501
|
|
502
|
Trend S, Fonceca AM, Ditcham WG, Kicic A, Cf A. The potential of phage therapy in cystic fibrosis: Essential human-bacterial-phage interactions and delivery considerations for use in Pseudomonas aeruginosa-infected airways. J Cyst Fibros 2017; 16:663-670. [PMID: 28720345 DOI: 10.1016/j.jcf.2017.06.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 06/28/2017] [Accepted: 06/30/2017] [Indexed: 01/21/2023]
Abstract
As antimicrobial-resistant microbes become increasingly common and a significant global issue, novel approaches to treating these infections particularly in those at high risk are required. This is evident in people with cystic fibrosis (CF), who suffer from chronic airway infection caused by antibiotic resistant bacteria, typically Pseudomonas aeruginosa. One option is bacteriophage (phage) therapy, which utilises the natural predation of phage viruses upon their host bacteria. This review summarises the essential and unique aspects of the phage-microbe-human lung interactions in CF that must be addressed to successfully develop and deliver phage to CF airways. The current evidence regarding phage biology, phage-bacterial interactions, potential airway immune responses to phages, previous use of phages in humans and method of phage delivery to the lung are also summarised.
Collapse
Affiliation(s)
- Stephanie Trend
- Telethon Kids Institute, University of Western Australia, Nedlands 6009, Western Australia, Australia; School of Paediatrics and Child Health, University of Western Australia, Nedlands 6009, Western Australia, Australia.
| | - Angela M Fonceca
- School of Paediatrics and Child Health, University of Western Australia, Nedlands 6009, Western Australia, Australia
| | - William G Ditcham
- School of Paediatrics and Child Health, University of Western Australia, Nedlands 6009, Western Australia, Australia
| | - Anthony Kicic
- Telethon Kids Institute, University of Western Australia, Nedlands 6009, Western Australia, Australia; School of Paediatrics and Child Health, University of Western Australia, Nedlands 6009, Western Australia, Australia; Department of Respiratory Medicine, Princess Margaret Hospital for Children, Perth 6001, Western Australia, Australia; Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, University of Western Australia, Nedlands 6009, Western Australia, Australia; School of Public Health, Curtin University, Bentley 6102, Western Australia, Australia
| | - Arest Cf
- Telethon Kids Institute, University of Western Australia, Nedlands 6009, Western Australia, Australia; Department of Respiratory Medicine, Princess Margaret Hospital for Children, Perth 6001, Western Australia, Australia; Murdoch Childrens Research Institute, Parkville, 3052 Melbourne, Victoria, Australia; Department of Paediatrics, University of Melbourne, Parkville, 3052 Melbourne, Victoria, Australia
| |
Collapse
|
503
|
Oyama LB, Crochet JA, Edwards JE, Girdwood SE, Cookson AR, Fernandez-Fuentes N, Hilpert K, Golyshin PN, Golyshina OV, Privé F, Hess M, Mantovani HC, Creevey CJ, Huws SA. Buwchitin: A Ruminal Peptide with Antimicrobial Potential against Enterococcus faecalis. Front Chem 2017; 5:51. [PMID: 28748180 PMCID: PMC5506224 DOI: 10.3389/fchem.2017.00051] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 06/27/2017] [Indexed: 11/14/2022] Open
Abstract
Antimicrobial peptides (AMPs) are gaining popularity as alternatives for treatment of bacterial infections and recent advances in omics technologies provide new platforms for AMP discovery. We sought to determine the antibacterial activity of a novel antimicrobial peptide, buwchitin, against Enterococcus faecalis. Buwchitin was identified from a rumen bacterial metagenome library, cloned, expressed and purified. The antimicrobial activity of the recombinant peptide was assessed using a broth microdilution susceptibility assay to determine the peptide's killing kinetics against selected bacterial strains. The killing mechanism of buwchitin was investigated further by monitoring its ability to cause membrane depolarization (diSC3(5) method) and morphological changes in E. faecalis cells. Transmission electron micrographs of buwchitin treated E. faecalis cells showed intact outer membranes with blebbing, but no major damaging effects and cell morphology changes. Buwchitin had negligible cytotoxicity against defibrinated sheep erythrocytes. Although no significant membrane leakage and depolarization was observed, buwchitin at minimum inhibitory concentration (MIC) was bacteriostatic against E. faecalis cells and inhibited growth in vitro by 70% when compared to untreated cells. These findings suggest that buwchitin, a rumen derived peptide, has potential for antimicrobial activity against E. faecalis.
Collapse
Affiliation(s)
- Linda B Oyama
- Institute of Biological Environmental and Rural Sciences, Aberystwyth UniversityAberystwyth, United Kingdom
| | - Jean-Adrien Crochet
- Institute of Biological Environmental and Rural Sciences, Aberystwyth UniversityAberystwyth, United Kingdom
| | - Joan E Edwards
- Institute of Biological Environmental and Rural Sciences, Aberystwyth UniversityAberystwyth, United Kingdom
| | - Susan E Girdwood
- Institute of Biological Environmental and Rural Sciences, Aberystwyth UniversityAberystwyth, United Kingdom
| | - Alan R Cookson
- Institute of Biological Environmental and Rural Sciences, Aberystwyth UniversityAberystwyth, United Kingdom
| | - Narcis Fernandez-Fuentes
- Institute of Biological Environmental and Rural Sciences, Aberystwyth UniversityAberystwyth, United Kingdom
| | - Kai Hilpert
- Institute of Infection and Immunity, St George's University of LondonLondon, United Kingdom
| | - Peter N Golyshin
- School of Biological Sciences, Bangor UniversityBangor, United Kingdom
| | - Olga V Golyshina
- School of Biological Sciences, Bangor UniversityBangor, United Kingdom
| | - Florence Privé
- Institute of Biological Environmental and Rural Sciences, Aberystwyth UniversityAberystwyth, United Kingdom
| | - Matthias Hess
- College of Agricultural and Environmental Sciences, University of California, DavisDavis, CA, United States
| | | | - Christopher J Creevey
- Institute of Biological Environmental and Rural Sciences, Aberystwyth UniversityAberystwyth, United Kingdom
| | - Sharon A Huws
- Medical Biology Centre, School of Biological Sciences, Queen's University BelfastBelfast, United Kingdom
| |
Collapse
|
504
|
Dickey SW, Cheung GY, Otto M. Different drugs for bad bugs: antivirulence strategies in the age of antibiotic resistance. Nat Rev Drug Discov 2017; 16:457-471. [PMID: 28337021 PMCID: PMC11849574 DOI: 10.1038/nrd.2017.23] [Citation(s) in RCA: 495] [Impact Index Per Article: 61.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The rapid evolution and dissemination of antibiotic resistance among bacterial pathogens are outpacing the development of new antibiotics, but antivirulence agents provide an alternative. These agents can circumvent antibiotic resistance by disarming pathogens of virulence factors that facilitate human disease while leaving bacterial growth pathways - the target of traditional antibiotics - intact. Either as stand-alone medications or together with antibiotics, these drugs are intended to treat bacterial infections in a largely pathogen-specific manner. Notably, development of antivirulence drugs requires an in-depth understanding of the roles that diverse virulence factors have in disease processes. In this Review, we outline the theory behind antivirulence strategies and provide examples of bacterial features that can be targeted by antivirulence approaches. Furthermore, we discuss the recent successes and failures of this paradigm, and new developments that are in the pipeline.
Collapse
Affiliation(s)
- Seth W. Dickey
- Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, The National Institutes of Health, Bethesda, MD, USA
| | - Gordon Y.C. Cheung
- Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, The National Institutes of Health, Bethesda, MD, USA
| | - Michael Otto
- Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, The National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
505
|
Consequence of prioritising pathogens for global antibiotic research. THE LANCET. INFECTIOUS DISEASES 2017; 17:690-691. [PMID: 28653630 DOI: 10.1016/s1473-3099(17)30334-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 05/11/2017] [Indexed: 11/21/2022]
|
506
|
|
507
|
Mamusa M, Sitia L, Barbero F, Ruyra A, Calvo TD, Montis C, Gonzalez-Paredes A, Wheeler GN, Morris CJ, McArthur M, Berti D. Cationic liposomal vectors incorporating a bolaamphiphile for oligonucleotide antimicrobials. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:1767-1777. [PMID: 28610721 DOI: 10.1016/j.bbamem.2017.06.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 05/10/2017] [Accepted: 06/08/2017] [Indexed: 01/01/2023]
Abstract
Antibacterial resistance has become a serious crisis for world health over the last few decades, so that new therapeutic approaches are strongly needed to face the threat of resistant infections. Transcription factor decoys (TFD) are a promising new class of antimicrobial oligonucleotides with proven in vivo activity when combined with a bolaamphiphilic cationic molecule, 12-bis-THA. These two molecular species form stable nanoplexes which, however, present very scarce colloidal stability in physiological media, which poses the challenge of drug formulation and delivery. In this work, we reformulated the 12-bis-THA/TFD nanoplexes in a liposomal carrier, which retains the ability to protect the oligonucleotide therapeutic from degradation and deliver it across the bacterial cell wall. We performed a physical-chemical study to investigate how the incorporation of 12-bis-THA and TFD affects the structure of POPC- and POPC/DOPE liposomes. Analysis was performed using dynamic light scattering (DLS), ζ-potential measurements, small-angle x-ray scattering (SAXS), and steady-state fluorescence spectroscopy to better understand the structure of the liposomal formulations containing the 12-bis-THA/TFD complexes. Oligonucleotide delivery to model Escherichia coli bacteria was assessed by means of confocal scanning laser microscopy (CLSM), evidencing the requirement of a fusogenic helper lipid for transfection. Preliminary biological assessments suggested the necessity of further development by modulation of 12-bis-THA concentration in order to optimize its therapeutic index, i.e. the ratio of antibacterial activity to the observed cytotoxicity. In summary, POPC/DOPE/12-bis-THA liposomes appear as promising formulations for TFD delivery.
Collapse
Affiliation(s)
- Marianna Mamusa
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence. Via della Lastruccia 3, 50019 Sesto Fiorentino, (FI), Italy.
| | - Leopoldo Sitia
- Procarta Biosystems Ltd, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | | | - Angels Ruyra
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom
| | - Teresa Díaz Calvo
- Procarta Biosystems Ltd, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Costanza Montis
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence. Via della Lastruccia 3, 50019 Sesto Fiorentino, (FI), Italy
| | | | - Grant N Wheeler
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom
| | - Christopher J Morris
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom
| | - Michael McArthur
- Procarta Biosystems Ltd, Norwich Research Park, Norwich NR4 7UH, United Kingdom; Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7UQ, United Kingdom
| | - Debora Berti
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence. Via della Lastruccia 3, 50019 Sesto Fiorentino, (FI), Italy
| |
Collapse
|
508
|
Hayouka Z, Bella A, Stern T, Ray S, Jiang H, Grovenor CRM, Ryadnov MG. Binary Encoding of Random Peptide Sequences for Selective and Differential Antimicrobial Mechanisms. Angew Chem Int Ed Engl 2017; 56:8099-8103. [DOI: 10.1002/anie.201702313] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 05/08/2017] [Indexed: 11/10/2022]
Affiliation(s)
- Zvi Hayouka
- Institute of Biochemistry, Food Science and Nutrition; The Hebrew University of Jerusalem; Rehovot 76100 Israel
| | - Angelo Bella
- National Physical Laboratory; Teddington TW11 0LW UK
| | - Tal Stern
- Institute of Biochemistry, Food Science and Nutrition; The Hebrew University of Jerusalem; Rehovot 76100 Israel
| | - Santanu Ray
- SET; University of Brighton; Brighton BN2 4GJ UK
| | - Haibo Jiang
- CMCA; University of Western Australia; Perth 6009 Australia
| | | | | |
Collapse
|
509
|
Hayouka Z, Bella A, Stern T, Ray S, Jiang H, Grovenor CRM, Ryadnov MG. Binary Encoding of Random Peptide Sequences for Selective and Differential Antimicrobial Mechanisms. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201702313] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Zvi Hayouka
- Institute of Biochemistry, Food Science and Nutrition; The Hebrew University of Jerusalem; Rehovot 76100 Israel
| | - Angelo Bella
- National Physical Laboratory; Teddington TW11 0LW UK
| | - Tal Stern
- Institute of Biochemistry, Food Science and Nutrition; The Hebrew University of Jerusalem; Rehovot 76100 Israel
| | - Santanu Ray
- SET; University of Brighton; Brighton BN2 4GJ UK
| | - Haibo Jiang
- CMCA; University of Western Australia; Perth 6009 Australia
| | | | | |
Collapse
|
510
|
Salicylidene Acylhydrazides and Hydroxyquinolines Act as Inhibitors of Type Three Secretion Systems in Pseudomonas aeruginosa by Distinct Mechanisms. Antimicrob Agents Chemother 2017; 61:AAC.02566-16. [PMID: 28396545 DOI: 10.1128/aac.02566-16] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Accepted: 03/23/2017] [Indexed: 12/27/2022] Open
Abstract
Type 3 secretion systems (T3SSs) are major virulence factors in Gram-negative bacteria. Pseudomonas aeruginosa expresses two T3SSs, namely, an injectisome (iT3SS) translocating effector proteins in the host cell cytosol and a flagellum (fT3SS) ensuring bacterial motility. Inhibiting these systems is an appealing therapeutic strategy for acute infections. This study examines the protective effects of the salicylidene acylhydrazide INP0341 and of the hydroxyquinoline INP1750 (previously described as T3SS inhibitors in other species) toward cytotoxic effects of P. aeruginosain vitro Both compounds reduced cell necrosis and inflammasome activation induced by reference strains or clinical isolates expressing T3SS toxins or only the translocation apparatus. INP0341 inhibited iT3SS transcriptional activation, including in strains with constitutive iT3SS expression, and reduced the total expression of toxins, suggesting it targets iT3SS gene transcription. INP1750 inhibited toxin secretion and flagellar motility and impaired the activity of the YscN ATPase from Yersinia pseudotuberculosis (homologous to the ATPase present in the basal body of P. aeruginosa iT3SS and fT3SS), suggesting that it rather targets a T3SS core constituent with high homology among iT3SS and fT3SS. This mode of action is similar to that previously described for INP1855, another hydroxyquinoline, against P. aeruginosa Thus, although acting by different mechanisms, INP0341 and INP1750 appear as useful inhibitors of the virulence of P. aeruginosa Hydroxyquinolines may have a broader spectrum of activity by the fact they act upon two virulence factors (iT3SS and fT3SS).
Collapse
|
511
|
Kwon SJ, Kim D, Lee I, Kim J, Dordick JS. In vitro gene expression-coupled bacterial cell chip for screening species-specific antimicrobial enzymes. Biotechnol Bioeng 2017; 114:1648-1657. [PMID: 28369698 DOI: 10.1002/bit.26300] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 03/17/2017] [Accepted: 03/22/2017] [Indexed: 12/22/2022]
Abstract
Targeting infectious bacterial pathogens is important for reducing the evolution of antibiotic-resistant bacteria and preserving the endogenous human microbiome. Cell lytic enzymes including bacteriophage endolysins, bacterial autolysins, and other bacteriolysins are useful antibiotic alternatives due to their exceptional target selectivity, which may be used to lysins rapidly kill target bacteria and their high specificity permit the normal commensal microflora to be left undisturbed. Genetic information of numerous lysins is currently available, but the identification of their antimicrobial function and specificity has been limited because most lysins are often poorly expressed and exhibit low solubilities. Here, we report the development of bacterial cell chip for rapidly accessing the function of diverse genes that are suggestive of encoding lysins. This approach can be used to evaluate rapidly the species-specific antimicrobial activity of diverse lysins synthesized from in vitro transcription and translation (TNT) of plasmid DNA. In addition, new potent lysins can be assessed that are not expressed in hosts and display low solubility. As a result of evaluating the species-specific antimicrobial function of 11 (un)known lysins with an in vitro TNT-coupled bacterial cell chip, a potent recombinant lysin against Staphylococcus strains, SA1, was identified. The SA1 was highly potent against not only S. aureus, but also both lysostaphin-resistant S. simulans and S. epidermidis cells. To this end, the SA1 may be applicable to treat both methicillin-resistant S. aureus (MRSA) and lysostaphin-resistant MRSA mutants. Biotechnol. Bioeng. 2017;114: 1648-1657. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Seok-Joon Kwon
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York, 12180
| | - Domyoung Kim
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York, 12180
| | - Inseon Lee
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Jungbae Kim
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Jonathan S Dordick
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York, 12180
| |
Collapse
|
512
|
A short artificial antimicrobial peptide shows potential to prevent or treat bone infections. Sci Rep 2017; 7:1506. [PMID: 28473710 PMCID: PMC5431435 DOI: 10.1038/s41598-017-01698-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 04/03/2017] [Indexed: 01/22/2023] Open
Abstract
Infection of bone is a severe complication due to the variety of bacteria causing it, their resistance against classical antibiotics, the formation of a biofilm and the difficulty to eradicate it. Antimicrobial peptides (AMPs) are naturally occurring peptides and promising candidates for treatment of joint infections. This study aimed to analyze the effect of short artificial peptides derived from an optimized library regarding (1) antimicrobial effect on different bacterial species, (2) efficacy on biofilms, and (3) effect on osteoblast‑like cells. Culturing the AMP-modifications with Escherichia coli, Enterococcus faecalis, Pseudomonas aeruginosa, Staphylococcus aureus (including clinical isolates of MRSA and MSSA) and Staphylococcus epidermidis identified one candidate that was most effective against all bacteria. This AMP was also able to reduce biofilm as demonstrated by FISH and microcalorimetry. Osteoblast viability and differentiation were not negatively affected by the AMP. A cation concentration comparable to that physiologically occurring in blood had almost no negative effect on AMP activity and even with 10% serum bacterial growth was inhibited. Bacteria internalized into osteoblasts were reduced by the AMP. Taken together the results demonstrate a high antimicrobial activity of the AMP even against bacteria incorporated in a biofilm or internalized into cells without harming human osteoblasts.
Collapse
|
513
|
Sharma U, Paul VD. Bacteriophage lysins as antibacterials. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2017; 21:99. [PMID: 28468638 PMCID: PMC5415796 DOI: 10.1186/s13054-017-1681-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Umender Sharma
- GangaGen Biotechnologies Pvt Ltd, Yeshwantpur, Bangalore, India.
| | - Vivek D Paul
- GangaGen Biotechnologies Pvt Ltd, Yeshwantpur, Bangalore, India
| |
Collapse
|
514
|
Grzybowski A, Brona P, Kim SJ. Microbial flora and resistance in ophthalmology: a review. Graefes Arch Clin Exp Ophthalmol 2017; 255:851-862. [PMID: 28229218 PMCID: PMC5394129 DOI: 10.1007/s00417-017-3608-y] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 01/11/2017] [Accepted: 02/06/2017] [Indexed: 02/03/2023] Open
Abstract
Antibiotic resistance in systemic infection is well-researched and well-publicized. Much less information is available on the resistance of normal ocular microbiome and that of ophthalmic infections. An understanding of the distribution of ocular microorganisms may help us in tailoring our empiric treatment, as well as in choosing effective pre-, peri- and postoperative management, to achieve the best results for patients. This study aims to summarize and review the available literature on the subject of normal ocular flora and its resistance, as well as the broader topic of antibiotic resistance in ophthalmology.
Collapse
Affiliation(s)
- Andrzej Grzybowski
- Department of Ophthalmology, Poznan City Hospital, Ul. Szwajcarska 3, 60-285, Poznan, Poland.
- Department of Ophthalmology, University of Warmia and Mazury, Olsztyn, Poland.
| | - Piotr Brona
- Department of Ophthalmology, Poznan City Hospital, Ul. Szwajcarska 3, 60-285, Poznan, Poland
| | - Stephen Jae Kim
- Department of Ophthalmology, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
515
|
Ewan V, Hellyer T, Newton J, Simpson J. New horizons in hospital acquired pneumonia in older people. Age Ageing 2017; 46:352-358. [PMID: 28338911 DOI: 10.1093/ageing/afx029] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Indexed: 02/07/2023] Open
Abstract
Approximately 1.5% of hospital patients develop hospital acquired pneumonia. Aspiration is the major risk factor for pneumonia and is associated with reduced ability to mechanically clear respiratory pathogens into the stomach. Currently non-invasive methods of diagnosing hospital acquired pneumonia are less robust than invasive methods, and lead to over-diagnosis. Accurate diagnosis is key to surveillance, prevention and treatment of HAP, and also to improving outcomes; newer imaging modalities such as phase contrast X-ray imaging and nanoparticle enhanced magnetic resonance imaging may help. Potential preventative strategies such as systematic swallowing assessment in non-stroke patients, and interventions such as improving oral hygiene need further, robust randomised controlled trials. Antibiotics are likely to continue to be the mainstay of treatment, and new antibiotics such as ceftobiprole are likely to have a role in treating hospital acquired pneumonia. Given the spread of antimicrobial resistance, alternative treatment strategies including bacteriophages, peptides and antibodies are under investigation. Reducing the incidence of hospital acquired pneumonia could decrease length of hospital stay, reduce inappropriate antibiotic use, and both improve functional outcomes and mortality in our increasingly aged population.
Collapse
Affiliation(s)
- Victoria Ewan
- Newcastle University, Institute of Cellular Medicine, Newcastle upon Tyne, Tyne and Wear , United Kingdom
| | - Thomas Hellyer
- Newcastle University, Institute of Cellular Medicine, Newcastle upon Tyne, Tyne and Wear , United Kingdom
| | - Julia Newton
- Newcastle University, Clinical Academic Office, Newcastle upon Tyne, Tyne and Wear, United Kingdom
| | - John Simpson
- Newcastle University, Institute of Cellular Medicine, Newcastle upon Tyne, Tyne and Wear , United Kingdom
| |
Collapse
|
516
|
|
517
|
Phage therapy: awakening a sleeping giant. Emerg Top Life Sci 2017; 1:93-103. [PMID: 33525818 PMCID: PMC7288995 DOI: 10.1042/etls20170002] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/09/2017] [Accepted: 03/09/2017] [Indexed: 02/07/2023]
Abstract
For a century, bacterial viruses called bacteriophages have been exploited as natural antibacterial agents. However, their medicinal potential has not yet been exploited due to readily available and effective antibiotics. After years of extensive use, both properly and improperly, antibiotic-resistant bacteria are becoming more prominent and represent a worldwide public health threat. Most importantly, new antibiotics are not progressing at the same rate as the emergence of resistance. The therapeutic modality of bacteriophages, called phage therapy, offers a clinical option to combat bacteria associated with diseases. Here, we discuss traditional phage therapy approaches, as well as how synthetic biology has allowed for the creation of designer phages for new clinical applications. To implement these technologies, several key aspects and challenges still need to be addressed, such as narrow spectrum, safety, and bacterial resistance. We will summarize our current understanding of how phage treatment elicits mammalian host immune responses, as well bacterial phage resistance development, and the potential impact each will have on phage therapy effectiveness. We conclude by discussing the need for a paradigm shift on how phage therapy strategies are developed.
Collapse
|
518
|
Assis LM, Nedeljković M, Dessen A. New strategies for targeting and treatment of multi-drug resistant Staphylococcus aureus. Drug Resist Updat 2017; 31:1-14. [PMID: 28867240 DOI: 10.1016/j.drup.2017.03.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 02/07/2017] [Accepted: 03/23/2017] [Indexed: 12/17/2022]
Abstract
Staphylococcus aureus is a major cause of bacterial infection in humans, and has been notoriously able to acquire resistance to a variety of antibiotics. An example is methicillin-resistant S. aureus (MRSA), which despite having been initially associated with clinical settings, now is one of the key causative agents of community-acquired infections. Antibiotic resistance in S. aureus involves mechanisms ranging from drug efflux to increased expression or mutation of target proteins, and this has required innovative approaches to develop novel treatment methodologies. This review provides an overview of the major mechanisms of antibiotic resistance developed by S. aureus, and describes the emerging alternatives being sought to circumvent infection and proliferation, including new generations of classic antibiotics, synergistic approaches, antibodies, and targeting of virulence factors.
Collapse
Affiliation(s)
- L Mayrink Assis
- Brazilian National Laboratory for Biosciences (LNBio), CNPEM, Campinas, São Paulo, Brazil
| | - M Nedeljković
- Institut de Biologie Structurale (IBS), Univ Grenoble Alpes, CEA, CNRS, Bacterial Pathogenesis Group, 38044 Grenoble, France
| | - A Dessen
- Brazilian National Laboratory for Biosciences (LNBio), CNPEM, Campinas, São Paulo, Brazil; Institut de Biologie Structurale (IBS), Univ Grenoble Alpes, CEA, CNRS, Bacterial Pathogenesis Group, 38044 Grenoble, France.
| |
Collapse
|
519
|
Luo Y, McLean DTF, Linden GJ, McAuley DF, McMullan R, Lundy FT. The Naturally Occurring Host Defense Peptide, LL-37, and Its Truncated Mimetics KE-18 and KR-12 Have Selected Biocidal and Antibiofilm Activities Against Candida albicans, Staphylococcus aureus, and Escherichia coli In vitro. Front Microbiol 2017; 8:544. [PMID: 28408902 PMCID: PMC5374219 DOI: 10.3389/fmicb.2017.00544] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 03/15/2017] [Indexed: 12/03/2022] Open
Abstract
Amongst the recognized classes of naturally occurring antimicrobials, human host defense peptides are an important group with an advantage (given their source) that they should be readily translatable to medicinal products. It is also plausible that truncated versions will display some of the biological activities of the parent peptide, with the benefit that they are less costly to synthesize using solid-phase chemistry. The host defense peptide, LL-37, and two truncated mimetics, KE-18 and KR-12, were tested for their inhibitory effects and antibiofilm properties against Candida albicans, Staphylococcus aureus, and Escherichia coli, microorganisms commonly implicated in biofilm-related infections such as ventilator-associated pneumonia (VAP). Using in silico prediction tools, the truncated peptides KE-18 and KR-12 were selected for minimum inhibitory concentration (MIC) and antibiofilm testing on the basis of their favorable cationicity, hydrophobic ratio, and amphipathicity compared with the parent peptide. Two methods were analyzed for determining peptide efficacy against biofilms; a crystal violet assay and an XTT [2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide] assay. The biocidal activities (measured by MIC) and antibiofilm activities (measured by a crystal violet assay) appeared to be independent. LL-37 had no biocidal action against C. albicans (MIC > 250 μg/ml) but significant effects in both biofilm-prevention and biofilm-inhibition assays. KE-18 and KR-12 yielded superior MIC values against all three microorganisms. Only KE-18 had a significant effect in the biofilm-prevention assay, which persisted even at sub-MICs. Neither of the truncated peptides were active in the biofilm-inhibition assay. KE-18 was shown to bind lipopolysaccharide as effectively as LL-37 and to bind lipoteichoic acid more effectively. None of the peptides showed hemolytic activity against human erythrocytes at the concentrations tested. KE-18 should be considered for further development as a natural peptide-derived therapeutic for prevention of multi-species biofilm-related infections such as VAP.
Collapse
Affiliation(s)
- Yu Luo
- Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University BelfastBelfast, UK
| | - Denise T F McLean
- Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University BelfastBelfast, UK
| | - Gerard J Linden
- Centre for Public Health, School of Medicine, Dentistry and Biomedical Sciences, Queen's University BelfastBelfast, UK
| | - Danny F McAuley
- Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University BelfastBelfast, UK
| | - Ronan McMullan
- Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University BelfastBelfast, UK
| | - Fionnuala T Lundy
- Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University BelfastBelfast, UK
| |
Collapse
|
520
|
Luepke KH, Mohr JF. The antibiotic pipeline: reviving research and development and speeding drugs to market. Expert Rev Anti Infect Ther 2017; 15:425-433. [PMID: 28306360 DOI: 10.1080/14787210.2017.1308251] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
INTRODUCTION The combination of growing antimicrobial resistance with a dry pipeline has resulted in infections that can no longer be treated. Specific reasons have led to companies' exit from the antibacterial space, however recent incentives are spurring interest to reinvigorate the pipeline. Areas covered: This article summarizes the available information on the discovery, developmental, and regulatory challenges in antibacterial development that have led to disinterest in the space, as well as ongoing incentives such as public-private partnerships and streamlined pathways to mend these challenges and bring new antibiotics to patients in need. Expert commentary: Clinicians should not only understand the reasons for the decline in antibiotic development that have resulted in the dry pipeline, but also the ongoing initiatives in place to build an appropriate supply. Doing so will result in greater appreciation and prudent use of these life-saving drugs when they become available.
Collapse
Affiliation(s)
| | - John F Mohr
- a Medical Affairs Strategic Solutions, LLC , Atlanta , GA , USA
| |
Collapse
|
521
|
Ran R, Zeng H, Zhao D, Liu R, Xu X. The Novel Property of Heptapeptide of Microcin C7 in Affecting the Cell Growth of Escherichia coli. Molecules 2017; 22:E432. [PMID: 28282893 PMCID: PMC6155343 DOI: 10.3390/molecules22030432] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 03/06/2017] [Indexed: 12/01/2022] Open
Abstract
Microcin C7 (McC), widely distributed in enterobacteria, is a promising antibiotic against antibiotic resistance [...].
Collapse
Affiliation(s)
- Rensen Ran
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Huan Zeng
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Dong Zhao
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Ruiyuan Liu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xia Xu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
522
|
Effect of predatory bacteria on the gut bacterial microbiota in rats. Sci Rep 2017; 7:43483. [PMID: 28262674 PMCID: PMC5337950 DOI: 10.1038/srep43483] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 01/24/2017] [Indexed: 01/14/2023] Open
Abstract
Bdellovibrio bacteriovorus and Micavibrio aeruginosavorus are Gram-negative proteobacteria that are obligate predators of other Gram-negative bacteria and are considered potential alternatives to antibiotics. Most studies focusing on predatory bacteria have been performed in vitro, thus the effect of predatory bacteria on a live host, including the impact on the ecology of the native microbiota, has yet to be fully examined. In this study, intrarectal inoculations of Sprague-Dawley rats with predatory bacteria were performed. Additionally, feces were collected for seven days post-inoculation to determine the effect on gut bacterial diversity. Rat colonic tissue exhibited no abnormal histopathological effects due to predatory bacteria. A modest increase in pro-inflammatory cytokines was measured in the colons of rats inoculated with predatory bacteria by 24 and 48 hours, with all but IL-13 returning to baseline by seven days. V4 16S rRNA gene sequencing of fecal DNA demonstrated minimal shifts in taxonomic representation over the week due to predatory bacteria. Changes in bacterial populations due to exposure to B. bacteriovorus are predicted to contribute to health, however, an overgrowth of Prevotella was observed due to exposure to M. aeruginosavorus. This study further addresses safety concerns associated with the potential use of predatory bacteria to treat infections.
Collapse
|
523
|
Jammal J, Zaknoon F, Kaneti G, Hershkovits AS, Mor A. Sensitization of Gram-Negative Bacilli to Host Antibacterial Proteins. J Infect Dis 2017; 215:1599-1607. [DOI: 10.1093/infdis/jix119] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 03/02/2017] [Indexed: 12/17/2022] Open
|
524
|
Crabbé A, Liu Y, Matthijs N, Rigole P, De La Fuente-Nùñez C, Davis R, Ledesma MA, Sarker S, Van Houdt R, Hancock REW, Coenye T, Nickerson CA. Antimicrobial efficacy against Pseudomonas aeruginosa biofilm formation in a three-dimensional lung epithelial model and the influence of fetal bovine serum. Sci Rep 2017; 7:43321. [PMID: 28256611 PMCID: PMC5335707 DOI: 10.1038/srep43321] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 01/25/2017] [Indexed: 12/14/2022] Open
Abstract
In vitro models that mimic in vivo host-pathogen interactions are needed to evaluate candidate drugs that inhibit bacterial virulence traits. We established a new approach to study Pseudomonas aeruginosa biofilm susceptibility on biotic surfaces, using a three-dimensional (3-D) lung epithelial cell model. P. aeruginosa formed antibiotic resistant biofilms on 3-D cells without affecting cell viability. The biofilm-inhibitory activity of antibiotics and/or the anti-biofilm peptide DJK-5 were evaluated on 3-D cells compared to a plastic surface, in medium with and without fetal bovine serum (FBS). In both media, aminoglycosides were more efficacious in the 3-D cell model. In serum-free medium, most antibiotics (except polymyxins) showed enhanced efficacy when 3-D cells were present. In medium with FBS, colistin was less efficacious in the 3-D cell model. DJK-5 exerted potent inhibition of P. aeruginosa association with both substrates, only in serum-free medium. DJK-5 showed stronger inhibitory activity against P. aeruginosa associated with plastic compared to 3-D cells. The combined addition of tobramycin and DJK-5 exhibited more potent ability to inhibit P. aeruginosa association with both substrates. In conclusion, lung epithelial cells influence the efficacy of most antimicrobials against P. aeruginosa biofilm formation, which in turn depends on the presence or absence of FBS.
Collapse
Affiliation(s)
- Aurélie Crabbé
- Laboratory of Pharmaceutical Microbiology (LPM), Ghent University, Ghent, Belgium.,The Biodesign Institute, Center for Infectious Diseases and Vaccinology, Arizona State University, Tempe, Arizona, United States of America
| | - Yulong Liu
- The Biodesign Institute, Center for Infectious Diseases and Vaccinology, Arizona State University, Tempe, Arizona, United States of America
| | - Nele Matthijs
- Laboratory of Pharmaceutical Microbiology (LPM), Ghent University, Ghent, Belgium
| | - Petra Rigole
- Laboratory of Pharmaceutical Microbiology (LPM), Ghent University, Ghent, Belgium
| | - César De La Fuente-Nùñez
- University of British Columbia, Centre for Microbial Diseases and Immunity Research, Vancouver, British Columbia, Canada
| | - Richard Davis
- The Biodesign Institute, Center for Infectious Diseases and Vaccinology, Arizona State University, Tempe, Arizona, United States of America
| | - Maria A Ledesma
- The Biodesign Institute, Center for Infectious Diseases and Vaccinology, Arizona State University, Tempe, Arizona, United States of America
| | - Shameema Sarker
- The Biodesign Institute, Center for Infectious Diseases and Vaccinology, Arizona State University, Tempe, Arizona, United States of America
| | - Rob Van Houdt
- Unit of Microbiology, Belgian Nuclear Research Centre (SCK·CEN), Mol, Belgium
| | - Robert E W Hancock
- University of British Columbia, Centre for Microbial Diseases and Immunity Research, Vancouver, British Columbia, Canada
| | - Tom Coenye
- Laboratory of Pharmaceutical Microbiology (LPM), Ghent University, Ghent, Belgium
| | - Cheryl A Nickerson
- The Biodesign Institute, Center for Infectious Diseases and Vaccinology, Arizona State University, Tempe, Arizona, United States of America.,School of Life Sciences, Arizona State University, Tempe, Arizona 85287, United States of America
| |
Collapse
|
525
|
Disarming pathogens: benefits and challenges of antimicrobials that target bacterial virulence instead of growth and viability. Future Med Chem 2017; 9:267-269. [DOI: 10.4155/fmc-2016-0227] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
|
526
|
Trimble MJ, Hancock REW. An alternative approach to treating antibiotic-resistant infections. Future Microbiol 2017; 12:201-204. [DOI: 10.2217/fmb-2016-0222] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Affiliation(s)
- Michael J Trimble
- Centre for Microbial Diseases & Immunity Research, Department of Microbiology & Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Robert EW Hancock
- Centre for Microbial Diseases & Immunity Research, Department of Microbiology & Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
527
|
RAGE-Mediated Suppression of Interleukin-10 Results in Enhanced Mortality in a Murine Model of Acinetobacter baumannii Sepsis. Infect Immun 2017; 85:IAI.00954-16. [PMID: 28052995 DOI: 10.1128/iai.00954-16] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 12/29/2016] [Indexed: 12/17/2022] Open
Abstract
The receptor for advanced glycation end products (RAGE) is a pattern recognition receptor capable of recognizing multiple pathogen-associated and danger-associated molecular patterns that contributes to the initiation and potentiation of inflammation in many disease processes. During infection, RAGE functions to either exacerbate disease severity or enhance pathogen clearance depending on the pathogen studied. Acinetobacter baumannii is an opportunistic human pathogen capable of causing severe infections, including pneumonia and sepsis, in impaired hosts. The role of RAGE signaling in response to opportunistic bacterial infections is largely unknown. In murine models of A. baumannii pneumonia, RAGE signaling alters neither inflammation nor bacterial clearance. In contrast, RAGE-/- mice systemically infected with A. baumannii exhibit increased survival and reduced bacterial burdens in the liver and spleen. The increased survival of RAGE-/- mice is associated with increased circulating levels of the anti-inflammatory cytokine interleukin-10 (IL-10). Neutralization of IL-10 in RAGE-/- mice results in decreased survival during systemic A. baumannii infection that mirrors that of wild-type (WT) mice, and exogenous IL-10 administration to WT mice enhances survival in this model. These findings demonstrate the role for RAGE-dependent IL-10 suppression as a key modulator of mortality from Gram-negative sepsis.
Collapse
|
528
|
Szijártó V, Guachalla LM, Hartl K, Varga C, Badarau A, Mirkina I, Visram ZC, Stulik L, Power CA, Nagy E, Nagy G. Endotoxin neutralization by an O-antigen specific monoclonal antibody: A potential novel therapeutic approach against Klebsiella pneumoniae ST258. Virulence 2017; 8:1203-1215. [PMID: 28103139 PMCID: PMC5711440 DOI: 10.1080/21505594.2017.1279778] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Klebsiella pneumoniae ST258 is a globally distributed multi-drug resistant pathogen responsible for severe invasive infections. In this study, the different virulence potential of K. pneumoniae ST258 isolates in endotoxin susceptible versus resistant animal models was shown. Furthermore, ST258 clinical isolates were found highly sensitive to the bactericidal effect of naive animal and human serum. These observations imply that LPS, released from the rapidly lysed bacteria, may contribute to the high mortality associated with ST258 bacteremia cases. A humanized version (mAb A1102) of a previously described murine mAb specific for the conserved LPS O-antigen, was tested for endotoxin neutralization. A1102 was able to neutralize TLR-4 activation by ST258-derived LPS in vitro with an efficacy exceeding that of polymyxin B by 3 orders of magnitude. Passive immunization with A1102 afforded a significant level of protection in a galactosamine-sensitized mouse model of endotoxemia, induced by ST258-derived LPS, or upon challenge with live bacteria. Efficacy was retained using an aglycosylated IgG, as well as upon complement depletion, suggesting that Fc-independent endotoxin neutralization may be the main protective mechanism in this model, in spite of the complement-dependent bactericidal and opsonic activities additionally observed for A1102 in vitro. Furthermore, rabbits that are naturally highly susceptible to endotoxin, were also significantly protected by low doses of A1102 when challenged with an ST258 strain. Given this unique mode of action and the high protective efficacy of this mAb, passive immunization, as prophylactic or adjunct therapeutic approach for the treatment of infections caused by ST258 isolates should be considered.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Eszter Nagy
- a Arsanis Biosciences GmbH , Vienna , Austria
| | - Gábor Nagy
- a Arsanis Biosciences GmbH , Vienna , Austria
| |
Collapse
|
529
|
Szafrański SP, Winkel A, Stiesch M. The use of bacteriophages to biocontrol oral biofilms. J Biotechnol 2017; 250:29-44. [PMID: 28108235 DOI: 10.1016/j.jbiotec.2017.01.002] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 01/09/2017] [Accepted: 01/10/2017] [Indexed: 12/15/2022]
Abstract
Infections induced by oral biofilms include caries, as well as periodontal, and peri-implant disease, and may influence quality of life, systemic health, and expenditure. As bacterial biofilms are highly resistant and resilient to conventional antibacterial therapy, it has been difficult to combat these infections. An innovative alternative to the biocontrol of oral biofilms could be to use bacteriophages or phages, the viruses of bacteria, which are specific, non-toxic, self-proliferating, and can penetrate into biofilms. Phages for Actinomyces naeslundii, Aggregatibacter actinomycetemcomitans, Enterococcus faecalis, Fusobacterium nucleatum, Lactobacillus spp., Neisseria spp., Streptococcus spp., and Veillonella spp. have been isolated and characterised. Recombinant phage enzymes (lysins) have been shown to lyse A. naeslundii and Streptococcus spp. However, only a tiny fraction of available phages and their lysins have been explored so far. The unique properties of phages and their lysins make them promising but challenging antimicrobials. The genetics and biology of phages have to be further explored in order to determine the most effective way of applying them. Studying the effect of phages and lysins on multispecies biofilms should pave the way for microbiota engineering and microbiota-based therapy.
Collapse
Affiliation(s)
- Szymon P Szafrański
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Stadtfelddamm 34, D-30625 Hannover, Germany; Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School (MHH), Carl-Neuberg-Strasse 1, D-30625 Hannover, Germany.
| | - Andreas Winkel
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Stadtfelddamm 34, D-30625 Hannover, Germany; Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School (MHH), Carl-Neuberg-Strasse 1, D-30625 Hannover, Germany
| | - Meike Stiesch
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Stadtfelddamm 34, D-30625 Hannover, Germany; Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School (MHH), Carl-Neuberg-Strasse 1, D-30625 Hannover, Germany.
| |
Collapse
|
530
|
Ongey EL, Yassi H, Pflugmacher S, Neubauer P. Pharmacological and pharmacokinetic properties of lanthipeptides undergoing clinical studies. Biotechnol Lett 2017; 39:473-482. [PMID: 28044226 DOI: 10.1007/s10529-016-2279-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Accepted: 12/20/2016] [Indexed: 11/29/2022]
Abstract
The intrinsic qualities of lanthipeptides for their use as therapeutic drugs present several challenges because of their properties, which include stability, solubility and bioavailability, which, under physiological conditions, are very low. Researches have encouraged clinical evaluation of a few compounds, such as mutacin 1140, microbisporicin, actagardine and duramycin, with pharmacokinetic profiles showing rapid distribution and elimination rates, good bioavailability and fecal excretion, as well as high protein binding. Local and parenteral administration are currently suitable to minimize environmental influences on lanthipeptides and ensure efficient activity. Nevertheless, valuable improvements on pharmacodynamic and pharmacokinetic properties may also permit systemic applications via enteral routes. Understanding how rational modifications influence the desired pharmacological and pharmacokinetic properties of these biomolecules would help to answer some specific questions about their susceptibility to environmental changes, mechanism of action and how to engineer other peptides of the same group to improve their clinical relevance.
Collapse
Affiliation(s)
- Elvis Legala Ongey
- Chair of Bioprocess Engineering, Department of Biotechnology, Technische Universität Berlin, Ackerstraße 76, ACK24, 13355, Berlin, Germany. .,Department of Biotechnology, Technische Universität Berlin, Ackerstraße 76, ACK24, 13355, Berlin, Germany.
| | - Hüseyin Yassi
- Chair of Bioprocess Engineering, Department of Biotechnology, Technische Universität Berlin, Ackerstraße 76, ACK24, 13355, Berlin, Germany
| | - Stephan Pflugmacher
- Department Ecological Impact Research and Ecotoxicology, Institute of Ecology, Berlin Institute of Technology (BIT), 10538, Berlin, Germany
| | - Peter Neubauer
- Chair of Bioprocess Engineering, Department of Biotechnology, Technische Universität Berlin, Ackerstraße 76, ACK24, 13355, Berlin, Germany
| |
Collapse
|
531
|
Nylén F, Bergman P, Gudmundsson GH, Agerberth B. Assays for Identifying Inducers of the Antimicrobial Peptide LL-37. Methods Mol Biol 2017; 1548:271-281. [PMID: 28013511 DOI: 10.1007/978-1-4939-6737-7_19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
One promising approach to meet the growing problem of antibiotic resistance is to modulate host defense mechanisms, i.e., host-directed therapy (HDT), in the fight against infections. Induction of endogenous antimicrobial peptides (AMPs) via small molecular compounds, such as 1,25-dihydroxyvitamin D3 or phenylbutyrate, could provide one such HDT-based approach.We have developed a cell-based screening assay for the identification of novel compounds with the capacity to induce AMP expression and here follows the detailed protocol.
Collapse
Affiliation(s)
- Frank Nylén
- Department of Laboratory Medicine, Karolinska Institutet, F68, Karolinska Universitetssjukhuset, Huddinge, 141 86, Sweden.
| | - Peter Bergman
- Department of Laboratory Medicine, Karolinska Institutet, F68, Karolinska Universitetssjukhuset, Huddinge, 141 86, Sweden
| | | | - Birgitta Agerberth
- Department of Laboratory Medicine, Karolinska Institutet, F68, Karolinska Universitetssjukhuset, Huddinge, 141 86, Sweden
| |
Collapse
|
532
|
Mahlapuu M, Håkansson J, Ringstad L, Björn C. Antimicrobial Peptides: An Emerging Category of Therapeutic Agents. Front Cell Infect Microbiol 2016; 6:194. [PMID: 28083516 PMCID: PMC5186781 DOI: 10.3389/fcimb.2016.00194] [Citation(s) in RCA: 1171] [Impact Index Per Article: 130.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Accepted: 12/12/2016] [Indexed: 12/15/2022] Open
Abstract
Antimicrobial peptides (AMPs), also known as host defense peptides, are short and generally positively charged peptides found in a wide variety of life forms from microorganisms to humans. Most AMPs have the ability to kill microbial pathogens directly, whereas others act indirectly by modulating the host defense systems. Against a background of rapidly increasing resistance development to conventional antibiotics all over the world, efforts to bring AMPs into clinical use are accelerating. Several AMPs are currently being evaluated in clinical trials as novel anti-infectives, but also as new pharmacological agents to modulate the immune response, promote wound healing, and prevent post-surgical adhesions. In this review, we provide an overview of the biological role, classification, and mode of action of AMPs, discuss the opportunities and challenges to develop these peptides for clinical applications, and review the innovative formulation strategies for application of AMPs.
Collapse
Affiliation(s)
- Margit Mahlapuu
- Promore Pharma AB, Karolinska Institutet Science ParkSolna, Sweden; The Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine, The Sahlgrenska Academy at University of GothenburgGothenburg, Sweden
| | - Joakim Håkansson
- SP Technical Research Institute of Sweden, Chemistry, Materials, and Surfaces Borås, Sweden
| | - Lovisa Ringstad
- SP Technical Research Institute of Sweden, Chemistry, Materials, and Surfaces Borås, Sweden
| | - Camilla Björn
- The Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine, The Sahlgrenska Academy at University of GothenburgGothenburg, Sweden; SP Technical Research Institute of Sweden, Chemistry, Materials, and SurfacesBorås, Sweden
| |
Collapse
|
533
|
Targeting bacterial adherence inhibits multidrug-resistant Pseudomonas aeruginosa infection following burn injury. Sci Rep 2016; 6:39341. [PMID: 27996032 PMCID: PMC5171828 DOI: 10.1038/srep39341] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 11/18/2016] [Indexed: 12/19/2022] Open
Abstract
Classical antimicrobial drugs target proliferation and therefore place microbes under extreme selective pressure to evolve resistance. Alternative drugs that target bacterial virulence without impacting survival directly offer an attractive solution to this problem, but to date few such molecules have been discovered. We previously discovered a widespread group of bacterial adhesins, termed Multivalent Adhesion Molecules (MAMs) that are essential for initial binding of bacteria to host tissues and virulence. Thus, targeting MAM-based adherence is a promising strategy for displacing pathogens from host tissues and inhibiting infection. Here, we show that topical application of polymeric microbeads functionalized with the adhesin MAM7 to a burn infected with multidrug-resistant Pseudomonas aeruginosa substantially decreased bacterial loads in the wound and prevented the spread of the infection into adjacent tissues. As a consequence, the application of this adhesion inhibitor allowed for vascularization and wound healing, and maintained local and systemic inflammatory responses to the burn. We propose that MAM7-functionalized microbeads can be used as a topical treatment, to reduce bacterial attachment and hence prevent bacterial colonization and infection of wounds. As adhesion is not required for microbial survival, this anti-infective strategy has the potential to treat multidrug-resistant infections and limit the emergence of drug-resistant pathogens.
Collapse
|
534
|
Möhler JS, Kolmar T, Synnatschke K, Hergert M, Wilson LA, Ramu S, Elliott AG, Blaskovich MAT, Sidjabat HE, Paterson DL, Schenk G, Cooper MA, Ziora ZM. Enhancement of antibiotic-activity through complexation with metal ions - Combined ITC, NMR, enzymatic and biological studies. J Inorg Biochem 2016; 167:134-141. [PMID: 27984786 DOI: 10.1016/j.jinorgbio.2016.11.028] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Revised: 10/17/2016] [Accepted: 11/22/2016] [Indexed: 02/01/2023]
Abstract
Alternative solutions need to be developed to overcome the growing problem of multi-drug resistant bacteria. This study explored the possibility of creating complexes of antibiotics with metal ions, thereby increasing their activity. Analytical techniques such as isothermal titration calorimetry and nuclear magnetic resonance were used to examine the structure and interactions between Cu(II), Ag(I) or Zn(II) and β-lactam antibiotics. The metal-β-lactam complexes were also tested for antimicrobial activity, by micro-broth dilution and disk diffusion methods, showing a synergistic increase in the activity of the drugs, and enzymatic inhibition assays confirming inhibition of β-lactamases responsible for resistance. The metal-antibiotic complex concept was proven to be successful with the activity of the drugs enhanced against β-lactamase-producing bacteria. The highest synergistic effects were observed for complexes formed with Ag(I).
Collapse
Affiliation(s)
- Jasper S Möhler
- The University of Queensland, School of Chemistry and Molecular Biosciences, St Lucia 4072, Australia
| | - Theresa Kolmar
- The University of Queensland, School of Chemistry and Molecular Biosciences, St Lucia 4072, Australia
| | - Kevin Synnatschke
- The University of Queensland, School of Chemistry and Molecular Biosciences, St Lucia 4072, Australia
| | - Marcel Hergert
- The University of Queensland, School of Chemistry and Molecular Biosciences, St Lucia 4072, Australia
| | - Liam A Wilson
- The University of Queensland, School of Chemistry and Molecular Biosciences, St Lucia 4072, Australia
| | - Soumya Ramu
- The University of Queensland, Institute for Molecular Bioscience, St Lucia 4072, Australia
| | - Alysha G Elliott
- The University of Queensland, Institute for Molecular Bioscience, St Lucia 4072, Australia
| | - Mark A T Blaskovich
- The University of Queensland, Institute for Molecular Bioscience, St Lucia 4072, Australia
| | - Hanna E Sidjabat
- The University of Queensland, UQ Centre for Clinical Research, Royal Brisbane and Women's Hospital, Brisbane, Queensland 4029, Australia
| | - David L Paterson
- The University of Queensland, UQ Centre for Clinical Research, Royal Brisbane and Women's Hospital, Brisbane, Queensland 4029, Australia
| | - Gerhard Schenk
- The University of Queensland, School of Chemistry and Molecular Biosciences, St Lucia 4072, Australia
| | - Matthew A Cooper
- The University of Queensland, Institute for Molecular Bioscience, St Lucia 4072, Australia
| | - Zyta M Ziora
- The University of Queensland, Institute for Molecular Bioscience, St Lucia 4072, Australia.
| |
Collapse
|
535
|
Cal PMSD, Matos MJ, Bernardes GJL. Trends in therapeutic drug conjugates for bacterial diseases: a patent review. Expert Opin Ther Pat 2016; 27:179-189. [PMID: 27828733 DOI: 10.1080/13543776.2017.1259411] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Drug conjugates are trend topics in Chemical Biology. These entities are an emerging class of highly potent biopharmaceutical drugs, best known in the field of oncology, that have been also designed as a targeted therapy/diagnosis for the treatment/prevention of several bacterial diseases. Antibiotic resistance is now a major threat to public health, and targeted strategies can reduce resistance. The following review aims at giving an overview of the patented therapeutic innovations covering these areas. Particular attention has been given to antibacterial drug conjugates in the last 30 years. Areas covered: The authors provide an overview of the scientific reports describing the research and development of new drug conjugates for bacterial diseases. The review emphasizes the rationale behind synthesis, biological activities and improvement of the new drug conjugates. New technologies applied for the research in this field have also been discussed. The article is based on the most relevant literature related to the development of new therapeutic solutions. The patents presented in this review have been collected from multiple electronic databases including SciFinder, Pubmed, Espacenet and Mendeley. Expert opinion: The new drug conjugates described in the current review proved to display improved delivery, efficacy, targeting abilities and fewer side effects. Versatile approaches were invented to achieve these goals.
Collapse
Affiliation(s)
- Pedro M S D Cal
- a Department of Chemistry , University of Cambridge , Cambridge , United Kingdom.,b Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa , Lisboa , Portugal
| | - Maria J Matos
- a Department of Chemistry , University of Cambridge , Cambridge , United Kingdom
| | - Gonçalo J L Bernardes
- a Department of Chemistry , University of Cambridge , Cambridge , United Kingdom.,b Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa , Lisboa , Portugal
| |
Collapse
|
536
|
Bodier-Montagutelli E, Morello E, L’Hostis G, Guillon A, Dalloneau E, Respaud R, Pallaoro N, Blois H, Vecellio L, Gabard J, Heuzé-Vourc’h N. Inhaled phage therapy: a promising and challenging approach to treat bacterial respiratory infections. Expert Opin Drug Deliv 2016; 14:959-972. [DOI: 10.1080/17425247.2017.1252329] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Elsa Bodier-Montagutelli
- Université François Rabelais, UMR 1100, Tours, France
- INSERM, Centre d’Etude des Pathologies Respiratoires, UMR 1100, Tours, France
- CHRU de Tours, Service de Pharmacie, Tours, France
| | - Eric Morello
- Université François Rabelais, UMR 1100, Tours, France
- INSERM, Centre d’Etude des Pathologies Respiratoires, UMR 1100, Tours, France
| | | | - Antoine Guillon
- Université François Rabelais, UMR 1100, Tours, France
- INSERM, Centre d’Etude des Pathologies Respiratoires, UMR 1100, Tours, France
- CHRU de Tours, Service de Réanimation Polyvalente, Tours, France
| | - Emilie Dalloneau
- Université François Rabelais, UMR 1100, Tours, France
- INSERM, Centre d’Etude des Pathologies Respiratoires, UMR 1100, Tours, France
| | - Renaud Respaud
- Université François Rabelais, UMR 1100, Tours, France
- INSERM, Centre d’Etude des Pathologies Respiratoires, UMR 1100, Tours, France
- CHRU de Tours, Service de Pharmacie, Tours, France
| | - Nikita Pallaoro
- Université François Rabelais, UMR 1100, Tours, France
- INSERM, Centre d’Etude des Pathologies Respiratoires, UMR 1100, Tours, France
| | - Hélène Blois
- CHRU de Tours, Service de Pharmacie, Tours, France
| | - Laurent Vecellio
- Université François Rabelais, UMR 1100, Tours, France
- INSERM, Centre d’Etude des Pathologies Respiratoires, UMR 1100, Tours, France
- DTF-Aerodrug, St Etienne, France
| | | | - Nathalie Heuzé-Vourc’h
- Université François Rabelais, UMR 1100, Tours, France
- INSERM, Centre d’Etude des Pathologies Respiratoires, UMR 1100, Tours, France
| |
Collapse
|
537
|
Shatzkes K, Singleton E, Tang C, Zuena M, Shukla S, Gupta S, Dharani S, Onyile O, Rinaggio J, Connell ND, Kadouri DE. Predatory Bacteria Attenuate Klebsiella pneumoniae Burden in Rat Lungs. mBio 2016; 7:e01847-16. [PMID: 27834203 PMCID: PMC5101354 DOI: 10.1128/mbio.01847-16] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 10/11/2016] [Indexed: 12/26/2022] Open
Abstract
Bdellovibrio bacteriovorus and Micavibrio aeruginosavorus are predatory bacteria that naturally-and obligately-prey on other Gram-negative bacteria, and their use has been proposed as a potential new approach to control microbial infection. The ability of predatory bacteria to prey on Gram-negative human pathogens in vitro is well documented; however, the in vivo safety and efficacy of predatory bacteria have yet to be fully assessed. In this study, we examined whether predatory bacteria can reduce bacterial burden in the lungs in an in vivo mammalian system. Initial safety studies were performed by intranasal inoculation of rats with predatory bacteria. No adverse effects or lung pathology were observed in rats exposed to high concentrations of predatory bacteria at up to 10 days postinoculation. Enzyme-linked immunosorbent assay (ELISA) of the immune response revealed a slight increase in inflammatory cytokine levels at 1 h postinoculation that was not sustained by 48 h. Additionally, dissemination experiments showed that predators were efficiently cleared from the host by 10 days postinoculation. To measure the ability of predatory bacteria to reduce microbial burden in vivo, we introduced sublethal concentrations of Klebsiella pneumoniae into the lungs of rats via intranasal inoculation and followed with multiple doses of predatory bacteria over 24 h. Predatory bacteria were able to reduce K. pneumoniae bacterial burden, on average, by more than 3.0 log10 in the lungs of most rats as measured by CFU plating. The work presented here provides further support for the idea of developing predatory bacteria as a novel biocontrol agent. IMPORTANCE A widely held notion is that antibiotics are the greatest medical advance of the last 50 years. However, the rise of multidrug-resistant (MDR) bacterial infections has become a global health crisis over the last decade. As we enter the postantibiotic era, it is crucial that we begin to develop new strategies to combat bacterial infection. Here, we report one such new approach: the use of predatory bacteria (Bdellovibrio bacteriovorus and Micavibrio aeruginosavorus) that naturally-and obligately-prey on other Gram-negative bacteria. To our knowledge, this is the first study that demonstrated the ability of predatory bacteria to attenuate the bacterial burden of a key human pathogen in an in vivo mammalian system. As the prevalence of MDR infections continues to rise each year, our results may represent a shift in how we approach treating microbial infections in the future.
Collapse
Affiliation(s)
- Kenneth Shatzkes
- Division of Infectious Disease, Department of Medicine, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Eric Singleton
- Division of Infectious Disease, Department of Medicine, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Chi Tang
- Division of Infectious Disease, Department of Medicine, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Michael Zuena
- Division of Infectious Disease, Department of Medicine, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Sean Shukla
- Division of Infectious Disease, Department of Medicine, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Shilpi Gupta
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, New Jersey, USA
| | - Sonal Dharani
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, New Jersey, USA
| | - Onoyom Onyile
- Division of Infectious Disease, Department of Medicine, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Joseph Rinaggio
- Department of Diagnostic Sciences, Rutgers School of Dental Medicine, Newark, New Jersey, USA
| | - Nancy D Connell
- Division of Infectious Disease, Department of Medicine, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Daniel E Kadouri
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, New Jersey, USA
| |
Collapse
|
538
|
Nwokoro E, Leach R, Årdal C, Baraldi E, Ryan K, Plahte J. An assessment of the future impact of alternative technologies on antibiotics markets. J Pharm Policy Pract 2016; 9:34. [PMID: 27800166 PMCID: PMC5080699 DOI: 10.1186/s40545-016-0085-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 10/11/2016] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The increasing threat of antimicrobial resistance combined with the paucity of new classes of antibiotics represents a serious public health challenge. New treatment technologies could, in theory, have a significant impact on the future use of traditional antibiotics, be it by facilitating rational and responsible use or by product substitution in the existing antibiotics markets, including by reducing the incidence of bacterial infections through preventative approaches. The aim of this paper is to assess the potential of alternative technologies in reducing clinical use of and demand for antibiotics, and to briefly indicate which segments of the antibiotics market that might be impacted by these technologies. METHODS An initial mapping exercise to identify the alternative technologies was followed by a review of relevant published and grey literature (n = 52). We also carried out stakeholder engagement activities by a round-table discussion with infectious disease specialists and a multi-criteria decision analysis exercise with pharmaceutical industry experts. RESULTS Ten alternative technologies were identified and analyzed for their potential impact on the antibiotics market. Of these, rapid point-of-care diagnostics, vaccines, fecal microbiota transplantation, and probiotics were considered to have a "high" or "medium" potential impact over a 10-20 year horizon. Therapeutic antibodies, antibiotic biomaterials, bacteriophages, antimicrobial nanoparticles, antimicrobial peptides, and anti-virulence materials were rated as having "low" potential impact. CONCLUSION Despite the apparent potential of the most promising alternative technologies to reduce demand, that reduction will likely only happen in limited segments of the antibiotics market or, in the case of preventing community acquired streptococcal infections by vaccination, in a low-price generics market segment. Thus, alternative technologies are not expected to represent any disincentive to antibiotics developers. Finally, it is unlikely that alternative technologies will displace the need for new classes, and sub-classes, of antibiotics in the short and medium terms.
Collapse
Affiliation(s)
| | - Ross Leach
- Infection Control Program and Division of Infectious Diseases, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland
| | | | | | | | - Jens Plahte
- Norwegian Institute of Public Health, Oslo, Norway
| |
Collapse
|
539
|
Rello J, Bunsow E, Perez A. What if there were no new antibiotics? A look at alternatives. Expert Rev Clin Pharmacol 2016; 9:1547-1555. [DOI: 10.1080/17512433.2016.1241141] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
540
|
Franklyne JS, Mukherjee A, Chandrasekaran N. Essential oil micro- and nanoemulsions: promising roles in antimicrobial therapy targeting human pathogens. Lett Appl Microbiol 2016; 63:322-334. [PMID: 27542872 DOI: 10.1111/lam.12631] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 07/12/2016] [Accepted: 08/01/2016] [Indexed: 01/20/2023]
Abstract
Antimicrobial resistance is a major health concern worldwide. A narrowing of the antibiotic development pipeline and a resurgence in public opinion towards 'natural' therapies have renewed the interest in using essential oils as antimicrobial agents. The drawbacks of bulk dosing of essential oils can be mitigated by formulating them as micro- and nanoemulsions. These emulsions have an added advantage as they are in the nanometre size range whose thermodynamic properties enable them to be used as an effective drug delivery system. This review describes the current work on the antimicrobial activities of essential oil micro- and nanoemulsions and their role as drug delivery vehicles.
Collapse
Affiliation(s)
- J S Franklyne
- Centre for Nanobiotechnology, VIT University, Vellore, Tamil Nadu, India
| | - A Mukherjee
- Centre for Nanobiotechnology, VIT University, Vellore, Tamil Nadu, India
| | - N Chandrasekaran
- Centre for Nanobiotechnology, VIT University, Vellore, Tamil Nadu, India.
| |
Collapse
|
541
|
Bjerklund Johansen TE, Bonkat G, Cai T, Tandogdu Z, Wagenlehner F, Grabe M. Grey Zones in the Field of Urinary Tract Infections. Eur Urol Focus 2016; 2:460-462. [PMID: 28723480 DOI: 10.1016/j.euf.2016.03.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 03/16/2016] [Accepted: 03/24/2016] [Indexed: 11/18/2022]
Affiliation(s)
- T E Bjerklund Johansen
- Department of Urology, Oslo University Hospital, Oslo, Norway; Institute of Clinical Medicine, University of Aarhus, Aarhus, Denmark.
| | - Gernot Bonkat
- Department of Urology, University Hospital Basel, Basel, Switzerland
| | - Tommaso Cai
- Department of Urology, Santa Chiara Regional Hospital, Trento, Italy
| | - Zafer Tandogdu
- Northern Institute for Cancer Research, Newcastle University, Newcastle Upon Tyne, UK
| | - Florian Wagenlehner
- Department of Urology, Paediatric Urology and Andrology, Justus-Liebig-University, Giessen, Germany
| | - Magnus Grabe
- Department of Translational Medicine, Division of Urological Cancer, University of Lund, Lund, Sweden
| |
Collapse
|
542
|
Górski A, Międzybrodzki R, Weber-Dąbrowska B, Fortuna W, Letkiewicz S, Rogóż P, Jończyk-Matysiak E, Dąbrowska K, Majewska J, Borysowski J. Phage Therapy: Combating Infections with Potential for Evolving from Merely a Treatment for Complications to Targeting Diseases. Front Microbiol 2016; 7:1515. [PMID: 27725811 PMCID: PMC5035766 DOI: 10.3389/fmicb.2016.01515] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 09/09/2016] [Indexed: 12/22/2022] Open
Abstract
Antimicrobial resistance is considered to be one of the greatest challenges of medicine and our civilization. Lack of progress in developing new anti-bacterial agents has greatly revived interest in using phage therapy to combat antibiotic-resistant infections. Although a number of clinical trials are underway and more are planned, the realistic perspective of registration of phage preparations and their entering the health market and significantly contributing to the current antimicrobial crisis is rather remote. Therefore, in addition to planning further clinical trials, our present approach of phage treatment carried out as experimental therapy (compassionate use) should be expanded to address the growing and urgent needs of increasing cohorts of patients for whom no alternative treatment is currently available. During the past 11 years of our phage therapy center’s operation, we have obtained relevant clinical and laboratory data which not only confirm the safety of the therapy but also provide important information shedding more light on many aspects of the therapy, contributing to its optimization and allowing for construction of the most appropriate clinical trials. New data on phage biology and interactions with the immune system suggest that in the future phage therapy may evolve from dealing with complications to targeting diseases. However, further studies are necessary to confirm this promising trend.
Collapse
Affiliation(s)
- Andrzej Górski
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, WroclawPoland; Phage Therapy Unit, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, WroclawPoland; Department of Clinical Immunology, Transplantation Institute, The Medical University of Warsaw, WarsawPoland
| | - Ryszard Międzybrodzki
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, WroclawPoland; Phage Therapy Unit, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, WroclawPoland; Department of Clinical Immunology, Transplantation Institute, The Medical University of Warsaw, WarsawPoland
| | - Beata Weber-Dąbrowska
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, WroclawPoland; Phage Therapy Unit, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, WroclawPoland
| | - Wojciech Fortuna
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, WroclawPoland; Phage Therapy Unit, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, WroclawPoland
| | - Sławomir Letkiewicz
- Phage Therapy Unit, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, WroclawPoland; Katowice School of Economics, KatowicePoland
| | - Paweł Rogóż
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, WroclawPoland; Phage Therapy Unit, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, WroclawPoland
| | - Ewa Jończyk-Matysiak
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw Poland
| | - Krystyna Dąbrowska
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw Poland
| | - Joanna Majewska
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw Poland
| | - Jan Borysowski
- Department of Clinical Immunology, Transplantation Institute, The Medical University of Warsaw, Warsaw Poland
| |
Collapse
|
543
|
Functional foldamers that target bacterial membranes: The effect of charge, amphiphilicity and conformation. Bioorg Med Chem 2016; 24:4241-4245. [DOI: 10.1016/j.bmc.2016.07.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 06/13/2016] [Accepted: 07/09/2016] [Indexed: 10/21/2022]
|
544
|
Ahmad T, Dansereau J, Hébert M, Grand-Maître C, Larivée A, Siddiqui A, Gagnon A. Preparation of 3-O-aryl chloramphenicol derivatives via chemoselective copper-catalyzed O-arylation of (1R,2R)-(−)-N-BOC-2-amino-1-(4-nitrophenyl)-1,3-propanediol using triarylbismuthines. Tetrahedron Lett 2016. [DOI: 10.1016/j.tetlet.2016.08.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
545
|
Laxminarayan R, Sridhar D, Blaser M, Wang M, Woolhouse M. Achieving global targets for antimicrobial resistance. Science 2016; 353:874-5. [PMID: 27540009 DOI: 10.1126/science.aaf9286] [Citation(s) in RCA: 181] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
| | | | - Martin Blaser
- New York University School of Medicine, New York, NY 10016, USA
| | | | | |
Collapse
|
546
|
Singh J, Joshi S, Mumtaz S, Maurya N, Ghosh I, Khanna S, Natarajan VT, Mukhopadhyay K. Enhanced Cationic Charge is a Key Factor in Promoting Staphylocidal Activity of α-Melanocyte Stimulating Hormone via Selective Lipid Affinity. Sci Rep 2016; 6:31492. [PMID: 27526963 PMCID: PMC4985751 DOI: 10.1038/srep31492] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 07/20/2016] [Indexed: 02/07/2023] Open
Abstract
The steady rise in antimicrobial resistance poses a severe threat to global public health by hindering treatment of an escalating spectrum of infections. We have previously established the potent activity of α-MSH, a 13 residue antimicrobial peptide, against the opportunistic pathogen Staphylococcus aureus. Here, we sought to determine whether an increase in cationic charge in α-MSH could contribute towards improving its staphylocidal potential by increasing its interaction with anionic bacterial membranes. For this we designed novel α-MSH analogues by replacing polar uncharged residues with lysine and alanine. Similar to α-MSH, the designed peptides preserved turn/random coil conformation in artificial bacterial mimic 1,2-dimyristoyl-sn-glycero-3-phosphocholine:1,2-dimyristoyl-sn-glycero-3-phospho-rac-(1-glycerol) (7:3, w/w) vesicles and showed preferential insertion in the hydrophobic core of anionic membranes. Increased cationic charge resulted in considerable augmentation of antibacterial potency against MSSA and MRSA. With ~18-fold better binding than α-MSH to bacterial mimic vesicles, the most charged peptide KKK-MSH showed enhanced membrane permeabilization and depolarization activity against intact S. aureus. Scanning electron microscopy confirmed a membrane disruptive mode of action for KKK-MSH. Overall, increasing the cationic charge improved the staphylocidal activity of α-MSH without compromising its cell selectivity. The present study would help in designing more effective α-MSH-based peptides to combat clinically relevant staphylococcal infections.
Collapse
Affiliation(s)
- Jyotsna Singh
- Antimicrobial Research Laboratory, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi-110067, India
| | - Seema Joshi
- Antimicrobial Research Laboratory, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi-110067, India
| | - Sana Mumtaz
- Antimicrobial Research Laboratory, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi-110067, India
| | - Nancy Maurya
- Biochemistry and Environmental Toxicology Laboratory, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi-110067, India
| | - Ilora Ghosh
- Biochemistry and Environmental Toxicology Laboratory, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi-110067, India
| | - Shivangi Khanna
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi-110020, India
| | - Vivek T Natarajan
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi-110020, India
| | - Kasturi Mukhopadhyay
- Antimicrobial Research Laboratory, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi-110067, India
| |
Collapse
|
547
|
Systematically Altering Bacterial SOS Activity under Stress Reveals Therapeutic Strategies for Potentiating Antibiotics. mSphere 2016; 1:mSphere00163-16. [PMID: 27536734 PMCID: PMC4980697 DOI: 10.1128/msphere.00163-16] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 07/19/2016] [Indexed: 11/20/2022] Open
Abstract
Our antibiotic arsenal is becoming depleted, in part, because bacteria have the ability to rapidly adapt and acquire resistance to our best agents. The SOS pathway, a widely conserved DNA damage stress response in bacteria, is activated by many antibiotics and has been shown to play central role in promoting survival and the evolution of resistance under antibiotic stress. As a result, targeting the SOS response has been proposed as an adjuvant strategy to revitalize our current antibiotic arsenal. However, the optimal molecular targets and partner antibiotics for such an approach remain unclear. In this study, focusing on the two key regulators of the SOS response, LexA and RecA, we provide the first comprehensive assessment of how to target the SOS response in order to increase bacterial susceptibility and reduce mutagenesis under antibiotic treatment. The bacterial SOS response is a DNA damage repair network that is strongly implicated in both survival and acquired drug resistance under antimicrobial stress. The two SOS regulators, LexA and RecA, have therefore emerged as potential targets for adjuvant therapies aimed at combating resistance, although many open questions remain. For example, it is not well understood whether SOS hyperactivation is a viable therapeutic approach or whether LexA or RecA is a better target. Furthermore, it is important to determine which antimicrobials could serve as the best treatment partners with SOS-targeting adjuvants. Here we derived Escherichia coli strains that have mutations in either lexA or recA genes in order to cover the full spectrum of possible SOS activity levels. We then systematically analyzed a wide range of antimicrobials by comparing the mean inhibitory concentrations (MICs) and induced mutation rates for each drug-strain combination. We first show that significant changes in MICs are largely confined to DNA-damaging antibiotics, with strains containing a constitutively repressed SOS response impacted to a greater extent than hyperactivated strains. Second, antibiotic-induced mutation rates were suppressed when SOS activity was reduced, and this trend was observed across a wider spectrum of antibiotics. Finally, perturbing either LexA or RecA proved to be equally viable strategies for targeting the SOS response. Our work provides support for multiple adjuvant strategies, while also suggesting that the combination of an SOS inhibitor with a DNA-damaging antibiotic could offer the best potential for lowering MICs and decreasing acquired drug resistance. IMPORTANCE Our antibiotic arsenal is becoming depleted, in part, because bacteria have the ability to rapidly adapt and acquire resistance to our best agents. The SOS pathway, a widely conserved DNA damage stress response in bacteria, is activated by many antibiotics and has been shown to play central role in promoting survival and the evolution of resistance under antibiotic stress. As a result, targeting the SOS response has been proposed as an adjuvant strategy to revitalize our current antibiotic arsenal. However, the optimal molecular targets and partner antibiotics for such an approach remain unclear. In this study, focusing on the two key regulators of the SOS response, LexA and RecA, we provide the first comprehensive assessment of how to target the SOS response in order to increase bacterial susceptibility and reduce mutagenesis under antibiotic treatment.
Collapse
|
548
|
Moloney MG. Natural Products as a Source for Novel Antibiotics. Trends Pharmacol Sci 2016; 37:689-701. [DOI: 10.1016/j.tips.2016.05.001] [Citation(s) in RCA: 161] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 05/02/2016] [Accepted: 05/02/2016] [Indexed: 01/04/2023]
|
549
|
Blázquez B, Fresco-Taboada A, Iglesias-Bexiga M, Menéndez M, García P. PL3 Amidase, a Tailor-made Lysin Constructed by Domain Shuffling with Potent Killing Activity against Pneumococci and Related Species. Front Microbiol 2016; 7:1156. [PMID: 27516758 PMCID: PMC4963390 DOI: 10.3389/fmicb.2016.01156] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 07/12/2016] [Indexed: 01/18/2023] Open
Abstract
The emergence and spread of antibiotic-resistant bacteria is pushing the need of alternative treatments. In this context, phage therapy is already a reality to successfully fight certain multiresistant bacteria. Among different phage gene products, murein hydrolases responsible of phage progeny liberation (also called lysins or endolysins) are weapons that target specific peptidoglycan bonds, leading to lysis and death of susceptible bacteria when added from the outside. In the pneumococcal system, all but one phage murein hydrolases reported to date share a choline-binding domain that recognizes cell walls containing choline residues in the (lipo)teichoic acids. Some purified pneumococcal or phage murein hydrolases, as well as several chimeric proteins combining natural catalytic and cell wall-binding domains (CBDs) have been used as effective antimicrobials. In this work we have constructed a novel chimeric N-acetylmuramoyl-L-alanine amidase (PL3) by fusing the catalytic domain of the Pal amidase (a phage-coded endolysin) to the CBD of the LytA amidase, the major pneumococcal autolysin. The physicochemical properties of PL3 and the bacteriolytic effect against several pneumococci (including 48 multiresistant representative strain) and related species, like Streptococcus pseudopneumoniae, Streptococcus mitis, and Streptococcus oralis, have been studied. Results have shown that low doses of PL3, in the range of 0.5–5 μg/ml, are enough to practically sterilize all choline-containing strains tested. Moreover, a single 20-μg dose of PL3 fully protected zebrafish embryos from infection by S. pneumoniae D39 strain. Importantly, PL3 keeps 95% enzymatic activity after 4 weeks at 37°C and can be lyophilized without losing activity, demonstrating a remarkable robustness. Such stability, together with a prominent efficacy against a narrow spectrum of human pathogens, confers to PL3 the characteristic to be an effective therapeutic. In addition, our results demonstrate that the structure/function-based domain shuffling approach is a successful method to construct tailor-made endolysins with higher bactericidal activities than their parental enzymes.
Collapse
Affiliation(s)
- Blas Blázquez
- Departamento de Microbiología Molecular y Biología de las Infecciones, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas Madrid, Spain
| | - Alba Fresco-Taboada
- Departamento de Microbiología Molecular y Biología de las Infecciones, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas Madrid, Spain
| | - Manuel Iglesias-Bexiga
- Departamento de Química-Física Biológica, Instituto Química-Física Rocasolano, Consejo Superior de Investigaciones CientíficasMadrid, Spain; CIBER de Enfermedades RespiratoriasMadrid, Spain
| | - Margarita Menéndez
- Departamento de Química-Física Biológica, Instituto Química-Física Rocasolano, Consejo Superior de Investigaciones CientíficasMadrid, Spain; CIBER de Enfermedades RespiratoriasMadrid, Spain
| | - Pedro García
- Departamento de Microbiología Molecular y Biología de las Infecciones, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones CientíficasMadrid, Spain; CIBER de Enfermedades RespiratoriasMadrid, Spain
| |
Collapse
|
550
|
Hamblin MR. Antimicrobial photodynamic inactivation: a bright new technique to kill resistant microbes. Curr Opin Microbiol 2016; 33:67-73. [PMID: 27421070 DOI: 10.1016/j.mib.2016.06.008] [Citation(s) in RCA: 467] [Impact Index Per Article: 51.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 06/10/2016] [Accepted: 06/27/2016] [Indexed: 01/13/2023]
Abstract
Photodynamic therapy (PDT) uses photosensitizers (non-toxic dyes) that are activated by absorption of visible light to form reactive oxygen species (including singlet oxygen) that can oxidize biomolecules and destroy cells. Antimicrobial photodynamic inactivation (aPDI) can treat localized infections. aPDI neither causes any resistance to develop in microbes, nor is affected by existing drug resistance status. We discuss some recent developments in aPDI. New photosensitizers including polycationic conjugates, stable synthetic bacteriochlorins and functionalized fullerenes are described. The microbial killing by aPDI can be synergistically potentiated (several logs) by harmless inorganic salts via photochemistry. Genetically engineered bioluminescent microbial cells allow PDT to treat infections in animal models. Photoantimicrobials have a promising future in the face of the unrelenting increase in antibiotic resistance.
Collapse
Affiliation(s)
- Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA; Department of Dermatology, Harvard Medical School, Boston, MA, USA; Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, USA.
| |
Collapse
|