501
|
Grade M, Hummon AB, Camps J, Emons G, Spitzner M, Gaedcke J, Hoermann P, Ebner R, Becker H, Difilippantonio MJ, Ghadimi BM, Beissbarth T, Caplen NJ, Ried T. A genomic strategy for the functional validation of colorectal cancer genes identifies potential therapeutic targets. Int J Cancer 2011. [PMID: 20473941 DOI: 10.1002/ijc.25453.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Genes that are highly overexpressed in tumor cells can be required for tumor cell survival and have the potential to be selective therapeutic targets. In an attempt to identify such targets, we combined a functional genomics and a systems biology approach to assess the consequences of RNAi-mediated silencing of overexpressed genes that were selected from 140 gene expression profiles from colorectal cancers (CRCs) and matched normal mucosa. In order to identify credible models for in-depth functional analysis, we first confirmed the overexpression of these genes in 25 different CRC cell lines. We then identified five candidate genes that profoundly reduced the viability of CRC cell lines when silenced with either siRNAs or short-hairpin RNAs (shRNAs), i.e., HMGA1, TACSTD2, RRM2, RPS2 and NOL5A. These genes were further studied by systematic analysis of comprehensive gene expression profiles generated following siRNA-mediated silencing. Exploration of these RNAi-specific gene expression signatures allowed the identification of the functional space in which the five genes operate and showed enrichment for cancer-specific signaling pathways, some known to be involved in CRC. By comparing the expression of the RNAi signature genes with their respective expression levels in an independent set of primary rectal carcinomas, we could recapitulate these defined RNAi signatures, therefore, establishing the biological relevance of our observations. This strategy identified the signaling pathways that are affected by the prominent oncogenes HMGA1 and TACSTD2, established a yet unknown link between RRM2 and PLK1 and identified RPS2 and NOL5A as promising potential therapeutic targets in CRC.
Collapse
Affiliation(s)
- Marian Grade
- Department of General and Visceral Surgery, University Medicine Göttingen, Georg-August-University, Göttingen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
502
|
Grade M, Hummon AB, Camps J, Emons G, Spitzner M, Gaedcke J, Hoermann P, Ebner R, Becker H, Difilippantonio MJ, Ghadimi BM, Beissbarth T, Caplen NJ, Ried T. A genomic strategy for the functional validation of colorectal cancer genes identifies potential therapeutic targets. Int J Cancer 2011; 128:1069-79. [PMID: 20473941 DOI: 10.1002/ijc.25453] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Genes that are highly overexpressed in tumor cells can be required for tumor cell survival and have the potential to be selective therapeutic targets. In an attempt to identify such targets, we combined a functional genomics and a systems biology approach to assess the consequences of RNAi-mediated silencing of overexpressed genes that were selected from 140 gene expression profiles from colorectal cancers (CRCs) and matched normal mucosa. In order to identify credible models for in-depth functional analysis, we first confirmed the overexpression of these genes in 25 different CRC cell lines. We then identified five candidate genes that profoundly reduced the viability of CRC cell lines when silenced with either siRNAs or short-hairpin RNAs (shRNAs), i.e., HMGA1, TACSTD2, RRM2, RPS2 and NOL5A. These genes were further studied by systematic analysis of comprehensive gene expression profiles generated following siRNA-mediated silencing. Exploration of these RNAi-specific gene expression signatures allowed the identification of the functional space in which the five genes operate and showed enrichment for cancer-specific signaling pathways, some known to be involved in CRC. By comparing the expression of the RNAi signature genes with their respective expression levels in an independent set of primary rectal carcinomas, we could recapitulate these defined RNAi signatures, therefore, establishing the biological relevance of our observations. This strategy identified the signaling pathways that are affected by the prominent oncogenes HMGA1 and TACSTD2, established a yet unknown link between RRM2 and PLK1 and identified RPS2 and NOL5A as promising potential therapeutic targets in CRC.
Collapse
Affiliation(s)
- Marian Grade
- Department of General and Visceral Surgery, University Medicine Göttingen, Georg-August-University, Göttingen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
503
|
Wang EL, Qian ZR, Rahman MM, Yoshimoto K, Yamada S, Kudo E, Sano T. Increased expression of HMGA1 correlates with tumour invasiveness and proliferation in human pituitary adenomas. Histopathology 2011; 56:501-9. [PMID: 20459557 DOI: 10.1111/j.1365-2559.2010.03495.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
AIMS High-mobility group A1 (HMGA1) is highly expressed in various benign and malignant tumours. The development of pituitary adenoma in Hmga1 transgenic mice has been reported. However, no studies have investigated HMGA1 expression and its clinical significance in human pituitary adenomas. METHODS AND RESULTS Immunohistochemical expression of HMGA1 was analysed with respect to various clinicopathological factors in 95 pituitary adenomas. Nuclear expression of HMGA1 was observed in 62% of pituitary adenomas, whereas normal adenohypophysial tissues were negative. Although HMGA1 expression was frequently detected in clinically non-functioning adenomas - 90% of silent adrenocorticotropic hormone (ACTH), 76.2% of follicle-stimulating hormone/luteinizing hormone and 100% of null cell adenomas - it was also detected in 48.1% of growth hormone (GH), 60% of mixed GH/prolactin (PRL), 62.5% of PRL, 66.6% of thyroid-stimulating hormone and 37.5% of ACTH adenomas. HMGA1 expression was significantly higher in invasive adenomas or macroadenomas than in non-invasive adenomas or microadenomas (invasive versus non-invasive, P < 0.05; macroadenoma versus microadenoma, P < 0.05). In addition, HMGA1 showed the highest level in grade IV, more aggressive pituitary adenomas, than in grades I, II and III (IV versus I, P = 0.01; IV versus II, P = 0.01; IV versus III, P = 0.07). Furthermore, a significant correlation between HMGA1 expression and MIB-1 labelling index was observed (R = 0.368, P < 0.0002). CONCLUSIONS These findings suggest that HMGA1 up-regulation has an important oncogenic role in pituitary tumorigenesis, as well as being a novel molecular marker of tumour proliferation and invasiveness.
Collapse
Affiliation(s)
- Elaine Lu Wang
- Department of Human Pathology, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan
| | | | | | | | | | | | | |
Collapse
|
504
|
Yang GL, Zhang LH, Bo JJ, Hou KL, Cai X, Chen YY, Li H, Liu DM, Huang YR. Overexpression of HMGA2 in bladder cancer and its association with clinicopathologic features and prognosis HMGA2 as a prognostic marker of bladder cancer. EUROPEAN JOURNAL OF SURGICAL ONCOLOGY 2011; 37:265-71. [PMID: 21273026 DOI: 10.1016/j.ejso.2011.01.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Revised: 12/14/2010] [Accepted: 01/04/2011] [Indexed: 10/18/2022]
Abstract
PURPOSE To examine HMGA2 expression and investigate its clinical and prognostic significance in human urothelial bladder cancer (BUC). METHODS We detected HMGA2 mRNA and protein expression by quantitative reverse-transcription polymerase chain reaction and western blotting, respectively in 44 frozen bladder cancer tissues and 18 adjacent normal bladder tissues. HMGA2 protein expression was assessed by immunohistochemical analysis of 148 paraffin-embedded specimens of human BUC and 30 specimens of adjacent normal bladder tissue. Correlations between HMGA2 and clinicopathologic features and prognosis were tested by statistical analyses. RESULTS HMGA2 mRNA and protein levels in bladder cancer samples were significantly increased compared with adjacent normal bladder tissues (P < 0.001). mRNA overexpression correlated with high stage and grade of the bladder cancer (P < 0.001 and P = 0.002 respectively). HMGA2 protein expression was negative in all normal urothelial tissue samples, but positive in 52% (77/148) of bladder cancers (P < 0.001). HMGA2 expression correlated with tumor grade and stage (P < 0.001 and P = 0.003 respectively), Overexpression of HMGA2 protein in non-muscle-invasive bladder cancer was significantly associated with shorter recurrence-free survival (P < 0.001), and progression-free survival (P = 0.0004). Multivariate analysis showed that HMGA2 expression was an independent prognostic factor for both tumor recurrence (P < 0.001) and tumor progression (P = 0.006). CONCLUSIONS HMGA2 is up-regulated in bladder cancer at both the transcriptional and translational levels compared with normal bladder tissue, HMGA2 protein is thus a potential prognostic marker for predicting tumor recurrence and progression.
Collapse
Affiliation(s)
- G L Yang
- Department of Urology, Ren Ji Hospital, Shanghai Jiao Tong University, China
| | | | | | | | | | | | | | | | | |
Collapse
|
505
|
Wang X, Liu X, Li AYJ, Chen L, Lai L, Lin HH, Hu S, Yao L, Peng J, Loera S, Xue L, Zhou B, Zhou L, Zheng S, Chu P, Zhang S, Ann DK, Yen Y. Overexpression of HMGA2 promotes metastasis and impacts survival of colorectal cancers. Clin Cancer Res 2011; 17:2570-80. [PMID: 21252160 DOI: 10.1158/1078-0432.ccr-10-2542] [Citation(s) in RCA: 147] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE This study aims to address the hypothesis that the high-mobility group A2 (HMGA2), an oncofetal protein, relates to survivability and serves as a prognostic biomarker for colorectal cancer (CRC). EXPERIMENTAL DESIGN This is a retroprospective multiple center study. The HMGA2 expression level was determined by performing immunohistochemistry on surgical tissue samples of 89 CRCs from a training set and 191 CRCs from a validation set. The Kaplan-Meier analysis and COX proportional hazard model were employed to analyze the survivability. RESULTS Multivariate logistic analysis indicated that the expression of HMGA2 significantly correlates with distant metastasis in training set (odds ratio, OR = 3.53, 95% CI: 1.37-9.70) and validation set (OR = 6.38, 95% CI: 1.47-43.95). Survival analysis revealed that the overexpression of HMGA2 is significantly associated with poor survival of CRC patients (P < 0.05). The adjusted HRs for overall survival were 2.38 (95% CI: 1.30-4.34) and 2.14 (95% CI: 1.21-3.79) in training and validation sets, respectively. Further investigation revealed that HMGA2 delays the clearance of γ-H2AX in HCT-116 and SW480 cells post γ-irradiation, which supports our finding that CRC patients with HMAG2-positive staining in primary tumors had augmented the efficacy of adjuvant radiotherapy (HR = 0.18, 95% CI: 0.04-0.63). CONCLUSION Overexpression of HMGA2 is associated with metastasis and unequivocally occurred in parallel with reduced survival rates of patients with CRC. Therefore, HMGA2 may potentially serve as a biomarker for predicting aggressive CRC with poor survivability and as an indicator for better response of radiotherapy.
Collapse
Affiliation(s)
- Xiaochen Wang
- Departments of Surgical Oncology and Pathology, Cancer Institute, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
506
|
Value and limitation of immunohistochemical expression of HMGA2 in mesenchymal tumors: about a series of 1052 cases. Mod Pathol 2010; 23:1657-66. [PMID: 20834238 DOI: 10.1038/modpathol.2010.174] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The high mobility group A (HMGA2) gene encodes a protein that alters chromatin structure and regulates the transcription of many genes; it is implicated in both benign and malignant neoplasias, but its rearrangements are a feature of development of several mesenchymal tumors. Given its implication in these tumors and particularly adipocytic tumors, and the availability of antibodies usable on paraffin-embedded tissues, we evaluated the immunohistochemical expression of this gene in a series of 1052 mesenchymal tumors. The objective was to define the value and limitations of HMGA2 immunohistochemical expression for histotyping, and compare with molecular data reported in the literature. We thus analyzed 880 cases on tissue microarray and 182 cases on whole sections (211 adipocytic tumors, 628 sarcomas, 213 benign mesenchymal tumors, and 10 normal adipose tissues). A nuclear immunostaining was detected in 86% of conventional and intramuscular lipomas, in 86% of well-differentiated liposarcomas and in 67% of dedifferentiated liposarcomas, as opposed to 16% of other benign adipose tumors and to 15% of non-well-differentiated liposarcoma/dedifferentiated liposarcoma sarcomas. Among benign mesenchymal tumors and lesions, it was detected in 90% of nodular fasciitis and in 88% of benign fibrous histiocytomas with respective specificities of 85 and 100%, and in 90% of aggressive angiomyxoma, contrary to other vulvovaginal tumor types, which expressed HMGA2 only rarely. The normal adipose tissue was always negative for HMGA2. Although not specific, immunohistochemical detection of the HMGA2 protein is helpful for the distinction of normal adipose tissue from well-differentiated lesions, particularly on biopsy or on re-excision. It is less sensitive than MDM2/CDK4 for dedifferentiated liposarcomas diagnosis, but it appears more specific to distinguish dedifferentiated liposarcomas from other poorly differentiated sarcomas. Finally, and may be more importantly, HMGA2 is useful for the diagnosis of benign fibrous histiocytoma, nodular fasciitis and vulvovaginal benign mesenchymal tumors.
Collapse
|
507
|
Differential expression and prognostic value of HMGA1 in pancreatic head and periampullary cancer. Eur J Cancer 2010; 46:3393-9. [DOI: 10.1016/j.ejca.2010.07.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Accepted: 07/15/2010] [Indexed: 11/22/2022]
|
508
|
Eilebrecht S, Brysbaert G, Wegert T, Urlaub H, Benecke BJ, Benecke A. 7SK small nuclear RNA directly affects HMGA1 function in transcription regulation. Nucleic Acids Res 2010; 39:2057-72. [PMID: 21087998 PMCID: PMC3064786 DOI: 10.1093/nar/gkq1153] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Non-coding (nc) RNAs are increasingly recognized to play important regulatory roles in eukaryotic gene expression. The highly abundant and essential 7SK ncRNA has been shown to negatively regulate RNA Polymerase II transcription by inactivating the positive transcription elongation factor b (P-TEFb) in cellular and Tat-dependent HIV transcription. Here, we identify a more general, P-TEFb-independent role of 7SK RNA in directly affecting the function of the architectural transcription factor and chromatin regulator HMGA1. An important regulatory role of 7SK RNA in HMGA1-dependent cell differentiation and proliferation regulation is uncovered with the identification of over 1500 7SK-responsive HMGA1 target genes. Elevated HMGA1 expression is observed in nearly every type of cancer making the use of a 7SK substructure in the inhibition of HMGA1 activity, as pioneered here, potentially useful in therapy. The 7SK-HMGA1 interaction not only adds an essential facet to the comprehension of transcriptional plasticity at the coupling of initiation and elongation, but also might provide a molecular link between HIV reprogramming of cellular gene expression-associated oncogenesis.
Collapse
Affiliation(s)
- Sebastian Eilebrecht
- Institut des Hautes Études Scientifiques & Centre National de la Recherche Scientifique USR3078, 35 route de Chartres, 91440 Bures sur Yvette, France
| | | | | | | | | | | |
Collapse
|
509
|
Expression of a truncated Hmga1b gene induces gigantism, lipomatosis and B-cell lymphomas in mice. Eur J Cancer 2010; 47:470-8. [PMID: 21044834 DOI: 10.1016/j.ejca.2010.09.045] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Revised: 09/23/2010] [Accepted: 09/30/2010] [Indexed: 11/20/2022]
Abstract
HMGA1 gene rearrangements have been frequently described in human lipomas. In vitro studies suggest that HMGA1 proteins have a negative role in the control of adipocyte cell growth, and that HMGA1 gene truncation acts in a dominant-negative fashion. Therefore, to define better the role of the HMGA1 alterations in the generation of human lipomas, we generated mice carrying an Hmga1b truncated (Hmga1b/T) gene. These mice develop a giant phenotype together with a drastic expansion of the retroperitoneal and subcutaneous white adipose tissue. We show that the activation of the E2F pathway likely accounts, at least in part, for this phenotype. Interestingly, the Hmga1b/T mice also develop B-cell lymphomas similar to that occurring in Hmga1-knockout mice, supporting a dominant-negative role of the Hmga1b/T mutant also in vivo.
Collapse
|
510
|
|
511
|
Helmke BM, Markowski DN, Müller MH, Sommer A, Müller J, Möller C, Bullerdiek J. HMGA proteins regulate the expression of FGF2 in uterine fibroids. Mol Hum Reprod 2010; 17:135-42. [PMID: 20926602 DOI: 10.1093/molehr/gaq083] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In human fibroids genes encoding the high-mobility proteins containing the 'AT-hook' DNA-binding motif (HMGA) are frequently affected by non-random chromosomal rearrangements. Thus, the different proteins and their derivatives resulting from these genomic rearrangements can be assumed to be involved in the genesis of these tumors by activation of largely identical downstream pathways. Constructs encoding HMGA proteins and their relevant derivatives were overexpressed in human myometrial cells, and RNA isolated from these cells was hybridized to filter arrays. Four genes were either up- or down-regulated at least 2-fold after overexpression of either of the HMGA genes and their derivatives. FGF2 (fibroblast growth factor 2) was one of these genes, and we were then able to show by microarray analyses that tumors with rearrangements of the HMGA2 locus (n = 8) expressed significantly higher levels of FGF2 than those with an apparently normal karyotype (n = 47). Accordingly, by quantitative real-time PCR uterine leiomyomas with rearrangements of the HMGA2 locus were found to express significantly higher levels of FGF2 than those with an apparently normal karyotype with a linear relationship between the expression of FGF2 and the level of HMGA2 overexpression as well as the tumor size. The results of western blot analyses confirmed these findings. Moreover, stimulation of myometrial tissue by FGF1, a strong inducer of HMGA2, leads to an increase of HMGA2 as well as FGF2 expression. In conclusion, the results contribute to the understanding of the association between the overexpression of HMGA proteins, the regulation of FGF2 expression and the size of fibroids.
Collapse
|
512
|
Joetzke AE, Sterenczak KA, Eberle N, Wagner S, Soller JT, Nolte I, Bullerdiek J, Murua Escobar H, Simon D. Expression of the high mobility group A1 (HMGA1) and A2 (HMGA2) genes in canine lymphoma: analysis of 23 cases and comparison to control cases. Vet Comp Oncol 2010; 8:87-95. [PMID: 20579321 DOI: 10.1111/j.1476-5829.2010.00207.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Overexpression of high mobility group A (HMGA) genes was described as a prognostic marker in different human malignancies, but its role in canine haematopoietic malignancies was unknown so far. The objective of this study was to analyse HMGA1 and HMGA2 gene expression in lymph nodes of canine lymphoma patients. The expression of HMGA1 and HMGA2 was analysed in lymph node samples of 23 dogs with lymphoma and three control dogs using relative quantitative real-time RT-PCR. Relative quantity of HMGA1 was significantly higher in dogs with lymphoma compared with reference samples. HMGA2 expression did not differ between lymphoma and control dogs. With the exception of immunophenotype, comparison of disease parameters did not display any differences in HMGA1 and HMGA2 expression. The present findings indicate a role of HMGA genes in canine lymphoma. This study represents the basis for future veterinary and comparative studies dealing with their diagnostic, prognostic and therapeutic values.
Collapse
Affiliation(s)
- A E Joetzke
- Small Animal Clinic and Research Cluster of Excellence 'REBIRTH', University of Veterinary Medicine Hannover, Hannover, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
513
|
Velagaleti GVN, Tonk VS, Hakim NM, Wang X, Zhang H, Erickson-Johnson MR, Medeiros F, Oliveira AM. Fusion of HMGA2 to COG5 in uterine leiomyoma. ACTA ACUST UNITED AC 2010; 202:11-6. [PMID: 20804914 DOI: 10.1016/j.cancergencyto.2010.06.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Accepted: 06/08/2010] [Indexed: 01/12/2023]
Abstract
Uterine leiomyomas are smooth muscle tumors most commonly seen in middle-aged women. Approximately 10% of these tumors contain rearrangements of the chromatin-remodeling gene HMGA2 at the chromosome band 12q14.3. Herein, we report on a uterine leiomyoma with a novel HMGA2 fusion gene. A 44-year-old woman presented with a 20-cm mass uterine leiomyoma. From a histological standpoint, the tumor exhibited extensive hyalinization, very low mitotic activity (<1/10 HPH), and no cytologic atypia. Smooth muscle differentiation was confirmed by the expression of smooth muscle actin and desmin. Standard cytogenetic analysis showed the reciprocal translocation t(7;12)(q31.2;q14.3). Fluorescence in situ hybridization analysis confirmed a balanced rearrangement of the HMGA2 locus in 80% of the cells. 3'RACE reverse-transcription polymerase chain reaction identified the fusion of HMGA2 exon 4 to the COG5 locus on 7q31 (component of oligomeric golgi complex 5 isoform). The fusion sequence is predicted to encode a 96-amino acid chimeric protein that retains all three DNA-binding domains (AT hooks) of HMGA2, but that is shorter than the original HMGA2 protein. Since the general structure of the fusion gene is similar to other previously described HMGA2 fusions, its biologic activity is predicted to be likely similar.
Collapse
|
514
|
Medeiros F, Araujo AR, Erickson-Johnson MR, Kashyap PC, Dal Cin P, Nucci M, Wang X, Bell DA, Oliveira AM. HMGA1 and HMGA2 rearrangements in mass-forming endometriosis. Genes Chromosomes Cancer 2010; 49:630-4. [PMID: 20461755 DOI: 10.1002/gcc.20772] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Endometriosis is a common gynecologic disorder characterized by ectopic endometrium associated with pelvic pain and infertility. The pathogenesis of endometriosis is unclear, and several genetic, endocrine, immune, and environmental agents have been studied as putative causative factors. However, consistent somatic genetic alterations have not been identified. Rarely, endometriosis presents as a mass lesion with an infiltrative pattern reminiscent of malignancy. We describe cytogenetic and molecular cytogenetic findings of mass-forming endometriosis. The index case of pulmonary endometriosis underwent conventional and molecular cytogenetics analysis. In addition, 16 cases of mass-forming endometriosis, 11 cases of usual endometriosis, and six endometriomas were investigated by fluorescence in situ hybridization (FISH) for HMGA1 and HMGA2 loci, performed on paraffin-embedded thin tissue sections with custom-designed probes. The index patient had an endometriotic lung nodule, with a 46,XX, t(5;6)(q13;p21) karyotype and HMGA1 rearrangement by FISH. A second patient had decidualized endometriosis forming a large abdominal mass and HMGA1 rearrangement by FISH. Of the 15 other cases of mass-forming endometriosis, one had HMGA1 rearrangement and two had HMGA2 rearrangement. The rearrangements were found in the stromal component exclusively. None of the usual endometriosis cases or endometriomas had HMGA1 or HMGA2 rearrangements. In conclusion, mass-forming endometriosis is an uncommon subset of endometriosis that harbors HMGA1 or HMGA2 rearrangements in up to 29% of cases. The present findings support the concept that endometriosis is clonal and that rearrangement of HMGA genes likely contributes to its pathogenesis.
Collapse
Affiliation(s)
- Fabiola Medeiros
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
515
|
Xekouki P, Azevedo M, Stratakis CA. Anterior pituitary adenomas: inherited syndromes, novel genes and molecular pathways. Expert Rev Endocrinol Metab 2010; 5:697-709. [PMID: 21264206 PMCID: PMC3024595 DOI: 10.1586/eem.10.47] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Pituitary adenomas are common tumors. Although rarely malignant, pituitary adenomas cause significant morbidity due to mass effects and/or hormonal hypo- and/or hyper-secretion. Molecular understanding of pituitary adenoma formation is essential for the development of medical therapies and the treatment of post-operative recurrences. In general, mutations in genes involved in genetic syndromes associated with pituitary tumors are not a common finding in sporadic lesions. By contrast, multiple endocrine neoplasia type 1 (MEN-1) and aryl hydrocarbon receptor-interacting protein (AIP) mutations may be more frequent among specific subgroups of patients, such as children and young adults, with growth hormone-producing adenomas. In this article, we present the most recent data on the molecular pathogenesis of pituitary adenomas and discuss some of the most recent findings from our laboratory. Guidelines for genetic screening and clinical counseling of patients with pituitary tumors are provided.
Collapse
Affiliation(s)
- Paraskevi Xekouki
- SEGEN, PDEGEN & Pediatric Endocrinology Program, NICHD, NIH, Building 10, CRC (East Laboratories), Room 1-3330, 10 Center Drive, MSC1103, Bethesda, MD 20892, USA
| | - Monalisa Azevedo
- SEGEN, PDEGEN & Pediatric Endocrinology Program, NICHD, NIH, Building 10, CRC (East Laboratories), Room 1-3330, 10 Center Drive, MSC1103, Bethesda, MD 20892, USA
| | - Constantine A Stratakis
- SEGEN, PDEGEN & Pediatric Endocrinology Program, NICHD, NIH, Building 10, CRC (East Laboratories), Room 1-3330, 10 Center Drive, MSC1103, Bethesda, MD 20892, USA
| |
Collapse
|
516
|
Sato K, Terai K, Ozaki M, Ueda Y, Katsuda S. Odontogenic myxofibroma with HMGA2 overexpression and HMGA2 rearrangement. Pathol Int 2010; 60:760-4. [DOI: 10.1111/j.1440-1827.2010.02589.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
517
|
Malonia SK, Sinha S, Lakshminarasimhan P, Singh K, Jalota-Badhwar A, Rampalli S, Kaul-Ghanekar R, Chattopadhyay S. Gene regulation by SMAR1: Role in cellular homeostasis and cancer. Biochim Biophys Acta Rev Cancer 2010; 1815:1-12. [PMID: 20709157 DOI: 10.1016/j.bbcan.2010.08.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2010] [Revised: 08/04/2010] [Accepted: 08/06/2010] [Indexed: 12/22/2022]
Abstract
Changes in the composition of nuclear matrix associated proteins contribute to alterations in nuclear structure, one of the major phenotypes of malignant cancer cells. The malignancy-induced changes in this structure lead to alterations in chromatin folding, the fidelity of genome replication and gene expression programs. The nuclear matrix forms a scaffold upon which the chromatin is organized into periodic loop domains called matrix attachment regions (MAR) by binding to various MAR binding proteins (MARBPs). Aberrant expression of MARBPs modulates the chromatin organization and disrupt transcriptional network that leads to oncogenesis. Dysregulation of nuclear matrix associated MARBPs has been reported in different types of cancers. Some of these proteins have tumor specific expression and are therefore considered as promising diagnostic or prognostic markers in few cancers. SMAR1 (scaffold/matrix attachment region binding protein 1), is one such nuclear matrix associated protein whose expression is drastically reduced in higher grades of breast cancer. SMAR1 gene is located on human chromosome 16q24.3 locus, the loss of heterozygosity (LOH) of which has been reported in several types of cancers. This review elaborates on the multiple roles of nuclear matrix associated protein SMAR1 in regulating various cellular target genes involved in cell growth, apoptosis and tumorigenesis.
Collapse
|
518
|
Kulda V, Pesta M, Topolcan O, Liska V, Treska V, Sutnar A, Rupert K, Ludvikova M, Babuska V, Holubec L, Cerny R. Relevance of miR-21 and miR-143 expression in tissue samples of colorectal carcinoma and its liver metastases. ACTA ACUST UNITED AC 2010; 199:21-3. [PMID: 20620599 DOI: 10.1016/j.cancergencyto.2010.01.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Accepted: 01/17/2010] [Indexed: 01/06/2023]
Abstract
MicroRNAs, which are endogenously expressed regulatory noncoding RNAs, have an altered expression in colorectal cancer. The aim of our study was to assess the relationship of miR-21 and miR-143 expression to the prognostic/clinicopathological features of colorectal carcinoma (CRC) and colorectal liver metastases (CLM). The estimation was performed in 46 paired (tumor and control) tissue samples of CRC. Further, we studied 30 tissue samples of CLM. MiR-21 and miR-143 expressions were quantified by using the quantitative reverse transcription polymerase chain reaction method. Relation of miR-21 and miR-143 expression to disease-free interval (DFI) (Wilcoxon; P = 0.0026 and P = 0.0191, respectively) was recorded. There was shorter DFI in patients with a higher expression of miR-21 and, surprisingly, also in patients with a higher expression of miR-143, which is a putative tumor suppressor. There was a higher expression of miR-21 and lower expression of miR-143 in CRC tissue in comparison with adjacent normal colon tissue (P < 0.0001; P < 0.0001, respectively). Similarly, we observed a higher expression of miR-21 and a lower expression of miR-143 in CLM in comparison with normal colon tissue (P < 0.0001; P < 0.0001, respectively). Our results support the hypothesis about oncogenic function of miR-21 and show its relation to DFI. The role of miR-143 in carcinogenesis seems to be more complex.
Collapse
Affiliation(s)
- Vlastimil Kulda
- Department of Biochemistry, Faculty of Medicine in Pilsen, Charles University in Prague, Czech Republic
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
519
|
Foubert E, De Craene B, Berx G. Key signalling nodes in mammary gland development and cancer. The Snail1-Twist1 conspiracy in malignant breast cancer progression. Breast Cancer Res 2010; 12:206. [PMID: 20594364 PMCID: PMC2917026 DOI: 10.1186/bcr2585] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Breast cancer is the most common cancer among women, and despite significant advances in diagnosing and treating it, metastatic spread of cancer cells results in a high mortality rate. Epithelial-to-mesenchymal transition (EMT) is an embryonic program in which epithelial cells lose their characteristics and gain mesenchymal features. Therefore, EMT might play a very important role during malignant tumour progression. In this review we summarise recent advances in breast cancer research with a particular focus on the transcription factors Snail1 and Twist1. Besides discussing the role of EMT in normal mammary gland development, we describe regulatory mechanisms involving newly discovered upstream regulators and microRNAs, the association of EMT with breast cancer stem cells, and the involvement of the tumour microenvironment in breast cancer progression.
Collapse
Affiliation(s)
- Ellen Foubert
- Molecular and Cellular Oncology Unit, Department for Molecular Biomedical Research, VIB, Ghent University,Ghent, Belgium.
| | | | | |
Collapse
|
520
|
Pallante P, Terracciano L, Carafa V, Schneider S, Zlobec I, Lugli A, Bianco M, Ferraro A, Sacchetti S, Troncone G, Fusco A, Tornillo L. The loss of the CBX7 gene expression represents an adverse prognostic marker for survival of colon carcinoma patients. Eur J Cancer 2010; 46:2304-13. [PMID: 20542683 DOI: 10.1016/j.ejca.2010.05.011] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Revised: 04/28/2010] [Accepted: 05/06/2010] [Indexed: 10/19/2022]
Abstract
We have previously shown that CBX7 expression is associated with a more malignant phenotype in thyroid cancer. On this basis, we decided to investigate its possible prognostic value in colorectal cancer (CRC). CBX7 expression has been analysed by immunohistochemistry in tissue microarray (TMA) specimens obtained from a large series of sporadic CRC resections (n=1420). The CBX7 expression data have been correlated with several clinico-pathological parameters. CBX7 expression is reduced or absent in a significant number of CRC samples in comparison to the normal colonic mucosa and the loss of CBX7 expression correlates with a poor outcome of CRC (p<0.001). The block of CBX7 expression seems to occur at a transcriptional level since quantitative RT-PCR analysis showed a reduced CBX7-specific mRNA levels in CRC samples versus normal counterpart tissue (up to more than 50-fold). Finally, the restoration of CBX7 expression in two CRC cell lines reduces their proliferation rate suggesting a role of the loss of CBX7 expression in the progression step of colon carcinogenesis. Therefore, the data reported here indicate that the evaluation of CBX7 expression may represent a valid tool in the prognosis of colon cancer since a reduced survival of CRC patients is associated with the loss of CBX7 expression.
Collapse
Affiliation(s)
- Pierlorenzo Pallante
- Istituto di Endocrinologia ed Oncologia Sperimentale del CNR, c/o Dipartimento di Biologia e Patologia Cellulare e Molecolare, Facoltà di Medicina e Chirurgia di Napoli, Università degli Studi di Napoli Federico II, via Pansini 5, 80131 Naples, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
521
|
Esposito F, Tornincasa M, Chieffi P, De Martino I, Pierantoni GM, Fusco A. High-mobility group A1 proteins regulate p53-mediated transcription of Bcl-2 gene. Cancer Res 2010; 70:5379-88. [PMID: 20530667 DOI: 10.1158/0008-5472.can-09-4199] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We have previously described a mechanism through which the high-mobility group A1 (HMGA1) proteins inhibit p53-mediated apoptosis by delocalizing the p53 proapoptotic activator homeodomain-interacting protein kinase 2 from the nucleus to the cytoplasm. By this mechanism, HMGA1 modulates the transcription of p53 target genes such as Mdm2, p21(waf1), and Bax, inhibiting apoptosis. Here, we report that HMGA1 antagonizes the p53-mediated transcriptional repression of another apoptosis-related gene, Bcl-2, suggesting a novel mechanism by which HMGA1 counteracts apoptosis. Moreover, HMGA1 overexpression promotes the reduction of Brn-3a binding to the Bcl-2 promoter, thereby blocking the Brn-3a corepressor function on Bcl-2 expression following p53 activation. Consistently, a significant direct correlation between HMGA1 and Bcl-2 overexpression has been observed in human breast carcinomas harboring wild-type p53. Therefore, this study suggests a novel mechanism, based on Bcl-2 induction, by which HMGA1 overexpression contributes to the escape from apoptosis leading to neoplastic transformation.
Collapse
Affiliation(s)
- Francesco Esposito
- Istituto di Endocrinologia ed Oncologia Sperimentale del CNR c/o Università degli Studi di Napoli Federico II, Naples, Italy
| | | | | | | | | | | |
Collapse
|
522
|
Mahajan A, Liu Z, Gellert L, Zou X, Yang G, Lee P, Yang X, Wei JJ. HMGA2: a biomarker significantly overexpressed in high-grade ovarian serous carcinoma. Mod Pathol 2010; 23:673-81. [PMID: 20228781 DOI: 10.1038/modpathol.2010.49] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Ovarian carcinoma consists of a group of histologically heterogeneous diseases involving distinct tumorigenic pathways. High-grade papillary serous carcinoma of the ovary is commonly associated with p53 mutations. HMGA2, an oncofetal protein, is found to be overexpressed in ovarian cancer. To study the function of HMGA2 in ovarian cancer, it is important to know which subtypes of ovarian cancer are associated with HMGA2 overexpression. In this study, we collected six different types of ovarian cancer and examined HMGA2 expression by immunohistochemistry, along with HMGA1, p53 and Ki-67. We found that HMGA2 overexpression was significantly higher in high-grade papillary serous carcinoma (64%) and carcinosarcoma (60%) than in other types of ovarian cancers (7-23%). HMGA2 overexpression was moderately associated with dominant p53 mutations (R=0.51). In addition, the microRNA in situ analysis revealed that let-7b, the HMGA2-negative regulators, were significantly lost in high-grade serous carcinoma. Our findings suggest that HMGA2 is an important molecular change significantly related to high-grade papillary serous carcinoma and is less common in other histological types of ovarian cancer.
Collapse
Affiliation(s)
- Aparna Mahajan
- Department of Pathology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | | | | | | | | | | | | | | |
Collapse
|
523
|
Zhang Q, Wang Y. HMG modifications and nuclear function. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2010; 1799:28-36. [PMID: 20123066 DOI: 10.1016/j.bbagrm.2009.11.009] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Revised: 10/26/2009] [Accepted: 11/03/2009] [Indexed: 12/26/2022]
Abstract
High mobility group (HMG) proteins assume important roles in regulating chromatin dynamics, transcriptional activities of genes and other cellular processes. Post-translational modifications of HMG proteins can alter their interactions with DNA and proteins, and consequently, affect their biological activities. Although the mechanisms through which these modifications are involved in regulating biological processes in different cellular contexts are not fully understood, new insights into these modification "codes" have emerged from the increasing appreciation of the functions of these proteins. In this review, we focus on the chemical modifications of mammalian HMG proteins and highlight their roles in nuclear functions.
Collapse
Affiliation(s)
- Qingchun Zhang
- Department of Chemistry, University of California, Riverside, CA 92521-0403, USA
| | | |
Collapse
|
524
|
Peluso S, Chiappetta G. High-Mobility Group A (HMGA) Proteins and Breast Cancer. ACTA ACUST UNITED AC 2010; 5:81-85. [PMID: 20847819 DOI: 10.1159/000297717] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The high-mobility group A (HMGA) protein family includes HMGA1a, HMGA1b and HMGA1c, which are encoded by the same gene through alternative splicing, and the closely related HMGA2 protein. HMGA proteins have been found to be abundant in several malignant neoplasias, including colorectal, prostate, cervical, lung, thyroid and breast carcinoma. HMGA proteins can be ideal candidates for the identification of new prognosis and diagnosis factors with non-invasive methods. To provide some clarity regarding the abundance of articles on this topic, here we focus on the relationship between HMGA proteins and breast cancer and their clinical perspective in the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Silvia Peluso
- Istituto Nazionale dei Tumori, Fondazione Pascale, Naples, Italy
| | | |
Collapse
|
525
|
Aiello A, Pandini G, Sarfstein R, Werner H, Manfioletti G, Vigneri R, Belfiore A. HMGA1 protein is a positive regulator of the insulin-like growth factor-I receptor gene. Eur J Cancer 2010; 46:1919-26. [PMID: 20335021 DOI: 10.1016/j.ejca.2010.02.050] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Accepted: 02/26/2010] [Indexed: 11/16/2022]
Abstract
The IGF-I receptor (IGF-IR) is often overexpressed in cancer and is believed to play a crucial role in cancer progression. High Mobility Group A1 (HMGA1) is a non-histone chromatin protein that has the ability to regulate gene expression through DNA binding and involvement in enhanceosome complexes. HMGA1 is expressed at low level in adult differentiated cells, whereas it is expressed at high level in embryonic and malignant cells. We evaluated whether the HMGA1 aberrant expression has a role in IGF-IR overexpression in cancer. We found that HMGA1 silencing induces a marked decrease in IGF-IR expression in various human cancer cell lines. Conversely, forced HMGA1 overexpression in cells with low endogenous HMGA1 levels was associated with IGF-IR upregulation. HMGA1 silencing reduced igf-ir promoter activity whereas forced HMGA1 expression increased it. Using the chromatin immunoprecipitation assay, HMGA1 protein was found to bind to the igf-ir promoter. Moreover, HMGA1 was found to associate with both p53 and Sp1, two major regulators of igf-ir gene transcription and to antagonise the p53 inhibitory activity while enhancing the Sp1 stimulatory activity. Our data indicate, therefore, that HMGA1 protein is a positive regulator of IGF-IR expression and that HMGA1 overexpression may contribute to IGF-IR dysregulation in cancer cells.
Collapse
Affiliation(s)
- Aurora Aiello
- Department of Clinical and Experimental Medicine, Endocrinology, University of Catanzaro, 88100 Catanzaro, Italy
| | | | | | | | | | | | | |
Collapse
|
526
|
Chen B, Young J, Leng F. DNA bending by the mammalian high-mobility group protein AT hook 2. Biochemistry 2010; 49:1590-5. [PMID: 20108983 DOI: 10.1021/bi901881c] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The mammalian high-mobility group protein AT hook 2 (HMGA2) is a DNA binding protein that specifically recognizes the minor groove of AT-rich DNA sequences. Disruption of its expression pattern is directly linked to oncogenesis and obesity. In this paper, we constructed a new plasmid pBendAT to study HMGA2-induced DNA bending. pBendAT carries a 230 bp DNA segment containing five pairs of restriction enzyme sites, which can be used to produce a set of DNA fragments of identical length to study protein-induced DNA bending. The DNA fragments of identical length can also be generated using PCR amplification. Since pBendAT does not contain more than three consecutive AT base pairs, it is suitable for the assessment of DNA bending induced by proteins recognizing AT-rich DNA sequences. Indeed, using pBendAT, we demonstrated that HMGA2 is a DNA bending protein and bends all three tested DNA binding sequences of HMGA2, SELEX1, SELEX2, and PRDII. The DNA bending angles were estimated to be 34.2 degrees , 33.5 degrees , and 35.4 degrees , respectively.
Collapse
Affiliation(s)
- Bo Chen
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, Florida 33199, USA
| | | | | |
Collapse
|
527
|
Tay Y, Peter S, Rigoutsos I, Barahona P, Ahmed S, Dröge P. Insights into the regulation of a common variant of HMGA2 associated with human height during embryonic development. Stem Cell Rev Rep 2010; 5:328-33. [PMID: 20058197 DOI: 10.1007/s12015-009-9095-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Early genetic studies in the mouse and chicken identified the HMGA oncogene as a candidate that regulates body height. Subsequent genome-wide SNP studies revealed a significant association of rs1042725 genotypes CT and CC in the 3' UTR of HMGA2 with human height. Together, these studies indicated that HMGA2 expression levels during prenatal development might be a critical factor that contributes to the height phenotype. In the present study, we sought to gain insight into the regulation of HMGA2 during human embryonic development and provide evidence that the rs1042725 genotype is unlikely to affect HMGA2 levels in pluripotent human embryonic stem cells (hESCs). This implies that hESCs in the inner cell mass of blastocysts are most likely not involved in determining the human height phenotype associated with this SNP. By applying a computational approach and cell-based reporter assays, we then identified miR-196b as a candidate microRNA that could contribute to SNP-specific expression of HMGA2 during human prenatal development. We briefly discuss this result in the context of other known functions for miR-196b during vertebrate development.
Collapse
Affiliation(s)
- Yvonne Tay
- Neural Stem Cells, Institute of Medical Biology, Agency for Science Technology and Research (A*STAR), 8A Biomedical Grove, #06-06 Immunos, Singapore 138648, Singapore
| | | | | | | | | | | |
Collapse
|
528
|
Mansueto G, Forzati F, Ferraro A, Pallante P, Bianco M, Esposito F, Iaccarino A, Troncone G, Fusco A. Identification of a New Pathway for Tumor Progression: MicroRNA-181b Up-Regulation and CBX7 Down-Regulation by HMGA1 Protein. Genes Cancer 2010; 1:210-24. [PMID: 21779448 PMCID: PMC3092193 DOI: 10.1177/1947601910366860] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
High mobility group A (HMGA) overexpression plays a critical role in neoplastic transformation. To investigate whether HMGA acts by regulating the expression of microRNAs, we analyzed the microRNA expression profile of human breast adenocarcinoma cells (MCF7) transfected with the HMGA1 gene, which results in a highly malignant phenotype. Among the microRNAs induced by HMGA1, we focused on miR-181b, which was overexpressed in several malignant neoplasias including breast carcinomas. We show that miR-181b regulates CBX7 protein levels, which are down-regulated in cancer, and promotes cell cycle progression. We also demonstrate that CBX7, being negatively regulated by HMGA, is able to negatively regulate miR-181b expression. Finally, there was a direct correlation between HMGA1 and miR-181b expression and an inverse correlation between HMGA1 and CBX7 expression in human breast carcinomas. These data indicate the presence of a novel pathway involving HMGA1, miR-181b, and CBX7, which leads to breast cancer progression.
Collapse
Affiliation(s)
- Gelsomina Mansueto
- Dipartimento di Biologia e Patologia Cellulare e Molecolare, Istituto di Endocrinologia ed Oncologia Sperimentale del CNR, Università di Napoli “Federico II”, Naples, Italy
- NOGEC (Naples Oncogenomic Center), CEINGE–Biotecnologie Avanzate-Napoli & SEMM–European School of Molecular Medicine–Naples Site, Naples, Italy
| | - Floriana Forzati
- Dipartimento di Biologia e Patologia Cellulare e Molecolare, Istituto di Endocrinologia ed Oncologia Sperimentale del CNR, Università di Napoli “Federico II”, Naples, Italy
- NOGEC (Naples Oncogenomic Center), CEINGE–Biotecnologie Avanzate-Napoli & SEMM–European School of Molecular Medicine–Naples Site, Naples, Italy
| | - Angelo Ferraro
- NOGEC (Naples Oncogenomic Center), CEINGE–Biotecnologie Avanzate-Napoli & SEMM–European School of Molecular Medicine–Naples Site, Naples, Italy
| | - Pierlorenzo Pallante
- Dipartimento di Biologia e Patologia Cellulare e Molecolare, Istituto di Endocrinologia ed Oncologia Sperimentale del CNR, Università di Napoli “Federico II”, Naples, Italy
- NOGEC (Naples Oncogenomic Center), CEINGE–Biotecnologie Avanzate-Napoli & SEMM–European School of Molecular Medicine–Naples Site, Naples, Italy
| | - Mimma Bianco
- Dipartimento di Biologia e Patologia Cellulare e Molecolare, Istituto di Endocrinologia ed Oncologia Sperimentale del CNR, Università di Napoli “Federico II”, Naples, Italy
| | - Francesco Esposito
- Dipartimento di Biologia e Patologia Cellulare e Molecolare, Istituto di Endocrinologia ed Oncologia Sperimentale del CNR, Università di Napoli “Federico II”, Naples, Italy
| | - Antonino Iaccarino
- Dipartimento di Anatomia Patologica e Citopatologia, Università di Napoli “Federico II”, Naples, Italy
| | - Giancarlo Troncone
- NOGEC (Naples Oncogenomic Center), CEINGE–Biotecnologie Avanzate-Napoli & SEMM–European School of Molecular Medicine–Naples Site, Naples, Italy
- Dipartimento di Anatomia Patologica e Citopatologia, Università di Napoli “Federico II”, Naples, Italy
| | - Alfredo Fusco
- Dipartimento di Biologia e Patologia Cellulare e Molecolare, Istituto di Endocrinologia ed Oncologia Sperimentale del CNR, Università di Napoli “Federico II”, Naples, Italy
- NOGEC (Naples Oncogenomic Center), CEINGE–Biotecnologie Avanzate-Napoli & SEMM–European School of Molecular Medicine–Naples Site, Naples, Italy
| |
Collapse
|
529
|
Smith MB, Weiler KS. Drosophila D1 overexpression induces ectopic pairing of polytene chromosomes and is deleterious to development. Chromosoma 2010; 119:287-309. [PMID: 20127347 DOI: 10.1007/s00412-010-0257-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2009] [Revised: 12/24/2009] [Accepted: 01/06/2010] [Indexed: 11/30/2022]
Abstract
Eukaryotic genomes function in the context of chromatin, but the roles of most nonhistone chromosomal proteins are far from understood. The D1 protein of Drosophila is an example of a chromosomal protein that has been fairly well characterized biochemically, but has nevertheless eluded functional description. To this end, we have undertaken a gain-of-function genetical analysis of D1, utilizing the GAL4-UAS system. We determined that ubiquitous overexpression of D1 using the Act5C- or tubP-GAL4 drivers was lethal to the organism during larval growth. We also ectopically expressed D1 in a tissue-limited manner using other GAL4 drivers. In general, ectopic D1 was observed to inhibit differentiation and/or development. We observed effects on pattern formation of the adult eye, bristle morphogenesis, and spermatogenesis. These phenotypes may be the consequence of misregulation of D1 target genes. A surprising result was obtained when D1 was overexpressed in the third instar salivary gland. The polytene chromosomes exhibited numerous ectopic associations such that spreading of the chromosome arms was precluded. We mapped the sites of ectopic pairing along the polytene chromosome arms, and found a correlation with sites of intercalary heterochromatin. We speculate that these sites comprise the natural targets of D1 protein activity and that D1 is involved in the ectopic pairing observed for wild-type chromosomes. Together, our data suggest that D1 may influence multiple biochemical activities within the nucleus.
Collapse
Affiliation(s)
- Marissa B Smith
- Department of Biology, West Virginia University, Morgantown, WV 26506, USA
| | | |
Collapse
|
530
|
HMGA2: a potential biomarker complement to P53 for detection of early-stage high-grade papillary serous carcinoma in fallopian tubes. Am J Surg Pathol 2010; 34:18-26. [PMID: 19898227 DOI: 10.1097/pas.0b013e3181be5d72] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Before high-grade papillary serous carcinoma (HG-PSC) becomes invasive, it is believed to be a poorly defined short-lived precursor lesion. A recent characterization of serous tubal intraepithelial carcinoma (STIC) and of the p53 signature suggested that HG-PSC may follow a stepwise progression on cellular and molecular levels. High-mobility group AT-hook 2 (HMGA2), an oncofetal protein, is overexpressed in ovarian cancer. To test whether HMGA2 can be another valuable marker for STIC, we examined HMGA2 expression in 3 groups of patients: (1) 24 patients with STIC and its invasive counterpart, HG-PSC of the fallopian tubes, (2) 24 patients with HG-PSC of the ovaries but without STIC (positive control), and (3) 30 patients with cancer and normal fallopian tubes (negative control). We found that HMGA2 was overexpressed in 75% of patients with STIC, was coexpressed with p53 in more than 50% of patients, and was completely negative in the secretory cells of the 30 patients with normal fallopian tubes. Among 7 patients with cells negative for p53 staining, HMGA2 was positive in 5; among 6 patients whose tumor cells were negative for HMGA2 in STIC, 3 were positive for HMGA2 in the invasive component; about 70% of invasive HG-PSC tumor cells were immunoreactive for both HMGA2 and TP53. In invasive carcinoma, HMGA2 overexpression was correlated with p53 (r=0.45), indicating the role of HMGA2 in p53 mediated tumor progression. Our findings of immunoreactivity for HMGA2 may lead to a novel, useful biomarker to complement p53 in the detection of early-stage serous carcinoma.
Collapse
|
531
|
Abstract
Although pancreatic ductal adenocarcinoma is a common and almost uniformly fatal cancer, little is known about the molecular events that lead to tumor progression. The high-mobility group A1 (HMGA1) protein is an architectural transcription factor that has been implicated in the pathogenesis and progression of diverse human cancers, including pancreatic ductal adenocarcinoma. In this study, we investigated HMGA1 expression in pancreatic ductal adenocarcinoma cell lines and surgically resected tumors to determine whether it could be a marker for more advanced disease. By real-time quantitative RT-PCR, we measured HMGA1a mRNA in cultured pancreatic ductal adenocarcinoma cell lines and found increased levels in all cancer cells compared with normal pancreatic tissue. To investigate HMGA1 in primary human tumors, we performed immunohistochemical analysis of 125 cases of pancreatic adenocarcinoma and 99 precursor lesions (PanIN 1-3). We found nuclear staining for HMGA1 in 98% of cases of pancreatic adenocarcinoma, but only 43% of cases of PanIN precursor lesions. Moreover, HMGA1 immunoreactivity correlates positively with decreased survival and advanced tumor and PanIN grade. These results suggest that HMGA1 promotes tumor progression in pancreatic ductal adenocarcinoma and could be a useful biomarker and rational therapeutic target in advanced disease.
Collapse
|
532
|
Immunohistochemical and proteomic evaluation of nuclear ubiquitous casein and cyclin-dependent kinases substrate in invasive ductal carcinoma of the breast. J Biomed Biotechnol 2009; 2009:919645. [PMID: 20069058 PMCID: PMC2801467 DOI: 10.1155/2009/919645] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2009] [Revised: 08/05/2009] [Accepted: 10/06/2009] [Indexed: 11/18/2022] Open
Abstract
Nuclear ubiquitous casein and cyclin-dependent kinases substrate (NUCKS) is 27 kDa chromosomal protein of unknown function. Its amino acid composition as well as structure of its DNA binding domain resembles that of high-mobility group A, HMGA proteins. HMGA proteins are associated with various malignancies. Since changes in expression of HMGA are considered as marker of tumor progression, it is possible that similar changes in expression of NUCKS could be useful tool in diagnosis and prognosis of breast cancer. For identification and analysis of NUCKS we used proteomic and histochemical methods. Analysis of patient-matched samples of normal and breast cancer by mass spectrometry revealed elevated levels of NUCKS in protein extracts from ductal breast cancers. We elicited specific antibodies against NUCKS and used them for immunohistochemistry in invasive ductal carcinoma of breast. We found high expression of NUCKS in 84.3% of cancer cells. We suggest that such overexpression of NUCKS can play significant role in breast cancer biology.
Collapse
|
533
|
Mu G, Liu H, Zhou F, Xu X, Jiang H, Wang Y, Qu Y. Correlation of overexpression of HMGA1 and HMGA2 with poor tumor differentiation, invasion, and proliferation associated with let-7 down-regulation in retinoblastomas. Hum Pathol 2009; 41:493-502. [PMID: 20004941 DOI: 10.1016/j.humpath.2009.08.022] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Revised: 08/11/2009] [Accepted: 08/14/2009] [Indexed: 10/20/2022]
Abstract
In addition to RB1, the causative genes involved in the tumorigenesis and progression of retinoblastomas remain to be elucidated. High-mobility group A1 and high-mobility group A2 proteins are expressed at high levels in various benign and malignant tumors and are associated with expressions of malignant phenotypes and poor prognoses. Reduction in let-7 expression levels was detected in cancers; it may be related to high-mobility group A1 and high-mobility group A2 overexpressions. Little is known about the correlations among high-mobility group A1, high-mobility group A2, and let-7 expression and clinicopathologic features of retinoblastoma. In our study, the expressions of high-mobility group A1 and high-mobility group A2 were studied in 44 retinoblastomas by immunohistochemical analysis. Semiquantitative reverse transcription-polymerase chain reaction was used to assay the let-7 expression levels in 28 nontumor retina and 44 tumor samples. Nuclear immunostaining of high-mobility group A1 and high-mobility group A2 was frequently observed in retinoblastomas (68% and 75%, respectively). Expression levels of both high-mobility group A1 and high-mobility group A2 were significantly higher in poorly differentiated retinoblastomas than in well-differentiated retinoblastomas (P < .05 and P < .0001, respectively). In addition, overexpressions of high-mobility group A1 and high-mobility group A2 were more frequently detected in poorly differentiated tumors than in well-differentiated tumors (P < .01 and P = .0001, respectively). High-mobility group A2 expression levels were significantly higher in invasive tumors than in noninvasive tumors (P < .05). In addition, the MIB-1 labeling index was higher in poorly differentiated tumors than in well-differentiated tumors (P < .0001). Our study revealed that high-mobility group A1 and high-mobility group A2 expressions correlated with the MIB-1 labeling index (R = 0.327, P = .029; R = 0.602, P < .0001; respectively). The let-7 was expressed in high levels in all 28 nontumor retina samples. However, reduced expression levels of let-7 were observed in 17 (39%) tumors. A potentially inverse correlation exists between the expression levels of let-7 and high-mobility group A1 (r = -0.247, P = .105). In addition, a significantly inverse association was detected between let-7 and high-mobility group A2 and MIB-1 labeling index (r = -0.31, P = .04; r = -0.392, P = .007, respectively). Our findings imply that the overexpressions of high-mobility group A1, high-mobility group A2, and down-regulation of let-7 may be associated with tumorigenesis and progression of retinoblastomas.
Collapse
Affiliation(s)
- Guoying Mu
- Department of Ophthalmology, Jinan Central Hospital affiliated to Shandong University, No. 105, Jiefang Road, Jinan 250013, China
| | | | | | | | | | | | | |
Collapse
|
534
|
Abstract
A great diversity of chromosome alterations have been reported in mesenchymal tumors of the female genital tract, particularly in the uterus. Some of these alterations specifically identify a certain tumor type. Cytogenetic studies on benign proliferations have not only demonstrated clonal chromosome changes, but have also pointed out clustering of aberrations to specific chromosome regions. For example, distinct cytogenetic subgroups have been described in uterine leiomyomas with overlapping histologic features. These findings may ultimately correlate with specific parameters, such as course of the disease, response to therapy, and recurrence. Moreover, such data may give a clue to an understanding of the biologic basis for distinctive behavior of benign versus malignant mesenchymal proliferations. No specific chromosomal abnormalities have been described in malignant mesenchymal tumors, with the exception of low-grade endometrial stromal sarcomas. This article reviews the information currently available on genetic changes in mesenchymal tumors of the female genital tract and, more specifically, those reported in the uterus, where they have been more frequently studied.
Collapse
Affiliation(s)
- Paola Dal Cin
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Shapiro 5-058, Boston, MA, USA.
| |
Collapse
|
535
|
Hillion J, Wood LJ, Mukherjee M, Bhattacharya R, Di Cello F, Kowalski J, Elbahloul O, Segal J, Poirier J, Rudin CM, Dhara S, Belton A, Joseph B, Zucker S, Resar LMS. Upregulation of MMP-2 by HMGA1 promotes transformation in undifferentiated, large-cell lung cancer. Mol Cancer Res 2009; 7:1803-12. [PMID: 19903768 DOI: 10.1158/1541-7786.mcr-08-0336] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Although lung cancer is the leading cause of cancer death worldwide, the precise molecular mechanisms that give rise to lung cancer are incompletely understood. Here, we show that HMGA1 is an important oncogene that drives transformation in undifferentiated, large-cell carcinoma. First, we show that the HMGA1 gene is overexpressed in lung cancer cell lines and primary human lung tumors. Forced overexpression of HMGA1 induces a transformed phenotype with anchorage-independent cell growth in cultured lung cells derived from normal tissue. Conversely, inhibiting HMGA1 expression blocks anchorage-independent cell growth in the H1299 metastatic, undifferentiated, large-cell human lung carcinoma cells. We also show that the matrix metalloproteinase-2 (MMP-2) gene is a downstream target upregulated by HMGA1 in large-cell carcinoma cells. In chromatin immunoprecipitation experiments, HMGA1 binds directly to the MMP-2 promoter in vivo in large-cell lung cancer cells, but not in squamous cell carcinoma cells. In large-cell carcinoma cell lines, there is a significant, positive correlation between HMGA1 and MMP-2 mRNA. Moreover, interfering with MMP-2 expression blocks anchorage-independent cell growth in H1299 large-cell carcinoma cells, indicating that the HMGA1-MMP-2 pathway is required for this transformation phenotype in these cells. Blocking MMP-2 expression also inhibits migration and invasion in the H1299 large-cell carcinoma cells. Our findings suggest an important role for MMP-2 in transformation mediated by HMGA1 in large-cell, undifferentiated lung carcinoma and support the development of strategies to target this pathway in selected tumors.
Collapse
Affiliation(s)
- Joelle Hillion
- Hematology Division, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
536
|
DeSano JT, Xu L. MicroRNA regulation of cancer stem cells and therapeutic implications. AAPS JOURNAL 2009; 11:682-92. [PMID: 19842044 DOI: 10.1208/s12248-009-9147-7] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 05/01/2009] [Accepted: 09/21/2009] [Indexed: 12/19/2022]
Abstract
MicroRNAs (miRNAs) are a class of endogenous non-protein-coding RNAs that function as important regulatory molecules by negatively regulating gene and protein expression via the RNA interference (RNAi) machinery. MiRNAs have been implicated to control a variety of cellular, physiological, and developmental processes. Aberrant expressions of miRNAs are connected to human diseases such as cancer. Cancer stem cells are a small subpopulation of cells identified in a variety of tumors that are capable of self-renewal and differentiation. Dysregulation of stem cell self-renewal is a likely requirement for the initiation and formation of cancer. Furthermore, cancer stem cells are a very likely cause of resistance to current cancer treatments, as well as relapse in cancer patients. Understanding the biology and pathways involved with cancer stem cells offers great promise for developing better cancer therapies, and might one day even provide a cure for cancer. Emerging evidence demonstrates that miRNAs are involved in cancer stem cell dysregulation. Recent studies also suggest that miRNAs play a critical role in carcinogenesis and oncogenesis by regulating cell proliferation and apoptosis as oncogenes or tumor suppressors, respectively. Therefore, molecularly targeted miRNA therapy could be a powerful tool to correct the cancer stem cell dysregulation.
Collapse
Affiliation(s)
- Jeffrey T DeSano
- Department of Radiation Oncology, Division of Cancer Biology, University of Michigan, 4424E Med Sci I, 1301 Catherine St., Ann Arbor, MI, 48109-5637, USA
| | | |
Collapse
|
537
|
Akaboshi SI, Watanabe S, Hino Y, Sekita Y, Xi Y, Araki K, Yamamura KI, Oshima M, Ito T, Baba H, Nakao M. HMGA1 is induced by Wnt/beta-catenin pathway and maintains cell proliferation in gastric cancer. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 175:1675-85. [PMID: 19729480 PMCID: PMC2751563 DOI: 10.2353/ajpath.2009.090069] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/23/2009] [Indexed: 01/12/2023]
Abstract
The development of stomach cancer is closely associated with chronic inflammation, and the Wnt/beta-catenin signaling pathway is activated in most cases of this cancer. High-mobility group A (HMGA) proteins are oncogenic chromatin factors that are primarily expressed not only in undifferentiated tissues but also in various tumors. Here we report that HMGA1 is induced by the Wnt/beta-catenin pathway and maintains proliferation of gastric cancer cells. Specific knockdown of HMGA1 resulted in marked reduction of cell growth. The loss of beta-catenin or its downstream c-myc decreased HMGA1 expression, whereas Wnt3a treatment increased HMGA1 and c-myc transcripts. Furthermore, Wnt3a-induced expression of HMGA1 was inhibited by c-myc knockdown, suggesting that HMGA1 is a downstream target of the Wnt/beta-catenin pathway. Enhanced expression of HMGA1 coexisted with the nuclear accumulation of beta-catenin in about 30% of gastric cancer tissues. To visualize the expression of HMGA1 in vivo, transgenic mice expressing endogenous HMGA1 fused to enhanced green fluorescent protein were generated and then crossed with K19-Wnt1/C2mE mice, which develop gastric tumors through activation of both the Wnt and prostaglandin E2 pathways. Expression of HMGA1-enhanced green fluorescent protein was normally detected in the forestomach, along the upper border of the glandular stomach, but its expression was also up-regulated in cancerous glandular stomach. These data suggest that HMGA1 is involved in proliferation and gastric tumor formation via the Wnt/beta-catenin pathway.
Collapse
Affiliation(s)
- Shin-ichi Akaboshi
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
538
|
Rochman M, Postnikov Y, Correll S, Malicet C, Wincovitch S, Karpova TS, McNally JG, Wu X, Bubunenko NA, Grigoryev S, Bustin M. The interaction of NSBP1/HMGN5 with nucleosomes in euchromatin counteracts linker histone-mediated chromatin compaction and modulates transcription. Mol Cell 2009; 35:642-56. [PMID: 19748358 DOI: 10.1016/j.molcel.2009.07.002] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Revised: 05/01/2009] [Accepted: 07/08/2009] [Indexed: 10/20/2022]
Abstract
Structural changes in specific chromatin domains are essential to the orderly progression of numerous nuclear processes, including transcription. We report that the nuclear protein NSBP1 (HMGN5), a recently discovered member of the HMGN nucleosome-binding protein family, is specifically targeted by its C-terminal domain to nucleosomes in euchromatin. We find that the interaction of NSBP1 with nucleosomes alters the compaction of cellular chromatin and that in living cells, NSBP1 interacts with linker histones. We demonstrate that the negatively charged C-terminal domain of NSBP1 interacts with the positively charged C-terminal domain of H5 and that NSBP1 counteracts the linker histone-mediated compaction of a nucleosomal array. Dysregulation of the cellular levels of NSBP1 alters the transcription level of numerous genes. We suggest that mouse NSBP1 is an architectural protein that binds preferentially to euchromatin and modulates the fidelity of the cellular transcription profile by counteracting the chromatin-condensing activity of linker histones.
Collapse
Affiliation(s)
- Mark Rochman
- Protein Section, Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
539
|
Reeves R. Nuclear functions of the HMG proteins. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2009; 1799:3-14. [PMID: 19748605 DOI: 10.1016/j.bbagrm.2009.09.001] [Citation(s) in RCA: 188] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Accepted: 09/04/2009] [Indexed: 12/12/2022]
Abstract
Although the three families of mammalian HMG proteins (HMGA, HMGB and HMGN) participate in many of the same nuclear processes, each family plays its own unique role in modulating chromatin structure and regulating genomic function. This review focuses on the similarities and differences in the mechanisms by which the different HMG families impact chromatin structure and influence cellular phenotype. The biological implications of having three architectural transcription factor families with complementary, but partially overlapping, nuclear functions are discussed.
Collapse
Affiliation(s)
- Raymond Reeves
- School of Molecular Biosciences, Washington State University, Biotechnology/Life Sciences Bldg., Rm. 143, Pullman, WA 99164-7520, USA.
| |
Collapse
|
540
|
Italiano A, Bianchini L, Gjernes E, Keslair F, Ranchere-Vince D, Dumollard JM, Haudebourg J, Leroux A, Mainguené C, Terrier P, Chibon F, Coindre JM, Pedeutour F. Clinical and Biological Significance of CDK4 Amplification in Well-Differentiated and Dedifferentiated Liposarcomas. Clin Cancer Res 2009; 15:5696-703. [DOI: 10.1158/1078-0432.ccr-08-3185] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
541
|
HMGA1 levels influence mitochondrial function and mitochondrial DNA repair efficiency. Mol Cell Biol 2009; 29:5426-40. [PMID: 19687300 DOI: 10.1128/mcb.00105-09] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
HMGA chromatin proteins, a family of gene regulatory factors found at only low concentrations in normal cells, are almost universally overexpressed in cancer cells. HMGA proteins are located in the nuclei of normal cells except during the late S/G(2) phases of the cell cycle, when HMGA1, one of the members of the family, reversibly migrates to the mitochondria, where it binds to mitochondrial DNA (mtDNA). In many cancer cells, this controlled shuttling is lost and HMGA1 is found in mitochondria throughout the cell cycle. To investigate the effects of HMGA1 on mitochondria, we employed a genetically engineered line of human MCF-7 cells in which the levels of transgenic HMGA1 protein could be reversibly controlled. "Turn-ON" and "turn-OFF" time course experiments were performed with these cells to either increase or decrease intracellular HMGA1 levels, and various mitochondrial changes were monitored. Results demonstrated that changes in both mtDNA levels and mitochondrial mass inversely paralleled changes in HMGA1 concentrations, strongly implicating HMGA1 in the regulation of these parameters. Additionally, the level of cellular reactive oxygen species (ROS) increased and the efficiency of repair of oxidatively damaged mtDNA decreased as consequences of elevated HMGA1 expression. Increased ROS levels and reduced repair efficiency in HMGA1-overexpressing cells likely contribute to the increased occurrence of mutations in mtDNA frequently observed in cancer cells.
Collapse
|
542
|
Joynt S, Morillo V, Leng F. Binding the mammalian high mobility group protein AT-hook 2 to AT-rich deoxyoligonucleotides: enthalpy-entropy compensation. Biophys J 2009; 96:4144-52. [PMID: 19450485 DOI: 10.1016/j.bpj.2009.02.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2008] [Revised: 02/05/2009] [Accepted: 02/09/2009] [Indexed: 10/20/2022] Open
Abstract
HMGA2 is a DNA minor-groove binding protein. We previously demonstrated that HMGA2 binds to AT-rich DNA with very high binding affinity where the binding of HMGA2 to poly(dA-dT)(2) is enthalpy-driven and to poly(dA)poly(dT) is entropy-driven. This is a typical example of enthalpy-entropy compensation. To further study enthalpy-entropy compensation of HMGA2, we used isothermal-titration-calorimetry to examine the interactions of HMGA2 with two AT-rich DNA hairpins: 5'-CCAAAAAAAAAAAAAAAGCCCCCGCTTTTTTTTTTTTTTTGG-3' (FL-AT-1) and 5'-CCATATATATATATATAGCCCCCGCTATATATATATATATGG-3' (FL-AT-2). Surprisingly, we observed an atypical isothermal-titration-calorimetry-binding curve at low-salt aqueous solutions whereby the apparent binding-enthalpy decreased dramatically as the titration approached the end. This unusual behavior can be attributed to the DNA-annealing coupled to the ligand DNA-binding and is eliminated by increasing the salt concentration to approximately 200 mM. At this condition, HMGA2 binding to FL-AT-1 is entropy-driven and to FL-AT-2 is enthalpy-driven. Interestingly, the DNA-binding free energies for HMGA2 binding to both hairpins are almost temperature independent; however, the enthalpy-entropy changes are dependent on temperature, which is another aspect of enthalpy-entropy compensation. The heat capacity change for HMGA2 binding to FL-AT-1 and FL-AT-2 are almost identical, indicating that the solvent displacement and charge-charge interaction in the coupled folding/binding processes for both binding reactions are similar.
Collapse
Affiliation(s)
- Suzanne Joynt
- Department of Chemistry & Biochemistry, Florida International University, Miami, Florida 33199, USA
| | | | | |
Collapse
|
543
|
Wang X, Hulshizer RL, Erickson-Johnson MR, Flynn HC, Jenkins RB, Lloyd RV, Oliveira AM. Identification of novelHMGA2fusion sequences in lipoma: Evidence that deletion of let-7 miRNA consensus binding site 1 in theHMGA23′ UTR is not critical forHMGA2transcriptional upregulation. Genes Chromosomes Cancer 2009; 48:673-8. [DOI: 10.1002/gcc.20674] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
544
|
Klemke M, Meyer A, Nezhad MH, Bartnitzke S, Drieschner N, Frantzen C, Schmidt EH, Belge G, Bullerdiek J. Overexpression of HMGA2 in uterine leiomyomas points to its general role for the pathogenesis of the disease. Genes Chromosomes Cancer 2009; 48:171-8. [PMID: 18980243 DOI: 10.1002/gcc.20627] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
An overexpression of HMGA2 is supposed to be a key event in the genesis of leiomyoma with chromosomal rearrangements affecting the region 12q14-15 targeting the HMGA2 gene, but gene expression data regarding differences between uterine leiomyomas with and those without 12q14-15 aberrations are insufficient. To address the question whether HMGA2 is only upregulated in the 12q14-15 subgroup, the expression of HMGA2 was analyzed in a comprehensive set of leiomyomas (n = 180) including tumors with 12q14-15 chromosomal aberrations (n = 13) and matching myometrial tissues (n = 51) by quantitative RT-PCR. The highest expression levels for HMGA2 were observed in tumors with rearrangements affecting the region 12q14-15, but although HMGA2 is expressed at lower levels in leiomyomas without such aberrations, the comparison between the expression in myomas and matching myometrial tissues indicates a general upregulation of HMGA2 regardless of the presence or absence of such chromosomal abnormalities. The significant (P < 0.05) overexpression of HMGA2 also in the group of fibroids without chromosomal aberrations of the 12q14-15 region suggests a general role of HMGA2 in the development of the disease.
Collapse
Affiliation(s)
- Markus Klemke
- Center for Human Genetics, University of Bremen, 28359 Bremen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
545
|
Pfannkuche K, Summer H, Li O, Hescheler J, Dröge P. The high mobility group protein HMGA2: a co-regulator of chromatin structure and pluripotency in stem cells? Stem Cell Rev Rep 2009; 5:224-30. [PMID: 19551524 DOI: 10.1007/s12015-009-9078-9] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Accepted: 06/01/2009] [Indexed: 11/25/2022]
Abstract
The small, chromatin-associated HMGA proteins contain three separate DNA binding domains, so-called AT hooks, which bind preferentially to short AT-rich sequences. These proteins are abundant in pluripotent embryonic stem (ES) cells and most malignant human tumors, but are not detectable in normal somatic cells. They act both as activator and repressor of gene expression, and most likely facilitate DNA architectural changes during formation of specialized nucleoprotein structures at selected promoter regions. For example, HMGA2 is involved in transcriptional activation of certain cell proliferation genes, which likely contributes to its well-established oncogenic potential during tumor formation. However, surprisingly little is known about how HMGA proteins bind DNA packaged in chromatin and how this affects the chromatin structure at a larger scale. Experimental evidence suggests that HMGA2 competes with binding of histone H1 in the chromatin fiber. This could substantially alter chromatin domain structures in ES cells and contribute to the activation of certain transcription networks. HMGA2 also seems capable of recruiting enzymes directly involved in histone modifications to trigger gene expression. Furthermore, it was shown that multiple HMGA2 molecules bind stably to a single nucleosome core particle whose structure is known. How these features of HMGA2 impinge on chromatin organization inside a living cell is unknown. In this commentary, we propose that HMGA2, through the action of three independent DNA binding domains, substantially contributes to the plasticity of ES cell chromatin and is involved in the maintenance of a un-differentiated cell state.
Collapse
Affiliation(s)
- Kurt Pfannkuche
- Institute for Neurophysiology, University of Cologne, Robert Koch Str. 39, 50931, Cologne, Germany.
| | | | | | | | | |
Collapse
|
546
|
Li AYJ, Boo LM, Wang SY, Lin HH, Wang CCC, Yen Y, Chen BPC, Chen DJ, Ann DK. Suppression of nonhomologous end joining repair by overexpression of HMGA2. Cancer Res 2009; 69:5699-706. [PMID: 19549901 DOI: 10.1158/0008-5472.can-08-4833] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Understanding the molecular details associated with aberrant high mobility group A2 (HMGA2) gene expression is key to establishing the mechanism(s) underlying its oncogenic potential and effect on the development of therapeutic strategies. Here, we report the involvement of HMGA2 in impairing DNA-dependent protein kinase (DNA-PK) during the nonhomologous end joining (NHEJ) process. We showed that HMGA2-expressing cells displayed deficiency in overall and precise DNA end-joining repair and accumulated more endogenous DNA damage. Proper and timely activation of DNA-PK, consisting of Ku70, Ku80, and DNA-PKcs subunits, is essential for the repair of DNA double strand breaks (DSB) generated endogenously or by exposure to genotoxins. In cells overexpressing HMGA2, accumulation of histone 2A variant X phosphorylation at Ser-139 (gamma-H2AX) was associated with hyperphosphorylation of DNA-PKcs at Thr-2609 and Ser-2056 before and after the induction of DSBs. Also, the steady-state complex of Ku and DNA ends was altered by HMGA2. Microirradiation and real-time imaging in living cells revealed that HMGA2 delayed the release of DNA-PKcs from DSB sites, similar to observations found in DNA-PKcs mutants. Moreover, HMGA2 alone was sufficient to induce chromosomal aberrations, a hallmark of deficiency in NHEJ-mediated DNA repair. In summary, a novel role for HMGA2 to interfere with NHEJ processes was uncovered, implicating HMGA2 in the promotion of genome instability and tumorigenesis.
Collapse
Affiliation(s)
- Angela Y J Li
- Department of Clinical and Molecular Pharmacology, City of Hope National Medical Center, Duarte, California 91010-3000, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
547
|
Bartuma H, Panagopoulos I, Collin A, Trombetta D, Domanski HA, Mandahl N, Mertens F. Expression levels of HMGA2 in adipocytic tumors correlate with morphologic and cytogenetic subgroups. Mol Cancer 2009; 8:36. [PMID: 19508721 PMCID: PMC2702300 DOI: 10.1186/1476-4598-8-36] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Accepted: 06/09/2009] [Indexed: 11/21/2022] Open
Abstract
Background The HMGA2 gene encodes a protein that alters chromatin structure. Deregulation, typically through chromosomal rearrangements, of HMGA2 has an important role in the development of several mesenchymal neoplasms. These rearrangements result in the expression of a truncated protein lacking the acidic C-terminus, a fusion protein consisting of the AT-hook domains encoded by exons 1–3 and parts from another gene, or a full-length protein; loss of binding sites for regulatory microRNA molecules from the 3' untranslated region (UTR) of HMGA2 has been suggested to be a common denominator. Methods Seventy adipocytic tumors, representing different morphologic and cytogenetic subgroups, were analyzed by qRT-PCR to study the expression status of HMGA2; 18 of these tumors were further examined by PCR to search for mutations or deletions in the 3'UTR. Results Type (full-length or truncated) and level of expression varied with morphology and karyotype, with the highest levels in atypical lipomatous tumors and lipomas with rearrangements of 12q13-15 and the lowest in lipomas with 6p- or 13q-rearrangements, hibernomas, spindle cell lipomas and myxoid liposarcomas. All 18 examined tumors showed reduced or absent expression of the entire, or parts of, the 3'UTR, which was not due to mutations at the DNA level. Conclusion In adipocytic tumors with deregulated HMGA2 expression, the 3'UTR is consistently lost, either due to physical disruption of HMGA2 or a shift to production of shorter 3'UTR.
Collapse
Affiliation(s)
- Hammurabi Bartuma
- Department of Clinical Genetics, Lund University Hospital, Lund, Sweden.
| | | | | | | | | | | | | |
Collapse
|
548
|
Summer H, Li O, Bao Q, Zhan L, Peter S, Sathiyanathan P, Henderson D, Klonisch T, Goodman SD, Dröge P. HMGA2 exhibits dRP/AP site cleavage activity and protects cancer cells from DNA-damage-induced cytotoxicity during chemotherapy. Nucleic Acids Res 2009; 37:4371-84. [PMID: 19465398 PMCID: PMC2715238 DOI: 10.1093/nar/gkp375] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
HMGA proteins are not translated in normal human somatic cells, but are present in high copy numbers in pluripotent embryonic stem cells and most neoplasias. Correlations between the degree of malignancy, patient prognostic index and HMGA levels have been firmly established. Intriguingly, HMGA2 is also found in rare tumor-inducing cells which are resistant to chemotherapy. Here, we demonstrate that HMGA1a/b and HMGA2 possess intrinsic dRP and AP site cleavage activities, and that lysines and arginines in the AT-hook DNA-binding domains function as nucleophiles. We also show that HMGA2 can be covalently trapped at genomic abasic sites in cancer cells. By employing a variety of cell-based assays, we provide evidence that the associated lyase activities promote cellular resistance against DNA damage that is targeted by base excision repair (BER) pathways, and that this protection directly correlates with the level of HMGA2 expression. In addition, we demonstrate an interaction between human AP endonuclease 1 and HMGA2 in cancer cells, which supports our conclusion that HMGA2 can be incorporated into the cellular BER machinery. Our study thus identifies an unexpected role for HMGA2 in DNA repair in cancer cells which has important clinical implications for disease diagnosis and therapy.
Collapse
Affiliation(s)
- Heike Summer
- Division of Genomics and Genetics, School of Biological Sciences, Nanyang Technological University, Singapore
| | | | | | | | | | | | | | | | | | | |
Collapse
|
549
|
Sgarra R, Maurizio E, Zammitti S, Lo Sardo A, Giancotti V, Manfioletti G. Macroscopic Differences in HMGA Oncoproteins Post-Translational Modifications: C-Terminal Phosphorylation of HMGA2 Affects Its DNA Binding Properties. J Proteome Res 2009; 8:2978-89. [DOI: 10.1021/pr900087r] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Riccardo Sgarra
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Elisa Maurizio
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Salvina Zammitti
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | | | | | | |
Collapse
|
550
|
Sparvero LJ, Asafu-Adjei D, Kang R, Tang D, Amin N, Im J, Rutledge R, Lin B, Amoscato AA, Zeh HJ, Lotze MT. RAGE (Receptor for Advanced Glycation Endproducts), RAGE ligands, and their role in cancer and inflammation. J Transl Med 2009; 7:17. [PMID: 19292913 PMCID: PMC2666642 DOI: 10.1186/1479-5876-7-17] [Citation(s) in RCA: 446] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2009] [Accepted: 03/17/2009] [Indexed: 02/07/2023] Open
Abstract
The Receptor for Advanced Glycation Endproducts [RAGE] is an evolutionarily recent member of the immunoglobulin super-family, encoded in the Class III region of the major histocompatability complex. RAGE is highly expressed only in the lung at readily measurable levels but increases quickly at sites of inflammation, largely on inflammatory and epithelial cells. It is found either as a membrane-bound or soluble protein that is markedly upregulated by stress in epithelial cells, thereby regulating their metabolism and enhancing their central barrier functionality. Activation and upregulation of RAGE by its ligands leads to enhanced survival. Perpetual signaling through RAGE-induced survival pathways in the setting of limited nutrients or oxygenation results in enhanced autophagy, diminished apoptosis, and (with ATP depletion) necrosis. This results in chronic inflammation and in many instances is the setting in which epithelial malignancies arise. RAGE and its isoforms sit in a pivotal role, regulating metabolism, inflammation, and epithelial survival in the setting of stress. Understanding the molecular structure and function of it and its ligands in the setting of inflammation is critically important in understanding the role of this receptor in tumor biology.
Collapse
Affiliation(s)
- Louis J Sparvero
- Departments of Surgery and Bioengineering, University of Pittsburgh Cancer Institute, Pittsburgh, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|