501
|
Samm N, Werner K, Rückert F, Saeger HD, Grützmann R, Pilarsky C. The role of apoptosis in the pathology of pancreatic cancer. Cancers (Basel) 2010; 3:1-16. [PMID: 24212603 PMCID: PMC3756346 DOI: 10.3390/cancers3010001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Revised: 12/14/2010] [Accepted: 12/21/2010] [Indexed: 01/27/2023] Open
Abstract
Pancreatic cancer is a disease with high resistance to most common therapies and therefore has a poor prognosis, which is partly due to a lack of reaction to apoptotic stimuli. Signal transduction of such stimuli includes a death receptor-mediated extrinsic pathway as well as an intrinsic pathway linked to the mitochondria. Defects in apoptotic pathways and the deregulation of apoptotic proteins, such as Survivin, Bcl-2, Bcl-xL and Mcl-1, play decisive roles in the development of pancreatic cancer. Investigation of the molecular mechanism allowing tumors to resist apoptotic cell death would lead to an improved understanding of the physiology and the development of new molecular strategies in pancreatic cancer.
Collapse
Affiliation(s)
- Nicole Samm
- Department of Visceral-, Thoracic-and Vascular-Surgery, University Hospital Dresden, Dresden, Germany; E-Mails: (N.S.); (K.W.); (F.R.); (H.D.S.); (R.G.)
| | - Kristin Werner
- Department of Visceral-, Thoracic-and Vascular-Surgery, University Hospital Dresden, Dresden, Germany; E-Mails: (N.S.); (K.W.); (F.R.); (H.D.S.); (R.G.)
| | - Felix Rückert
- Department of Visceral-, Thoracic-and Vascular-Surgery, University Hospital Dresden, Dresden, Germany; E-Mails: (N.S.); (K.W.); (F.R.); (H.D.S.); (R.G.)
| | - Hans Detlev Saeger
- Department of Visceral-, Thoracic-and Vascular-Surgery, University Hospital Dresden, Dresden, Germany; E-Mails: (N.S.); (K.W.); (F.R.); (H.D.S.); (R.G.)
| | - Robert Grützmann
- Department of Visceral-, Thoracic-and Vascular-Surgery, University Hospital Dresden, Dresden, Germany; E-Mails: (N.S.); (K.W.); (F.R.); (H.D.S.); (R.G.)
| | - Christian Pilarsky
- Department of Visceral-, Thoracic-and Vascular-Surgery, University Hospital Dresden, Dresden, Germany; E-Mails: (N.S.); (K.W.); (F.R.); (H.D.S.); (R.G.)
| |
Collapse
|
502
|
Chaitanya GV, Alexander JS, Babu PP. PARP-1 cleavage fragments: signatures of cell-death proteases in neurodegeneration. Cell Commun Signal 2010; 8:31. [PMID: 21176168 PMCID: PMC3022541 DOI: 10.1186/1478-811x-8-31] [Citation(s) in RCA: 671] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Accepted: 12/22/2010] [Indexed: 11/16/2022] Open
Abstract
The normal function of poly (ADP-ribose) polymerase-1 (PARP-1) is the routine repair of DNA damage by adding poly (ADP ribose) polymers in response to a variety of cellular stresses. Recently, it has become widely appreciated that PARP-1 also participates in diverse physiological and pathological functions from cell survival to several forms of cell death and has been implicated in gene transcription, immune responses, inflammation, learning, memory, synaptic functions, angiogenesis and aging. In the CNS, PARP inhibition attenuates injury in pathologies like cerebral ischemia, trauma and excitotoxicity demonstrating a central role of PARP-1 in these pathologies. PARP-1 is also a preferred substrate for several 'suicidal' proteases and the proteolytic action of suicidal proteases (caspases, calpains, cathepsins, granzymes and matrix metalloproteinases (MMPs)) on PARP-1 produces several specific proteolytic cleavage fragments with different molecular weights. These PARP-1 signature fragments are recognized biomarkers for specific patterns of protease activity in unique cell death programs. This review focuses on specific suicidal proteases active towards PARP-1 to generate signature PARP-1 fragments that can identify key proteases and particular forms of cell death involved in pathophysiology. The roles played by some of the PARP-1 fragments and their associated binding partners in the control of different forms of cell death are also discussed.
Collapse
Affiliation(s)
- Ganta Vijay Chaitanya
- Department of Biotechnology, School of Life Sciences, University of Hyderabad, Hyderabad, India
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Louisiana-USA
| | - Jonathan S Alexander
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Louisiana-USA
| | - Phanithi Prakash Babu
- Department of Biotechnology, School of Life Sciences, University of Hyderabad, Hyderabad, India
| |
Collapse
|
503
|
Barreiro LB, Marioni JC, Blekhman R, Stephens M, Gilad Y. Functional comparison of innate immune signaling pathways in primates. PLoS Genet 2010; 6:e1001249. [PMID: 21187902 PMCID: PMC3002988 DOI: 10.1371/journal.pgen.1001249] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Accepted: 11/16/2010] [Indexed: 01/08/2023] Open
Abstract
Humans respond differently than other primates to a large number of infections. Differences in susceptibility to infectious agents between humans and other primates are probably due to inter-species differences in immune response to infection. Consistent with that notion, genes involved in immunity-related processes are strongly enriched among recent targets of positive selection in primates, suggesting that immune responses evolve rapidly, yet providing only indirect evidence for possible inter-species functional differences. To directly compare immune responses among primates, we stimulated primary monocytes from humans, chimpanzees, and rhesus macaques with lipopolysaccharide (LPS) and studied the ensuing time-course regulatory responses. We find that, while the universal Toll-like receptor response is mostly conserved across primates, the regulatory response associated with viral infections is often lineage-specific, probably reflecting rapid host–virus mutual adaptation cycles. Additionally, human-specific immune responses are enriched for genes involved in apoptosis, as well as for genes associated with cancer and with susceptibility to infectious diseases or immune-related disorders. Finally, we find that chimpanzee-specific immune signaling pathways are enriched for HIV–interacting genes. Put together, our observations lend strong support to the notion that lineage-specific immune responses may help explain known inter-species differences in susceptibility to infectious diseases. We know of a large number of diseases or medical conditions that affect humans more severely than non-human primates, such as AIDS, malaria, hepatitis B, and cancer. These differences likely arise from different immune responses to infection among species. However, due to the lack of comparative functional data across species, it remains unclear how the immune system of humans and other primates differ. In this work, we present the first genome-wide characterization of functional differences in innate immune responses between humans and our closest evolutionary relatives. Our results indicate that “core” immune responses, those that are critical to fight any invading pathogen, are the most conserved across primates and that much of the divergence in immune responses is observed in genes that are involved in response to specific microbial and viral agents. In addition, we show that human-specific immune responses are enriched for genes involved in apoptosis and cancer biology, as well as with genes previously associated with susceptibility to infectious diseases or immune-related disorders. Finally, we find that chimpanzee-specific immune signaling pathways are enriched for HIV–interacting genes. Our observations may therefore help explain known inter-species differences in susceptibility to infectious diseases.
Collapse
Affiliation(s)
- Luis B. Barreiro
- Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
- * E-mail: (LBB); (YG)
| | - John C. Marioni
- Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
| | - Ran Blekhman
- Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
| | - Matthew Stephens
- Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
- Department of Statistics, University of Chicago, Chicago, Illinois, United States of America
| | - Yoav Gilad
- Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
- * E-mail: (LBB); (YG)
| |
Collapse
|
504
|
Nagaraju GPC, Nalla AK, Gupta R, Mohanam S, Gujrati M, Dinh DH, Rao JS. siRNA-mediated downregulation of MMP-9 and uPAR in combination with radiation induces G2/M cell-cycle arrest in Medulloblastoma. Mol Cancer Res 2010; 9:51-66. [PMID: 21148633 DOI: 10.1158/1541-7786.mcr-10-0399] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Our previous work and that of other investigators strongly suggest a relationship between the upregulation of metalloproteinase-9 (MMP-9) and urokinase-type plasminogen activator receptor (uPAR) in tumor angiogenesis and metastasis. In this study, we evaluated the role of MMP-9 and uPAR in medulloblastoma cancer cell resistance to ionizing irradiation (IR) and tested the antitumor efficacy of siRNA (short interfering RNA) against MMP-9 [plasmid siRNA vector for MMP-9 (pM)] and uPAR [plasmid vector for uPAR (pU)] either alone or in combination [plasmid siRNA vector for both uPAR and MMP-9 (pUM)]. Cell proliferation (BrdU assay), apoptosis (in situ TUNEL for DNA fragmentation), and cell-cycle (FACS) analyses were carried out to determine the effect of siRNA either alone or in combination with IR on G2/M cell-cycle arrest in medulloblastoma cells. IR upregulated MMP-9 and uPAR expression in medulloblastoma cells; pM, pU, and pUM in combination with IR effectively reduced both MMP-9 and uPAR expression, thereby leading to increased radiosensitivity of medulloblastoma cells. siRNA treatments (pM, pU, and pUM) also promoted IR-induced apoptosis and enhanced IR-induced G2/M arrest during cell-cycle progression. While IR induces G2/M cell-cycle arrest through inhibition of the pCdc2- and cyclin B-regulated signaling pathways involving p53, p21/WAF1, and Chk2 gene expression, siRNA (pM, pU, and pUM) alone or in combination with IR induced G2/M arrest mediated through inhibition of the pCdc2- and cyclin B1-regulated signaling pathways involving Chk1 and Cdc25A gene expression. Taken together, our data suggest that downregulation of MMP-9 and uPAR induces Chk1-mediated G2/M cell-cycle arrest, whereas the disruption caused by IR alone is dependent on p53- and Chk2-mediated G2/M cell-cycle arrest.
Collapse
Affiliation(s)
- Ganji Purna Chandra Nagaraju
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine, One Illini Drive, Peoria, IL 61605, USA
| | | | | | | | | | | | | |
Collapse
|
505
|
Bogner C, Leber B, Andrews DW. Apoptosis: embedded in membranes. Curr Opin Cell Biol 2010; 22:845-51. [DOI: 10.1016/j.ceb.2010.08.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2010] [Revised: 08/01/2010] [Accepted: 08/05/2010] [Indexed: 01/03/2023]
|
506
|
Investigation of DNA damage response and apoptotic gene methylation pattern in sporadic breast tumors using high throughput quantitative DNA methylation analysis technology. Mol Cancer 2010; 9:303. [PMID: 21092294 PMCID: PMC3004830 DOI: 10.1186/1476-4598-9-303] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Accepted: 11/23/2010] [Indexed: 01/02/2023] Open
Abstract
Background- Sporadic breast cancer like many other cancers is proposed to be a manifestation of abnormal genetic and epigenetic changes. For the past decade our laboratory has identified genes involved in DNA damage response (DDR), apoptosis and immunesurvelliance pathways to influence sporadic breast cancer risk in north Indian population. Further to enhance our knowledge at the epigenetic level, we performed DNA methylation study involving 17 gene promoter regions belonging to DNA damage response (DDR) and death receptor apoptotic pathway in 162 paired normal and cancerous breast tissues from 81 sporadic breast cancer patients, using a high throughput quantitative DNA methylation analysis technology. Results- The study identified five genes with statistically significant difference between normal and tumor tissues. Hypermethylation of DR5 (P = 0.001), DCR1 (P = 0.00001), DCR2 (P = 0.0000000005) and BRCA2 (P = 0.007) and hypomethylation of DR4 (P = 0.011) in sporadic breast tumor tissues suggested a weak/aberrant activation of the DDR/apoptotic pathway in breast tumorigenesis. Negative correlation was observed between methylation status and transcript expression levels for TRAIL, DR4, CASP8, ATM, CHEK2, BRCA1 and BRCA2 CpG sites. Categorization of the gene methylation with respect to the clinicopathological parameters showed an increase in aberrant methylation pattern in advanced tumors. These uncharacteristic methylation patterns corresponded with decreased death receptor apoptosis (P = 0.047) and DNA damage repair potential (P = 0.004) in advanced tumors. The observation of BRCA2 -26 G/A 5'UTR polymorphism concomitant with the presence of methylation in the promoter region was novel and emerged as a strong candidate for susceptibility to sporadic breast tumors. Conclusion- Our study indicates that methylation of DDR-apoptotic gene promoters in sporadic breast cancer is not a random phenomenon. Progressive epigenetic alterations in advancing tumors result in aberrant DDR-apoptotic pathway thereby promoting tumor development. We propose, since pathological epigenetic changes of the DDR-apoptotic genes are reversible modifications, these could further be targeted for therapeutic interventions.
Collapse
|
507
|
Jeang KT. HTLV-1 and adult T-cell leukemia: insights into viral transformation of cells 30 years after virus discovery. J Formos Med Assoc 2010; 109:688-93. [PMID: 20970064 DOI: 10.1016/s0929-6646(10)60112-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2010] [Revised: 08/02/2010] [Accepted: 08/02/2010] [Indexed: 12/22/2022] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1), the etiological agent of adult T-cell leukemia, was the first human retrovirus to be isolated. It is now the 30(th) anniversary of the initial discovery of HTLV-1. This review discusses recent insights into the role of the HTLV-1 Tax oncoprotein in cellular proliferation and the abrogation of cellular checkpoints that lead to disease progression.
Collapse
Affiliation(s)
- Kuan-Teh Jeang
- National Institutes of Health, Bethesda, Maryland 20892, USA.
| |
Collapse
|
508
|
Abstract
Proto-oncogenes
such as MYC and RAS promote normal cell growth but fuel tumor development
when deregulated. However, over-activated Myc and Ras also trigger
intrinsic tumor suppressor mechanisms leading to apoptosis and senescence,
respectively. When expressed together MYC and RAS are sufficient for
oncogenic transformation of primary rodent cells, but the basis for their
cooperativity has remained unresolved. While Ras is known to suppress
Myc-induced apoptosis, we recently discovered that Myc is able to repress
Ras-induced senescence. Myc and Ras thereby together enable evasion of two
main barriers of tumorigenesis. The ability of Myc to suppress senescence
was dependent on phosphorylation of Myc at Ser-62 by cyclin-dependent
kinase 2 (Cdk2), uncovering a new non-redundant role of this kinase.
Further, utilizing Cdk2 as a cofactor, Myc directly controlled key genes
involved in senescence. We speculate that this new role of Myc/Cdk2 in
senescence has relevance for other Myc functions, such as regulation of
stemness, self-renewal, immortalization and differentiation, which may have
an impact on tissue regeneration. Importantly, selective pharmacological
inhibition of Cdk2 forced Myc/Ras expressing cells into cellular
senescence, highlighting this kinase as a potential therapeutic target for
treatment of tumors driven by Myc or Ras.
Collapse
Affiliation(s)
- Per Hydbring
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, 171 77 Stockholm, Sweden
| | | |
Collapse
|
509
|
Franco R, Panayiotidis MI. Cell death or survival: The double-edged sword of environmental and occupational toxicity. Chem Biol Interact 2010; 188:265-6. [PMID: 20553883 PMCID: PMC2943050 DOI: 10.1016/j.cbi.2010.06.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Rodrigo Franco
- Redox Biology Center and School of Veterinary Medicine and Biomedical Sciences. University of Nebraska-Lincoln. Lincoln, NE 68583
| | - Mihalis I. Panayiotidis
- Department of Pathology, Medical School, University of Ioannina, University Campus 45110, Ioannina, Greece
- School of Community Health Sciences, University of Nevada, Reno, NV 89557, USA
| |
Collapse
|
510
|
Abstract
Induction of apoptosis is the primary mechanism through which most chemotherapies cause tumor cell death. Early assessment of tumor response is required to manage patients in terms of quality of life versus intensive chemotherapy. Although imaging with radiolabeled annexin V has been intensively investigated, it is still not sufficiently mature for clinical application. This article will summarize various alternative imaging techniques for visualization of phosphatidylserine externalization, activity of caspases, and mitochondrial membrane potential. Such imaging studies will promote the identification of novel molecular targets and the development of highly specific apoptosis-detecting imaging probes with potential clinical applications. It is highly possible that quantitative imaging of apoptosis will greatly improve clinical decision making in apoptosis-related diseases.
Collapse
Affiliation(s)
- Gang Niu
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | |
Collapse
|
511
|
Moritz TJ, Taylor DS, Krol DM, Fritch J, Chan JW. Detection of doxorubicin-induced apoptosis of leukemic T-lymphocytes by laser tweezers Raman spectroscopy. BIOMEDICAL OPTICS EXPRESS 2010; 1:1138-1147. [PMID: 21258536 PMCID: PMC3018077 DOI: 10.1364/boe.1.001138] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Revised: 10/06/2010] [Accepted: 10/07/2010] [Indexed: 05/07/2023]
Abstract
Laser tweezers Raman spectroscopy (LTRS) was used to acquire the Raman spectra of leukemic T lymphocytes exposed to the chemotherapy drug doxorubicin at different time points over 72 hours. Changes observed in the Raman spectra were dependent on drug exposure time and concentration. The sequence of spectral changes includes an intensity increase in lipid Raman peaks, followed by an intensity increase in DNA Raman peaks, and finally changes in DNA and protein (phenylalanine) Raman vibrations. These Raman signatures are consistent with vesicle formation, cell membrane blebbing, chromatin condensation, and the cytoplasm of dead cells during the different stages of drug-induced apoptosis. These results suggest the potential of LTRS as a real-time single cell tool for monitoring apoptosis, evaluating the efficacy of chemotherapeutic treatments, or pharmaceutical testing.
Collapse
Affiliation(s)
- Tobias J. Moritz
- NSF Center for Biophotonics Science and Technology, University of California, Davis, 2700 Stockton Blvd Suite 1400, Sacramento, CA 95817, USA
- Biophysics Graduate Group, University of California, Davis, One Shields Ave, Davis, CA 95616, USA
| | - Douglas S. Taylor
- NSF Center for Biophotonics Science and Technology, University of California, Davis, 2700 Stockton Blvd Suite 1400, Sacramento, CA 95817, USA
- Department of Pediatrics, University of California Davis Medical Center, 2516 Stockton Blvd, Sacramento, CA 95817, USA
| | - Denise M. Krol
- Biophysics Graduate Group, University of California, Davis, One Shields Ave, Davis, CA 95616, USA
- Department of Applied Science, University of California, Davis, One Shields Ave, Davis, CA 95616, USA
| | - John Fritch
- NSF Center for Biophotonics Science and Technology, University of California, Davis, 2700 Stockton Blvd Suite 1400, Sacramento, CA 95817, USA
| | - James W. Chan
- NSF Center for Biophotonics Science and Technology, University of California, Davis, 2700 Stockton Blvd Suite 1400, Sacramento, CA 95817, USA
| |
Collapse
|
512
|
Ljungman M. The DNA damage response--repair or despair? ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2010; 51:879-889. [PMID: 20818630 DOI: 10.1002/em.20597] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The term "the DNA damage response" (DDR) encompasses a sophisticated array of cellular initiatives set in motion as cells are exposed to DNA-damaging events. It has been known for over half a century that all organisms have the ability to restore genomic integrity through DNA repair. More recent discoveries of signal transduction pathways linking DNA damage to cell cycle arrest and apoptosis have greatly expanded our views of how cells and tissues limit mutagenesis and tumorigenesis. DNA repair not only plays a pivotal role in suppressing mutagenesis but also in the reversal of signals inducing the stress response. If repair is faulty or the cell is overwhelmed by damage, chances are that the cell will despair and be removed by apoptosis. This final fate is determined by intricate cellular dosimeters that are yet to be fully understood. Here, key findings leading to our current view of DDR are discussed as well as potential areas of importance for future studies.
Collapse
Affiliation(s)
- Mats Ljungman
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, University of Michigan Comprehensive Cancer Center, Ann Arbor, Michigan 48109, USA.
| |
Collapse
|
513
|
Hikita H, Takehara T, Shimizu S, Kodama T, Shigekawa M, Iwase K, Hosui A, Miyagi T, Tatsumi T, Ishida H, Li W, Kanto T, Hiramatsu N, Hayashi N. The Bcl-xL inhibitor, ABT-737, efficiently induces apoptosis and suppresses growth of hepatoma cells in combination with sorafenib. Hepatology 2010; 52:1310-21. [PMID: 20799354 DOI: 10.1002/hep.23836] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
UNLABELLED Tumor cells are characterized by uncontrolled proliferation, often driven by activation of oncogenes, and apoptosis resistance. The oncogenic kinase inhibitor sorafenib can significantly prolong median survival of patients with advanced hepatocellular carcinoma (HCC), although the response is disease-stabilizing and cytostatic rather than one of tumor regression. Bcl-xL (B cell lymphoma extra large), an antiapoptotic member of the B cell lymphoma-2 (Bcl-2) family, is frequently overexpressed in HCC. Here, we present in vivo evidence that Bcl-xL overexpression is directly linked to the rapid growth of solid tumors. We also examined whether ABT-737, a small molecule that specifically inhibits Bcl-xL but not myeloid cell leukemia-1 (Mcl-1), could control HCC progression, especially when used with sorafenib. Administration of ABT-737, even at an in vivo effective dose, failed to suppress Huh7 xenograft tumors in mice. ABT-737 caused the levels of Mcl-1 expression to rapidly increase by protein stabilization. This appeared to be related to resistance to ABT-737, because decreasing Mcl-1 expression levels to the baseline by a small interfering RNA-mediated strategy made hepatoma cells sensitive to this agent. Importantly, administration of ABT-737 to Mcl-1 knockout mice induced severe liver apoptosis, suggesting that tumor-specific inhibition of Mcl-1 is required for therapeutic purposes. Sorafenib transcriptionally down-regulated Mcl-1 expression specifically in tumor cells and abolished Mcl-1 up-regulation induced by ABT-737. Sorafenib, not alone but in combination with ABT-737, efficiently induced apoptosis in hepatoma cells. This combination also led to stronger suppression of xenograft tumors than sorafenib alone. CONCLUSION Bcl-xL inactivation by ABT-737 in combination with sorafenib was found to be safe and effective for anti-HCC therapy in preclinical models. Direct activation of the apoptosis machinery seems to unlock the antitumor potential of oncogenic kinase inhibitors and may produce durable clinical responses against HCC.
Collapse
Affiliation(s)
- Hayato Hikita
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
514
|
Watanabe M, Naraba H, Sakyo T, Kitagawa T. DNA damage-induced modulation of GLUT3 expression is mediated through p53-independent extracellular signal-regulated kinase signaling in HeLa cells. Mol Cancer Res 2010; 8:1547-57. [PMID: 20870738 DOI: 10.1158/1541-7786.mcr-10-0011] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Many cancer cells exhibit increased rates of uptake and metabolism of glucose compared with normal cells. Glucose uptake in mammalian cells is mediated by the glucose transporter (GLUT) family. Here, we report that DNA-damaging anticancer agents such as Adriamycin and etoposide suppressed the expression of GLUT3, but not GLUT1, in HeLa cells and a tumorigenic HeLa cell hybrid. Suppression of GLUT3 expression determined by the real-time PCR was also evident with another DNA-damaging agent, camptothecin, which reduced the promoter's activity as determined with a luciferase-linked assay. The suppression by these agents seemed to be induced independently of p53, and it was evident when wild-type p53 was overproduced in these cells. In contrast, the mitogen-activated protein kinase/extracellular signal regulated kinase (MAPK/ERK) kinase (MEK) inhibitor U0126 (but not the phosphoinositide 3-kinase inhibitor LY294002) prevented the drug-induced suppression as determined by reverse transcription-PCR and promoter assays. Furthermore, overexpression of GLUT3 in HeLa cell hybrids increased resistance to these drugs, whereas depletion of the gene by small interfering RNA rendered the cells more sensitive to the drugs, decreasing glucose consumption. The results suggest that DNA-damaging agents reduce GLUT3 expression in cancer cells through activation of the MEK-ERK pathway independently of p53, leading to cell death or apoptosis. The findings may contribute to the development of new chemotherapeutic drugs based on the GLUT3-dependent metabolism of glucose.
Collapse
Affiliation(s)
- Masaru Watanabe
- Department of Cell Biology and Molecular Pathology, Iwate Medical University, School of Pharmacy, 2-1-1 Nishitokuta, Yahaba, Shiwa, Iwate 028-3694, Japan
| | | | | | | |
Collapse
|
515
|
Leber B, Lin J, Andrews DW. Still embedded together binding to membranes regulates Bcl-2 protein interactions. Oncogene 2010; 29:5221-30. [PMID: 20639903 PMCID: PMC6459407 DOI: 10.1038/onc.2010.283] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Revised: 05/27/2010] [Accepted: 06/04/2010] [Indexed: 12/19/2022]
Abstract
The dysregulation of apoptosis is a key step in developing tumours, and mediates resistance to cancer therapy. Many different signals for cell death converge on permeabilization of the outer mitochondrial membrane, which is controlled by the Bcl-2 family of proteins. The importance of this step is becoming increasingly relevant as the first generation of small molecules that inhibit the interaction of Bcl-2 family proteins enters clinical trials as anticancer agents. The Bcl-2 family can be divided into three classes: BH3-only proteins that are activated by various forms of cellular stress, Bax and Bak proteins that mediate mitochondrial membrane permeabilization, and inhibitory proteins such as Bcl-2 and Bcl-XL. The recently proposed embedded together model emphasizes the fact that many of the regulatory interactions between different classes of Bcl-2 family members occur at intracellular membranes, and binding to membranes causes conformational changes in the proteins that dictate functions in a dynamic manner. Within this context, recent results indicate that Bcl-XL functions as a dominant-negative Bax, a concept that resolves the paradox of similar structures but opposite functions of Bcl-XL and Bax. We have also shown that the conformational change that allows Bax to insert into the outer mitochondrial membrane is the rate-limiting step in the multistep process of Bax activation. Nevertheless, investigating the structure of activated Bax or Bak as monomers and as components of the oligomeric structures that mediate membrane permeabilization is the focus of ongoing research (and controversy) at many laboratories worldwide.
Collapse
Affiliation(s)
- B Leber
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - J Lin
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - DW Andrews
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
516
|
Cameroni E, Stettler K, Suter B. On the traces of XPD: cell cycle matters - untangling the genotype-phenotype relationship of XPD mutations. Cell Div 2010; 5:24. [PMID: 20840796 PMCID: PMC2949746 DOI: 10.1186/1747-1028-5-24] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Accepted: 09/15/2010] [Indexed: 11/28/2022] Open
Abstract
Mutations in the human gene coding for XPD lead to segmental progeria - the premature appearance of some of the phenotypes normally associated with aging - which may or may not be accompanied by increased cancer incidence. XPD is required for at least three different critical cellular functions: in addition to participating in the process of nucleotide excision repair (NER), which removes bulky DNA lesions, XPD also regulates transcription as part of the general transcription factor IIH (TFIIH) and controls cell cycle progression through its interaction with CAK, a pivotal activator of cyclin dependent kinases (CDKs). The study of inherited XPD disorders offers the opportunity to gain insights into the coordination of important cellular events and may shed light on the mechanisms that regulate the delicate equilibrium between cell proliferation and functional senescence, which is notably altered during physiological aging and in cancer. The phenotypic manifestations in the different XPD disorders are the sum of disturbances in the vital processes carried out by TFIIH and CAK. In addition, further TFIIH- and CAK-independent cellular activities of XPD may also play a role. This, added to the complex feedback networks that are in place to guarantee the coordination between cell cycle, DNA repair and transcription, complicates the interpretation of clinical observations. While results obtained from patient cell isolates as well as from murine models have been elementary in revealing such complexity, the Drosophila embryo has proven useful to analyze the role of XPD as a cell cycle regulator independently from its other cellular functions. Together with data from the biochemical and structural analysis of XPD and of the TFIIH complex these results combine into a new picture of the XPD activities that provides ground for a better understanding of the patophysiology of XPD diseases and for future development of diagnostic and therapeutic tools.
Collapse
Affiliation(s)
- Elisabetta Cameroni
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, CH-3012 Bern, Switzerland.
| | | | | |
Collapse
|
517
|
Exploiting the balance between life and death: Targeted cancer therapy and “oncogenic shock”. Biochem Pharmacol 2010; 80:666-73. [DOI: 10.1016/j.bcp.2010.03.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2009] [Revised: 02/24/2010] [Accepted: 03/01/2010] [Indexed: 01/05/2023]
|
518
|
Wu WKK, Lee CW, Cho CH, Fan D, Wu K, Yu J, Sung JJY. MicroRNA dysregulation in gastric cancer: a new player enters the game. Oncogene 2010; 29:5761-71. [PMID: 20802530 DOI: 10.1038/onc.2010.352] [Citation(s) in RCA: 235] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Gastric carcinogenesis is a multistep process involving genetic and epigenetic alteration of protein-coding proto-oncogenes and tumor-suppressor genes. Recent discoveries have shed new light on the involvement of a class of noncoding RNA known as microRNA (miRNA) in gastric cancer. A substantial number of miRNAs show differential expression in gastric cancer tissues. Genes coding for these miRNAs have been characterized as novel proto-oncogenes and tumor-suppressor genes based on findings that these miRNAs control malignant phenotypes of gastric cancer cells. In this connection, miRNA dysregulation promotes cell-cycle progression, confers resistance to apoptosis, and enhances invasiveness and metastasis. Moreover, certain polymorphisms in miRNA genes are associated with increased risks for atrophic gastritis and gastric cancer, whereas circulating levels of miRNAs may serve as biomarkers for early diagnosis. Several miRNAs have also been shown to correlate with gastric cancer progression, and thus may be used as prognostic markers. Elucidating the biological aspects of miRNA dysregulation may help us better understand the pathogenesis of gastric cancer and promote the development of miRNA-directed therapeutics against this deadly disease.
Collapse
Affiliation(s)
- W K K Wu
- Department of Medicine and Therapeutics, Institute of Digestive Diseases, LKS Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, PR China
| | | | | | | | | | | | | |
Collapse
|
519
|
Würstle ML, Laussmann MA, Rehm M. The caspase-8 dimerization/dissociation balance is a highly potent regulator of caspase-8, -3, -6 signaling. J Biol Chem 2010; 285:33209-33218. [PMID: 20702410 DOI: 10.1074/jbc.m110.113860] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Apoptosis is driven by positive feedback activation between aspartate-specific cysteinyl proteases (caspases). These feedback loops ensure the swift and efficient elimination of cells upon initiation of apoptosis execution. At the same time, the signaling network must be insensitive to erroneous, mild caspase activation to avoid unwanted, excessive cell death. Sublethal caspase activation in fact was shown to be a requirement for the differentiation of multiple cell types but might also occur accidentally during short, transient cellular stress conditions. Here we carried out an in silico comparison of the molecular mechanisms that so far have been identified to impair the amplification of caspase activities via the caspase-8, -3, -6 loop. In a systems model resembling HeLa cervical cancer cells, the dimerization/dissociation balance of caspase-8 potently suppressed the amplification of caspase responses, surprisingly outperforming or matching known caspase-8 and -3 inhibitors such as bifunctional apoptosis repressor or x-linked inhibitor of apoptosis protein. These findings were further substantiated in global sensitivity analyses based on combinations of protein concentrations from the sub- to superphysiological range to screen the full spectrum of biological variability that can be expected within cell populations and between distinct cell types. Additional modeling showed that the combined effects of x-linked inhibitor of apoptosis protein and caspase-8 dimerization/dissociation processes can also provide resistance to larger inputs of active caspases. Our study therefore highlights a central and so far underappreciated role of caspase-8 dimerization/dissociation in avoiding unwanted cell death by lethal amplification of caspase responses via the caspase-8, -3, -6 loop.
Collapse
Affiliation(s)
- Maximilian L Würstle
- From the Department of Physiology and Medical Physics, Dublin 2, Ireland; Systems Biology Group, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Maike A Laussmann
- From the Department of Physiology and Medical Physics, Dublin 2, Ireland; Systems Biology Group, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Markus Rehm
- From the Department of Physiology and Medical Physics, Dublin 2, Ireland; Systems Biology Group, Royal College of Surgeons in Ireland, Dublin 2, Ireland.
| |
Collapse
|
520
|
Chang HS, Lin CH, Yang CH, Liang YJ, Yu WCY. The human papillomavirus-16 (HPV-16) oncoprotein E7 conjugates with and mediates the role of the transforming growth factor-beta inducible early gene 1 (TIEG1) in apoptosis. Int J Biochem Cell Biol 2010; 42:1831-9. [PMID: 20691807 DOI: 10.1016/j.biocel.2010.07.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Revised: 07/15/2010] [Accepted: 07/28/2010] [Indexed: 12/20/2022]
Abstract
The human papillomavirus (HPV) oncoprotein E7 is a major transforming protein. The E7 protein does not possess intrinsic enzymatic activity, but rather functions through direct and indirect interactions with cellular proteins, several of which are well known cellular tumor suppressors. Using the yeast two-hybrid system, we found that transforming growth factor-beta inducible early gene 1 (TIEG1), a member of the Krüppel-like family (KLF) that has been implicated as a putative tumor suppressor, interacts and forms a specific complex with HPV-16 E7. TIEG1 has been shown to mimic the effects of TGF-beta in various carcinoma cells and plays a critical role in the apoptotic cascade. Our results indicate that E7 binds to the C-terminus of TIEG1 and induces its degradation via the ubiquitin pathway. E7 not only increased the ubiquitination of TIEG1 but also influenced the ability of TIEG1 to affect apoptosis. Our results suggest that suppression of TIEG1-mediated signaling by E7 may contribute to HPV-associated carcinogenesis.
Collapse
Affiliation(s)
- Hung-Shu Chang
- Department of Life Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Taiwan, ROC.
| | | | | | | | | |
Collapse
|
521
|
Gu Z, Biswas A, Joo KI, Hu B, Wang P, Tang Y. Probing protease activity by single-fluorescent-protein nanocapsules. Chem Commun (Camb) 2010; 46:6467-9. [PMID: 20657917 DOI: 10.1039/c0cc01439g] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We describe a FRET-based protease detection strategy, using a single-fluorescent-protein nanogel as donor and a dark quencher as acceptor linked by a photolabile caged-peptide. This design enables probing of protease activity in a UV-responsive fashion.
Collapse
Affiliation(s)
- Zhen Gu
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles (UCLA), Los Angeles, California 90095, USA
| | | | | | | | | | | |
Collapse
|
522
|
Biophotonic probing of macromolecular transformations during apoptosis. Proc Natl Acad Sci U S A 2010; 107:12771-6. [PMID: 20615987 DOI: 10.1073/pnas.1006374107] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
We introduce here multiplex nonlinear optical imaging as a powerful tool for studying the molecular organization and its transformation in cellular processes, with the specific example of apoptosis. Apoptosis is a process of self-initiated cell death, critically important for physiological regulation and elimination of genetic disorders. Nonlinear optical microscopy, combining the coherent anti-Stokes Raman scattering (CARS) microscopy and two-photon excited fluorescence (TPEF), has been used for analysis of spatial distribution of major types of biomolecules: proteins, lipids, and nucleic acids in the cells while monitoring their changes during apoptosis. CARS imaging revealed that in the nuclei of proliferating cells, the proteins are distributed nearly uniformly, with local accumulations in several nuclear structures. We have found that this distribution is abruptly disrupted at the onset of apoptosis and is transformed to a progressively irregular pattern. Fluorescence recovery after photobleaching (FRAP) studies indicate that pronounced aggregation of proteins in the nucleoplasm of apoptotic cells coincides with a gradual reduction in their mobility.
Collapse
|
523
|
Peng L, Liang D, Tong W, Li J, Yuan Z. Hepatitis C virus NS5A activates the mammalian target of rapamycin (mTOR) pathway, contributing to cell survival by disrupting the interaction between FK506-binding protein 38 (FKBP38) and mTOR. J Biol Chem 2010; 285:20870-81. [PMID: 20439463 PMCID: PMC2898342 DOI: 10.1074/jbc.m110.112045] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Revised: 04/25/2010] [Indexed: 01/16/2023] Open
Abstract
Hepatitis C virus (HCV) often establishes a persistent infection that most likely involves a complex host-virus interplay. We previously reported that the HCV nonstructural protein 5A (NS5A) bound to cellular protein FKBP38 and resulted in apoptosis suppression in human hepatoma cell line Huh7. In the present research we further found that NS5A increased phosphorylation levels of two mTOR-targeted substrates, S6K1 and 4EBP1, in Huh7 in the absence of serum. mTOR inhibitor rapamycin or NS5A knockdown blocked S6K1 and 4EBP1 phosphorylation increase in NS5A-Huh7 and HCV replicon cells, suggesting that NS5A specifically regulated mTOR activation. Overexpression of NS5A and FKBP38 mutants or FKBP38 knockdown revealed this mTOR activation was dependent on NS5A-FKBP38 interaction. Phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 treatment in NS5A-Huh7 showed that the mTOR activation was independent of PI3K. Moreover, NS5A suppressed caspase 3 and poly(ADP-ribose) polymerase activation, which was abolished by NS5A knockdown or rapamycin, indicating NS5A inhibited apoptosis specifically through the mTOR pathway. Further analyses suggested that apoptotic inhibition exerted by NS5A via mTOR also required NS5A-FKBP38 interaction. Glutathione S-transferase pulldown and co-immunoprecipitation showed that NS5A disrupted the mTOR-FKBP38 association. Additionally, NS5A or FKBP38 mutants recovered the mTOR-FKBP38 interaction; this indicated that the impairment of mTOR-FKBP38 association was dependent on NS5A-FKBP38 binding. Collectively, our data demonstrate that HCV NS5A activates the mTOR pathway to inhibit apoptosis through impairing the interaction between mTOR and FKBP38, which may represent a pivotal mechanism for HCV persistence and pathogenesis.
Collapse
Affiliation(s)
- Lu Peng
- From the Key Laboratory of Medical Molecular Virology, Shanghai Medical College, and
| | - Dongyu Liang
- From the Key Laboratory of Medical Molecular Virology, Shanghai Medical College, and
| | - Wenyan Tong
- From the Key Laboratory of Medical Molecular Virology, Shanghai Medical College, and
| | - Jianhua Li
- From the Key Laboratory of Medical Molecular Virology, Shanghai Medical College, and
| | - Zhenghong Yuan
- From the Key Laboratory of Medical Molecular Virology, Shanghai Medical College, and
- Institutes of Medical Microbiology and Biomedical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
524
|
Lee S, Yagita H, Sayers TJ, Celis E. Optimized combination therapy using bortezomib, TRAIL and TLR agonists in established breast tumors. Cancer Immunol Immunother 2010; 59:1073-81. [PMID: 20213120 PMCID: PMC6993141 DOI: 10.1007/s00262-010-0834-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Accepted: 02/10/2010] [Indexed: 10/19/2022]
Abstract
TNF-related apoptosis-inducing ligand (TRAIL) is a member of the TNF family of cytokines, which can induce apoptosis in various tumor cells by engaging the receptors, DR4 and DR5. Bortezomib (Velcade) is a proteasome inhibitor that has been approved for patients with multiple myeloma. There is some experimental evidence in preclinical models that bortezomib can enhance the susceptibility of tumors to TRAIL-induced apoptosis. In this study, we investigated the effects of TRAIL-induced death using an agonistic antibody to the TRAIL receptor DR5 (alpha-DR5) in combination with bortezomib administered to mice previously injected with breast cancer cells (TUBO). This combination had some beneficial therapeutic effect, which was significantly enhanced by the co-administration of a Toll-like receptor 9 agonist (CpG). In contrast, single agent treatments had little effect on tumor growth. In addition, we evaluated the effect of combination with alpha-DR5, bortezomib, and CpG in the prevention/treatment of spontaneous mammary tumors in Balb-neuT mice. In this model, which is more difficult to treat, we observed dramatic antitumor effects of alpha-DR5, bortezomib and CpG combination therapy. Since such a mouse model more accurately reflects the immunological tolerance that exists in human cancer, our results strongly suggest that these combination strategies could be directly applied to the therapy for cancer patients.
Collapse
Affiliation(s)
- Sujin Lee
- Department of Immunology, Moffitt Cancer Center, Tampa, FL 33612, USA.
| | | | | | | |
Collapse
|
525
|
Nakaya A, Sagawa M, Muto A, Uchida H, Ikeda Y, Kizaki M. The gold compound auranofin induces apoptosis of human multiple myeloma cells through both down-regulation of STAT3 and inhibition of NF-κB activity. Leuk Res 2010; 35:243-9. [PMID: 20542334 DOI: 10.1016/j.leukres.2010.05.011] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Revised: 04/14/2010] [Accepted: 05/14/2010] [Indexed: 01/29/2023]
Abstract
Constitutive activation of NF-κB and STAT3 plays an important role in the cellular proliferation and survival of multiple myeloma cells. We first found that auranofin (AF), a coordinated gold compound, induced a significant level of cell cycle arrest at G1 phase and subsequent apoptosis of myeloma cells. Further, AF inhibited constitutive and IL-6-induced activation of JAK2 and phosphorylation of STAT3 followed by the decreased expression of Mcl-1. AF down-regulated the activation of NF-κB, and the combination of AF and a specific NF-κB inhibitor resulted in a marked decrease of Mcl-1 expression. These results suggest that AF inhibits both IL-6 induced-JAK/STAT pathway and NF-κB activation in myeloma cells.
Collapse
Affiliation(s)
- Aya Nakaya
- Division of Hematology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
526
|
Ho JN, Kang GY, Lee SS, Kim J, Bae IH, Hwang SG, Um HD. Bcl-XL and STAT3 mediate malignant actions of gamma-irradiation in lung cancer cells. Cancer Sci 2010; 101:1417-23. [PMID: 20331635 PMCID: PMC11159096 DOI: 10.1111/j.1349-7006.2010.01552.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Revised: 02/06/2010] [Accepted: 02/24/2010] [Indexed: 12/25/2022] Open
Abstract
Previous reports suggest that, in addition to its therapeutic effects, ionizing radiation (IR) increases the invasiveness of surviving cancer cells. Here, we demonstrate that this activity of IR in lung cancer cells is mediated by a signaling pathway involving p38 kinase, phosphoinositide 3-kinase, Akt, and matrix metalloproteinase (MMP-2). The invasion-promoting doses of IR also increased and reduced the levels of vimentin and E-cadherin, respectively, both of which are markers for the epithelial-mesenchymal transition (EMT). Interestingly, all of these malignant actions of IR were mimicked by the overexpression of Bcl-X(L), a pro-survival member of the Bcl-2 family, in lung cancer cells. Moreover, both RNA and protein levels of Bcl-X(L) were elevated upon irradiation of the cells, and the prevention of this event using small-interfering RNAs of Bcl-X(L) reduced the ability of IR to promote invasion signals and EMT-associated events. This suggests that Bcl-X(L) functions as a signaling mediator of the malignant effects of IR. It was also demonstrated that IR enhances signal transducer and activator of transcription 3 (STAT3) phosphorylation, and the reduction of STAT3 levels via RNA interference prevented IR-induced Bcl-X(L) accumulation, and thus all the tested Bcl-X(L)-dependent events. Overall, the data suggest that IR induces Bcl-X(L) accumulation via STAT3, which then promotes cancer cell invasion and EMT-associated markers. Our findings demonstrate a novel function of Bcl-X(L) in cancer, and also advance our understanding of the malignant actions of IR significantly.
Collapse
Affiliation(s)
- Jin-Nyoung Ho
- Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|
527
|
Stein A, Aloy P. Novel peptide-mediated interactions derived from high-resolution 3-dimensional structures. PLoS Comput Biol 2010; 6:e1000789. [PMID: 20502673 PMCID: PMC2873903 DOI: 10.1371/journal.pcbi.1000789] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Accepted: 04/15/2010] [Indexed: 11/18/2022] Open
Abstract
Many biological responses to intra- and extracellular stimuli are regulated through complex networks of transient protein interactions where a globular domain in one protein recognizes a linear peptide from another, creating a relatively small contact interface. These peptide stretches are often found in unstructured regions of proteins, and contain a consensus motif complementary to the interaction surface displayed by their binding partners. While most current methods for the de novo discovery of such motifs exploit their tendency to occur in disordered regions, our work here focuses on another observation: upon binding to their partner domain, motifs adopt a well-defined structure. Indeed, through the analysis of all peptide-mediated interactions of known high-resolution three-dimensional (3D) structure, we found that the structure of the peptide may be as characteristic as the consensus motif, and help identify target peptides even though they do not match the established patterns. Our analyses of the structural features of known motifs reveal that they tend to have a particular stretched and elongated structure, unlike most other peptides of the same length. Accordingly, we have implemented a strategy based on a Support Vector Machine that uses this features, along with other structure-encoded information about binding interfaces, to search the set of protein interactions of known 3D structure and to identify unnoticed peptide-mediated interactions among them. We have also derived consensus patterns for these interactions, whenever enough information was available, and compared our results with established linear motif patterns and their binding domains. Finally, to cross-validate our identification strategy, we scanned interactome networks from four model organisms with our newly derived patterns to see if any of them occurred more often than expected. Indeed, we found significant over-representations for 64 domain-motif interactions, 46 of which had not been described before, involving over 6,000 interactions in total for which we could suggest the molecular details determining the binding. Protein-protein interactions are paramount in any aspect of the cellular life. Some proteins form large macromolecular complexes that execute core functionalities of the cell, while others transmit information in signalling networks to co-ordinate these processes. The latter type, of more transient nature, often occurs through the recognition of a small linear sequence motif in one protein by a specialized globular domain in the other. These peptide stretches often contain a consensus pattern complementary to the interaction surface displayed by their binding partners, and adopt a well-defined structure upon binding. Information that is currently available only from high-resolution three-dimensional (3D) structures, and that can be as characteristic as the consensus motif itself. In this manuscript, we present a strategy to identify novel domain-motif interactions (DMIs) among the set of protein complexes of known 3D structures, which provides information on the consensus motif and binding domain and also allows ready identification of the key interacting residues. A detailed knowledge of the interface is critical to plan further functional studies and for the development of interfering elements, be it drug-like compounds or novel engineered binding proteins or peptides. The small interfaces typical for DMIs make them interesting candidates for all these applications.
Collapse
Affiliation(s)
- Amelie Stein
- Institute for Research in Biomedicine, Joint IRB-BSC Program in Computational Biology, Barcelona, Spain
| | - Patrick Aloy
- Institute for Research in Biomedicine, Joint IRB-BSC Program in Computational Biology, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
- * E-mail:
| |
Collapse
|
528
|
Smolková K, Plecitá-Hlavatá L, Bellance N, Benard G, Rossignol R, Ježek P. Waves of gene regulation suppress and then restore oxidative phosphorylation in cancer cells. Int J Biochem Cell Biol 2010; 43:950-68. [PMID: 20460169 DOI: 10.1016/j.biocel.2010.05.003] [Citation(s) in RCA: 171] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Revised: 03/05/2010] [Accepted: 05/04/2010] [Indexed: 12/17/2022]
Abstract
We posit the following hypothesis: Independently of whether malignant tumors are initiated by a fundamental reprogramming of gene expression or seeded by stem cells, "waves" of gene expression that promote metabolic changes occur during carcinogenesis, beginning with oncogene-mediated changes, followed by hypoxia-induced factor (HIF)-mediated gene expression, both resulting in the highly glycolytic "Warburg" phenotype and suppression of mitochondrial biogenesis. Because high proliferation rates in malignancies cause aglycemia and nutrient shortage, the third (second oncogene) "wave" of adaptation stimulates glutaminolysis, which in certain cases partially re-establishes oxidative phosphorylation; this involves the LKB1-AMPK-p53, PI3K-Akt-mTOR axes and MYC dysregulation. Oxidative glutaminolysis serves as an alternative pathway compensating for cellular ATP. Together with anoxic glutaminolysis it provides pyruvate, lactate, and the NADPH pool (alternatively to pentose phosphate pathway). Retrograde signaling from revitalized mitochondria might constitute the fourth "wave" of gene reprogramming. In turn, upon reversal of the two Krebs cycle enzymes, glutaminolysis may partially (transiently) function even during anoxia, thereby further promoting malignancy. The history of the carcinogenic process within each malignant tumor determines the final metabolic phenotype of the selected surviving cells, resulting in distinct cancer bioenergetic phenotypes ranging from the highly glycolytic "classic Warburg" to partial or enhanced oxidative phosphorylation. We discuss the bioenergetically relevant functions of oncogenes, the involvement of mitochondrial biogenesis/degradation in carcinogenesis, the yet unexplained Crabtree effect of instant glucose blockade of respiration, and metabolic signaling stemming from the accumulation of succinate, fumarate, pyruvate, lactate, and oxoglutarate by interfering with prolyl hydroxylase domain enzyme-mediated hydroxylation of HIFα prolines.
Collapse
Affiliation(s)
- Katarína Smolková
- Department of Membrane Transport Biophysics, Institute of Physiology, vvi, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | | | | | | | | | | |
Collapse
|
529
|
Suzuki K, Kokuryo T, Senga T, Yokoyama Y, Nagino M, Hamaguchi M. Novel combination treatment for colorectal cancer using Nek2 siRNA and cisplatin. Cancer Sci 2010; 101:1163-9. [PMID: 20345485 PMCID: PMC11159639 DOI: 10.1111/j.1349-7006.2010.01504.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Nek2 (NIMA-related kinase 2) is involved in cell division and mitotic regulation by centrosome splitting. We previously reported that Nek2 depletion causes growth suppression and cell death in cholangiocarcinoma and breast cancer cells. In this report, we examine the effect of a combination treatment using Nek2 siRNA with the cytotoxic chemotherapeutic agent cisplatin (CDDP) on colorectal cancer. Nek2 was overexpressed in all colorectal cancer cell lines examined (HCT-15, DLD-1, Colo205, and Colo320). Nek2 short-interfering RNA (siRNA) resulted in the inhibition of cell proliferation and the induction of apoptosis in vitro. Nek2 siRNA suppressed tumor growth compared to control siRNA in a xenograft mouse model. To investigate the potential utility of Nek2 siRNA for clinical cancer therapy, we examine the effect of a combination treatment using Nek2 siRNA with CDDP on colorectal cancer. The combined administration of both Nek2 siRNA and CDDP inhibited cell proliferation and induced apoptotic cell death in vitro. Furthermore, the combined administration of both Nek2 siRNA and CDDP suppressed tumor growth compared to either the single administration of Nek2 siRNA or the combined administration of control siRNA and CDDP. Our results suggest that combination treatment using Nek2 siRNA and chemotherapeutic agents may be an effective therapeutic option for colorectal cancer.
Collapse
Affiliation(s)
- Kazushi Suzuki
- Division of Surgical Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | | | | | | | | |
Collapse
|
530
|
Knox SS. From 'omics' to complex disease: a systems biology approach to gene-environment interactions in cancer. Cancer Cell Int 2010; 10:11. [PMID: 20420667 PMCID: PMC2876152 DOI: 10.1186/1475-2867-10-11] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Accepted: 04/26/2010] [Indexed: 12/24/2022] Open
Abstract
Background Cancer is a complex disease that involves a sequence of gene-environment interactions in a progressive process that cannot occur without dysfunction in multiple systems, including DNA repair, apoptotic and immune functions. Epigenetic mechanisms, responding to numerous internal and external cues in a dynamic ongoing exchange, play a key role in mediating environmental influences on gene expression and tumor development. Hypothesis The hypothesis put forth in this paper addresses the limited success of treatment outcomes in clinical oncology. It states that improvement in treatment efficacy requires a new paradigm that focuses on reversing systemic dysfunction and tailoring treatments to specific stages in the process. It requires moving from a reductionist framework of seeking to destroy aberrant cells and pathways to a transdisciplinary systems biology approach aimed at reversing multiple levels of dysfunction. Conclusion Because there are many biological pathways and multiple epigenetic influences working simultaneously in the expression of cancer phenotypes, studying individual components in isolation does not allow an adequate understanding of phenotypic expression. A systems biology approach using new modeling techniques and nonlinear mathematics is needed to investigate gene-environment interactions and improve treatment efficacy. A broader array of study designs will also be required, including prospective molecular epidemiology, immune competent animal models and in vitro/in vivo translational research that more accurately reflects the complex process of tumor initiation and progression.
Collapse
Affiliation(s)
- Sarah S Knox
- Program in Clinical and Population Epigenetics, Dept, of Community Medicine West Virginia University School of Medicine, PO Box 9190, Health Science South Morgantown, WV 26506, USA.
| |
Collapse
|
531
|
Broustas CG, Ross JS, Yang Q, Sheehan CE, Riggins R, Noone AM, Haddad BR, Seillier-Moiseiwitsch F, Kallakury BV, Haffty BG, Clarke R, Kasid UN. The Proapoptotic Molecule BLID Interacts with Bcl-XL and Its Downregulation in Breast Cancer Correlates with Poor Disease-Free and Overall Survival. Clin Cancer Res 2010; 16:2939-48. [DOI: 10.1158/1078-0432.ccr-09-2351] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
532
|
Larsson LG, Henriksson MA. The Yin and Yang functions of the Myc oncoprotein in cancer development and as targets for therapy. Exp Cell Res 2010; 316:1429-37. [PMID: 20382143 DOI: 10.1016/j.yexcr.2010.03.025] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Accepted: 03/31/2010] [Indexed: 12/21/2022]
Abstract
The Myc proto-oncoprotein coordinates a number of normal physiological processes necessary for growth and expansion of somatic cells by controlling the expression of numerous target genes. Deregulation of MYC as a consequence of carciogenic events enforces cells to undergo a transition to a hyperproliferative state. This increases the risk of additional oncogenic mutations that in turn can result in further tumor progression. However, Myc activation also provokes intrinsic tumor suppressor mechanisms including apoptosis, cellular senescence and DNA damage responses that act as barriers for tumor development and therefore needs to be overcome during tumorigenesis. Myc thus possesses two seemingly contradictory "faces" here referred to as "Yin and Yang". Observations that many tumor suppressor pathways remain intact but are latent in tumor cells opens the possibility that pharmacological inhibition of the Yin or activation of the Yang functions can prevail and offer new attractive approaches for treating diverse types of cancer.
Collapse
Affiliation(s)
- Lars-Gunnar Larsson
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Box 280, 171 77 Stockholm, Sweden.
| | | |
Collapse
|
533
|
The Beclin 1-VPS34 complex--at the crossroads of autophagy and beyond. Trends Cell Biol 2010; 20:355-62. [PMID: 20356743 DOI: 10.1016/j.tcb.2010.03.002] [Citation(s) in RCA: 612] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Revised: 03/05/2010] [Accepted: 03/10/2010] [Indexed: 02/06/2023]
Abstract
An increasing body of research on autophagy provides overwhelming evidence for its connection to diverse biological functions and human diseases. Beclin 1, the first mammalian autophagy protein to be described, appears to act as a nexus point between autophagy, endosomal, and perhaps also cell death pathways. Beclin 1 performs these roles as part of a core complex that contains vacuolar sorting protein 34 (VPS34), a class III phosphatidylinositol-3 kinase. The precise mechanism of Beclin 1-mediated regulation of these cellular functions is unclear, but substantial progress has recently been made in identifying new players and their functions in Beclin 1-VSP34 complexes. Here we review emerging studies that are beginning to unveil the physiological functions of Beclin 1-VPS34 in the central control of autophagic activity and other trafficking events through the formation of distinct Beclin 1-VPS34 protein complexes.
Collapse
|
534
|
Nishioka T, Guo J, Yamamoto D, Chen L, Huppi P, Chen CY. Nicotine, through upregulating pro-survival signaling, cooperates with NNK to promote transformation. J Cell Biochem 2010; 109:152-61. [PMID: 19911375 DOI: 10.1002/jcb.22392] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Cigarette smoking is a mixture of thousands of compounds, many of which are carcinogens, such as NNK [4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone]. Nicotine, as an addictive substance in cigarette, has been shown to promote growth of non-neuronal cells. It is unclear how nicotine cooperates with tobacco-related carcinogens during tumorigenesis. Here, by concurrent treatment of nicotine and NNK, we investigate the effect of the cooperation of these two compounds on cell growth and apoptosis in various different lung epithelial (RLE) or cancer (LKR) cells. We demonstrated that short-term nicotine exposure moderately activated mitogenic signaling pathways (such as PKC, ERK, and Akt) and a mediocre protection against cisplatin-mediated apoptosis. In contrast, NNK strongly stimulated mitogenic signaling and rendered the cells a high resistance to cisplatin. The pre-ligation of nAChR by nicotine interfered with NNK-mediated mitogenic signaling and resistance to cisplatin, the magnitude of which was similar as that exposed to nicotine alone. Interestingly, a week after the exposure to nicotine or nicotine plus NNK, Bcl-2 expression was augmented, accompanied with the increased resistance to cisplatin-induced apoptosis. In comparison, long-term NNK treatment provided very little protection of the cells from cisplatin. We also showed that the combination treatment promoted more cells to grow in an anchorage-independent fashion than NNK exposure alone. Thus, the data suggest that through occupying nAChR, nicotine appears to modulate NNK-mediated signaling and persistently sustain pro-survival activities to promote transformation.
Collapse
Affiliation(s)
- Takashi Nishioka
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | | | | | | | | | | |
Collapse
|
535
|
Abstract
IMPORTANCE OF THE FIELD Since its discovery in 1997, the antiapoptotic factor AAC-11 has rapidly gained attention due to its potential use in cancer therapy. Indeed, most cancer cells express elevated levels of AAC-11, which is now known to be involved in both tumor cells growth as well as sensitivity to chemotherapeutic drugs. AREAS COVERED IN THIS REVIEW In this review, we examine the most recent evidence about the role of AAC-11 in cancer biology and the therapeutic perspectives associated with its specific targeting. For that purpose, literature dealing with AAC-11 in the PubMed database was reviewed from 1997 up to date. WHAT THE READER WILL GAIN AAC-11 is an antiapoptotic gene that has the potential to be a target for anti-cancer therapy, and warrants further investigation. As its expression seems to predict unfavorable prognosis, at least in some cancers, it also may become a potent prognostic marker. TAKE HOME MESSAGE Blocking AAC-11 function in cancer for therapeutic purposes might be of great interest. The recent report of efficient AAC-11 inhibiting peptides that sensitize tumor cells to chemotherapeutic drugs has raise the exciting notion that AAC-11 might be a druggable target and fueled the search for new therapeutic agents that could block AAC-11 function.
Collapse
Affiliation(s)
- Audrey Faye
- INSERM UMRS 940, Equipe Avenir, Université Paris 7, Institut de Génétique Moléculaire, 75010 Paris, France
| | | |
Collapse
|
536
|
Zhu H, Cao X, Ali-Osman F, Keir S, Lo HW. EGFR and EGFRvIII interact with PUMA to inhibit mitochondrial translocalization of PUMA and PUMA-mediated apoptosis independent of EGFR kinase activity. Cancer Lett 2010; 294:101-10. [PMID: 20153921 DOI: 10.1016/j.canlet.2010.01.028] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Revised: 01/18/2010] [Accepted: 01/21/2010] [Indexed: 11/16/2022]
Abstract
EGFR and its constitutively activated variant EGFRvIII are linked to glioblastoma resistance to therapy, the mechanisms underlying this association, however, are still unclear. We report that in glioblastoma, EGFR/EGFRvIII paradoxically co-expresses with p53-upregulated modulator of apoptosis (PUMA), a proapoptotic member of the Bcl-2 family of proteins primarily located on the mitochondria. EGFR/EGFRvIII binds to PUMA constitutively and under apoptotic stress, and subsequently sequesters PUMA in the cytoplasm. The EGFR-PUMA interaction is independent of EGFR activation and is sustained under EGFR inhibition. A Bcl-2/Bcl-xL inhibitor that mimics PUMA activity sensitizes EGFR/EGFRvIII-expressing glioblastoma cells to Iressa. Collectively, we uncovered a novel kinase-independent function of EGFR/EGFRvIII that leads to tumor drug resistance.
Collapse
Affiliation(s)
- Hu Zhu
- Department of Surgery, Divisions of Surgical Sciences and Neurosurgery, Duke University School of Medicine, 103 Research Drive, Durham, NC 27710, USA
| | | | | | | | | |
Collapse
|
537
|
Abstract
IMPORTANCE OF THE FIELD Due to the failure and severe toxicity of cancer chemotherapy, silibinin, a natural flavonoid from the seeds of milk thistle, has recently received more attention for its potential anticancer and nontoxic roles in animals and humans. Silibinin has clearly demonstrated inhibition of multiple cancer cell signaling pathways, including growth inhibition, inhibition of angiogenesis, chemosensitization, and inhibition of invasion and metastasis. Cumulative evidence implicates that silibinin is a potential agent for cancer chemoprevention and chemotherapy. AREAS COVERED IN THIS REVIEW Our aim is to discuss the recent progress of silibinin in regulating multiple anticancer proliferative signaling pathways; the review covers literature mainly from the past 3 - 5 years. WHAT THE READER WILL GAIN One of the strategies for tumor therapy is eradication of cancer cells through targeting specific cell-proliferative pathways. This review highlights the current knowledge of silibinin in regulating multiple cellular proliferative pathways in cancer cells, including receptor tyrosine kinases, androgen receptor, STATs, NF-kappaB, cell cycle regulatory and apoptotic signaling pathways. TAKE HOME MESSAGE The molecular mechanisms of silibinin-mediated antiproliferative effects are mainly via receptor tyrosine kinases, androgen receptor, STATs, NF-kappaB, cell cycle regulatory and apoptotic signaling pathways in various cancer cells. Targeting inhibition of proliferative pathways through silibinin treatment may provide a new approach for improving chemopreventive and chemotherapeutic effects.
Collapse
Affiliation(s)
- Lei Li
- The First Hospital of Xi'an Jiaotong University, Department of Urology, 277 Yanta West Road, Xi'an 710061, People's Republic of China
| | | | | | | |
Collapse
|
538
|
|
539
|
Arisaka M, Nakamura T, Yamada A, Negishi Y, Aramaki Y. Involvement of protein kinase Cδ in induction of apoptosis by cationic liposomes in macrophage-like RAW264.7 cells. FEBS Lett 2010; 584:1016-20. [DOI: 10.1016/j.febslet.2010.01.055] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Revised: 01/07/2010] [Accepted: 01/27/2010] [Indexed: 12/01/2022]
|
540
|
Macchi B, Minutolo A, Grelli S, Cardona F, Cordero FM, Mastino A, Brandi A. The novel proapoptotic activity of nonnatural enantiomer of Lentiginosine. Glycobiology 2010; 20:500-6. [PMID: 20053629 DOI: 10.1093/glycob/cwp202] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
D-(-)-Lentiginosine [(-)-4], the nonnatural enantiomer of the iminosugar indolizidine alkaloid L-(+)-lentiginosine, acts as apoptosis inducer on tumor cells of different origin, in contrast to its natural enantiomer. Although D-(-)-4 exhibited a proapoptotic activity towards tumor cells at level lower than the chemotherapeutic agent, SN38, it was less proapoptotic towards normal cells and less cytotoxic. Apoptosis induced by D-(-)-4 was caspase-dependent, as shown by the increased expression and activity of caspase-3 and -8 in treated cells, and by inhibition following treatment with the pan caspase inhibitor, ZVAD-FMK. This study highlighted how a natural iminosugar alkaloid and its synthetic enantiomer, which were simply known for their inhibition against a fungal glucoamylase, could behave in a complete different way when tested towards cell growth and death of cells of different origin.
Collapse
Affiliation(s)
- Beatrice Macchi
- Department of Neuroscience, University of Rome Tor Vergata Via Montpellier 1 Rome 00133 and IRCCS S. Lucia, Via Ardeatina 300 00100 Rome, Italy.
| | | | | | | | | | | | | |
Collapse
|
541
|
Gu Z, Yan M, Hu B, Joo KI, Biswas A, Huang Y, Lu Y, Wang P, Tang Y. Protein nanocapsule weaved with enzymatically degradable polymeric network. NANO LETTERS 2009; 9:4533-4538. [PMID: 19995089 DOI: 10.1021/nl902935b] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Target proteins can be functionally encapsulated using a cocoon-like polymeric nanocapsule formed by interfacial polymerization. The nanocapsule is cross-linked by peptides that can be proteolyzed by proteases upon which the protein cargo is released. The protease-mediated degradation process can be controlled in a spatiotemporal fashion through modification of the peptide cross-linker with photolabile moieties. We demonstrate the utility of this approach through the cytoplasmic delivery of the apoptosis inducing caspase-3 to cancer cells.
Collapse
Affiliation(s)
- Zhen Gu
- Department of Chemical and Biomolecular Engineering, California NanoSystems Institute, University of California at Los Angeles, Los Angeles, California 90095, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
542
|
Kwon HR, Lee KW, Dong Z, Lee KB, Oh SM. Requirement of T-lymphokine-activated killer cell-originated protein kinase for TRAIL resistance of human HeLa cervical cancer cells. Biochem Biophys Res Commun 2009; 391:830-4. [PMID: 19945431 DOI: 10.1016/j.bbrc.2009.11.147] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Accepted: 11/23/2009] [Indexed: 11/30/2022]
Abstract
T-lymphokine-activated killer cell-originated protein kinase (TOPK) appears to be highly expressed in various cancer cells and to play an important role in maintaining proliferation of cancer cells. However, the underlying mechanism by which TOPK regulates growth of cancer cells remains elusive. Here we report that upregulated endogenous TOPK augments resistance of cancer cells to apoptosis induced by tumor necrosis factor-related apoptosis inducing ligand (TRAIL). Stable knocking down of TOPK markedly increased TRAIL-mediated apoptosis of human HeLa cervical cancer cells, as compared with control cells. Caspase 8 or caspase 3 activities in response to TRAIL were greatly incremented in TOPK-depleted cells. Ablation of TOPK negatively regulated TRAIL-mediated NF-kappaB activity. Furthermore, expression of NF-kappaB-dependent genes, FLICE-inhibitory protein (FLIP), inhibitor of apoptosis protein 1 (c-IAP1), or X-linked inhibitor of apoptosis protein (XIAP) was reduced in TOPK-depleted cells. Collectively, these findings demonstrated that TOPK contributed to TRAIL resistance of cancer cells via NF-kappaB activity, suggesting that TOPK might be a potential molecular target for successful cancer therapy using TRAIL.
Collapse
Affiliation(s)
- Hyeok-Ran Kwon
- Department of Biochemistry, College of Medicine, Konyang University, 685 Gasuwon-dong, Seo-gu, Daejeon 302-718, Republic of Korea
| | | | | | | | | |
Collapse
|
543
|
Schleimann MH, Møller JML, Kofod-Olsen E, Höllsberg P. Direct Repeat 6 from human herpesvirus-6B encodes a nuclear protein that forms a complex with the viral DNA processivity factor p41. PLoS One 2009; 4:e7457. [PMID: 19829698 PMCID: PMC2759074 DOI: 10.1371/journal.pone.0007457] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Accepted: 09/18/2009] [Indexed: 02/04/2023] Open
Abstract
The SalI-L fragment from human herpesvirus 6A (HHV-6A) encodes a protein DR7 that has been reported to produce fibrosarcomas when injected into nude mice, to transform NIH3T3 cells, and to interact with and inhibit the function of p53. The homologous gene in HHV-6B is dr6. Since p53 is deregulated in both HHV-6A and -6B, we characterized the expression of dr6 mRNA and the localization of the translated protein during HHV-6B infection of HCT116 cells. Expression of mRNA from dr6 was inhibited by cycloheximide and partly by phosphonoacetic acid, a known characteristic of herpesvirus early/late genes. DR6 could be detected as a nuclear protein at 24 hpi and accumulated to high levels at 48 and 72 hpi. DR6 located in dots resembling viral replication compartments. Furthermore, a novel interaction between DR6 and the viral DNA processivity factor, p41, could be detected by confocal microscopy and by co-immunoprecipitation analysis. In contrast, DR6 and p53 were found at distinct subcellular locations. Together, our data imply a novel function of DR6 during HHV-6B replication.
Collapse
Affiliation(s)
- Mariane H. Schleimann
- Department of Medical Microbiology and Immunology, Aarhus University, Aarhus, Denmark
| | - Janni M. L. Møller
- Department of Medical Microbiology and Immunology, Aarhus University, Aarhus, Denmark
| | - Emil Kofod-Olsen
- Department of Medical Microbiology and Immunology, Aarhus University, Aarhus, Denmark
| | - Per Höllsberg
- Department of Medical Microbiology and Immunology, Aarhus University, Aarhus, Denmark
- * E-mail:
| |
Collapse
|
544
|
Pellettieri J, Fitzgerald P, Watanabe S, Mancuso J, Green DR, Sánchez Alvarado A. Cell death and tissue remodeling in planarian regeneration. Dev Biol 2009; 338:76-85. [PMID: 19766622 PMCID: PMC2835816 DOI: 10.1016/j.ydbio.2009.09.015] [Citation(s) in RCA: 261] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Revised: 09/09/2009] [Accepted: 09/11/2009] [Indexed: 12/22/2022]
Abstract
Many long-lived organisms, including humans, can regenerate some adult tissues lost to physical injury or disease. Much of the previous research on mechanisms of regeneration has focused on adult stem cells, which give rise to new tissue necessary for the replacement of missing body parts. Here we report that apoptosis of differentiated cells complements stem cell division during regeneration in the planarian Schmidtea mediterranea. Specifically, we developed a whole-mount TUNEL assay that allowed us to document two dramatic increases in the rate of apoptosis following amputation-an initial localized response near the wound site and a subsequent systemic response that varies in magnitude depending on the type of fragment examined. The latter cell death response can be induced in uninjured organs, occurs in the absence of planarian stem cells, and can also be triggered by prolonged starvation. Taken together, our results implicate apoptosis in the restoration of proper anatomical scale and proportion through remodeling of existing tissues. We also report results from initial mechanistic studies of apoptosis in planarians, which revealed that a S. mediterranea homolog of the antiapoptotic gene BCL2 is required for cell survival in adult animals. We propose that apoptosis is a central mechanism working in concert with stem cell division to restore anatomical form and function during metazoan regeneration.
Collapse
Affiliation(s)
- Jason Pellettieri
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, UT 84132, USA.
| | | | | | | | | | | |
Collapse
|