501
|
Vistica J, Dam J, Balbo A, Yikilmaz E, Mariuzza RA, Rouault TA, Schuck P. Sedimentation equilibrium analysis of protein interactions with global implicit mass conservation constraints and systematic noise decomposition. Anal Biochem 2004; 326:234-56. [PMID: 15003564 DOI: 10.1016/j.ab.2003.12.014] [Citation(s) in RCA: 314] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2003] [Indexed: 11/23/2022]
Abstract
Sedimentation equilibrium is a powerful tool for the characterization of protein self-association and heterogeneous protein interactions. Frequently, it is applied in a configuration with relatively long solution columns and with equilibrium profiles being acquired sequentially at several rotor speeds. The present study proposes computational tools, implemented in the software SEDPHAT, for the global analysis of equilibrium data at multiple rotor speeds with multiple concentrations and multiple optical detection methods. The detailed global modeling of such equilibrium data can be a nontrivial computational problem. It was shown previously that mass conservation constraints can significantly improve and extend the analysis of heterogeneous protein interactions. Here, a method for using conservation of mass constraints for the macromolecular redistribution is proposed in which the effective loading concentrations are calculated from the sedimentation equilibrium profiles. The approach is similar to that described by Roark (Biophys. Chem. 5 (1976) 185-196), but its utility is extended by determining the bottom position of the solution columns from the macromolecular redistribution. For analyzing heterogeneous associations at multiple protein concentrations, additional constraints that relate the effective loading concentrations of the different components or their molar ratio in the global analysis are introduced. Equilibrium profiles at multiple rotor speeds also permit the algebraic determination of radial-dependent baseline profiles, which can govern interference optical ultracentrifugation data, but usually also occur, to a smaller extent, in absorbance optical data. Finally, the global analysis of equilibrium profiles at multiple rotor speeds with implicit mass conservation and computation of the bottom of the solution column provides an unbiased scale for determining molar mass distributions of noninteracting species. The properties of these tools are studied with theoretical and experimental data sets.
Collapse
Affiliation(s)
- Jennifer Vistica
- Protein Biophysics Resource, Division of Bioengineering & Physical Science, ORS, OD, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | |
Collapse
|
502
|
Chou CY, Lin YL, Huang YC, Sheu SY, Lin TH, Tsay HJ, Chang GG, Shiao MS. Structural variation in human apolipoprotein E3 and E4: secondary structure, tertiary structure, and size distribution. Biophys J 2004; 88:455-66. [PMID: 15475580 PMCID: PMC1305022 DOI: 10.1529/biophysj.104.046813] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Human apolipoprotein E (apoE) is a 299-amino-acid protein with a molecular weight of 34 kDa. The difference between the apoE3 and apoE4 isoforms is a single residue substitution involving a Cys-Arg replacement at residue 112. ApoE4 is positively associated with atherosclerosis and late-onset and sporadic Alzheimer's disease (AD). ApoE4 and its C-terminal truncated fragments have been found in the senile plaques and neurofibrillary tangles in the brain of AD patients. However, detail structural information regarding isoform and domain interaction remains poorly understood. We prepared full-length, N-, and C-terminal truncated apoE3 and apoE4 proteins and studied their structural variation. Sedimentation velocity and continuous size distribution analysis using analytical ultracentrifugation revealed apoE3(72-299) as consisting of a major species with a sedimentation coefficient of 5.9. ApoE4(72-299) showed a wider and more complicated species distribution. Both apoE3 and E4 N-terminal domain (1-191) existed with monomers as the major component together with some tetramer. The oligomerization and aggregation of apoE protein increased when the C-terminal domain (192-271) was incorporated. The structural influence of the C-terminal domain on apoE is to assist self-association with no significant isoform preference. Circular dichroism and fluorescence studies demonstrated that apoE4(72-299) possessed a more alpha-helical structure with more hydrophobic residue exposure. The structural variation of the N-terminal truncated apoE3 and apoE4 protein provides useful information that helps to explain the greater aggregation of the apoE4 isoform and thus has implication for the involvement of apoE4 in AD.
Collapse
Affiliation(s)
- Chi-Yuan Chou
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan; Department of Medical Research and Education, Taipei Veterans General Hospital, Taipei 112, Taiwan; and Faculty of Life Sciences, Institute of Biochemistry, Institute of Neuroscience, and Structural Biology Program, National Yang-Ming University, Taipei 112, Taiwan
| | - Yi-Ling Lin
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan; Department of Medical Research and Education, Taipei Veterans General Hospital, Taipei 112, Taiwan; and Faculty of Life Sciences, Institute of Biochemistry, Institute of Neuroscience, and Structural Biology Program, National Yang-Ming University, Taipei 112, Taiwan
| | - Yu-Chyi Huang
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan; Department of Medical Research and Education, Taipei Veterans General Hospital, Taipei 112, Taiwan; and Faculty of Life Sciences, Institute of Biochemistry, Institute of Neuroscience, and Structural Biology Program, National Yang-Ming University, Taipei 112, Taiwan
| | - Sheh-Yi Sheu
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan; Department of Medical Research and Education, Taipei Veterans General Hospital, Taipei 112, Taiwan; and Faculty of Life Sciences, Institute of Biochemistry, Institute of Neuroscience, and Structural Biology Program, National Yang-Ming University, Taipei 112, Taiwan
| | - Ta-Hsien Lin
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan; Department of Medical Research and Education, Taipei Veterans General Hospital, Taipei 112, Taiwan; and Faculty of Life Sciences, Institute of Biochemistry, Institute of Neuroscience, and Structural Biology Program, National Yang-Ming University, Taipei 112, Taiwan
| | - Huey-Jen Tsay
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan; Department of Medical Research and Education, Taipei Veterans General Hospital, Taipei 112, Taiwan; and Faculty of Life Sciences, Institute of Biochemistry, Institute of Neuroscience, and Structural Biology Program, National Yang-Ming University, Taipei 112, Taiwan
| | - Gu-Gang Chang
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan; Department of Medical Research and Education, Taipei Veterans General Hospital, Taipei 112, Taiwan; and Faculty of Life Sciences, Institute of Biochemistry, Institute of Neuroscience, and Structural Biology Program, National Yang-Ming University, Taipei 112, Taiwan
| | - Ming-Shi Shiao
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan; Department of Medical Research and Education, Taipei Veterans General Hospital, Taipei 112, Taiwan; and Faculty of Life Sciences, Institute of Biochemistry, Institute of Neuroscience, and Structural Biology Program, National Yang-Ming University, Taipei 112, Taiwan
| |
Collapse
|
503
|
Collins SR, Douglass A, Vale RD, Weissman JS. Mechanism of prion propagation: amyloid growth occurs by monomer addition. PLoS Biol 2004; 2:e321. [PMID: 15383837 PMCID: PMC517824 DOI: 10.1371/journal.pbio.0020321] [Citation(s) in RCA: 419] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2004] [Accepted: 07/28/2004] [Indexed: 11/17/2022] Open
Abstract
Abundant nonfibrillar oligomeric intermediates are a common feature of amyloid formation, and these oligomers, rather than the final fibers, have been suggested to be the toxic species in some amyloid diseases. Whether such oligomers are critical intermediates for fiber assembly or form in an alternate, potentially separable pathway, however, remains unclear. Here we study the polymerization of the amyloidogenic yeast prion protein Sup35. Rapid polymerization occurs in the absence of observable intermediates, and both targeted kinetic and direct single-molecule fluorescence measurements indicate that fibers grow by monomer addition. A three-step model (nucleation, monomer addition, and fiber fragmentation) accurately accounts for the distinctive kinetic features of amyloid formation, including weak concentration dependence, acceleration by agitation, and sigmoidal shape of the polymerization time course. Thus, amyloid growth can occur by monomer addition in a reaction distinct from and competitive with formation of potentially toxic oligomeric intermediates.
Collapse
Affiliation(s)
- Sean R Collins
- 1Howard Hughes Medical Institute, Department of Cellular and Molecular PharmacologyUniversity of California, San Francisco, CaliforniaUnited States of America
| | - Adam Douglass
- 1Howard Hughes Medical Institute, Department of Cellular and Molecular PharmacologyUniversity of California, San Francisco, CaliforniaUnited States of America
| | - Ronald D Vale
- 1Howard Hughes Medical Institute, Department of Cellular and Molecular PharmacologyUniversity of California, San Francisco, CaliforniaUnited States of America
| | - Jonathan S Weissman
- 1Howard Hughes Medical Institute, Department of Cellular and Molecular PharmacologyUniversity of California, San Francisco, CaliforniaUnited States of America
| |
Collapse
|
504
|
Ali MH, Peisach E, Allen KN, Imperiali B. X-ray structure analysis of a designed oligomeric miniprotein reveals a discrete quaternary architecture. Proc Natl Acad Sci U S A 2004; 101:12183-8. [PMID: 15302930 PMCID: PMC514454 DOI: 10.1073/pnas.0401245101] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The x-ray crystal structure of an oligomeric miniprotein has been determined to a 1.2-A resolution by means of multiwavelength anomalous diffraction phasing with selenomethionine analogs that retain the biophysical characteristics of the native peptide. Peptide 1, comprising alpha and beta secondary structure elements with only 21 aa per monomer, associates as a discrete tetramer. The peptide adopts a previously uncharacterized quaternary structure in which alpha and beta components interact to form a tightly packed and well defined hydrophobic core. The structure provides insight into the origins of the unusual thermal stability of the oligomer. The miniprotein shares many characteristics of larger proteins, including cooperative folding, lack of 1-anilino-8-naphthalene sulfonate binding, and limited deuterium exchange, and possesses a buried surface area typical of native proteins.
Collapse
Affiliation(s)
- Mayssam H Ali
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | | | | | | |
Collapse
|
505
|
Solovyova AS, Nöllmann M, Mitchell TJ, Byron O. The solution structure and oligomerization behavior of two bacterial toxins: pneumolysin and perfringolysin O. Biophys J 2004; 87:540-52. [PMID: 15240487 PMCID: PMC1304375 DOI: 10.1529/biophysj.104.039974] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2004] [Accepted: 03/22/2004] [Indexed: 11/18/2022] Open
Abstract
Pneumolysin (PLY), an important protein virulence factor of the human bacterial pathogen Streptococcus pneumoniae, could be a candidate for inclusion in a new anti-streptococcal vaccine. PLY solution species from monomer via multimeric intermediates to ring-shaped oligomers were studied with time-dependent sedimentation velocity in the analytical ultracentrifuge (AUC). Hydrodynamic bead modeling was used to interpret the data obtained. PLY remained mostly monomeric in solution; intermediate PLY multimers were detected in small quantities. Current understanding of PLY molecular mechanism is guided by a model built on the basis of its homology with perfringolysin O (PFO) for which there is an atomic structure. PFO, a virulence factor of the organism Clostridium perfringens, has almost the same molecular mass as PLY and shares 48% sequence identity and 60% sequence similarity with PLY. We report a comparative low-resolution structural study of PLY and PFO using AUC and small-angle x-ray scattering (SAXS). AUC data demonstrate that both proteins in solution are mostly monodisperse but PLY is a monomer whereas PFO is mostly dimeric. Ab initio dummy atom and dummy residue models for PFO and PLY were restored from the distance distribution function derived from experimental small-angle x-ray scattering curves. In solution, PLY is elongated, consistent with the shape predicted by its high-resolution homology model. The PFO dimer is also an elongated particle whose shape and volume are consistent with a staggered antiparallel dimer.
Collapse
Affiliation(s)
- Alexandra S Solovyova
- Division of Infection and Immunity, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland.
| | | | | | | |
Collapse
|
506
|
Ali SA, Iwabuchi N, Matsui T, Hirota K, Kidokoro SI, Arai M, Kuwajima K, Schuck P, Arisaka F. Reversible and fast association equilibria of a molecular chaperone, gp57A, of bacteriophage T4. Biophys J 2004; 85:2606-18. [PMID: 14507723 PMCID: PMC1303484 DOI: 10.1016/s0006-3495(03)74683-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
The association of a molecular chaperone, gp57A, of bacteriophage T4, which facilitates formation of the long and short tail fibers, was investigated by analytical ultracentrifugation, differential scanning microcalorimetry, and stopped-flow circular dichroism (CD) to establish the association scheme of the protein. Gp57A is an oligomeric alpha-helix protein with 79 amino acids. Analysis of the sedimentation velocity data by direct boundary modeling with Lamm equation solutions together with a more detailed boundary analysis incorporating association schemes led us to conclude that at least three oligomeric species of gp57A are in reversible and fast association equilibria and that a 3(mer)-6(mer)-12(mer) model described the data best. On the other hand, differential scanning microcalorimetry revealed a highly reversible two-step transition of dissociation/denaturation, both of which accompanied decrease in CD at 222 nm. The melting curve analysis revealed that it is consistent with a 6(mer)-3(mer)-1(mer) model. The refolding/association kinetics of gp57A measured by stopped-flow CD was consistent with the interpretation that the bimolecular reaction from trimer to hexamer was preceded by a fast alpha-helix formation in the dead-time. Trimer or hexamer is likely the functional oligomeric state of gp57A.
Collapse
Affiliation(s)
- Said A Ali
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
507
|
MacRaild CA, Stewart CR, Mok YF, Gunzburg MJ, Perugini MA, Lawrence LJ, Tirtaatmadja V, Cooper-White JJ, Howlett GJ. Non-fibrillar Components of Amyloid Deposits Mediate the Self-association and Tangling of Amyloid Fibrils. J Biol Chem 2004; 279:21038-45. [PMID: 15031287 DOI: 10.1074/jbc.m314008200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Amyloid deposits are proteinaceous extra-cellular aggregates associated with a diverse range of disease states. These deposits are composed predominantly of amyloid fibrils, the unbranched, beta-sheet rich structures that result from the misfolding and subsequent aggregation of many proteins. In addition, amyloid deposits contain a number of non-fibrillar components that interact with amyloid fibrils and are incorporated into the deposits in their native folded state. The influence of a number of the non-fibrillar components in amyloid-related diseases is well established; however, the mechanisms underlying these effects are poorly understood. Here we describe the effect of two of the most important non-fibrillar components, serum amyloid P component and apolipoprotein E, upon the solution behavior of amyloid fibrils in an in vitro model system. Using analytical ultracentrifugation, electron microscopy, and rheological measurements, we demonstrate that these non-fibrillar components cause soluble fibrils to condense into localized fibrillar aggregates with a greatly enhanced local density of fibril entanglements. These results suggest a possible mechanism for the observed role of non-fibrillar components as mediators of amyloid deposition and deposit stability.
Collapse
Affiliation(s)
- Christopher A MacRaild
- Russell Grimwade School of Biochemistry and Molecular Biology, Department of Chemical and Biomolecular Engineering, University of Melbourne, Victoria 3010, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
508
|
Dam J, Schuck P. Calculating sedimentation coefficient distributions by direct modeling of sedimentation velocity concentration profiles. Methods Enzymol 2004; 384:185-212. [PMID: 15081688 DOI: 10.1016/s0076-6879(04)84012-6] [Citation(s) in RCA: 234] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Affiliation(s)
- Julie Dam
- Center for Advanced Research in Biotechnology, University of Maryland Biotechnology Institute, Rockville, Maryland 20850, USA
| | | |
Collapse
|
509
|
Affiliation(s)
- James L Cole
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269, USA
| |
Collapse
|
510
|
Noy D, Calhoun JR, Lear JD. Direct analysis of protein sedimentation equilibrium in detergent solutions without density matching. Anal Biochem 2003; 320:185-92. [PMID: 12927823 DOI: 10.1016/s0003-2697(03)00347-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Characterizing membrane proteins by sedimentation equilibrium is challenging because detergents and/or lipid molecules, usually required for solubilization, form a complex with the protein. The most common way to overcome this problem is Tanford and Reynolds' density matching method, which eliminates the buoyant mass contributions of detergents/lipids by adjusting the solvent density with D2O/H2O mixtures to render either detergent or lipid molecules neutrally buoyant. Unfortunately, the method is practical only for detergent densities between 1.0 (H2O) and 1.1 (D2O) g ml(-1), excluding many of the more commonly used detergents for membrane protein studies. Here, we present a modern variant of Tanford and Reynolds' method that (1) is applicable to any detergent regardless of its specific density, (2) does not compromise accuracy and precision, and (3) provides additional information about the number of detergent molecules that are bound to each protein. The new method was applied successfully to Delta(1-43)A-I, an amino-terminal deletion mutant of human apolipoprotein A-I. Interestingly, we observed a significantly lower Delta(1-43)A-I/octyl-glucoside complex partial specific volume than that expected from volume additivity rules, indicative of specific protein-detergent interactions.
Collapse
Affiliation(s)
- Dror Noy
- Department of Biochemistry and Biophysics, School of Medicine, University of Pennsylvania, Philadelphia PA 19104-6059, USA.
| | | | | |
Collapse
|