501
|
Abstract
DNA damage is a common event and probably leads to mutation or deletion within chromosomal DNA, which may cause cancer or premature aging. DNA damage induces several cellular responses including DNA repair, checkpoint activity and the triggering of apoptotic pathways. DNA damage checkpoints are associated with biochemical pathways that end delay or arrest of cell-cycle progression. These checkpoints engage damage sensor proteins, such as the Rad9-Rad1-Hus1 (9-1-1) complex, and the Rad17-RFC complex, in the detection of DNA damage and transduction of signals to ATM, ATR, Chk1 and Chk2 kinases. Chk1 and Chk2 kinases regulate Cdc25, Wee1 and p53 that ultimately inactivate cyclin-dependent kinases (Cdks) which inhibit cell-cycle progression. In this review, we discuss the molecular mechanisms by which DNA damage is recognized by sensor proteins and signals are transmitted to Cdks. We classify the genes involved in checkpoint signaling into four categories, namely sensors, mediators, transducers and effectors, although their proteins have the broad activity, and thus this classification is for convenience and is not definitive.
Collapse
Affiliation(s)
- Hiroyuki Niida
- Department of Biochemistry and Cell Biology, Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
| | | |
Collapse
|
502
|
Dodson GE, Tibbetts RS. DNA replication stress-induced phosphorylation of cyclic AMP response element-binding protein mediated by ATM. J Biol Chem 2005; 281:1692-7. [PMID: 16293623 DOI: 10.1074/jbc.m509577200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The DNA damage-response regulators ATM (ataxia-telangiectasia-mutated) and ATR (ATM-Rad3-related) are structurally and functionally related protein kinases that exhibit nearly identical substrate specificities in vitro. Current paradigms hold that the relative contributions of ATM and ATR to nuclear substrate phosphorylation are dictated by the type of initiating DNA lesion; ATM-dependent substrate phosphorylation is principally activated by DNA double strand breaks, whereas ATR-dependent substrate phosphorylation is induced by UV light and other forms of DNA replication stress. In this report, we employed the cyclic AMP-response element-binding (CREB) protein to provide evidence for substrate discrimination by ATM and ATR in cellulo. ATM and ATR phosphorylate CREB in vitro, and CREB is phosphorylated on Ser-121 in intact cells in response to ionizing radiation (IR), UV light, and hydroxyurea. The UV light- and hydroxyurea-induced phosphorylation of CREB was delayed in comparison to the canonical ATR substrate CHK1, suggesting potentially different mechanisms of phosphorylation. UV light-induced CREB phosphorylation temporally correlated with ATM autophosphorylation on Ser-1981, and an ATM-specific small interfering RNA suppressed CREB phosphorylation in response to this stimulus. UV light-induced CREB phosphorylation was absent in ATM-deficient cells, confirming that ATM is required for CREB phosphorylation in UV irradiation-damaged cells. Interestingly, RNA interference-mediated suppression of ATR partially inhibited CREB phosphorylation in response to UV light, which correlated with reduced phosphorylation of ATM on Ser-1981. These findings suggest that ATM is the major genotoxin-induced CREB kinase in mammalian cells and that ATR lies upstream of ATM in a UV light-induced signaling pathway.
Collapse
Affiliation(s)
- Gerald E Dodson
- Department of Pharmacology, University of Wisconsin-Madison Medical School, Madison, Wisconsin 53706, USA
| | | |
Collapse
|
503
|
Paulsen MT, Ljungman M. The natural toxin juglone causes degradation of p53 and induces rapid H2AX phosphorylation and cell death in human fibroblasts. Toxicol Appl Pharmacol 2005; 209:1-9. [PMID: 16271620 DOI: 10.1016/j.taap.2005.03.005] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2004] [Revised: 03/04/2005] [Accepted: 03/15/2005] [Indexed: 12/01/2022]
Abstract
Juglone (5-hydroxy-1,4-naphtoquinone) is a natural toxin produced by walnut trees. In this study we show that juglone differentially reduces viability of human cells in culture. Normal fibroblast were found to be especially sensitive to juglone and lost viability primarily through a rapid apoptotic and necrotic response. This response may have been triggered by DNA damage since juglone induced a rapid and strong phosphorylation of H2AX in all phases of the cell cycle. Furthermore, juglone inhibits mRNA synthesis in human fibroblasts in a dose-dependent manner. Surprisingly, juglone caused a drastic reduction of the basal level of p53 in human fibroblasts and this loss could not be fully rescued by proteasome and calpain I inhibitors. However, when cells were pretreated with UV light or ionizing radiation, juglone was not able to reduce the cellular levels of activated p53. Our results show that juglone has multiple effects on cells such as the induction of DNA damage, inhibition of transcription, reduction of p53 protein levels and the induction of cell death.
Collapse
Affiliation(s)
- Michelle T Paulsen
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, MI 48109-0936, USA
| | | |
Collapse
|
504
|
Ichijima Y, Sakasai R, Okita N, Asahina K, Mizutani S, Teraoka H. Phosphorylation of histone H2AX at M phase in human cells without DNA damage response. Biochem Biophys Res Commun 2005; 336:807-12. [PMID: 16153602 DOI: 10.1016/j.bbrc.2005.08.164] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2005] [Accepted: 08/23/2005] [Indexed: 01/26/2023]
Abstract
A variant of histone H2A, H2AX, is phosphorylated on Ser139 in response to DNA double-strand breaks (DSBs), and clusters of the phosphorylated form of H2AX (gamma-H2AX) in nuclei of DSB-induced cells show foci at breakage sites. Here, we show phosphorylation of H2AX in a cell cycle-dependent manner without any detectable DNA damage response. Western blot and immunocytochemical analyses with the anti-gamma-H2AX antibody revealed that H2AX is phosphorylated at M phase in HeLa cells. In ataxia-telangiectasia cells lacking ATM kinase activity, gamma-H2AX was scarcely detectable in the mitotic chromosomes, suggesting involvement of ATM in M-phase phosphorylation of H2AX. Single-cell gel electrophoresis assay and Western blot analysis with the anti-phospho-p53 (Ser15) antibody indicated that H2AX in human M-phase cells is phosphorylated independently of DSB and DNA damage signaling. Even in the absence of DNA damage, phosphorylation of H2AX in normal cell cycle progression may contribute to maintenance of genomic integrity.
Collapse
Affiliation(s)
- Yosuke Ichijima
- Department of Pathological Biochemistry, Medical Research Institute, Tokyo Medical and Dental University, 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | | | | | | | | | | |
Collapse
|
505
|
Nitz I, Döring F, Schrezenmeir J, Burwinkel B. Identification of new acyl-CoA binding protein transcripts in human and mouse. Int J Biochem Cell Biol 2005; 37:2395-405. [PMID: 16055366 DOI: 10.1016/j.biocel.2005.06.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2004] [Revised: 05/26/2005] [Accepted: 06/07/2005] [Indexed: 11/24/2022]
Abstract
The ubiquitously expressed acyl-CoA binding protein (ACBP) is involved in lipid metabolism and is regulated by hormones and feeding status via transcription factors such as sterol regulatory element-binding protein 1 and peroxisome proliferator-activated receptor-gamma (PPARgamma). In humans, two transcripts encoding proteins of 86 and 104 amino acids are known, whereas in mouse only one protein of 86 amino acids is described. We identified new transcripts in human and mouse tissues, that had been generated by alternative first exon usage. Quantitative RT-PCR analyses showed a high expression of the new human transcript, ACBP-1c, in adipose tissue. By promoter reporter gene assays, specific regulation of this transcript by PPARgamma2 was revealed, implicating the usage of an alternative promoter that contains a PPARgamma responsive element. Subcellular localizations of the known human proteins and the new variant showed an occurrence in cytoplasma and nucleus. Reported studies concerning ACBP gene regulation should be re-evaluated with respect to a new ACBP gene model. Given the fact that the new variant is highly expressed in adipose tissue and a PPARgamma target, it might be relevant for diseases like diabetes and obesity.
Collapse
Affiliation(s)
- Inke Nitz
- Molecular Nutrition, Christian-Albrechts University of Kiel, Hermann-Weigmann-Strasse 1, D-24103 Kiel, Germany.
| | | | | | | |
Collapse
|
506
|
Garinis GA, Mitchell JR, Moorhouse MJ, Hanada K, de Waard H, Vandeputte D, Jans J, Brand K, Smid M, van der Spek PJ, Hoeijmakers JHJ, Kanaar R, van der Horst GTJ. Transcriptome analysis reveals cyclobutane pyrimidine dimers as a major source of UV-induced DNA breaks. EMBO J 2005; 24:3952-62. [PMID: 16252008 PMCID: PMC1283948 DOI: 10.1038/sj.emboj.7600849] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2005] [Accepted: 09/30/2005] [Indexed: 12/11/2022] Open
Abstract
Photolyase transgenic mice have opened new avenues to improve our understanding of the cytotoxic effects of ultraviolet (UV) light on skin by providing a means to selectively remove either cyclobutane pyrimidine dimers (CPDs) or pyrimidine (6-4) pyrimidone photoproducts. Here, we have taken a genomics approach to delineate pathways through which CPDs might contribute to the harmful effects of UV exposure. We show that CPDs, rather than other DNA lesions or damaged macromolecules, comprise the principal mediator of the cellular transcriptional response to UV. The most prominent pathway induced by CPDs is that associated with DNA double-strand break (DSB) signalling and repair. Moreover, we show that CPDs provoke accumulation of gamma-H2AX, P53bp1 and Rad51 foci as well as an increase in the amount of DSBs, which coincides with accumulation of cells in S phase. Thus, conversion of unrepaired CPD lesions into DNA breaks during DNA replication may comprise one of the principal instigators of UV-mediated cytotoxicity.
Collapse
Affiliation(s)
- George A Garinis
- Department of Cell Biology and Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - James R Mitchell
- Department of Cell Biology and Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Michael J Moorhouse
- Department of Bioinformatics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Katsuhiro Hanada
- Department of Cell Biology and Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Harm de Waard
- Department of Cell Biology and Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Dimitri Vandeputte
- Department of Cell Biology and Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Judith Jans
- Department of Cell Biology and Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Karl Brand
- Department of Cell Biology and Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Marcel Smid
- Department of Medical Oncology, Josephine Nefkens Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Peter J van der Spek
- Department of Bioinformatics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Jan H J Hoeijmakers
- Department of Cell Biology and Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Roland Kanaar
- Department of Cell Biology and Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Radiation Oncology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Gijsbertus T J van der Horst
- Department of Cell Biology and Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Cell Biology and Genetics, Center for Biomedical Genetics, Erasmus University Medical Center, PO Box 1738, 3000 DR Rotterdam, The Netherlands. Tel.: +31 10 408 7455; Fax: +31 10 408 9468; E-mail:
| |
Collapse
|
507
|
Theron T, Fousteri MI, Volker M, Harries LW, Botta E, Stefanini M, Fujimoto M, Andressoo JO, Mitchell J, Jaspers NGJ, McDaniel LD, Mullenders LH, Lehmann AR. Transcription-associated breaks in xeroderma pigmentosum group D cells from patients with combined features of xeroderma pigmentosum and Cockayne syndrome. Mol Cell Biol 2005; 25:8368-78. [PMID: 16135823 PMCID: PMC1234319 DOI: 10.1128/mcb.25.18.8368-8378.2005] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Defects in the XPD gene can result in several clinical phenotypes, including xeroderma pigmentosum (XP), trichothiodystrophy, and, less frequently, the combined phenotype of XP and Cockayne syndrome (XP-D/CS). We previously showed that in cells from two XP-D/CS patients, breaks were introduced into cellular DNA on exposure to UV damage, but these breaks were not at the sites of the damage. In the present work, we show that three further XP-D/CS patients show the same peculiar breakage phenomenon. We show that these breaks can be visualized inside the cells by immunofluorescence using antibodies to either gamma-H2AX or poly-ADP-ribose and that they can be generated by the introduction of plasmids harboring methylation or oxidative damage as well as by UV photoproducts. Inhibition of RNA polymerase II transcription by four different inhibitors dramatically reduced the number of UV-induced breaks. Furthermore, the breaks were dependent on the nucleotide excision repair (NER) machinery. These data are consistent with our hypothesis that the NER machinery introduces the breaks at sites of transcription initiation. During transcription in UV-irradiated XP-D/CS cells, phosphorylation of the carboxy-terminal domain of RNA polymerase II occurred normally, but the elongating form of the polymerase remained blocked at lesions and was eventually degraded.
Collapse
Affiliation(s)
- Therina Theron
- Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton BN1 9RQ, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
508
|
Lin SY, Rai R, Li K, Xu ZX, Elledge SJ. BRIT1/MCPH1 is a DNA damage responsive protein that regulates the Brca1-Chk1 pathway, implicating checkpoint dysfunction in microcephaly. Proc Natl Acad Sci U S A 2005; 102:15105-9. [PMID: 16217032 PMCID: PMC1257745 DOI: 10.1073/pnas.0507722102] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
BRIT1 [BRCT-repeat inhibitor of hTERT expression], a repressor of human telomerase function, is implicated in cellular immortalization. Here, we find that BRIT1 acts as a regulator of both the intra-S and G2/M checkpoints. When BRIT1 expression is depleted, cells lose the ionizing radiation (IR)-induced cell cycle arrest and become IR sensitive. BRIT1 is a chromatin-associated protein that forms irradiation-induced nuclear foci that colocalize with gamma-H2AX foci. BRIT1 is also required for the expression of both BRCA1 and the checkpoint kinase Chk1 and phosphorylation of Nbs1. Thus, the checkpoint defects in the absence of BRIT1 are likely to result from its regulation of Nbs1, BRCA1, and Chk1. BRIT1 is identical to the recently discovered MCPH1 gene, found mutant in patients with primary microcephaly. The ataxia telangiectasia mutated-Rad3 related (ATR)-Chk1 pathway is defective in Seckel syndrome, another microcephaly disorder. We propose that the microcephaly observed in patients with MCPH1 deficiencies is due to disruption of the ATR-BRCA1-Chk1 signaling pathway that is also disrupted in Seckel syndrome patients.
Collapse
Affiliation(s)
- Shiaw-Yih Lin
- Department of Molecular Therapeutics, University of Texas M. D. Anderson Cancer Center, Houston, TX 77054, USA.
| | | | | | | | | |
Collapse
|
509
|
Shi Y, Dodson GE, Shaikh S, Rundell K, Tibbetts RS. Ataxia-telangiectasia-mutated (ATM) is a T-antigen kinase that controls SV40 viral replication in vivo. J Biol Chem 2005; 280:40195-200. [PMID: 16221684 DOI: 10.1074/jbc.c500400200] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The structurally related ATM (ataxia-telangiectasia-mutated) and ATR (ATM-Rad3-related) protein kinases fulfill overlapping yet non-redundant functions as key regulators of cellular DNA damage responses. We recently showed that ATM phosphorylates the cyclic AMP response element-binding protein, CREB, following exposure to ionizing radiation (IR) and other DNA-damaging stimuli. Here, we show that a phospho-specific antibody recognizing the major ATM phosphorylation site in CREB cross-reacts with SV40 large tumor antigen (LTag), a multifunctional oncoprotein required for replication of the SV40 minichromosome. The relevant IR-induced phosphorylation site in LTag recognized by phospho-CREB antibody was mapped to Ser-120. IR strongly induced the phosphorylation of Ser-120 in an ATM-dependent manner in mouse embryo fibroblasts. Infection of African green monkey CV1 cells with SV40 resulted in the activation of ATM and phosphorylation of LTag and endogenous ATM substrates. Infection-induced LTag phosphorylation correlated with the onset of DNA replication, was ATM-dependent, and peaked when viral DNA levels reached their maximum. SV40 replication in CV1 cells required an intact LTag Ser-120 phosphorylation site and was inhibited following transfection with ATM small interfering RNA suggesting that ATM is required for optimal SV40 replication in primate cells. Our findings uncover a direct link between ATM and SV40 LTag that may have implications for understanding the replication cycle of oncogenic polyoma viruses.
Collapse
Affiliation(s)
- Yuling Shi
- Department of Pharmacology, University of Wisconsin Medical School, Madison, Wisconsin 53706, USA
| | | | | | | | | |
Collapse
|
510
|
Itakura E, Sawada I, Matsuura A. Dimerization of the ATRIP protein through the coiled-coil motif and its implication to the maintenance of stalled replication forks. Mol Biol Cell 2005; 16:5551-62. [PMID: 16176973 PMCID: PMC1289401 DOI: 10.1091/mbc.e05-05-0427] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
ATR (ATM and Rad3-related), a PI kinase-related kinase (PIKK), has been implicated in the DNA structure checkpoint in mammalian cells. ATR associates with its partner protein ATRIP to form a functional complex in the nucleus. In this study, we investigated the role of the ATRIP coiled-coil domain in ATR-mediated processes. The coiled-coil domain of human ATRIP contributes to self-dimerization in vivo, which is important for the stable translocation of the ATR-ATRIP complex to nuclear foci that are formed after exposure to genotoxic stress. The expression of dimerization-defective ATRIP diminishes the maintenance of replication forks during treatment with replication inhibitors. By contrast, it does not compromise the G2/M checkpoint after IR-induced DNA damage. These results show that there are two critical functions of ATR-ATRIP after the exposure to genotoxic stress: maintenance of the integrity of replication machinery and execution of cell cycle arrest, which are separable and are achieved via distinct mechanisms. The former function may involve the concentrated localization of ATR to damaged sites for which the ATRIP coiled-coil motif is critical.
Collapse
Affiliation(s)
- Eisuke Itakura
- Department of Geriatric Medicine, National Institute for Longevity Sciences, National Center for Geriatrics and Gerontology, Morioka-cho, Obu, Aichi 474-8522, Japan
| | | | | |
Collapse
|
511
|
Macé G, Bogliolo M, Guervilly JH, Dugas du Villard JA, Rosselli F. 3R coordination by Fanconi anemia proteins. Biochimie 2005; 87:647-58. [PMID: 15935541 DOI: 10.1016/j.biochi.2005.05.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Fanconi anemia (FA) is a recessive cancer prone syndrome featuring bone marrow failure and hypersensitivity to DNA crosslinks. Nine FA genes have been isolated so far. The biochemical function(s) of the FA proteins remain(s) poorly determined. However, a large consensus exists on the evidence that, to cope with DNA cross-links, a cell needs a functional FA pathway. In this review, we resume current understanding of how the FA pathway works in response to DNA damage and how it is integrated in a complex network of proteins involved in the maintenance of the genetic stability.
Collapse
Affiliation(s)
- Gaëtane Macé
- Institut Gustave-Roussy PR2, UPR2169 du CNRS, 39, rue Camille-Desmoulins, 94805 Villejuif cedex, France
| | | | | | | | | |
Collapse
|
512
|
Traven A, Heierhorst J. SQ/TQ cluster domains: concentrated ATM/ATR kinase phosphorylation site regions in DNA-damage-response proteins. Bioessays 2005; 27:397-407. [PMID: 15770685 DOI: 10.1002/bies.20204] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
ATM/ATR-like protein kinases play central roles in the maintenance of genome stability and phosphorylate numerous substrates in response to DNA damage, preferentially on SQ or TQ motifs. ATM/ATR substrates often contain several closely spaced SQ/TQ motifs in regions that have been termed SQ/TQ cluster domains (SCDs). SCDs are now considered a structural hallmark of DNA-damage-response proteins. Mutational analyses of a number of SCD-containing proteins indicate that multisite phosphorylation of SQ/TQ motifs is required for normal DNA-damage responses, most commonly by mediating protein-protein interactions in the formation of DNA-damage-induced complexes. SCD sequences are highly diverse and these domains may be largely unfolded in their native state rather than adopting a common three-dimensional fold. Structural disorder of SCDs could be advantageous for efficient phosphorylation by ATM/ATR kinases and also enable them to be molded into distinct conformations to facilitate flexible interactions with multiple binding partners.
Collapse
Affiliation(s)
- Ana Traven
- St. Vincent's Institute of Medical Research, 9 Princes Street, Fitzroy, VIC 3065, Australia
| | | |
Collapse
|
513
|
Zhong H, Bryson A, Eckersdorff M, Ferguson DO. Rad50 depletion impacts upon ATR-dependent DNA damage responses. Hum Mol Genet 2005; 14:2685-93. [PMID: 16087684 DOI: 10.1093/hmg/ddi302] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The Mre11/Rad50/NBS1 (MRN) complex is mutated in inherited genomic instability syndromes featuring cancer predisposition, mental retardation and immunodeficiency. It functions both in DNA double-strand break repair and in controlling the ataxia telangiectasia mutated (ATM) kinase during the response to these lesions. Patients inheriting homozygosity for an NBS1 hypomorphic allele display reduced phosphorylation of signaling factors such as Chk1, but not of chromatin-associated factor H2AX, after stresses that activate the ATM-related kinase, ATR. Therefore, we tested whether MRN has a global controlling role over the ATR kinase through the study of MRN deficiencies generated via RNA interference. We show for the first time that MRN is required for ATR-dependent phosphorylation of structural maintenance of chromosomes 1 (Smc1), which acts within chromatin to ensure sister chromatid cohesion and to effect several DNA damage responses. We have uncovered novel phenotypes caused by MRN deficiency that support a functional link between this complex, ATR and Smc1, including hypersensitivity to UV exposure, a defective UV responsive intra-S phase checkpoint and a specific pattern of genomic instability. In addition, certain ATR-dependent responses do not require MRN. These studies demonstrate that there is indeed a controlling role for MRN over the ATR kinase and have established that the downstream events under this control are broad, including both chromatin-associated and diffuse signaling factors, but may not be universal. These studies contribute to our understanding of the central role that MRN plays in damage detection and signaling, which serve to maintain genomic stability and resist neoplastic transformation.
Collapse
Affiliation(s)
- Hui Zhong
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109-0602, USA
| | | | | | | |
Collapse
|
514
|
Ljungman M. Activation of DNA damage signaling. Mutat Res 2005; 577:203-16. [PMID: 15922368 DOI: 10.1016/j.mrfmmm.2005.02.014] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2005] [Revised: 02/18/2005] [Accepted: 02/18/2005] [Indexed: 05/02/2023]
Abstract
Cells respond to DNA damage by activating DNA repair and DNA damage signaling pathways. While DNA repair proteins directly interact with DNA lesions, activation of DNA damage signaling pathways may be triggered by the effect the DNA lesions have on replication, transcription or chromatin topology. This review will focus on the potential mechanisms of the activation of DNA damage-induced signal transduction pathways.
Collapse
Affiliation(s)
- Mats Ljungman
- Department of Radiation Oncology, Division of Radiation & Cancer Biology, University of Michigan Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109-0936, USA.
| |
Collapse
|
515
|
Bartrand AJ, Iyasu D, Marinco SM, Brush GS. Evidence of meiotic crossover control in Saccharomyces cerevisiae through Mec1-mediated phosphorylation of replication protein A. Genetics 2005; 172:27-39. [PMID: 16118184 PMCID: PMC1456154 DOI: 10.1534/genetics.105.047845] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Replication protein A (RPA) is the major single-stranded DNA-binding protein in eukaryotes, essential for DNA replication, repair, and recombination. During mitosis and meiosis in budding yeast, RPA becomes phosphorylated in reactions that require the Mec1 protein kinase, a central checkpoint regulator and homolog of human ATR. Through mass spectrometry and site-directed mutagenesis, we have now identified a single serine residue in the middle subunit of the RPA heterotrimer that is targeted for phosphorylation by Mec1 both in vivo and in vitro. Cells containing a phosphomimetic version of RPA generated by mutation of this serine to aspartate exhibit a significant alteration in the pattern of meiotic crossovers for specific genetic intervals. These results suggest a new function of Mec1 that operates through RPA to locally control reciprocal recombination.
Collapse
Affiliation(s)
- Amy J Bartrand
- Barbara Ann Karmanos Cancer Institute and Department of Pathology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | | | | | |
Collapse
|
516
|
de Ru MH, Gille JJP, Nieuwint AWM, Bijlsma JB, van der Blij JF, van Hagen JM. Interstitial deletion in 3q in a patient with blepharophimosis-ptosis-epicanthus inversus syndrome (BPES) and microcephaly, mild mental retardation and growth delay: clinical report and review of the literature. Am J Med Genet A 2005; 137:81-7. [PMID: 16015581 DOI: 10.1002/ajmg.a.30786] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We present a boy with blepharophimosis, ptosis, epicanthus inversus, microcephaly, mild mental retardation, and growth delay. Chromosomal analysis revealed a male karyotype with an interstitial deletion in the long arm of chromosome 3. DNA-analysis showed that the deletion is of maternal origin and encompasses the region between markers D3S1535 and D3S1593. The deletion contains not only the FOXL2 gene, but also the gene encoding ataxia-telangiectasia and Rad3-related protein (ATR). Mutations in FOXL2 have been shown to cause blepharophimosis-ptosis-epicanthus inversus syndrome (BPES). ATR has been identified as a candidate gene for Seckel syndrome, an autosomal recessive syndrome that comprises growth retardation, microcephaly, and mental retardation. We hypothesize that our patient has a contiguous gene syndrome and that the non-BPES-associated abnormalities (microcephaly, mild mental retardation, and growth delay) are the result of the deletion of the maternal ATR gene. However, it has not yet been excluded that haploinsufficiency of some other gene in this region plays a role.
Collapse
Affiliation(s)
- M H de Ru
- Department of Clinical Genetics and Human Genetics, V.U. University Medical Center, Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
517
|
You Z, Chahwan C, Bailis J, Hunter T, Russell P. ATM activation and its recruitment to damaged DNA require binding to the C terminus of Nbs1. Mol Cell Biol 2005; 25:5363-79. [PMID: 15964794 PMCID: PMC1156989 DOI: 10.1128/mcb.25.13.5363-5379.2005] [Citation(s) in RCA: 338] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
ATM has a central role in controlling the cellular responses to DNA damage. It and other phosphoinositide 3-kinase-related kinases (PIKKs) have giant helical HEAT repeat domains in their amino-terminal regions. The functions of these domains in PIKKs are not well understood. ATM activation in response to DNA damage appears to be regulated by the Mre11-Rad50-Nbs1 (MRN) complex, although the exact functional relationship between the MRN complex and ATM is uncertain. Here we show that two pairs of HEAT repeats in fission yeast ATM (Tel1) interact with an FXF/Y motif at the C terminus of Nbs1. This interaction resembles nucleoporin FXFG motif binding to HEAT repeats in importin-beta. Budding yeast Nbs1 (Xrs2) appears to have two FXF/Y motifs that interact with Tel1 (ATM). In Xenopus egg extracts, the C terminus of Nbs1 recruits ATM to damaged DNA, where it is subsequently autophosphorylated. This interaction is essential for ATM activation. A C-terminal 147-amino-acid fragment of Nbs1 that has the Mre11- and ATM-binding domains can restore ATM activation in an Nbs1-depleted extract. We conclude that an interaction between specific HEAT repeats in ATM and the C-terminal FXF/Y domain of Nbs1 is essential for ATM activation. We propose that conformational changes in the MRN complex that occur upon binding to damaged DNA are transmitted through the FXF/Y-HEAT interface to activate ATM. This interaction also retains active ATM at sites of DNA damage.
Collapse
Affiliation(s)
- Zhongsheng You
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
518
|
Abstract
The ATM and ATR kinases signal cell cycle checkpoint responses to DNA damage. Inactive ATM is an oligomer that is disrupted to form active monomers in response to ionizing radiation. We examined whether ATR is activated by a similar mechanism. We found that the ATRIP subunit of the ATR kinase and ATR itself exist as homooligomers in cells. We did not detect regulation of ATR or ATRIP oligomerization after DNA damage. The predicted coiled-coil domain of ATRIP is essential for ATRIP oligomerization, stable ATR binding, and accumulation of ATRIP at DNA lesions. Additionally, the ATRIP coiled-coil is also required for ATRIP to support ATR-dependent checkpoint signaling to Chk1. Replacing the ATRIP coiled-coil domain with a heterologous dimerization domain restored stable binding to ATR and localization to damage-induced intranuclear foci. Thus, the ATR-ATRIP complex exists in higher order oligomeric states within cells and ATRIP oligomerization is essential for its function.
Collapse
Affiliation(s)
- Heather L Ball
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232, USA
| | | |
Collapse
|
519
|
Gilbert SL, Dobyns WB, Lahn BT. Genetic links between brain development and brain evolution. Nat Rev Genet 2005; 6:581-90. [PMID: 15951746 DOI: 10.1038/nrg1634] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The most defining biological attribute of Homo sapiens is its enormous brain size and accompanying cognitive prowess. How this was achieved by means of genetic changes over the course of human evolution has fascinated biologists and the general public alike. Recent studies have shown that genes controlling brain development - notably those implicated in microcephaly (a congenital defect that is characterized by severely reduced brain size) - are favoured targets of natural selection during human evolution. We propose that genes that regulate brain size during development, such as microcephaly genes, are chief contributors in driving the evolutionary enlargement of the human brain. Based on the synthesis of recent studies, we propose a general methodological template for the genetic analysis of human evolution.
Collapse
Affiliation(s)
- Sandra L Gilbert
- Howard Hughes Medical Institute, Department of Human Genetics, University of Chicago, Illinois 60637, USA
| | | | | |
Collapse
|
520
|
Affiliation(s)
- David Cortez
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
521
|
Heikkinen K, Mansikka V, Karppinen SM, Rapakko K, Winqvist R. Mutation analysis of the ATR gene in breast and ovarian cancer families. Breast Cancer Res 2005; 7:R495-501. [PMID: 15987455 PMCID: PMC1175065 DOI: 10.1186/bcr1037] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2005] [Revised: 04/08/2005] [Accepted: 04/11/2005] [Indexed: 12/17/2022] Open
Abstract
INTRODUCTION Mutations in BRCA1, BRCA2, ATM, TP53, CHK2 and PTEN account for only 20-30% of the familial aggregation of breast cancer, which suggests the involvement of additional susceptibility genes. The ATR (ataxia-telangiectasia- and Rad3-related) kinase is essential for the maintenance of genomic integrity. It functions both in parallel and cooperatively with ATM, but whereas ATM is primarily activated by DNA double-strand breaks induced by ionizing radiation, ATR has been shown to respond to a much broader range of DNA damage. Upon activation, ATR phosphorylates several important tumor suppressors, including p53, BRCA1 and CHK1. Based on its central function in the DNA damage response, ATR is a plausible candidate gene for susceptibility to cancer. METHODS We screened the entire coding region of the ATR gene for mutations in affected index cases from 126 Finnish families with breast and/or ovarian cancer, 75 of which were classified as high-risk and 51 as moderate-risk families, by using conformation sensitive gel electrophoresis and direct sequencing. RESULTS A large number of novel sequence variants were identified, four of which -- Glu254Gly, Ser1142Gly, IVS24-48G>A and IVS26+15C>T -- were absent from the tested control individuals (n = 300). However, the segregation of these mutations with the cancer phenotype could not be confirmed, partly because of the lack of suitable DNA samples. CONCLUSION The present study does not support a major role for ATR mutations in hereditary susceptibility to breast and ovarian cancer.
Collapse
Affiliation(s)
- Katri Heikkinen
- Department of Clinical Genetics, Oulu University Hospital/University of Oulu, Oulu, Finland
| | - Virpi Mansikka
- Department of Clinical Genetics, Oulu University Hospital/University of Oulu, Oulu, Finland
| | - Sanna-Maria Karppinen
- Department of Clinical Genetics, Oulu University Hospital/University of Oulu, Oulu, Finland
| | - Katrin Rapakko
- Department of Clinical Genetics, Oulu University Hospital/University of Oulu, Oulu, Finland
| | - Robert Winqvist
- Department of Clinical Genetics, Oulu University Hospital/University of Oulu, Oulu, Finland
| |
Collapse
|
522
|
Puget N, Knowlton M, Scully R. Molecular analysis of sister chromatid recombination in mammalian cells. DNA Repair (Amst) 2005; 4:149-61. [PMID: 15590323 PMCID: PMC2967438 DOI: 10.1016/j.dnarep.2004.08.010] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2004] [Indexed: 01/19/2023]
Abstract
Sister chromatid recombination (SCR) is a potentially error-free pathway for the repair of double-strand breaks arising during replication and is thought to be important for the prevention of genomic instability and cancer. Analysis of sister chromatid recombination at a molecular level has been limited by the difficulty of selecting specifically for these events. To overcome this, we have developed a novel "nested intron" reporter that allows the positive selection in mammalian cells of "long tract" gene conversion events arising between sister chromatids. We show that these events arise spontaneously in cycling cells and are strongly induced by a site-specific double-strand break (DSB) caused by the restriction endonuclease, I-SceI. Notably, some I-SceI-induced sister chromatid recombination events entailed multiple rounds of gene amplification within the reporter, with the generation of a concatemer of amplified gene segments. Thus, there is an intimate relationship between sister chromatid recombination control and certain types of gene amplification. Dysregulated sister chromatid recombination may contribute to cancer progression, in part, by promoting gene amplification.
Collapse
Affiliation(s)
| | | | - Ralph Scully
- Corresponding author. Tel.: +1 617 667 4252; fax: +1 617 667 0980. (R. Scully)
| |
Collapse
|
523
|
Abstract
DNA double-strand breaks (DSBs) are, arguably, the most deleterious form of DNA damage. An increasing body of evidence points to the inaccurate or inefficient repair of DSBs as a key step in tumorigenesis. Therefore, it is of great importance to understand the processes by which DSBs are detected and repaired. Clearly, these events must take place in the context of chromatin in vivo, and recently, a great deal of progress has been made in understanding the dynamic and active role that histone proteins and chromatin modifying activities play in DNA DSB repair. Here, we briefly review some of the most common techniques in studying DNA DSB responses in vivo, and focus on the contributions of covalent modifications of core histone proteins to these DNA DSB responses.
Collapse
Affiliation(s)
- Elizabeth Bilsland
- Department of Biochemistry, Cambridge University, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | | |
Collapse
|
524
|
Liu A, Takakuwa T, Fujita S, Ham MF, Luo WJ, Daibata M, Aozasa K. Alterations of DNA damage-response genes ATM and ATR in pyothorax-associated lymphoma. J Transl Med 2005; 85:436-46. [PMID: 15696190 DOI: 10.1038/labinvest.3700235] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Pyothorax-associated lymphoma (PAL) is non-Hodgkin's lymphoma that develops from chronic inflammation. Free radicals and oxidative stress generated in the inflammatory lesions could cause DNA damage and thus provide a basis for lymphomagenesis. Ataxia-telangiectasia mutated (ATM) and ATM and Rad3-related (ATR) genes are responsive genes for DNA damage, therefore potential involvement of these genes in PAL lymphomagenesis was examined in eight PAL cell lines and clinical samples from five cases. ATM mutations were detected in five of eight PAL lines. All but one of these mutations affected the phosphatidylinositol 3-kinase domain, indicating the loss-of-function mutation of ATM gene. Heterozygous mutations of ATR were found in two of eight lines; one a missense and the other a truncation mutation. ATR mutations were also detected in two of five cases in clinical samples from PAL. PAL cells with ATR mutation showed a delay or abrogation in repair for ionizing radiation (IR)-induced DNA double-strand breaks (DSBs) or ultraviolet (UV)-induced DNA single-strand breaks (SSBs), and exhibited a defect in p53 accumulation and failure in cell cycle checkpoint at G1-S phase. These findings showed that mutations of ATR gene result in failure for DNA DSB and SSB repair, suggesting the role of ATM and ATR gene mutations in PAL lymphomagenesis.
Collapse
Affiliation(s)
- Angen Liu
- Department of Pathology, Osaka University Graduate School of Medicine, Osaka, Japan
| | | | | | | | | | | | | |
Collapse
|
525
|
Shechter D, Costanzo V, Gautier J. Regulation of DNA replication by ATR: signaling in response to DNA intermediates. DNA Repair (Amst) 2005; 3:901-8. [PMID: 15279775 DOI: 10.1016/j.dnarep.2004.03.020] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The nuclear protein kinase ATR controls S-phase progression in response to DNA damage and replication fork stalling, including damage caused by ultraviolet irradiation, hyperoxia, and replication inhibitors like aphidicolin and hydroxyurea. ATR activation and substrate specificity require the presence of adapter and mediator molecules, ultimately resulting in the downstream inhibition of the S-phase kinases that function to initiate DNA replication at origins of replication. The data reviewed strongly support the hypothesis that ATR is activated in response to persistent RPA-bound single-stranded DNA, a common intermediate of unstressed and damaged DNA replication and metabolism.
Collapse
Affiliation(s)
- David Shechter
- Department of Genetics and Development, Hammer Health Sciences Center, Room 1620, Columbia University College of Physicians and Surgeons, 701 W. 168th Street, New York, NY 10032, USA.
| | | | | |
Collapse
|
526
|
Bourguignon MH, Gisone PA, Perez MR, Michelin S, Dubner D, Giorgio MD, Carosella ED. Genetic and epigenetic features in radiation sensitivity. Eur J Nucl Med Mol Imaging 2005; 32:351-68. [PMID: 15692806 DOI: 10.1007/s00259-004-1731-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Recent progress especially in the field of gene identification and expression has attracted greater attention to the genetic and epigenetic susceptibility to cancer, possibly enhanced by ionising radiation. This issue is especially important for radiation therapists since hypersensitive patients may suffer from adverse effects in normal tissues following standard radiation therapy, while normally sensitive patients could receive higher doses of radiation, offering a better likelihood of cure for malignant tumours. Although only a small percentage of individuals are "hypersensitive" to radiation effects, all medical specialists using ionising radiation should be aware of the aforementioned progress in medical knowledge. The present paper, the second of two parts, reviews human disorders known or strongly suspected to be associated with hypersensitivity to ionising radiation. The main tests capable of detecting such pathologies in advance are analysed, and ethical issues regarding genetic testing are considered. The implications for radiation protection of possible hypersensitivity to radiation in a part of the population are discussed, and some guidelines for nuclear medicine professionals are proposed.
Collapse
Affiliation(s)
- Michel H Bourguignon
- Direction Générale de la Sûreté Nucléaire et de la Radioprotection, 6 Place du Colonel Bourgoin, 75572, Paris Cedex 12, France.
| | | | | | | | | | | | | |
Collapse
|
527
|
Wang XQ, Luk JM, Leung PP, Wong BW, Stanbridge EJ, Fan ST. Alternative mRNA Splicing of Liver Intestine-Cadherin in Hepatocellular Carcinoma. Clin Cancer Res 2005. [DOI: 10.1158/1078-0432.483.11.2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
Purpose: To identify alternative splicing of the liver intestine-cadherin (LI-cadherin) gene in hepatocellular carcinoma (HCC) and correlate its aberrant expression with clinical outcomes.
Experimental Design: Reverse transcription-PCR (RT-PCR) and quantitative real-time RT-PCR were used to examine alternative mRNA splicing and mRNA level of LI-cadherin in 50 paired tumor-peritumor tissues of 50 HCC and 8 normal liver specimens. The minigene exon-trapping strategy was employed to investigate the splicing mechanism introduced by nucleotide polymorphisms. Association of LI-cadherin splicing with tumor venous infiltration, first-year tumor recurrence, and overall survival after partial hepatectomy were determined.
Results: Alternative mRNA splicing of LI-cadherin was identified in half of the HCC specimens. Sequencing analysis indicated the loss of exon 7 in the spliced LI-cadherin gene. LI-cadherin mRNA was up-regulated from 2.58-fold to 800-fold in over 80% of HCC samples when compared with normal liver by quantitative PCR. Furthermore, nucleotide polymorphisms were identified in putative branch point at IVS6 + 35 (intron 6) as well as in coding sequence 651 (exon 6) in HCC tissues, which may affect alternative mRNA splicing. Clinically, those patients who harbored the alternative splicing of LI-cadherin were strongly associated with shorter overall survival time (P < 0.01) as well as higher incidences of tumor recurrences and venous infiltration (both P < 0.05) after hepatectomy.
Conclusions: Over-expression of LI-cadherin was frequently detected in liver cancer patients. Aberrant alternative splicing of LI-cadherin was detected in 50% of HCC specimens and its clinical significance hinted at early tumor recurrence and poor overall survival of HCC patients.
Collapse
Affiliation(s)
- Xiao Qi Wang
- 1Department of Surgery, University of Hong Kong, Pokfulam, Hong Kong and
| | - John M. Luk
- 1Department of Surgery, University of Hong Kong, Pokfulam, Hong Kong and
| | - Pauline P. Leung
- 1Department of Surgery, University of Hong Kong, Pokfulam, Hong Kong and
| | - Bonnie W. Wong
- 1Department of Surgery, University of Hong Kong, Pokfulam, Hong Kong and
| | - Eric J. Stanbridge
- 2Department of Microbiology and Molecular Genetics, University of California, Irvine, California
| | - Sheung Tat Fan
- 1Department of Surgery, University of Hong Kong, Pokfulam, Hong Kong and
| |
Collapse
|
528
|
Ben-Omran TI, Cerosaletti K, Concannon P, Weitzman S, Nezarati MM. A patient with mutations in DNA Ligase IV: Clinical features and overlap with Nijmegen breakage syndrome. Am J Med Genet A 2005; 137A:283-7. [PMID: 16088910 DOI: 10.1002/ajmg.a.30869] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The clinical phenotype of Ligase IV syndrome (LIG4 syndrome), an extremely rare autosomal recessive condition caused by mutations in the LIG4 gene, closely resembles that of Nijmegen breakage syndrome (NBS), and is characterized by microcephaly, characteristic facial features, growth retardation, developmental delay, and immunodeficiency. We report a 4(1/2)-year-old boy who presented with acute T-cell leukemia. The facial gestalt was strongly reminiscent of NBS. The patient died shortly after the onset of treatment for his T-cell leukemia. Subsequent chromosome breakage studies showed a high rate of breakage in a fibroblast culture. Radiosensitivity was assessed by a colony survival assay; the results showed radiosensitivity greater than is typically seen in NBS. Mutation screening of the NBS1 gene was negative. Sequencing of the LIG4 gene revealed a homozygous truncating mutation 2440 C>T (R814X). Although this mutation has been previously noted in LIG4 syndrome, this patient is the first reported homozygote for the mutation. In this study, we review the clinical features of this rare syndrome and provide suggestions for differential diagnosis.
Collapse
Affiliation(s)
- Tawfeg I Ben-Omran
- Division of Clinical and Metabolic Genetics, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
529
|
Abstract
All life on earth must cope with constant exposure to DNA-damaging agents such as the Sun's radiation. Highly conserved DNA-repair and cell-cycle checkpoint pathways allow cells to deal with both endogenous and exogenous sources of DNA damage. How much an individual is exposed to these agents and how their cells respond to DNA damage are critical determinants of whether that individual will develop cancer. These cellular responses are also important for determining toxicities and responses to current cancer therapies, most of which target the DNA.
Collapse
Affiliation(s)
- Michael B Kastan
- Department of Hematology-Oncology, St Jude Children's Research Hospital, 332 North Lauderdale Street, Memphis, Tennessee 38105, USA.
| | | |
Collapse
|
530
|
Stiff T, Reis C, Alderton GK, Woodbine L, O'Driscoll M, Jeggo PA. Nbs1 is required for ATR-dependent phosphorylation events. EMBO J 2004; 24:199-208. [PMID: 15616588 PMCID: PMC544916 DOI: 10.1038/sj.emboj.7600504] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2004] [Accepted: 11/12/2004] [Indexed: 01/11/2023] Open
Abstract
Nijmegen breakage syndrome (NBS) is characterised by microcephaly, developmental delay, characteristic facial features, immunodeficiency and radiosensitivity. Nbs1, the protein defective in NBS, functions in ataxia telangiectasia mutated protein (ATM)-dependent signalling likely facilitating ATM phosphorylation events. While NBS shares overlapping characteristics with ataxia telangiectasia, it also has features overlapping with ATR-Seckel (ATR: ataxia-telangiectasia and Rad3-related protein) syndrome, a subclass of Seckel syndrome mutated in ATR. We show that Nbs1 also facilitates ATR-dependent phosphorylation. NBS cell lines show a similar defect in ATR phosphorylation of Chk1, c-jun and p-53 in response to UV irradiation- and hydroxyurea (HU)-induced replication stalling. They are also impaired in ubiquitination of FANCD2 after HU treatment, which is ATR dependent. Following HU-induced replication arrest, NBS and ATR-Seckel cells show similarly impaired G2/M checkpoint arrest and an impaired ability to restart DNA synthesis at stalled replication forks. Moreover, NBS cells fail to retain ATR in the nucleus following HU treatment and extraction. Our findings suggest that Nbs1 functions in both ATR- and ATM-dependent signalling. We propose that the NBS clinical features represent the result of these combined defects.
Collapse
Affiliation(s)
- Tom Stiff
- Genome Damage and Stability Centre, University of Sussex, East Sussex, UK
| | - Caroline Reis
- Genome Damage and Stability Centre, University of Sussex, East Sussex, UK
| | - Gemma K Alderton
- Genome Damage and Stability Centre, University of Sussex, East Sussex, UK
| | - Lisa Woodbine
- Genome Damage and Stability Centre, University of Sussex, East Sussex, UK
| | - Mark O'Driscoll
- Genome Damage and Stability Centre, University of Sussex, East Sussex, UK
| | - Penny A Jeggo
- Genome Damage and Stability Centre, University of Sussex, East Sussex, UK
- Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton, East Sussex BN1 9RQ, UK. Tel.: +44 1273 678482; Fax: +44 1273 678121; E-mail:
| |
Collapse
|
531
|
Riballo E, Kühne M, Rief N, Doherty A, Smith GCM, Recio MJ, Reis C, Dahm K, Fricke A, Krempler A, Parker AR, Jackson SP, Gennery A, Jeggo PA, Löbrich M. A Pathway of Double-Strand Break Rejoining Dependent upon ATM, Artemis, and Proteins Locating to γ-H2AX Foci. Mol Cell 2004; 16:715-24. [PMID: 15574327 DOI: 10.1016/j.molcel.2004.10.029] [Citation(s) in RCA: 657] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2004] [Revised: 09/14/2004] [Accepted: 10/27/2004] [Indexed: 02/06/2023]
Abstract
The hereditary disorder ataxia telangiectasia (A-T) is associated with striking cellular radiosensitivity that cannot be attributed to the characterized cell cycle checkpoint defects. By epistasis analysis, we show that ataxia telangiectasia mutated protein (ATM) and Artemis, the protein defective in patients with RS-SCID, function in a common double-strand break (DSB) repair pathway that also requires H2AX, 53BP1, Nbs1, Mre11, and DNA-PK. We show that radiation-induced Artemis hyperphosphorylation is ATM dependent. The DSB repair process requires Artemis nuclease activity and rejoins approximately 10% of radiation-induced DSBs. Our findings are consistent with a model in which ATM is required for Artemis-dependent processing of double-stranded ends with damaged termini. We demonstrate that Artemis is a downstream component of the ATM signaling pathway required uniquely for the DSB repair function but dispensable for ATM-dependent cell cycle checkpoint arrest. The significant radiosensitivity of Artemis-deficient cells demonstrates the importance of this component of DSB repair to survival.
Collapse
Affiliation(s)
- Enriqueta Riballo
- Genome Damage and Stability Centre, University of Sussex, East Sussex, BN1 9RQ, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
532
|
Hall JG, Flora C, Scott CI, Pauli RM, Tanaka KI. Majewski osteodysplastic primordial dwarfism type II (MOPD II): natural history and clinical findings. Am J Med Genet A 2004; 130A:55-72. [PMID: 15368497 DOI: 10.1002/ajmg.a.30203] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A description of the clinical features of Majewski osteodysplastic primordial dwarfism type II (MOPD II) is presented based on 58 affected individuals (27 from the literature and 31 previously unreported cases). The remarkable features of MOPD II are: severe intrauterine growth retardation (IUGR), severe postnatal growth retardation; relatively proportionate head size at birth which progresses to true and disproportionate microcephaly; progressive disproportion of the short stature secondary to shortening of the distal and middle segments of the limbs; a progressive bony dysplasia with metaphyseal changes in the limbs; epiphyseal delay; progressive loose-jointedness with occasional dislocation or subluxation of the knees, radial heads, and hips; unusual facial features including a prominent nose, eyes which appear prominent in infancy and early childhood, ears which are proportionate, mildly dysplastic and usually missing the lobule; a high squeaky voice; abnormally, small, and often dysplastic or missing dentition; a pleasant, outgoing, sociable personality; and autosomal recessive inheritance. Far-sightedness, scoliosis, unusual pigmentation, and truncal obesity often develop with time. Some individuals seem to have increased susceptibility to infections. A number of affected individuals have developed dilation of the CNS arteries variously described as aneurysms and Moya Moya disease. These vascular changes can be life threatening, even in early years because of rupture, CNS hemorrhage, and strokes. There is variability between affected individuals even within the same family.
Collapse
Affiliation(s)
- Judith G Hall
- Department of Medical Genetics, UBC and Children's and Women's Health Centre of British Columbia Vancouver, British Columbia, Canada.
| | | | | | | | | |
Collapse
|
533
|
Abstract
The precise replication of the genome and the continuous surveillance of its integrity are essential for survival and the avoidance of various diseases. Cells respond to DNA damage by activating a complex network of the so-called checkpoint pathways to delay their cell-cycle progression and repair the defects. In this review we integrate findings on the emerging mechanisms of activation, the signalling pathways and the spatio-temporal organization of the intra-S-phase DNA-damage checkpoint and its impact on the cell-cycle machinery, and discuss its biological significance.
Collapse
Affiliation(s)
- Jiri Bartek
- Danish Cancer Society, Institute of Cancer Biology, Strandboulevarden 49, DK-2100 Copenhagen, Denmark.
| | | | | |
Collapse
|
534
|
|
535
|
|
536
|
|
537
|
|
538
|
|
539
|
Cell-cycle checkpoints and cancer. Nature 2004. [DOI: 10.1038/nature03097 and 3895=3895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
540
|
|
541
|
|
542
|
|
543
|
|
544
|
Cell-cycle checkpoints and cancer. Nature 2004. [DOI: 10.1038/nature03097 and 3895=3895# caxb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
545
|
Kastan MB, Bartek J. Cell-cycle checkpoints and cancer. Nature 2004. [DOI: 10.1038/nature03097 and 5099=4320# wslg] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
546
|
Cell-cycle checkpoints and cancer. Nature 2004. [DOI: 10.1038/nature03097 having 8015=8682-- gofs] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
547
|
|
548
|
Cell-cycle checkpoints and cancer. Nature 2004. [DOI: 10.1038/nature03097 and make_set(8502=8502,1072)# wpcd] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
549
|
|
550
|
Cell-cycle checkpoints and cancer. Nature 2004. [DOI: 10.1038/nature03097 having 7284=7284-- jylc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|