501
|
Grundler R, Brault L, Gasser C, Bullock AN, Dechow T, Woetzel S, Pogacic V, Villa A, Ehret S, Berridge G, Spoo A, Dierks C, Biondi A, Knapp S, Duyster J, Schwaller J. Dissection of PIM serine/threonine kinases in FLT3-ITD-induced leukemogenesis reveals PIM1 as regulator of CXCL12-CXCR4-mediated homing and migration. ACTA ACUST UNITED AC 2009; 206:1957-70. [PMID: 19687226 PMCID: PMC2737164 DOI: 10.1084/jem.20082074] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
FLT3-ITD–mediated leukemogenesis is associated with increased expression of oncogenic PIM serine/threonine kinases. To dissect their role in FLT3-ITD–mediated transformation, we performed bone marrow reconstitution assays. Unexpectedly, FLT3-ITD cells deficient for PIM1 failed to reconstitute lethally irradiated recipients, whereas lack of PIM2 induction did not interfere with FLT3-ITD–induced disease. PIM1-deficient bone marrow showed defects in homing and migration and displayed decreased surface CXCR4 expression and impaired CXCL12–CXCR4 signaling. Through small interfering RNA–mediated knockdown, chemical inhibition, expression of a dominant-negative mutant, and/or reexpression in knockout cells, we found PIM1 activity to be essential for proper CXCR4 surface expression and migration of cells toward a CXCL12 gradient. Purified PIM1 led to the phosphorylation of serine 339 in the CXCR4 intracellular domain in vitro, a site known to be essential for normal receptor recycling. In primary leukemic blasts, high levels of surface CXCR4 were associated with increased PIM1 expression, and this could be significantly reduced by a small molecule PIM inhibitor in some patients. Our data suggest that PIM1 activity is important for homing and migration of hematopoietic cells through modification of CXCR4. Because CXCR4 also regulates homing and maintenance of cancer stem cells, PIM1 inhibitors may exert their antitumor effects in part by interfering with interactions with the microenvironment.
Collapse
Affiliation(s)
- Rebekka Grundler
- Department of Internal Medicine III, Technical University, Munich 81739, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
502
|
Abstract
A large number of clinical studies are being conducted to assess the effects of angiogenesis inhibitors in the treatment of patients who have metastatic melanoma. It has become increasingly clear that a therapeutic approach that combines angiogenesis inhibitors with cytotoxic agents or other treatment modalities is more likely to result in a clinical benefit for patients rather than antiangiogenesis treatments alone. However, a targeted treatment approach with antiangiogenic agents needs to be based on an in-depth understanding of the complex mechanisms involved in melanoma tumor angiogenesis.
Collapse
Affiliation(s)
- Alexander G Marneros
- Cutaneous Biology Research Center, Massachusetts General Hospital, Building 149, 13th Street, Charlestown, MA 02129, USA.
| |
Collapse
|
503
|
Rana K, Liesveld JL, King MR. Delivery of apoptotic signal to rolling cancer cells: a novel biomimetic technique using immobilized TRAIL and E-selectin. Biotechnol Bioeng 2009; 102:1692-702. [PMID: 19073014 DOI: 10.1002/bit.22204] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The survival rate for patients with metastases versus localized cancer is dramatically reduced, with most deaths being associated with the formation of secondary tumors. Circulating cancer cells interact with the endothelial lining of the vasculature via a series of adhesive interactions that facilitate tethering and firm adhesion of cancer cells in the initial steps of metastasis. TNF-related apoptosis-inducing ligand (TRAIL) holds promise as a tumor-specific cancer therapeutic, by inducing a death signal by apoptosis via the caspase pathway. In this study, we exploit this phenomenon to deliver a receptor-mediated apoptosis signal to leukemic cells adhesively rolling along a TRAIL and selectin-bearing surface. Results show that cancer cells exhibit selectin-mediated rolling in capillary flow chambers, and that the rolling velocities can be controlled by varying the selectin and selectin surface density and the applied shear stress. It was determined that a 1 h rolling exposure to a functionalized TRAIL and E-selectin surface was sufficient to kill 30% of captured cells compared to static conditions in which 4 h exposure was necessary to kill 30% of the cells. Thus, we conclude that rolling delivery is more effective than static exposure to a TRAIL immobilized surface. We have also verified that there is no significant effect of TRAIL on hematopoietic stem cells and other normal blood cells. This represents the first demonstration of a novel biomimetic method to capture metastatic cells from circulation and deliver an apoptotic signal.
Collapse
Affiliation(s)
- Kuldeepsinh Rana
- Department of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| | | | | |
Collapse
|
504
|
Askmyr M, Sims NA, Martin TJ, Purton LE. What is the true nature of the osteoblastic hematopoietic stem cell niche? Trends Endocrinol Metab 2009; 20:303-9. [PMID: 19595609 DOI: 10.1016/j.tem.2009.03.004] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2009] [Revised: 03/17/2009] [Accepted: 03/23/2009] [Indexed: 01/13/2023]
Abstract
The recently revitalized interest in the regulation of hematopoietic stem cells (HSCs) by the bone marrow microenvironment has resulted in the identification of some important cell types that potentially form the HSC niche. The term 'osteoblast' has commonly been used to describe the endosteal elements of the HSC niche, but these cells are part of a larger family that functions in bone at different stages of differentiation. Given that there is much controversy as to what cell types have important roles in the HSC niche, this review offers an overview of the diverse osteoblastic cell types and discusses the current evidence regarding what roles they have in the HSC niche.
Collapse
Affiliation(s)
- Maria Askmyr
- St Vincent's Institute, Fitzroy, Victoria, 3065, Australia
| | | | | | | |
Collapse
|
505
|
Quiroga MP, Balakrishnan K, Kurtova AV, Sivina M, Keating MJ, Wierda WG, Gandhi V, Burger JA. B-cell antigen receptor signaling enhances chronic lymphocytic leukemia cell migration and survival: specific targeting with a novel spleen tyrosine kinase inhibitor, R406. Blood 2009; 114:1029-37. [PMID: 19491390 PMCID: PMC4916941 DOI: 10.1182/blood-2009-03-212837] [Citation(s) in RCA: 188] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Accepted: 05/27/2009] [Indexed: 12/18/2022] Open
Abstract
Antigenic stimulation through the B-cell antigen receptor (BCR) is considered to promote the expansion of chronic lymphocytic leukemia (CLL) B cells. The spleen tyrosine kinase (Syk), a key component of BCR signaling, can be blocked by R406, a small-molecule Syk inhibitor, that displayed activity in CLL patients in a first clinical trial. In this study, we investigated the effects of BCR stimulation and R406 on CLL cell survival and migration. The prosurvival effects promoted by anti-IgM stimulation and nurselike cells were abrogated by R406. BCR triggering up-regulated adhesion molecules, and increased CLL cell migration toward the chemokines CXCL12 and CXCL13. BCR activation also enhanced CLL cell migration beneath marrow stromal cells. These responses were blocked by R406, which furthermore abrogated BCR-dependent secretion of T-cell chemokines (CCL3 and CCL4) by CLL cells. Finally, R406 inhibited constitutive and BCR-induced activation of Syk, extracellular signal-regulated kinases, and AKT, and blocked BCR-induced calcium mobilization. These findings suggest that BCR activation favors CLL cell homing, retention, and survival in tissue microenvironments. R406 effectively blocks these BCR-dependent responses in CLL cells, providing an explanation for the activity of R406 in patients with CLL.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Animals
- Antineoplastic Agents/pharmacology
- Cell Adhesion Molecules/biosynthesis
- Cell Adhesion Molecules/genetics
- Cell Survival/drug effects
- Cell Survival/physiology
- Chemokine CCL3/metabolism
- Chemokine CCL4/metabolism
- Chemotaxis/drug effects
- Chemotaxis/physiology
- Coculture Techniques
- Drug Screening Assays, Antitumor
- Female
- Humans
- Intracellular Signaling Peptides and Proteins/antagonists & inhibitors
- Intracellular Signaling Peptides and Proteins/physiology
- Leukemia, Lymphocytic, Chronic, B-Cell/enzymology
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Lymphocyte Activation/drug effects
- Male
- Mice
- Middle Aged
- Neoplasm Proteins/antagonists & inhibitors
- Neoplasm Proteins/metabolism
- Neoplasm Proteins/physiology
- Oxazines/pharmacology
- Protein Kinase Inhibitors/pharmacology
- Protein Processing, Post-Translational/drug effects
- Protein-Tyrosine Kinases/antagonists & inhibitors
- Protein-Tyrosine Kinases/physiology
- Pyridines/pharmacology
- Receptors, Antigen, B-Cell/physiology
- Receptors, Chemokine/biosynthesis
- Receptors, Chemokine/genetics
- Signal Transduction/drug effects
- Stromal Cells/physiology
- Syk Kinase
Collapse
Affiliation(s)
- Maite P Quiroga
- Department of Leukemia, University of Texas M. D. Anderson Cancer Center, Houston, TX 77230-1402, USA
| | | | | | | | | | | | | | | |
Collapse
|
506
|
Abstract
Despite major therapeutic advances, most mature B-cell malignancies remain incurable. Compelling evidence suggests that crosstalk with accessory stromal cells in specialized tissue microenvironments, such as the bone marrow and secondary lymphoid organs, favors disease progression by promoting malignant B-cell growth and drug resistance. Therefore, disrupting the crosstalk between malignant B cells and their milieu is an attractive novel strategy for treating selected mature B-cell malignancies. Here we summarize the current knowledge about the cellular and molecular interactions between neoplastic B lymphocytes and accessory cells that shape a supportive microenvironment, and the potential therapeutic targets that are emerging, together with the new problems they raise. We discuss clinically relevant aspects and provide an outlook into future biologically oriented therapeutic strategies. We anticipate a paradigm shift in the treatment of selected B-cell malignancies, moving from targeting primarily the malignant cells toward combining cytotoxic drugs with agents that interfere with the microenvironment's proactive role. Such approaches hopefully will help eliminating residual disease, thereby improving our current therapeutic efforts.
Collapse
|
507
|
Azab AK, Azab F, Blotta S, Pitsillides CM, Thompson B, Runnels JM, Roccaro AM, Ngo HT, Melhem MR, Sacco A, Jia X, Anderson KC, Lin CP, Rollins BJ, Ghobrial IM. RhoA and Rac1 GTPases play major and differential roles in stromal cell-derived factor-1-induced cell adhesion and chemotaxis in multiple myeloma. Blood 2009; 114:619-29. [PMID: 19443661 PMCID: PMC2713475 DOI: 10.1182/blood-2009-01-199281] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Accepted: 05/05/2009] [Indexed: 12/14/2022] Open
Abstract
The interaction of multiple myeloma (MM) cells with the bone marrow (BM) milieu plays a crucial role in MM pathogenesis. Stromal cell-derived factor-1 (SDF1) regulates homing of MM cells to the BM. In this study, we examined the role of RhoA and Rac1 GTPases in SDF1-induced adhesion and chemotaxis of MM. We found that both RhoA and Rac1 play key roles in SDF1-induced adhesion of MM cells to BM stromal cells, whereas RhoA was involved in chemotaxis and motility. Furthermore, both ROCK and Rac1 inhibitors reduced SDF1-induced polymerization of actin and activation of LIMK, SRC, FAK, and cofilin. Moreover, RhoA and Rac1 reduced homing of MM cells to BM niches. In conclusion, we characterized the role of RhoA and Rac1 GTPases in SDF1-induced adhesion, chemotaxis, and homing of MM cells to the BM, providing the framework for targeting RhoA and Rac1 GTPases as novel MM therapy.
Collapse
Affiliation(s)
- Abdel Kareem Azab
- Medical Oncology, Dana-Farber Cancer Institute, Massachusetts General Hospital, Harvard Medical School, 44 Binney Street, Boston, MA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
508
|
Xie Z, Jiao S, Zhang HF, Puliafito CA. Laser-scanning optical-resolution photoacoustic microscopy. OPTICS LETTERS 2009; 34:1771-3. [PMID: 19529698 DOI: 10.1364/ol.34.001771] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
We have developed a laser-scanning optical-resolution photoacoustic microscopy method that can potentially fuse with existing optical microscopic imaging modalities. To acquire an image, the ultrasonic transducer is kept stationary during data acquisition, and only the laser light is raster scanned by an x-y galvanometer scanner. A lateral resolution of 7.8 microm and a circular field of view with a diameter of 6 mm were achieved in an optically clear medium. Using a laser system working at a pulse repetition rate of 1,024 Hz, the data acquisition time for an image consisting of 256 x 256 pixels was less than 2 min.
Collapse
Affiliation(s)
- Zhixing Xie
- Department of Electrical Engineering and Computer Science, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, USA
| | | | | | | |
Collapse
|
509
|
Targeting the leukemia microenvironment by CXCR4 inhibition overcomes resistance to kinase inhibitors and chemotherapy in AML. Blood 2009; 113:6215-24. [PMID: 18955566 PMCID: PMC2699240 DOI: 10.1182/blood-2008-05-158311] [Citation(s) in RCA: 389] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
SDF-1alpha/CXCR4 signaling plays a key role in leukemia/bone marrow microenvironment interactions. We previously reported that bone marrow-derived stromal cells inhibit chemotherapy-induced apoptosis in acute myeloid leukemia (AML). Here we demonstrate that the CXCR4 inhibitor AMD3465 antagonized stromal-derived factor 1alpha (SDF-1alpha)-induced and stroma-induced chemotaxis and inhibited SDF-1alpha-induced activation of prosurvival signaling pathways in leukemic cells. Further, CXCR4 inhibition partially abrogated the protective effects of stromal cells on chemotherapy-induced apoptosis in AML cells. Fetal liver tyrosine kinase-3 (FLT3) gene mutations activate CXCR4 signaling, and coculture with stromal cells significantly diminished antileukemia effects of FLT3 inhibitors in cells with mutated FLT3. Notably, CXCR4 inhibition increased the sensitivity of FLT3-mutated leukemic cells to the apoptogenic effects of the FLT3 inhibitor sorafenib. In vivo studies demonstrated that AMD3465, alone or in combination with granulocyte colony-stimulating factor, induced mobilization of AML cells and progenitor cells into circulation and enhanced antileukemic effects of chemotherapy and sorafenib, resulting in markedly reduced leukemia burden and prolonged survival of the animals. These findings indicate that SDF-1alpha/CXCR4 interactions contribute to the resistance of leukemic cells to signal transduction inhibitor- and chemotherapy-induced apoptosis in systems mimicking the physiologic microenvironment. Disruption of these interactions with CXCR4 inhibitors represents a novel strategy of sensitizing leukemic cells by targeting their protective bone marrow microenvironment.
Collapse
|
510
|
Burger JA. CXCR4 in acute myelogenous leukemia (AML): when too much attraction is bad for you. Leuk Res 2009; 33:747-8. [PMID: 19091405 DOI: 10.1016/j.leukres.2008.11.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Revised: 11/06/2008] [Accepted: 11/08/2008] [Indexed: 02/03/2023]
|
511
|
Schuetz F, Ehlert K, Ge Y, Schneeweiss A, Rom J, Inzkirweli N, Sohn C, Schirrmacher V, Beckhove P. Treatment of advanced metastasized breast cancer with bone marrow-derived tumour-reactive memory T cells: a pilot clinical study. Cancer Immunol Immunother 2009; 58:887-900. [PMID: 18998129 PMCID: PMC11030204 DOI: 10.1007/s00262-008-0605-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Accepted: 09/26/2008] [Indexed: 11/30/2022]
Abstract
BACKGROUND Breast cancer patients frequently harbour tumour-reactive memory T cells in their bone marrow (BM) but not in the blood. After reactivation ex-vivo these cells rejected autologous breast tumours in xenotransplanted mice demonstrating therapeutic potential upon reactivation and mobilization into the blood. We conducted a clinical pilot study on metastasized breast cancer patients to investigate if ex-vivo reactivation of tumour-reactive BM memory T cells and their adoptive transfer is feasible and increases the frequencies of tumour-reactive T cells in the blood. METHODS The study protocol involved one transfusion of T cells which were reactivated in vitro with autologous dendritic cells pulsed with lysate of MCF7 breast cancer cells as source of tumour antigens. Immunomonitoring included characterization of T cell activation in vitro and of tumour-specific T cells in the blood by interferon (IFN)-gamma ELISPOT assay, HLA-tetramers and antigen-induced interleukin (IL)-4 secretion. RESULTS Twelve patients with pre-existing tumour-reactive BM memory T cells were included into the study. In all cases, the treatment was feasible and well tolerated. Six patients (responders) showed by ELISPOT assay de-novo tumour antigen-specific, IFN-gamma-secreting T cells in the blood after 7 days. In contrast, non responders showed in the blood tumour antigen-induced IL-4 responses. All responders received more than 6.5 x 10(3) tumour-reactive T cells. In contrast, all non responders received lower numbers of tumour antigen-reactive T cells. This was associated with reduced activation of memory T cells in activation cultures, increased amounts of CD4(+) CD25(high) regulatory T cells in the BM and increased tumour antigen-dependent IL-10 secretion. The latter was prevented by preceding depletion of regulatory T cells suggesting that regulatory T cells in the BM can inhibit reactivation of tumour-specific T cells. CONCLUSION Taken together, adoptive transfer of ex-vivo re-stimulated tumour-reactive memory T cells from BM of metastasized breast cancer patients can induce the presence of tumour antigen-reactive type-1 T cells in the peripheral blood.
Collapse
Affiliation(s)
- Florian Schuetz
- Department of Gynecology and Obstetrics, The University Hospital of Heidelberg, Heidelberg, Germany
| | - Katrin Ehlert
- Department of Cellular Immunology, The German Cancer Research Center, INF 280, 69120 Heidelberg, Germany
| | - Yingzi Ge
- Department of Cellular Immunology, The German Cancer Research Center, INF 280, 69120 Heidelberg, Germany
| | - Andreas Schneeweiss
- Department of Gynecology and Obstetrics, The University Hospital of Heidelberg, Heidelberg, Germany
| | - Joachim Rom
- Department of Gynecology and Obstetrics, The University Hospital of Heidelberg, Heidelberg, Germany
| | - Natalija Inzkirweli
- Department of Gynecology and Obstetrics, The University Hospital of Heidelberg, Heidelberg, Germany
| | - Christoph Sohn
- Department of Gynecology and Obstetrics, The University Hospital of Heidelberg, Heidelberg, Germany
| | - Volker Schirrmacher
- Department of Cellular Immunology, The German Cancer Research Center, INF 280, 69120 Heidelberg, Germany
| | - Philipp Beckhove
- Department of Cellular Immunology, The German Cancer Research Center, INF 280, 69120 Heidelberg, Germany
| |
Collapse
|
512
|
Song JW, Cavnar SP, Walker AC, Luker KE, Gupta M, Tung YC, Luker GD, Takayama S. Microfluidic endothelium for studying the intravascular adhesion of metastatic breast cancer cells. PLoS One 2009; 4:e5756. [PMID: 19484126 DOI: 10.1371/journal.pone.0005756.g001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2009] [Accepted: 05/05/2009] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND The ability to properly model intravascular steps in metastasis is essential in identifying key physical, cellular, and molecular determinants that can be targeted therapeutically to prevent metastatic disease. Research on the vascular microenvironment has been hindered by challenges in studying this compartment in metastasis under conditions that reproduce in vivo physiology while allowing facile experimental manipulation. METHODOLOGY/PRINCIPAL FINDINGS We present a microfluidic vasculature system to model interactions between circulating breast cancer cells with microvascular endothelium at potential sites of metastasis. The microfluidic vasculature produces spatially-restricted stimulation from the basal side of the endothelium that models both organ-specific localization and polarization of chemokines and many other signaling molecules under variable flow conditions. We used this microfluidic system to produce site-specific stimulation of microvascular endothelium with CXCL12, a chemokine strongly implicated in metastasis. CONCLUSIONS/SIGNIFICANCE When added from the basal side, CXCL12 acts through receptor CXCR4 on endothelium to promote adhesion of circulating breast cancer cells, independent of CXCL12 receptors CXCR4 or CXCR7 on tumor cells. These studies suggest that targeting CXCL12-CXCR4 signaling in endothelium may limit metastases in breast and other cancers and highlight the unique capabilities of our microfluidic device to advance studies of the intravascular microenvironment in metastasis.
Collapse
Affiliation(s)
- Jonathan W Song
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | | | | | | | | | | | | | | |
Collapse
|
513
|
Song JW, Cavnar SP, Walker AC, Luker KE, Gupta M, Tung YC, Luker GD, Takayama S. Microfluidic endothelium for studying the intravascular adhesion of metastatic breast cancer cells. PLoS One 2009; 4:e5756. [PMID: 19484126 PMCID: PMC2684591 DOI: 10.1371/journal.pone.0005756] [Citation(s) in RCA: 238] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2009] [Accepted: 05/05/2009] [Indexed: 11/25/2022] Open
Abstract
Background The ability to properly model intravascular steps in metastasis is essential in identifying key physical, cellular, and molecular determinants that can be targeted therapeutically to prevent metastatic disease. Research on the vascular microenvironment has been hindered by challenges in studying this compartment in metastasis under conditions that reproduce in vivo physiology while allowing facile experimental manipulation. Methodology/Principal Findings We present a microfluidic vasculature system to model interactions between circulating breast cancer cells with microvascular endothelium at potential sites of metastasis. The microfluidic vasculature produces spatially-restricted stimulation from the basal side of the endothelium that models both organ-specific localization and polarization of chemokines and many other signaling molecules under variable flow conditions. We used this microfluidic system to produce site-specific stimulation of microvascular endothelium with CXCL12, a chemokine strongly implicated in metastasis. Conclusions/Significance When added from the basal side, CXCL12 acts through receptor CXCR4 on endothelium to promote adhesion of circulating breast cancer cells, independent of CXCL12 receptors CXCR4 or CXCR7 on tumor cells. These studies suggest that targeting CXCL12-CXCR4 signaling in endothelium may limit metastases in breast and other cancers and highlight the unique capabilities of our microfluidic device to advance studies of the intravascular microenvironment in metastasis.
Collapse
Affiliation(s)
- Jonathan W. Song
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Stephen P. Cavnar
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Ann C. Walker
- Department of Radiology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Kathryn E. Luker
- Department of Radiology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Mudit Gupta
- Department of Radiology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Yi-Chung Tung
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Gary D. Luker
- Department of Radiology, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail: (GDL); (ST)
| | - Shuichi Takayama
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
- Macromolecular Science and Engineering Center, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail: (GDL); (ST)
| |
Collapse
|
514
|
Abstract
In this issue of Cell Stem Cell, Hooper et al. (2009) use a combination of immunohistochemistry and flow cytometry to characterize the bone marrow vasculature both before and after injury. The authors demonstrate that recovery of normal hematopoiesis after myelosuppressive insult is dependent upon endothelial VEGFR2.
Collapse
Affiliation(s)
- Rebecca L Porter
- Wilmot Cancer Center and Endocrine Division, University of Rochester School of Medicine, 601 Elmwood Avenue, Box 693, Rochester, NY 14642, USA
| | | |
Collapse
|
515
|
Hooper AT, Butler JM, Nolan DJ, Kranz A, Iida K, Kobayashi M, Kopp HG, Shido K, Petit I, Yanger K, James D, Witte L, Zhu Z, Wu Y, Pytowski B, Rosenwaks Z, Mittal V, Sato TN, Rafii S. Engraftment and reconstitution of hematopoiesis is dependent on VEGFR2-mediated regeneration of sinusoidal endothelial cells. Cell Stem Cell 2009; 4:263-74. [PMID: 19265665 DOI: 10.1016/j.stem.2009.01.006] [Citation(s) in RCA: 491] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2007] [Revised: 05/06/2008] [Accepted: 01/09/2009] [Indexed: 01/12/2023]
Abstract
Myelosuppression damages the bone marrow (BM) vascular niche, but it is unclear how regeneration of bone marrow vessels contributes to engraftment of transplanted hematopoietic stem and progenitor cells (HSPCs) and restoration of hematopoiesis. We found that chemotherapy and sublethal irradiation induced minor regression of BM sinusoidal endothelial cells (SECs), while lethal irradiation induced severe regression of SECs and required BM transplantation (BMT) for regeneration. Within the BM, VEGFR2 expression specifically demarcated a continuous network of arterioles and SECs, with arterioles uniquely expressing Sca1 and SECs uniquely expressing VEGFR3. Conditional deletion of VEGFR2 in adult mice blocked regeneration of SECs in sublethally irradiated animals and prevented hematopoietic reconstitution. Similarly, inhibition of VEGFR2 signaling in lethally irradiated wild-type mice rescued with BMT severely impaired SEC reconstruction and prevented engraftment and reconstitution of HSPCs. Therefore, regeneration of SECs via VEGFR2 signaling is essential for engraftment of HSPCs and restoration of hematopoiesis.
Collapse
Affiliation(s)
- Andrea T Hooper
- Howard Hughes Medical Institute, Weill Cornell Medical College, New York, NY 10065, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
516
|
Juarez JG, Thien M, Dela Pena A, Baraz R, Bradstock KF, Bendall LJ. CXCR4 mediates the homing of B cell progenitor acute lymphoblastic leukaemia cells to the bone marrow via activation of p38MAPK. Br J Haematol 2009; 145:491-9. [DOI: 10.1111/j.1365-2141.2009.07648.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
517
|
Azab AK, Runnels JM, Pitsillides C, Moreau AS, Azab F, Leleu X, Jia X, Wright R, Ospina B, Carlson AL, Alt C, Burwick N, Roccaro AM, Ngo HT, Farag M, Melhem MR, Sacco A, Munshi NC, Hideshima T, Rollins BJ, Anderson KC, Kung AL, Lin CP, Ghobrial IM. CXCR4 inhibitor AMD3100 disrupts the interaction of multiple myeloma cells with the bone marrow microenvironment and enhances their sensitivity to therapy. Blood 2009; 113:4341-51. [PMID: 19139079 PMCID: PMC2676090 DOI: 10.1182/blood-2008-10-186668] [Citation(s) in RCA: 335] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2008] [Accepted: 12/31/2008] [Indexed: 12/11/2022] Open
Abstract
The interaction of multiple myeloma (MM) cells with their microenvironment in the bone marrow (BM) provides a protective environment and resistance to therapeutic agents. We hypothesized that disruption of the interaction of MM cells with their BM milieu would lead to their sensitization to therapeutic agents such as bortezomib, melphalan, doxorubicin, and dexamethasone. We report that the CXCR4 inhibitor AMD3100 induces disruption of the interaction of MM cells with the BM reflected by mobilization of MM cells into the circulation in vivo, with kinetics that differed from that of hematopoietic stem cells. AMD3100 enhanced sensitivity of MM cell to multiple therapeutic agents in vitro by disrupting adhesion of MM cells to bone marrow stromal cells (BMSCs). Moreover, AMD3100 increased mobilization of MM cells to the circulation in vivo, increased the ratio of apoptotic circulating MM cells, and enhanced the tumor reduction induced by bortezomib. Mechanistically, AMD3100 significantly inhibited Akt phosphorylation and enhanced poly(ADP-ribose) polymerase (PARP) cleavage as a result of bortezomib, in the presence of BMSCs in coculture. These experiments provide a proof of concept for the use of agents that disrupt interaction with the microenvironment for enhancement of efficacy of cytotoxic agents in cancer therapy.
Collapse
Affiliation(s)
- Abdel Kareem Azab
- Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
518
|
Roccaro AM, Sacco A, Chen C, Runnels J, Leleu X, Azab F, Azab AK, Jia X, Ngo HT, Melhem MR, Burwick N, Varticovski L, Novina CD, Rollins BJ, Anderson KC, Ghobrial IM. microRNA expression in the biology, prognosis, and therapy of Waldenström macroglobulinemia. Blood 2009; 113:4391-402. [PMID: 19074725 PMCID: PMC2943754 DOI: 10.1182/blood-2008-09-178228] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2008] [Accepted: 11/15/2008] [Indexed: 02/07/2023] Open
Abstract
Multilevel genetic characterization of Waldenström macroglobulinemia (WM) is required to improve our understanding of the underlying molecular changes that lead to the initiation and progression of this disease. We performed microRNA-expression profiling of bone marrow-derived CD19(+) WM cells, compared with their normal cellular counterparts and validated data by quantitative reverse-transcription-polymerase chain reaction (qRT-PCR). We identified a WM-specific microRNA signature characterized by increased expression of microRNA-363*/-206/-494/-155/-184/-542-3p, and decreased expression of microRNA-9* (ANOVA; P < .01). We found that microRNA-155 regulates proliferation and growth of WM cells in vitro and in vivo, by inhibiting MAPK/ERK, PI3/AKT, and NF-kappaB pathways. Potential microRNA-155 target genes were identified using gene-expression profiling and included genes involved in cell-cycle progression, adhesion, and migration. Importantly, increased expression of the 6 miRNAs significantly correlated with a poorer outcome predicted by the International Prognostic Staging System for WM. We further demonstrated that therapeutic agents commonly used in WM alter the levels of the major miRNAs identified, by inducing downmodulation of 5 increased miRNAs and up-modulation of patient-downexpressed miRNA-9*. These data indicate that microRNAs play a pivotal role in the biology of WM; represent important prognostic marker; and provide the basis for the development of new microRNA-based targeted therapies in WM.
Collapse
Affiliation(s)
- Aldo M Roccaro
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
519
|
Abstract
The genetic events that contribute to the pathogenesis of acute myeloid leukemia are among the best characterized of all human malignancies. However, with notable exceptions such as acute promyelocytic leukemia, significant improvements in outcome based on these insights have not been forthcoming. Acute myeloid leukemia is a paradigm of cancer stem (or leukemia initiating) cells with hierarchy analogous to that seen in hematopoiesis. Normal hematopoiesis requires complex bidirectional interactions between the bone marrow microenvironment (or niche) and hematopoietic stem cells (HSCs). These interactions are critical for the maintenance of normal HSC quiescence and perturbations can influence HSC self-renewal. Leukemia stem cells (LSCs), which also possess limitless self-renewal, may hijack these homeostatic mechanisms, take refuge within the sanctuary of the niche during chemotherapy, and consequently contribute to eventual disease relapse. We will discuss the emerging evidence supporting the importance of the bone marrow microenvironment in LSC survival and consider the physiologic interactions of HSCs and the niche that inform our understanding of microenvironment support of LSCs. Finally, we will discuss approaches for the rational development of therapies that target the microenvironment.
Collapse
|
520
|
Abstract
Detailed genomic studies have shown that cytogenetic abnormalities contribute to multiple myeloma (MM) pathogenesis and disease progression. Nevertheless, little is known about the characteristics of MM at the epigenetic level and specifically how microRNAs regulate MM progression in the context of the bone marrow milieu. Therefore, we performed microRNA expression profiling of bone marrow derived CD138(+) MM cells versus their normal cellular counterparts and validated data by qRT-PCR. We identified a MM-specific microRNA signature characterized by down-expression of microRNA-15a/-16 and overexpression of microRNA-222/-221/-382/-181a/-181b (P < .01). We investigated the functional role of microRNA-15a and -16 and showed that they regulate proliferation and growth of MM cells in vitro and in vivo by inhibiting AKT serine/threonine-protein-kinase (AKT3), ribosomal-protein-S6, MAP-kinases, and NF-kappaB-activator MAP3KIP3. Moreover, miRNA-15a and -16 exerted their anti-MM activity even in the context of the bone marrow milieu in vitro and in vivo. These data indicate that microRNAs play a pivotal role in the biology of MM and represent important targets for novel therapies in MM.
Collapse
|
521
|
Altered cellular dynamics and endosteal location of aged early hematopoietic progenitor cells revealed by time-lapse intravital imaging in long bones. Blood 2009; 114:290-8. [PMID: 19357397 DOI: 10.1182/blood-2008-12-195644] [Citation(s) in RCA: 166] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Aged hematopoietic stem cells (HSCs) are impaired in supporting hematopoiesis. The molecular and cellular mechanisms of stem cell aging are not well defined. HSCs interact with nonhematopoietic stroma cells in the bone marrow forming the niche. Interactions of hematopoietic cells with the stroma/microenvironment inside bone cavities are central to hematopoiesis as they regulate cell proliferation, self-renewal, and differentiation. We recently hypothesized that one underlying cause of altered hematopoiesis in aging might be due to altered interactions of aged stem cells with the microenvironment/niche. We developed time-lapse 2-photon microscopy and novel image analysis algorithms to quantify the dynamics of young and aged hematopoietic cells inside the marrow of long bones of mice in vivo. We report in this study that aged early hematopoietic progenitor cells (eHPCs) present with increased cell protrusion movement in vivo and localize more distantly to the endosteum compared with young eHPCs. This correlated with reduced adhesion to stroma cells as well as reduced cell polarity upon adhesion of aged eHPCs. These data support a role of altered eHPC dynamics and altered cell polarity, and thus altered niche biology in mechanisms of mammalian aging.
Collapse
|
522
|
Burger JA, Stewart DJ. CXCR4 chemokine receptor antagonists: perspectives in SCLC. Expert Opin Investig Drugs 2009; 18:481-90. [PMID: 19335276 DOI: 10.1517/13543780902804249] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Small-cell lung cancer (SCLC) is a particularly aggressive form of lung cancer characterized by early and widespread metastases and the ability to rapidly develop resistance against chemotherapeutic agents. Tumor cell migration and metastasis share many similarities with leukocyte trafficking, which is critically regulated by chemokine receptors and adhesion molecules. SCLC cells express high levels of CXCR4 (CD184), a seven-transmembrane G-protein-coupled chemokine receptor. Stromal cells within the bone marrow microenvironment and at extramedullary sites constitutively secrete stromal cell-derived factor-1 (CXCL12), the ligand for CXCR4. Activation of CXCR4 induces SCLC cell migration and adhesion to stromal cells that secrete CXCL12, which in turn provides growth- and drug resistance-signals to the tumor cells. CXCR4 antagonists, such as Plerixafor (AMD3100) and T140 analogues (TN14003/ BKT140), disrupt CXCR4-mediated SCLC cell-adhesion to stromal cells. In stromal cell co-cultures, CXCR4 antagonists also sensitize SCLC cells to cytotoxic drugs, such as etoposide, and thereby antagonize cell adhesion-mediated drug resistance. Therefore, targeting the CXCR4-CXCL12 axis is a novel, attractive therapeutic approach in SCLC. Here, we summarize preclinical data about CXCR4 in SCLC, and the current status of the preclinical and clinical development of CXCR4 antagonists.
Collapse
Affiliation(s)
- Jan A Burger
- University of Texas MD Anderson Cancer Center, Department of Leukemia, Houston, TX 77230-1402, USA.
| | | |
Collapse
|
523
|
Horner BM, Ferguson KK, Randolph MA, Spencer JA, Carlson AL, Hirsh EL, Lin CP, Butler PEM. In vivo observations of cell trafficking in allotransplanted vascularized skin flaps and conventional skin grafts. J Plast Reconstr Aesthet Surg 2009; 63:711-9. [PMID: 19324598 DOI: 10.1016/j.bjps.2009.01.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2008] [Revised: 01/08/2009] [Accepted: 01/12/2009] [Indexed: 11/28/2022]
Abstract
The problem of allogeneic skin rejection is a major limitation to more widespread application of clinical composite tissue allotransplantation (CTA). Previous research examining skin rejection has mainly studied rejection of conventional skin grafts (CSG) using standard histological techniques. The aim of this study was to objectively assess if there were differences in the immune response to CSG and primarily vascularized skin in composite tissue allotransplants (SCTT) using in vivo techniques in order to gain new insights in to the immune response to skin allotransplants. CSG and SCTT were transplanted from standard Lewis (LEW) ad Wistar Furth (WF) to recipient transgenic green fluorescent Lewis rats (LEW-GFP). In vivo confocal microscopy was used to observe cell trafficking within skin of the transplants. In addition, immunohistochemical staining was performed on skin biopsies to reveal possible expression of class II major histocompatibility antigens. A difference was observed in the immune response to SCTT compared to CSG. SCTT had a greater density cellular infiltrate than CSG (p<0.03) that was focused more at the center of the transplant (p<0.05) than at the edges, likely due to the immediate vascularization of the skin. Recipient dendritic cells were only observed in rejecting SCTT, not CSG. Furthermore, dermal endothelial class II MHC expression was only observed in allogeneic SCTT. The immune response in both SCTT and CSG was focused on targets in the dermis, with infiltrating cells clustering around hair follicles (CSG and SCTT; p<0.01) and blood vessels (SCTT; p<0.01) in allogeneic transplants. This study suggests that there are significant differences between rejection of SCTT and CSG that may limit the relevance of much of the historical data on skin graft rejection when applied to composite tissue allotransplantation. Furthermore, the use of novel in vivo techniques identified characteristics of the immune response to allograft skin not previously described, which may be useful in directing future approaches to overcoming allograft skin rejection.
Collapse
Affiliation(s)
- Benjamin M Horner
- Plastic Surgery Research Laboratory, Department of Surgery, WAC 435, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | | | | | | | | | | | | |
Collapse
|
524
|
Haematopoietic stem cells depend on Galpha(s)-mediated signalling to engraft bone marrow. Nature 2009; 459:103-7. [PMID: 19322176 PMCID: PMC2761017 DOI: 10.1038/nature07859] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2008] [Accepted: 01/19/2009] [Indexed: 11/30/2022]
Abstract
Hematopoietic stem/progenitor cells (HSPC) transition in location during development1 and circulate in mammals throughout life2, moving into and out of the bloodstream to engage bone marrow (BM) niches in sequential steps of homing, engraftment and retention3–5. We show here that HSPC engraftment of BM in fetal development is dependent upon the guanine nucleotide binding protein stimulatory alpha subunit (Gsα). Adult Gsα−/− HSPCs differentiate and undergo chemotaxis, but also do not home to or engraft in the BM in adult mice and demonstrate marked inability to engage the marrow microvasculature. If deleted after engraftment, Gsα did not lead to lack of retention in the marrow, rather cytokine-induced mobilization into the blood was impaired. Testing whether activation of Gsα affects HSPC, pharmacologic activators enhanced homing and engraftment in vivo. Gsα governs specific aspects of HSPC localization under physiologic conditions in vivo and may be pharmacologically targeted to improve transplantation efficiency.
Collapse
|
525
|
Isoform-selective phosphoinositide 3'-kinase inhibitors inhibit CXCR4 signaling and overcome stromal cell-mediated drug resistance in chronic lymphocytic leukemia: a novel therapeutic approach. Blood 2009; 113:5549-57. [PMID: 19318683 DOI: 10.1182/blood-2008-06-165068] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Phosphoinositide 3-kinases (PI3Ks) are among the most frequently activated signaling pathways in cancer. In chronic lymphocytic leukemia (CLL), signals from the microenvironment are critical for expansion of the malignant B cells, and cause constitutive activation of PI3Ks. CXCR4 is a key receptor for CLL cell migration and adhesion to marrow stromal cells (MSCs). Because of the importance of CXCR4 and PI3Ks for CLL-microenvironment cross-talk, we investigated the activity of novel, isoform-selective PI3K inhibitors that target different isoforms of the p110-kDa subunit. Inhibition with p110alpha inhibitors (PIK-90 and PI-103) resulted in a significant reduction of chemotaxis and actin polymerization to CXCL12 and reduced migration beneath MSC (pseudoemperipolesis). Western blot and reverse phase protein array analyses consistently demonstrated that PIK-90 and PI-103 inhibited phosphorylation of Akt and S6, whereas p110delta or p110beta/p110delta inhibitors were less effective. In suspension and MSC cocultures, PI-103 and PIK-90 were potent inducers of CLL cell apoptosis. Moreover, these p110alpha inhibitors enhanced the cytotoxicity of fludarabine and reversed the protective effect of MSC on fludarabine-induced apoptosis. Collectively, our data demonstrate that p110alpha inhibitors antagonize stromal cell-derived migration, survival, and drug-resistance signals and therefore provide a rational to explore the therapeutic activity of these promising agents in CLL.
Collapse
|
526
|
Cannabinoid receptor 2 mediates the retention of immature B cells in bone marrow sinusoids. Nat Immunol 2009; 10:403-11. [PMID: 19252491 PMCID: PMC2768754 DOI: 10.1038/ni.1710] [Citation(s) in RCA: 166] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2008] [Accepted: 01/26/2009] [Indexed: 01/23/2023]
Abstract
Immature B cells developing in the bone marrow are found in the parenchyma and sinusoids. The mechanisms that control the positioning of B cells in the sinusoids are not understood. Here we show that the integrin alpha(4)beta(1) (VLA-4) and its ligand VCAM-1 were required, whereas the chemokine receptor CXCR4 was dispensable, for sinusoidal retention of B cells. Instead, cannabinoid receptor 2 (CB2), a Galpha(i) protein-coupled receptor upregulated in immature B cells, was required for sinusoidal retention. Using two-photon microscopy, we found immature B cells entering and crawling in sinusoids; these immature B cells were displaced by CB2 antagonism. Moreover, CB2-deficient mice had a lower frequency of immunoglobulin lambda-chain-positive B cells in the peripheral blood and spleen. Our findings identify unique requirements for the retention of B cells in the bone marrow sinusoidal niche and suggest involvement of CB2 in the generation of the B cell repertoire.
Collapse
|
527
|
Mantle cell lymphoma cells express high levels of CXCR4, CXCR5, and VLA-4 (CD49d): importance for interactions with the stromal microenvironment and specific targeting. Blood 2009; 113:4604-13. [PMID: 19228923 DOI: 10.1182/blood-2008-10-185827] [Citation(s) in RCA: 156] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Mantle cell lymphoma (MCL) is characterized by an early, widespread dissemination and residual disease after conventional treatment, but the mechanisms responsible for lymphoma cell motility and drug resistance are largely unknown. There is growing evidence suggesting that chemokine receptors and adhesion molecules are critical for malignant B-cell trafficking and homing to supportive tissue microenvironments, where they receive survival and drug resistance signals. Therefore, we examined chemokine receptor and adhesion molecule expression and function in MCL cells and their importance for migration and adhesion to marrow stromal cells (MSCs). We found that MCL cells display high levels of functional CXCR4 and CXCR5 chemokine receptors and VLA-4 adhesion molecules. We also report that MCL cells adhere and spontaneously migrate beneath MSCs in a CXCR4- and VLA-4-dependent fashion (pseudoemperipolesis). Moreover, we demonstrate that MSCs confer drug resistance to MCL cells, particularly to MCL cells that migrate beneath MSC. To target MCL-MSC interactions, we tested Plerixafor, a CXCR4 antagonist, and natalizumab, a VLA-4 antibody. Both agents blocked functional responses to the respective ligands and inhibited adhesive interactions between MCL cells and MSCs. These findings provide a rationale to further investigate the therapeutic potential of these drugs in MCL.
Collapse
|
528
|
Stem cell regulation via dynamic interactions of the nervous and immune systems with the microenvironment. Cell Stem Cell 2009; 3:484-92. [PMID: 18983964 DOI: 10.1016/j.stem.2008.10.006] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Physiological interactions between the nervous and immune systems with components of the local microenvironment are needed to maintain homeostasis throughout the body. Dynamic regulation of bone remodeling, hematopoietic stem cells, and their evolving niches via neurotransmitter signaling are part of the host defense and repair mechanisms. This crosstalk links activated leukocytes, neuronal, and stromal cells, which combine to directly and indirectly regulate hematopoietic stem cells. Together, interactions between diverse systems create a regulatory "brain-bone-blood triad," contributing an additional dimension to the concept of the hematopoietic stem cell niche.
Collapse
|
529
|
Colmone A, Amorim M, Pontier AL, Wang S, Jablonski E, Sipkins DA. Leukemic cells create bone marrow niches that disrupt the behavior of normal hematopoietic progenitor cells. Science 2009; 322:1861-5. [PMID: 19095944 DOI: 10.1126/science.1164390] [Citation(s) in RCA: 457] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The host tissue microenvironment influences malignant cell proliferation and metastasis, but little is known about how tumor-induced changes in the microenvironment affect benign cellular ecosystems. Applying dynamic in vivo imaging to a mouse model, we show that leukemic cell growth disrupts normal hematopoietic progenitor cell (HPC) bone marrow niches and creates abnormal microenvironments that sequester transplanted human CD34+ (HPC-enriched) cells. CD34+ cells in leukemic mice declined in number over time and failed to mobilize into the peripheral circulation in response to cytokine stimulation. Neutralization of stem cell factor (SCF) secreted by leukemic cells inhibited CD34+ cell migration into malignant niches, normalized CD34+ cell numbers, and restored CD34+ cell mobilization in leukemic mice. These data suggest that the tumor microenvironment causes HPC dysfunction by usurping normal HPC niches and that therapeutic inhibition of HPC interaction with tumor niches may help maintain normal progenitor cell function in the setting of malignancy.
Collapse
Affiliation(s)
- Angela Colmone
- Department of Medicine, Section of Hematology/Oncology, University of Chicago, 5841 South Maryland Avenue MC 2115, Chicago, IL 60637, USA
| | | | | | | | | | | |
Collapse
|
530
|
Konopleva M, Tabe Y, Zeng Z, Andreeff M. Therapeutic targeting of microenvironmental interactions in leukemia: mechanisms and approaches. Drug Resist Updat 2009; 12:103-13. [PMID: 19632887 PMCID: PMC3640296 DOI: 10.1016/j.drup.2009.06.001] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Revised: 06/29/2009] [Accepted: 06/29/2009] [Indexed: 02/03/2023]
Abstract
In hematological malignancies, there are dynamic interactions between leukemic cells and cells of the bone marrow microenvironment. Specific niches within the bone marrow microenvironment provide a sanctuary for subpopulations of leukemic cells to evade chemotherapy-induced death and allow acquisition of a drug-resistant phenotype. This review focuses on molecular and cellular biology of the normal hematopoietic stem cell and the leukemia stem cell niche, and of the molecular pathways critical for microenvironment/leukemia interactions. The key emerging therapeutic targets include chemokine receptors (CXCR4), adhesion molecules (VLA4 and CD44), and hypoxia-related proteins HIF-1alpha and VEGF. Finally, the genetic and epigenetic abnormalities of leukemia-associated stroma will be discussed. This complex interplay provides a rationale for appropriately tailored molecular therapies targeting not only leukemic cells but also their microenvironment to ensure improved outcomes in leukemia.
Collapse
Affiliation(s)
- Marina Konopleva
- Department of Leukemia, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030,Section of Molecular Hematology and Therapy, Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030
| | - Yoko Tabe
- Department of Clinical Pathology, Juntendo University School of Medicine, Tokyo, Japan
| | - Zhihong Zeng
- Section of Molecular Hematology and Therapy, Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030
| | - Michael Andreeff
- Department of Leukemia, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030,Section of Molecular Hematology and Therapy, Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030
| |
Collapse
|
531
|
Physiopathologie des métastases osseuses. ONCOLOGIE 2009. [DOI: 10.1007/s10269-008-0977-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
532
|
Abstract
Hematopoietic and epithelial cancer cells express CXCR4, a seven-transmembrane G-protein-coupled chemokine receptor. Stromal cells within the bone marrow microenvironment constitutively secrete stromal cell-derived factor-1 (SDF-1/CXCL12), the ligand for CXCR4. Activation of CXCR4 induces leukemia cell trafficking and homing to the marrow microenvironment, where CXCL12 retains leukemia cells in close contact with marrow stromal cells that provide growth and drug resistance signals. CXCR4 antagonists, such as Plerixafor (AMD3100) and T140 analogs, can disrupt adhesive tumor-stroma interactions and mobilize leukemia cells from their protective stromal microenvironment, making them more accessible to conventional drugs. Therefore, targeting the CXCR4-CXCL12 axis is a novel, attractive therapeutic approach that is explored in ongoing clinical trials in leukemia patients. Initially, CXCR4 antagonists were developed for the treatment of HIV, where CXCR4 functions as a co-receptor for virus entry into T cells. Subsequently, CXCR4 antagonists were noticed to induce leukocytosis, and are currently used clinically for mobilization of hematopoietic stem cells. However, because CXCR4 plays a key role in cross-talk between leukemia cells (and a variety of other tumor cells) and their microenvironment, cancer treatment may become the ultimate application of CXCR4 antagonists. Here, we summarize the development of CXCR4 antagonists and their preclinical and clinical activities, focusing on leukemia and other cancers.
Collapse
|
533
|
Abstract
In normal adult tissues, paracrine signals that derive from the stem cell niche, or microenvironment, play an important role in regulating the critical balance between activity and quiescence of stem cells. Similarly, evidence has emerged to support the hypothesis that signals derived from the microenvironment regulate cancer cells in an analogous manner. We recently reported that in basal cell carcinoma of the skin and in diverse other solid tumors, fibroblasts that comprise the tumor cell niche are, indeed, molecularly distinct from those that comprise the normal stroma. In particular, we found evidence suggesting that expression of secreted BMP antagonists by tumor-associated stromal cells may promote self-renewal of tumor stem cells in vivo. This chapter describes methods for identifying and evaluating the molecular signals that derive from fibroblasts in human tumors.
Collapse
|
534
|
Lewandowski D, Romeo PH. [Follow-up using optical imaging of hematopoietic reconstitution or the development of leukemia in vivo]. Ann Pathol 2008; 28 Spec No 1:S18-9. [PMID: 18984288 DOI: 10.1016/j.annpat.2008.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Daniel Lewandowski
- Laboratoire de recherche sur la réparation et la transcription dans les cellules souches (LRTS), institut de radiobiologie cellulaire et moléculaire (IRCM), CEA, DSV, 18, route du Panorama, 92265 Fontenay-aux-Roses cedex, France
| | | |
Collapse
|
535
|
Live-animal tracking of individual haematopoietic stem/progenitor cells in their niche. Nature 2008; 457:92-6. [PMID: 19052546 DOI: 10.1038/nature07434] [Citation(s) in RCA: 682] [Impact Index Per Article: 40.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2008] [Accepted: 09/17/2008] [Indexed: 12/15/2022]
Abstract
Stem cells reside in a specialized, regulatory environment termed the niche that dictates how they generate, maintain and repair tissues. We have previously documented that transplanted haematopoietic stem and progenitor cell populations localize to subdomains of bone-marrow microvessels where the chemokine CXCL12 is particularly abundant. Using a combination of high-resolution confocal microscopy and two-photon video imaging of individual haematopoietic cells in the calvarium bone marrow of living mice over time, we examine the relationship of haematopoietic stem and progenitor cells to blood vessels, osteoblasts and endosteal surface as they home and engraft in irradiated and c-Kit-receptor-deficient recipient mice. Osteoblasts were enmeshed in microvessels and relative positioning of stem/progenitor cells within this complex tissue was nonrandom and dynamic. Both cell autonomous and non-autonomous factors influenced primitive cell localization. Different haematopoietic cell subsets localized to distinct locations according to the stage of differentiation. When physiological challenges drove either engraftment or expansion, bone-marrow stem/progenitor cells assumed positions in close proximity to bone and osteoblasts. Our analysis permits observing in real time, at a single cell level, processes that previously have been studied only by their long-term outcome at the organismal level.
Collapse
|
536
|
|
537
|
Sweeney E, Campbell M, Watkins K, Hunter CA, Jacenko O. Altered endochondral ossification in collagen X mouse models leads to impaired immune responses. Dev Dyn 2008; 237:2693-704. [PMID: 18629872 DOI: 10.1002/dvdy.21594] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Disruption of collagen X function in hypertrophic cartilage undergoing endochondral ossification was previously linked to altered hematopoiesis in collagen X transgenic (Tg) and null (KO) mice (Jacenko et al., [2002] Am J Pathol 160:2019-2034). Mice displayed altered growth plates, diminished trabecular bone, and marrow hypoplasia with an aberrant lymphocyte profile throughout life. This study identifies altered B220+, CD4+, and CD8+ lymphocyte numbers, as well as CD4+/fox3P+ T regulatory cells in the collagen X mice. Additionally, diminished in vitro splenocyte responses to mitogens and an inability of mice to survive a challenge with Toxoplasma gondii, confirm impaired immune responses. In concert, ELISA and protein arrays identify aberrant levels of inflammatory, chemo-attractant, and matrix binding cytokines in collagen X mouse sera. These data link the disruption of collagen X function in the chondro-osseous junction to an altered hematopoietic stem cell niche in the marrow, resulting in impaired immune function.
Collapse
Affiliation(s)
- E Sweeney
- Department of Animal Biology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania 19104-6046, USA
| | | | | | | | | |
Collapse
|
538
|
Di Rosa F. T-lymphocyte interaction with stromal, bone and hematopoietic cells in the bone marrow. Immunol Cell Biol 2008; 87:20-9. [PMID: 19030018 DOI: 10.1038/icb.2008.84] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mature T cells in the bone marrow (BM) are in constant exchange with the blood pool. Within the BM, T-cell recognition of antigen presented by dendritic cell (DC) can occur, nevertheless it is thought that BM T cells mostly receive non-antigenic signals by either stimulatory, for example, interleukin (IL)-7, IL-15, tumor necrosis factor family members, or inhibitory molecules, for example, transforming growth factor-beta. The net balance is in favor of T-cell proliferation. Indeed, the percentage of proliferating T cells is higher in the BM than in spleen and lymph nodes, both within CD4 and CD8 T cells. High numbers of memory T cells proliferate in the BM, as they preferentially home to the BM and have an increased turnover as compared with naive T cells. I propose here that the BM plays an essential role in maintaining normal peripheral T-lymphocyte numbers and antigen-specific memory for both CD4 and CD8 T cells. I also discuss BM T-cell contribution to the homeostasis of bone metabolism as well as of hematopoiesis. It emerges that BM T cells play unexpected roles in several diseases, for example AIDS and osteoporosis. A better knowledge on BM T cells has implications for currently used clinical interventions, for example, vaccination, BM transplantation, mesenchymal stem cell-based therapies.
Collapse
Affiliation(s)
- Francesca Di Rosa
- Institute of Molecular Biology and Pathology, Consiglio Nazionale delle Ricerche, Rome, Italy.
| |
Collapse
|
539
|
Favaro E, Amadori A, Indraccolo S. Cellular interactions in the vascular niche: implications in the regulation of tumor dormancy. APMIS 2008; 116:648-59. [PMID: 18834409 DOI: 10.1111/j.1600-0463.2008.01025.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Angiogenesis plays an established role in the promotion of growth of dormant micrometastasis, because blood vessels deliver oxygen and nutrients to the tumor microenvironment. In addition to this feeding function, however, there is accumulating evidence suggesting that endothelial cells-and perhaps other cellular components of the microenvironment--could communicate both positive and negative signals to tumor cells. This cross-talk between heterogeneous cell types could turn out to be important in the regulation of cancer cell behavior. Normal cells recruited during the angiogenic process, or attracted to future sites of metastasis by soluble products released by cancer cells, have been shown to create a niche favorable to tumor cell proliferation and survival. In addition, following an exogenous angiogenic spike, as may occur during inflammation, the same mechanisms could lead to re-activation of poorly angiogenic tumor cells seeded into tissues. In this review, we discuss the possible implications of this hypothesis for our understanding of the phenomenon of tumor dormancy.
Collapse
Affiliation(s)
- Elena Favaro
- Department of Oncology and Surgical Sciences, Oncology Section, University of Padova, Padova, Italy
| | | | | |
Collapse
|
540
|
Abstract
PURPOSE OF REVIEW Hematopoietic stem cells (HSCs) normally reside in the bone marrow but can be forced into the blood, a process termed mobilization used clinically to harvest large numbers of HSCs for transplantation. Currently the mobilizing agent of choice is granulocyte colony-stimulating factor; however, not all patients mobilize well. This article reviews recent advances in understanding the molecular mechanisms responsible for the retention of HSCs in the bone marrow, which are perturbed during HSC mobilization, and the clinical application of these findings. RECENT FINDINGS The interaction between the chemokine SDF-1/CXCL12 and its receptor CXCR4 is critical to retain HSCs within the bone marrow, leading to the discovery that small synthetic CXCR4 antagonists are potent mobilizing agents that synergize with granulocyte colony-stimulating factor. Separate research has shown that HSC numbers in the bone marrow can be boosted by increasing the number of osteoblasts that support HSCs. SUMMARY HSC mobilization induced by granulocyte colony-stimulating factor may be enhanced by directly targeting the chemotactic interaction between HSCs and bone marrow stroma with CXCR4 antagonists. When the primary problem is reduced, however, HSC numbers in the bone marrow, due to repeated chemotherapy/radiotherapy treatments, an alternative is to enhance HSC content by enhancing bone formation prior to mobilization.
Collapse
|
541
|
Agliano A, Martin-Padura I, Mancuso P, Marighetti P, Rabascio C, Pruneri G, Shultz LD, Bertolini F. Human acute leukemia cells injected in NOD/LtSz-scid/IL-2Rγnull mice generate a faster and more efficient disease compared to other NOD/scid-related strains. Int J Cancer 2008; 123:2222-7. [DOI: 10.1002/ijc.23772] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
542
|
Abstract
PURPOSE OF REVIEW To provide an overview of the hematopoietic stem cell (HSC) niche in the bone marrow. In addition to highlighting recent advances in the field, we will also discuss components of the niche that may contribute to the development of cancer, or cancer metastases to the bone. RECENT FINDINGS Much progress has been very recently made in the understanding of the cellular and molecular interactions in the HSC microenvironment. These recent findings point out the extraordinary complexity of the HSC microenvironment. Emerging data also suggest convergence of signals important for HSC and for leukemia or metastatic disease support. SUMMARY The HSC niche comprises complex interactions between multiple cell types and molecules requiring cell-cell signaling as well as local secretion. These components can be thought of as therapeutic targets not only for HSC expansion, but also to modify behavior of hematopoietic malignancies and cancer metastases to the bone.
Collapse
|
543
|
Lo Celso C, Klein RJ, Scadden DT. Analysis of the hematopoietic stem cell niche. ACTA ACUST UNITED AC 2008; Chapter 2:Unit 2A.5. [PMID: 18785177 DOI: 10.1002/9780470151808.sc02a05s3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Hematopoietic stem cells (HSCs) continuously replenish all blood cell lineages not only to maintain the normal rapid turnover of differentiated cells but also to respond to injury and stress. Cell-extrinsic mechanisms are critical determinants of the fine balance between HSC self-renewal and differentiation. The bone marrow microenvironment has emerged as a new area of intense study to identify which of its many components constitute the HSC niche and regulate HSC fate. While HSCs have been isolated, characterized and used in clinical practice for many years thanks to the development of very specific assays and technology (i.e., bone marrow transplants and fluorescence activated cell sorting), study of the HSC niche has evolved by combining experimental designs developed in different fields. In this unit we describe a collection of protocols spanning a wide range of techniques that can help every researcher tackling questions regarding the nature of the HSC niche.
Collapse
|
544
|
White RM, Sessa A, Burke C, Bowman T, LeBlanc J, Ceol C, Bourque C, Dovey M, Goessling W, Burns CE, Zon LI. Transparent adult zebrafish as a tool for in vivo transplantation analysis. Cell Stem Cell 2008; 2:183-9. [PMID: 18371439 DOI: 10.1016/j.stem.2007.11.002] [Citation(s) in RCA: 972] [Impact Index Per Article: 57.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2007] [Revised: 10/18/2007] [Accepted: 11/15/2007] [Indexed: 12/19/2022]
Abstract
The zebrafish is a useful model for understanding normal and cancer stem cells, but analysis has been limited to embryogenesis due to the opacity of the adult fish. To address this, we have created a transparent adult zebrafish in which we transplanted either hematopoietic stem/progenitor cells or tumor cells. In a hematopoiesis radiation recovery assay, transplantation of GFP-labeled marrow cells allowed for striking in vivo visual assessment of engraftment from 2 hr-5 weeks posttransplant. Using FACS analysis, both transparent and wild-type fish had equal engraftment, but this could only be visualized in the transparent recipient. In a tumor engraftment model, transplantation of RAS-melanoma cells allowed for visualization of tumor engraftment, proliferation, and distant metastases in as little as 5 days, which is not seen in wild-type recipients until 3 to 4 weeks. This transparent adult zebrafish serves as the ideal combination of both sensitivity and resolution for in vivo stem cell analyses.
Collapse
Affiliation(s)
- Richard Mark White
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
545
|
Getts DR, Terry RL, Getts MT, Müller M, Rana S, Shrestha B, Radford J, Van Rooijen N, Campbell IL, King NJC. Ly6c+ "inflammatory monocytes" are microglial precursors recruited in a pathogenic manner in West Nile virus encephalitis. ACTA ACUST UNITED AC 2008; 205:2319-37. [PMID: 18779347 PMCID: PMC2556789 DOI: 10.1084/jem.20080421] [Citation(s) in RCA: 263] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In a lethal West Nile virus (WNV) model, central nervous system infection triggered a threefold increase in CD45int/CD11b+/CD11c− microglia at days 6–7 postinfection (p.i.). Few microglia were proliferating, suggesting that the increased numbers were derived from a migratory precursor cell. Depletion of “circulating” (Gr1−(Ly6Clo)CX3CR1+) and “inflammatory” (Gr1hi/Ly6Chi/CCR2+) classical monocytes during infection abrogated the increase in microglia. C57BL/6 chimeras reconstituted with cFMS–enhanced green fluorescent protein (EGFP) bone marrow (BM) showed large numbers of peripherally derived (GFP+) microglia expressing GR1+(Ly6C+) at day 7 p.i., suggesting that the inflammatory monocyte is a microglial precursor. This was confirmed by adoptive transfer of labeled BM (Ly6Chi/CD115+) or circulating inflammatory monocytes that trafficked to the WNV-infected brain and expressed a microglial phenotype. CCL2 is a chemokine that is highly expressed during WNV infection and important in inflammatory monocyte trafficking. Neutralization of CCL2 not only reduced the number of GFP+ microglia in the brain during WNV infection but prolonged the life of infected animals. Therefore, CCL2-dependent inflammatory monocyte migration is critical for increases in microglia during WNV infection and may also play a pathogenic role during WNV encephalitis.
Collapse
Affiliation(s)
- Daniel R Getts
- The Discipline of Pathology, School of Medical Sciences, The University of Sydney, Sydney NSW 2006, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
546
|
Fernandez L, Rodriguez S, Huang H, Chora A, Fernandes J, Mumaw C, Cruz E, Pollok K, Cristina F, Price JE, Ferkowicz MJ, Scadden DT, Clauss M, Cardoso AA, Carlesso N. Tumor necrosis factor-alpha and endothelial cells modulate Notch signaling in the bone marrow microenvironment during inflammation. Exp Hematol 2008; 36:545-558. [PMID: 18439488 DOI: 10.1016/j.exphem.2007.12.012] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2007] [Revised: 11/28/2007] [Accepted: 12/24/2007] [Indexed: 01/22/2023]
Abstract
OBJECTIVE Homeostasis of the hematopoietic compartment is challenged and maintained during conditions of stress by mechanisms that are poorly defined. To understand how the bone marrow (BM) microenvironment influences hematopoiesis, we explored the role of Notch signaling and BM endothelial cells in providing microenvironmental cues to hematopoietic cells in the presence of inflammatory stimuli. MATERIALS AND METHODS The human BM endothelial cell line (BMEC) and primary human BM endothelial cells were analyzed for expression of Notch ligands and the ability to expand hematopoietic progenitors in an in vitro coculture system. In vivo experiments were carried out to identify modulation of Notch signaling in BM endothelial and hematopoietic cells in mice challenged with tumor necrosis factor-alpha (TNF-alpha) or lipopolysaccharide (LPS), or in Tie2-tmTNF-alpha transgenic mice characterized by constitutive TNF-alpha activation. RESULTS BM endothelial cells were found to express Jagged ligands and to greatly support progenitor's colony-forming ability. This effect was markedly decreased by Notch antagonists and augmented by increasing levels of Jagged2. Physiologic upregulation of Jagged2 expression on BMEC was observed upon TNF-alpha activation. Injection of TNF-alpha or LPS upregulated three- to fourfold Jagged2 expression on murine BM endothelial cells in vivo and resulted in increased Notch activation on murine hematopoietic stem/progenitor cells. Similarly, constitutive activation of endothelial cells in Tie2-tmTNF-alpha mice was characterized by increased expression of Jagged2 and by augmented Notch activation on hematopoietic stem/progenitor cells. CONCLUSIONS Our results provide the first evidence that BM endothelial cells promote expansion of hematopoietic progenitor cells by a Notch-dependent mechanism and that TNF-alpha and LPS can modulate the levels of Notch ligand expression and Notch activation in the BM microenvironment in vivo.
Collapse
Affiliation(s)
- Luis Fernandez
- Center of Regenerative Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Mass., USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
547
|
Abstract
The existence of a stem cell niche, or physiological microenvironment, consisting of specialized cells that directly and indirectly participate in stem cell regulation has been verified for mammalian adult stem cells in the intestinal, neural, epidermal, and hematopoietic systems. In light of these findings, it has been proposed that a "cancer stem cell niche" also exists and that interactions with this tumor niche may specify a self-renewing population of tumor cells. We discuss emerging data that support the idea of a veritable cancer stem cell niche and propose several models for the relationship between cancer cells and their niches.
Collapse
Affiliation(s)
- Julie B Sneddon
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138, USA.
| | | |
Collapse
|
548
|
Henschler R, Deak E, Seifried E. Homing of Mesenchymal Stem Cells. ACTA ACUST UNITED AC 2008; 35:306-312. [PMID: 21512647 DOI: 10.1159/000143110] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2008] [Accepted: 07/02/2008] [Indexed: 12/20/2022]
Abstract
SUMMARY: Mesenchymal stem cells (MSCs) are primarily fibroblast-like cells. Yet, once studied under conditions of shear stress when flowing along endothelial cells in vitro or in blood vessels, as well as in classic migration assays such as chemotaxis assays, MSCs have recently been found to function similarly to leukocytes in many ways. Firstly, MSCs express several homing receptors which are typically activated during extravasation of leukocytes. Secondly, some of these receptors are definitely functional, and required for their tissue localization in certain physiological or pathological contexts. Clinical protocols have in the last few years provided the first data on whether and how human MSCs may work in patients once delivered locally e.g. by injection, or systemically via the intra-arterial or intravenous route. Still, analysis of the ability of MSCs to activate specific homing receptors has up to now received relatively little attention. Moreover, maintenance or alterations of homing receptor expression or functions during good manufacturing practice (GMP) preparation steps, and documentation of presence and function of individual pathways on MSC preparations for clinical use are often missed. Hence, we review here mechanisms predicted to be relevant for adhesion, migration, and homing competence of MSCs. We also discuss some early data on homing of MSCs, deduced from preclinical experiments and from the few clinical studies with MSCs. Finally, we introduce some assays which could be applied to monitor preservation of the homing capacity of MSCs during GMP preparation.
Collapse
Affiliation(s)
- Reinhard Henschler
- Institute of Transfusion Medicine and Immune Hematology, German Red Cross Blood Donor Center, Johann Wolfgang Goethe-University Frankfurt, Germany
| | | | | |
Collapse
|
549
|
Buijs JT, van der Pluijm G. Osteotropic cancers: from primary tumor to bone. Cancer Lett 2008; 273:177-93. [PMID: 18632203 DOI: 10.1016/j.canlet.2008.05.044] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2008] [Revised: 03/31/2008] [Accepted: 05/29/2008] [Indexed: 12/16/2022]
Abstract
It has long been recognized that primary cancers spread to distant organs with characteristic preference. Bone metastases occur in approximately 70% of patients with advanced breast and prostate cancer, causing severe morbidity and hospitalization. In the last decade, we have gained a better understanding of the mechanisms by which certain tumor types tend to metastasize specifically to bone. It appears that the interaction between the organ microenvironment and cancer cells is fundamental for establishing metastatic growth. Accordingly, Stephen Paget's 'seed and soil' hypothesis - stating that circulating cancer cells (the 'seeds') disperse in all directions, but can accomplish metastases only in organs where the microenvironment (the 'soil') is permissive for their growth - still holds forth today. For this reason, this review uses the 'seed and soil' hypothesis as a template to discuss novel insight and developments in the bone metastasis field.
Collapse
Affiliation(s)
- Jeroen T Buijs
- Department of Urology, Leiden University Medical Center, Leiden, The Netherlands.
| | | |
Collapse
|
550
|
Fleming HE, Janzen V, Lo Celso C, Guo J, Leahy KM, Kronenberg HM, Scadden DT. Wnt signaling in the niche enforces hematopoietic stem cell quiescence and is necessary to preserve self-renewal in vivo. Cell Stem Cell 2008; 2:274-83. [PMID: 18371452 DOI: 10.1016/j.stem.2008.01.003] [Citation(s) in RCA: 381] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2007] [Revised: 12/03/2007] [Accepted: 01/02/2008] [Indexed: 12/11/2022]
Abstract
Wingless (Wnt) is a potent morphogen demonstrated in multiple cell lineages to promote the expansion and maintenance of stem and progenitor cell populations. Wnt effects are highly context dependent, and varying effects of Wnt signaling on hematopoietic stem cells (HSCs) have been reported. We explored the impact of Wnt signaling in vivo, specifically in the context of the HSC niche by using an osteoblast-specific promoter driving expression of the paninhibitor of canonical Wnt signaling, Dickkopf1 (Dkk1). Here we report that Wnt signaling was markedly inhibited in HSCs and, unexpectedly given prior reports, reduction in HSC Wnt signaling resulted in reduced p21Cip1 expression, increased cell cycling, and a progressive decline in regenerative function after transplantation. This effect was microenvironment determined, but irreversible if the cells were transferred to a normal host. Wnt pathway activation in the niche is required to limit HSC proliferation and preserve the reconstituting function of endogenous hematopoietic stem cells.
Collapse
Affiliation(s)
- Heather E Fleming
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | | | | | | | | | | |
Collapse
|