difference (-0.09, 95% CI: -0.16 to -0.018). Among MGMT-methylated patients, median OS was 6 months longer for AM patients with significant RMST differences at years 1 (-0.13, 95% CI = -0.24 to -0.019) to 2.5 (-0.43, 95% CI = -0.84 to -0.028). Superiority of morning TMZ at years 1, 2, and 5 (all P < .05) among all patients was supported by RMST difference regression after adjusting for confounders. CONCLUSIONS Our study presents preliminary evidence for the benefit of TMZ chronotherapy to GBM patient survival. This impact is more pronounced in MGMT-methylated patients.
Collapse
Affiliation(s)
- Anna R Damato
- Department of Biology, Washington University, St Louis, Missouri, USA
| | - Jingqin Luo
- Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
- Siteman Cancer Center Biostatistics Core, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Ruth G N Katumba
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St Louis, Missouri, USA
| | - Grayson R Talcott
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St Louis, Missouri, USA
| | - Joshua B Rubin
- Department of Pediatrics, Washington University School of Medicine, St Louis, Missouri, USA
- Department of Neuroscience, Washington University School of Medicine, St Louis, Missouri, USA
| | - Erik D Herzog
- Department of Biology, Washington University, St Louis, Missouri, USA
- Department of Neuroscience, Washington University School of Medicine, St Louis, Missouri, USA
| | - Jian L Campian
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St Louis, Missouri, USA
| |
Collapse
|
548
|
Sahin Z, Biltekin SN, Yurttas L, Berk B, Özhan Y, Sipahi H, Gao ZG, Jacobson KA, Demirayak Ş. Novel cyanothiouracil and cyanothiocytosine derivatives as concentration-dependent selective inhibitors of U87MG glioblastomas: Adenosine receptor binding and potent PDE4 inhibition. Eur J Med Chem 2020; 212:113125. [PMID: 33422981 DOI: 10.1016/j.ejmech.2020.113125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/07/2020] [Accepted: 12/20/2020] [Indexed: 12/11/2022]
Abstract
Thiouracil and thiocytosine are important heterocyclic pharmacophores having pharmacological diversity. Antitumor and antiviral activity is commonly associated with thiouracil and thiocytosine derivatives, which are well known fragments for adenosine receptor affinity with many associated pharmacological properties. In this respect, 33 novel compounds have been synthesized in two groups: 24 thiouracil derivatives (4a-x) and 9 thiocytosine derivatives (5a-i). Antitumor activity of all the compounds was determined in the U87 MG glioblastoma cell line. Compound 5e showed an anti-proliferative IC50 of 1.56 μM, which is slightly higher activity than cisplatin (1.67 μM). The 11 most active compounds showed no signficant binding to adenosine A1, A2A or A2B receptors at 1 μM. Brain tumors express high amounts of phosphodiesterases. Compounds were tested for PDE4 inhibition, and 5e and 5f showed the best potency (5e: 3.42 μM; 5f: 0.97 μM). Remakably, those compounds were also the most active against U87MG. However, the compounds lacked a cytotoxic effect on the HEK293 healthy cell line, which encourages further investigation.
Collapse
Affiliation(s)
- Zafer Sahin
- Istanbul Medipol University, School of Pharmacy, Department of Pharmaceutical Chemistry, Istanbul, Turkey.
| | - Sevde Nur Biltekin
- Istanbul Medipol University, School of Pharmacy, Department of Pharmaceutical Chemistry, Istanbul, Turkey
| | - Leyla Yurttas
- Anadolu University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Eskisehir, Turkey
| | - Barkin Berk
- Istanbul Medipol University, School of Pharmacy, Department of Pharmaceutical Chemistry, Istanbul, Turkey
| | - Yağmur Özhan
- Yeditepe University, Faculty of Pharmacy, Department of Toxicology, Istanbul, Turkey
| | - Hande Sipahi
- Yeditepe University, Faculty of Pharmacy, Department of Toxicology, Istanbul, Turkey
| | - Zhan-Guo Gao
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0810, USA
| | - Kenneth A Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0810, USA
| | - Şeref Demirayak
- Istanbul Medipol University, School of Pharmacy, Department of Pharmaceutical Chemistry, Istanbul, Turkey
| |
Collapse
|
549
|
Barreto N, Caballero M, Bonfanti AP, de Mato FCP, Munhoz J, da Rocha-E-Silva TAA, Sutti R, Vitorino-Araujo JL, Verinaud L, Rapôso C. Spider venom components decrease glioblastoma cell migration and invasion through RhoA-ROCK and Na +/K +-ATPase β2: potential molecular entities to treat invasive brain cancer. Cancer Cell Int 2020; 20:576. [PMID: 33327966 PMCID: PMC7745393 DOI: 10.1186/s12935-020-01643-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 11/09/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Glioblastoma (GB) cells have the ability to migrate and infiltrate the normal parenchyma, leading to the formation of recurrent tumors often adjacent to the surgical extraction site. We recently showed that Phoneutria nigriventer spider venom (PnV) has anticancer effects mainly on the migration of human GB cell lines (NG97 and U-251). The present work aimed to investigate the effects of isolated components from the venom on migration, invasiveness, morphology and adhesion of GB cells, also evaluating RhoA-ROCK signaling and Na+/K+-ATPase β2 (AMOG) involvement. METHODS Human (NG97) GB cells were treated with twelve subfractions (SFs-obtained by HPLC from PnV). Migration and invasion were evaluated by scratch wound healing and transwell assays, respectively. Cell morphology and actin cytoskeleton were shown by GFAP and phalloidin labeling. The assay with fibronectin coated well plate was made to evaluate cell adhesion. Western blotting demonstrated ROCK and AMOG levels and a ROCK inhibitor was used to verify the involvement of this pathway. Values were analyzed by the GraphPad Prism software package and the level of significance was determinate using one-way analysis of variance (ANOVA) followed by Dunnett's multiple comparisons test. RESULTS Two (SF1 and SF11) of twelve SFs, decreased migration and invasion compared to untreated control cells. Both SFs also altered actin cytoskeleton, changed cell morphology and reduced adhesion. SF1 and SF11 increased ROCK expression and the inhibition of this protein abolished the effects of both subfractions on migration, morphology and adhesion (but not on invasion). SF11 also increased Na+/K+-ATPase β2. CONCLUSION All components of the venom were evaluated and two SFs were able to impair human glioblastoma cells. The RhoA effector, ROCK, was shown to be involved in the mechanisms of both PnV components. It is possible that AMOG mediates the effect of SF11 on the invasion. Further investigations to isolate and biochemically characterize the molecules are underway.
Collapse
Affiliation(s)
- Natália Barreto
- Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, 13083-865, Brazil.,Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, UNICAMP, São Paulo, Brazil
| | - Marcus Caballero
- Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, 13083-865, Brazil.,Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, UNICAMP, São Paulo, Brazil
| | - Amanda Pires Bonfanti
- Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, 13083-865, Brazil.,Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, UNICAMP, São Paulo, Brazil
| | - Felipe Cezar Pinheiro de Mato
- Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, 13083-865, Brazil.,Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, UNICAMP, São Paulo, Brazil
| | - Jaqueline Munhoz
- Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, 13083-865, Brazil.,Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, UNICAMP, São Paulo, Brazil
| | | | - Rafael Sutti
- Faculdade de Ciências Médicas, Santa Casa de São Paulo, São Paulo, SP, Brazil
| | - João Luiz Vitorino-Araujo
- Disciplina de Neurocirurgia, Faculdade de Ciências Médicas da Santa Casa de São Paulo, São Paulo, SP, Brazil
| | - Liana Verinaud
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, UNICAMP, São Paulo, Brazil
| | - Catarina Rapôso
- Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, 13083-865, Brazil.
| |
Collapse
|
550
|
Yoon SJ, Son HY, Shim JK, Moon JH, Kim EH, Chang JH, Teo WY, Kim SH, Park SW, Huh YM, Kang SG. Co-expression of cancer driver genes: IDH-wildtype glioblastoma-derived tumorspheres. J Transl Med 2020; 18:482. [PMID: 33317554 PMCID: PMC7734785 DOI: 10.1186/s12967-020-02647-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 11/27/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Driver genes of GBM may be crucial for the onset of isocitrate dehydrogenase (IDH)-wildtype (WT) glioblastoma (GBM). However, it is still unknown whether the genes are expressed in the identical cluster of cells. Here, we have examined the gene expression patterns of GBM tissues and patient-derived tumorspheres (TSs) and aimed to find a progression-related gene. METHODS We retrospectively collected primary IDH-WT GBM tissue samples (n = 58) and tumor-free cortical tissue samples (control, n = 20). TSs are isolated from the IDH-WT GBM tissue with B27 neurobasal medium. Associations among the driver genes were explored in the bulk tissue, bulk cell, and a single cell RNAsequencing techniques (scRNAseq) considering the alteration status of TP53, PTEN, EGFR, and TERT promoter as well as MGMT promoter methylation. Transcriptomic perturbation by temozolomide (TMZ) was examined in the two TSs. RESULTS We comprehensively compared the gene expression of the known driver genes as well as MGMT, PTPRZ1, or IDH1. Bulk RNAseq databases of the primary GBM tissue revealed a significant association between TERT and TP53 (p < 0.001, R = 0.28) and its association increased in the recurrent tumor (p < 0.001, R = 0.86). TSs reflected the tissue-level patterns of association between the two genes (p < 0.01, R = 0.59, n = 20). A scRNAseq data of a TS revealed the TERT and TP53 expressing cells are in a same single cell cluster. The driver-enriched cluster dominantly expressed the glioma-associated long noncoding RNAs. Most of the driver-associated genes were downregulated after TMZ except IGFBP5. CONCLUSIONS GBM tissue level expression patterns of EGFR, TERT, PTEN, IDH1, PTPRZ1, and MGMT are observed in the GBM TSs. The driver gene-associated cluster of the GBM single cells were enriched with the glioma-associated long noncoding RNAs.
Collapse
Affiliation(s)
- Seon-Jin Yoon
- Department of Biochemistry and Molecular Biology, College of Medicine, Yonsei University, Seoul, Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, Korea
| | - Hye Young Son
- Severance Biomedical Science Institute, College of Medicine, Yonsei University, Seoul, Korea
| | - Jin-Kyoung Shim
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, College of Medicine, Yonsei University, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Ju Hyung Moon
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, College of Medicine, Yonsei University, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Eui-Hyun Kim
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, College of Medicine, Yonsei University, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jong Hee Chang
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, College of Medicine, Yonsei University, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Wan Yee Teo
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore, Singapore
- National Cancer Center, Singapore, Singapore
- KK Women's and Children's Hospital, Singapore, Singapore
- Institute of Molecular and Cell Biology, A*STAR, Singapore, Singapore
| | - Se Hoon Kim
- Department of Pathology, Severance Hospital, College of Medicine, Yonsei University, Seoul, Korea
| | - Sahng Wook Park
- Department of Biochemistry and Molecular Biology, College of Medicine, Yonsei University, Seoul, Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, Korea
| | - Yong-Min Huh
- Department of Biochemistry and Molecular Biology, College of Medicine, Yonsei University, Seoul, Korea.
- Severance Biomedical Science Institute, College of Medicine, Yonsei University, Seoul, Korea.
- Department of Radiology, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
- YUHS-KRIBB Medical Convergence Research Institute, Seoul, Republic of Korea.
| | - Seok-Gu Kang
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, College of Medicine, Yonsei University, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
- Department of Medical Science, Yonsei University Graduate School, Seoul, Korea.
| |
Collapse
|