501
|
Tung SM, Ünal C, Ley A, Peña C, Tunggal B, Noegel AA, Krut O, Steinert M, Eichinger L. Loss of Dictyostelium ATG9 results in a pleiotropic phenotype affecting growth, development, phagocytosis and clearance and replication of Legionella pneumophila. Cell Microbiol 2010; 12:765-80. [DOI: 10.1111/j.1462-5822.2010.01432.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
502
|
Pore formation triggered by Legionella spp. is an Nlrc4 inflammasome-dependent host cell response that precedes pyroptosis. Infect Immun 2010; 78:1403-13. [PMID: 20048047 DOI: 10.1128/iai.00905-09] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Legionella pneumophila, the etiological agent of Legionnaires disease, is known to trigger pore formation in bone marrow-derived macrophages (BMMs) by mechanisms dependent on the type IVB secretion system known as Dot/Icm. Here, we used several mutants of L. pneumophila in combination with knockout mice to assess the host and bacterial factors involved in pore formation in BMMs. We found that regardless of Dot/Icm activity, pore formation does not occur in BMMs deficient in caspase-1 and Nlrc4/Ipaf. Pore formation was temporally associated with interleukin-1beta secretion and preceded host cell lysis and pyroptosis. Pore-forming ability was dependent on bacterial Dot/Icm but independent of several effector proteins, multiplication, and de novo protein synthesis. Flagellin, which is known to trigger the Nlrc4 inflammasome, was required for pore formation as flaA mutant bacteria failed to induce cell permeabilization. Accordingly, transfection of purified flagellin was sufficient to trigger pore formation independent of infection. By using 11 different Legionella species, we found robust pore formation in response to L. micdadei, L. bozemanii, L. gratiana, L. jordanis, and L. rubrilucens, and this trait correlated with flagellin expression by these species. Together, the results suggest that pore formation is neither L. pneumophila specific nor the result of membrane damage induced by Dot/Icm activity; instead, it is a highly coordinated host cell response dependent on host Nlrc4 and caspase-1 and on bacterial flagellin and type IV secretion system.
Collapse
|
503
|
Price CT, Al-Khodor S, Al-Quadan T, Santic M, Habyarimana F, Kalia A, Kwaik YA. Molecular mimicry by an F-box effector of Legionella pneumophila hijacks a conserved polyubiquitination machinery within macrophages and protozoa. PLoS Pathog 2009; 5:e1000704. [PMID: 20041211 PMCID: PMC2790608 DOI: 10.1371/journal.ppat.1000704] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Accepted: 11/20/2009] [Indexed: 01/09/2023] Open
Abstract
The ability of Legionella pneumophila to proliferate within various protozoa in the aquatic environment and in macrophages indicates a remarkable evolution and microbial exploitation of evolutionarily conserved eukaryotic processes. Ankyrin B (AnkB) of L. pneumophila is a non-canonical F-box-containing protein, and is the only known Dot/Icm-translocated effector of L. pneumophila essential for intra-vacuolar proliferation within both macrophages and protozoan hosts. We show that the F-box domain of AnkB and the 9L10P conserved residues are essential for intracellular bacterial proliferation and for rapid acquisition of polyubiquitinated proteins by the Legionella-containing vacuole (LCV) within macrophages, Dictyostelium discoideum, and Acanthamoeba. Interestingly, translocation of AnkB and recruitment of polyubiquitinated proteins in macrophages and Acanthamoeba is rapidly triggered by extracellular bacteria within 5 min of bacterial attachment. Ectopically expressed AnkB within mammalian cells is localized to the periphery of the cell where it co-localizes with host SKP1 and recruits polyubiquitinated proteins, which results in restoration of intracellular growth to the ankB mutant similar to the parental strain. While an ectopically expressed AnkB-9L10P/AA variant is localized to the cell periphery, it does not recruit polyubiquitinated proteins and fails to trans-rescue the ankB mutant intracellular growth defect. Direct in vivo interaction of AnkB but not the AnkB-9L10P/AA variant with the host SKP1 is demonstrated. Importantly, RNAi-mediated silencing of expression of SKP1 renders the cells non-permissive for intracellular proliferation of L. pneumophila. The role of AnkB in exploitation of the polyubiquitination machinery is essential for intrapulmonary bacterial proliferation in the mouse model of Legionnaires' disease. Therefore, AnkB exhibits a novel molecular and functional mimicry of eukaryotic F-box proteins that exploits conserved polyubiquitination machinery for intracellular proliferation within evolutionarily distant hosts. Legionella pneumophila is abundantly found in the aquatic environment within various protozoa and can cause a severe pneumonia called Legionnaires' disease when it invades human macrophages in the lung. The ability of L. pneumophila to invade and proliferate within macrophages and protozoa is dependent on the translocation of specific proteins into the invaded cell via a specialized secretory device, and these proteins modulate various host cell processes. Of these translocated proteins, AnkB is indispensable for intracellular growth of L. pneumophila within macrophages and protozoa. Here we show that AnkB is essential for establishing a favorable intracellular replicative niche by promoting the decoration of the Legionella containing vacuole (LCV) with polyubiquitinated proteins. The AnkB effector achieves this by mimicking the action of host cell F-box proteins, a highly conserved component of the SCF ubiquitin ligase complex that is found in both unicellular organisms and mammalian cells. Our study provides new insights into the ability of intracellular pathogens to hijack evolutionarily conserved host cell processes through molecular mimicry to establish a favorable replicative niche within various hosts and to cause disease in mammals.
Collapse
Affiliation(s)
- Christopher T. Price
- Department of Microbiology and Immunology, College of Medicine, University of Louisville, Kentucky, United States of America
| | - Souhaila Al-Khodor
- Department of Microbiology and Immunology, College of Medicine, University of Louisville, Kentucky, United States of America
| | - Tasneem Al-Quadan
- Department of Microbiology and Immunology, College of Medicine, University of Louisville, Kentucky, United States of America
| | - Marina Santic
- Department of Microbiology, University of Rijeka, Rijeka, Croatia
| | - Fabien Habyarimana
- Department of Microbiology and Immunology, College of Medicine, University of Louisville, Kentucky, United States of America
| | - Awdhesh Kalia
- Department of Biology, University of Louisville, Kentucky, United States of America
| | - Yousef Abu Kwaik
- Department of Microbiology and Immunology, College of Medicine, University of Louisville, Kentucky, United States of America
- Department of Biology, University of Louisville, Kentucky, United States of America
- * E-mail:
| |
Collapse
|
504
|
Virulence factors encoded by Legionella longbeachae identified on the basis of the genome sequence analysis of clinical isolate D-4968. J Bacteriol 2009; 192:1030-44. [PMID: 20008069 DOI: 10.1128/jb.01272-09] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Legionella longbeachae causes most cases of legionellosis in Australia and may be underreported worldwide due to the lack of L. longbeachae-specific diagnostic tests. L. longbeachae displays distinctive differences in intracellular trafficking, caspase 1 activation, and infection in mouse models compared to Legionella pneumophila, yet these two species have indistinguishable clinical presentations in humans. Unlike other legionellae, which inhabit freshwater systems, L. longbeachae is found predominantly in moist soil. In this study, we sequenced and annotated the genome of an L. longbeachae clinical isolate from Oregon, isolate D-4968, and compared it to the previously published genomes of L. pneumophila. The results revealed that the D-4968 genome is larger than the L. pneumophila genome and has a gene order that is different from that of the L. pneumophila genome. Genes encoding structural components of type II, type IV Lvh, and type IV Icm/Dot secretion systems are conserved. In contrast, only 42/140 homologs of genes encoding L. pneumophila Icm/Dot substrates have been found in the D-4968 genome. L. longbeachae encodes numerous proteins with eukaryotic motifs and eukaryote-like proteins unique to this species, including 16 ankyrin repeat-containing proteins and a novel U-box protein. We predict that these proteins are secreted by the L. longbeachae Icm/Dot secretion system. In contrast to the L. pneumophila genome, the L. longbeachae D-4968 genome does not contain flagellar biosynthesis genes, yet it contains a chemotaxis operon. The lack of a flagellum explains the failure of L. longbeachae to activate caspase 1 and trigger pyroptosis in murine macrophages. These unique features of L. longbeachae may reflect adaptation of this species to life in soil.
Collapse
|
505
|
Molmeret M, Jones S, Santic M, Habyarimana F, Esteban MTG, Kwaik YA. Temporal and spatial trigger of post-exponential virulence-associated regulatory cascades by Legionella pneumophila after bacterial escape into the host cell cytosol. Environ Microbiol 2009; 12:704-15. [PMID: 19958381 DOI: 10.1111/j.1462-2920.2009.02114.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
During late stages of infection and prior to lysis of the infected macrophages or amoeba, the Legionella pneumophila-containing phagosome becomes disrupted, followed by bacterial escape into the host cell cytosol, where the last few rounds of bacterial proliferation occur prior to lysis of the plasma membrane. This coincides with growth transition into the post-exponential (PE) phase, which is controlled by regulatory cascades including RpoS and the LetA/S two-component regulator. Whether the temporal expression of flagella by the regulatory cascades at the PE phase is exhibited within the phagosome or after bacterial escape into the host cell cytosol is not known. We have utilized fluorescence microscopy-based phagosome integrity assay to differentiate between vacuolar and cytosolic bacteria/or bacteria within disrupted phagosomes. Our data show that during late stages of infection, expression of FlaA is triggered after bacterial escape into the macrophage cytosol and the peak of FlaA expression is delayed for few hours after cytosolic residence of the bacteria. Importantly, bacterial escape into the host cell cytosol is independent of flagella, RpoS and the two-component regulator LetA/S, which are all triggered by L. pneumophila upon growth transition into the PE phase. Disruption of the phagosome and bacterial escape into the cytosol of macrophages is independent of the bacterial pore-forming activity, and occurs prior to the induction of apoptosis during late stages of infection. We conclude that the temporal and spatial engagement of virulence-associated regulatory cascades by L. pneumophila at the PE phase is temporally and spatially triggered after phagosomal escape and bacterial residence in the host cell cytosol.
Collapse
Affiliation(s)
- Maëlle Molmeret
- Department of Microbiology and Immunology, Room MS-410, University of Louisville College of Medicine, Louisville, KY 40292, USA
| | | | | | | | | | | |
Collapse
|
506
|
Monroe KM, McWhirter SM, Vance RE. Identification of host cytosolic sensors and bacterial factors regulating the type I interferon response to Legionella pneumophila. PLoS Pathog 2009; 5:e1000665. [PMID: 19936053 PMCID: PMC2773930 DOI: 10.1371/journal.ppat.1000665] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Accepted: 10/26/2009] [Indexed: 12/21/2022] Open
Abstract
Legionella pneumophila is a gram-negative bacterial pathogen that replicates in host macrophages and causes a severe pneumonia called Legionnaires' Disease. The innate immune response to L. pneumophila remains poorly understood. Here we focused on identifying host and bacterial factors involved in the production of type I interferons (IFN) in response to L. pneumophila. It was previously suggested that the delivery of L. pneumophila DNA to the host cell cytosol is the primary signal that induces the type I IFN response. However, our data are not easily reconciled with this model. We provide genetic evidence that two RNA-sensing proteins, RIG-I and MDA5, participate in the IFN response to L. pneumophila. Importantly, these sensors do not seem to be required for the IFN response to L. pneumophila DNA, whereas we found that RIG-I was required for the response to L. pneumophila RNA. Thus, we hypothesize that bacterial RNA, or perhaps an induced host RNA, is the primary stimulus inducing the IFN response to L. pneumophila. Our study also identified a secreted effector protein, SdhA, as a key suppressor of the IFN response to L. pneumophila. Although viral suppressors of cytosolic RNA-sensing pathways have been previously identified, analogous bacterial factors have not been described. Thus, our results provide new insights into the molecular mechanisms by which an intracellular bacterial pathogen activates and also represses innate immune responses. Initial detection of invading microorganisms is one of the primary tasks of the innate immune system. However, the molecular mechanisms by which pathogens are recognized remain incompletely understood. Here, we provide evidence that an immunosurveillance pathway (called the RIG-I/MDA5 pathway), thought primarily to detect viruses, is also involved in the innate immune response to an intracellular bacterial pathogen, Legionella pneumophila. In the response to viruses, the RIG-I/MDA5 immunosurveillance pathway has been shown to respond to viral RNA or DNA. We found that the RIG-I pathway was required for the response to L. pneumophila RNA, but was not required for the response to L. pneumophila DNA. Thus, one explanation of our results is that L. pneumophila RNA may access the host cell cytosol, where it triggers the RIG-I/MDA5 pathway. This is unexpected since bacteria have not previously been thought to translocate RNA into host cells. We also found that L. pneumophila encodes a secreted bacterial protein, SdhA, which suppresses the RIG-I/MDA5 pathway. Several viral repressors of the RIG-I/MDA5 pathway have been described, but bacterial repressors of RIG-I/MDA5 are not known. Thus, our study provides novel insights into the molecular mechanisms by which the immune system detects bacterial infection, and conversely, by which bacteria suppress innate immune responses.
Collapse
Affiliation(s)
- Kathryn M. Monroe
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, California, United States of America
| | - Sarah M. McWhirter
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, California, United States of America
| | - Russell E. Vance
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, California, United States of America
- * E-mail:
| |
Collapse
|
507
|
Abstract
To protect themselves from predation by amoebae and protozoa in the natural environment, some bacteria evolved means of escaping killing. The same mechanisms allow survival in mammalian phagocytes, producing opportunistic human pathogens. The social amoeba Dictyostelium discoideum is a powerful system for analysis of conserved host-pathogen interactions. This report reviews recent insights gained for several bacterial pathogens using Dictyostelium as host.
Collapse
Affiliation(s)
- Margaret Clarke
- Program in Genetic Models of Disease, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA.
| |
Collapse
|
508
|
Ferhat M, Atlan D, Vianney A, Lazzaroni JC, Doublet P, Gilbert C. The TolC protein of Legionella pneumophila plays a major role in multi-drug resistance and the early steps of host invasion. PLoS One 2009; 4:e7732. [PMID: 19888467 PMCID: PMC2766832 DOI: 10.1371/journal.pone.0007732] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Accepted: 09/29/2009] [Indexed: 01/18/2023] Open
Abstract
Pneumonia associated with Iegionnaires's disease is initiated in humans after inhalation of contaminated aerosols. In the environment, Legionella pneumophila is thought to survive and multiply as an intracellular parasite within free-living amoeba. In the genome of L. pneumophila Lens, we identified a unique gene, tolC, encoding a protein that is highly homologous to the outer membrane protein TolC of Escherichia coli. Deletion of tolC by allelic exchange in L. pneumophila caused increased sensitivity to various drugs. The complementation of the tolC mutation in trans restored drug resistance, indicating that TolC is involved in multi-drug efflux machinery. In addition, deletion of tolC caused a significant attenuation of virulence towards both amoebae and macrophages. Thus, the TolC protein appears to play a crucial role in virulence which could be mediated by its involvement in efflux pump mechanisms. These findings will be helpful in unraveling the pathogenic mechanisms of L. pneumophila as well as in developing new therapeutic agents affecting the efflux of toxic compounds.
Collapse
|
509
|
Pizarro-Cerdá J, Cossart P. Listeria monocytogenesMembrane Trafficking and Lifestyle: The Exception or the Rule? Annu Rev Cell Dev Biol 2009; 25:649-70. [DOI: 10.1146/annurev.cellbio.042308.113331] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Javier Pizarro-Cerdá
- Unité des Interactions Bactéries-Cellules, Institut Pasteur, Paris F75015, France
- INSERM, U604, Paris F75015, France
- INRA, USC2020, Paris F75015, France; ,
| | - Pascale Cossart
- Unité des Interactions Bactéries-Cellules, Institut Pasteur, Paris F75015, France
- INSERM, U604, Paris F75015, France
- INRA, USC2020, Paris F75015, France; ,
| |
Collapse
|
510
|
Brassinga AKC, Kinchen JM, Cupp ME, Day SR, Hoffman PS, Sifri CD. Caenorhabditis is a metazoan host for Legionella. Cell Microbiol 2009; 12:343-61. [PMID: 19863556 DOI: 10.1111/j.1462-5822.2009.01398.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
We investigated whether nematodes contribute to the persistence, differentiation and amplification of Legionella species in soil, an emerging source for Legionnaires' disease. Here we show that Legionella spp. colonize the intestinal tracts of Caenorhabditis nematodes leading to worm death. Susceptibility to Legionella is influenced by innate immune responses governed by the p38 mitogen-activated protein kinase and insulin/insulin growth factor-1 receptor signalling pathways. We also show that L. pneumophila colonizes the intestinal tract of nematodes cultivated in soil. To distinguish between transient infection and persistence, plate-fed and soil-extracted nematodes-fed fluorescent strains of L. pneumophila were analysed. Bacteria replicated within the nematode intestinal tract, did not invade surrounding tissue, and were excreted as differentiated forms that were transmitted to offspring. Interestingly, the ultrastructural features of the differentiated bacterial forms were similar to cyst-like forms observed within protozoa, amoeba and mammalian cell lines. While intestinal colonization of L. pneumophila dotA and icmT mutant strains did not alter the survival rate of nematodes in comparison to wild-type strains, nematodes colonized with the dot/icm mutant strains exhibited significantly increased levels of germline apoptosis. Taken together, these studies show that nematodes may serve as natural hosts for these organisms and thereby contribute to their dissemination in the environment and suggest that the remarkable ability of L. pneumophila to subvert host cell signalling and evade mammalian immune responses evolved through the natural selection associated with cycling between protozoan and metazoan hosts.
Collapse
Affiliation(s)
- Ann Karen C Brassinga
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia Health System, Charlottesville, VA 22908, USA
| | | | | | | | | | | |
Collapse
|
511
|
Cianciotto NP. Many substrates and functions of type II secretion: lessons learned from Legionella pneumophila. Future Microbiol 2009; 4:797-805. [PMID: 19722835 DOI: 10.2217/fmb.09.53] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Type II secretion is one of six systems that exist in Gram-negative bacteria for the purpose of secreting proteins into the extracellular milieu and/or into host cells. This article will review the various recent studies of Legionella pneumophila that have increased our appreciation of the numbers, types and novelties of proteins that can be secreted via the type II system, as well as the many ways in which type II secretion can promote bacterial physiology, growth, ecology, intracellular infection and virulence. In this context, type II secretion represents a potentially important target for industrial and biomedical applications.
Collapse
Affiliation(s)
- Nicholas P Cianciotto
- Department of Microbiology & Immunology, Northwestern University Medical School, 320 East Superior St., Chicago, IL 60611, USA.
| |
Collapse
|
512
|
Pearce MM, Cianciotto NP. Legionella pneumophila secretes an endoglucanase that belongs to the family-5 of glycosyl hydrolases and is dependent upon type II secretion. FEMS Microbiol Lett 2009; 300:256-64. [PMID: 19817866 DOI: 10.1111/j.1574-6968.2009.01801.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Examination of cell-free culture supernatants revealed that Legionella pneumophila strains secrete an endoglucanase activity. Legionella pneumophila lspF mutants were deficient for this activity, indicating that the endoglucanase is secreted by the bacterium's type II protein secretion (T2S) system. Inactivation of celA, encoding a member of the family-5 of glycosyl hydrolases, abolished the endoglucanase activity in L. pneumophila culture supernatants. The cloned celA gene conferred activity upon recombinant Escherichia coli. Thus, CelA is the major secreted endoglucanase of L. pneumophila. Mutants inactivated for celA grew normally in protozoa and macrophage, indicating that CelA is not required for the intracellular phase of L. pneumophila. The CelA endoglucanase is one of at least 25 proteins secreted by the type II system of L. pneumophila and the 17th type of enzyme effector associated with this pathway. Only a subset of the other Legionella species tested expressed secreted endoglucanase activity, suggesting that the T2S output differs among the different legionellae. Overall, this study represents the first documentation of an endoglucanase (EC 3.2.1.4) being produced by a strain of Legionella.
Collapse
Affiliation(s)
- Meghan M Pearce
- Department of Microbiology and Immunology, Northwestern University Medical School, 320 East Superior St., Chicago, IL 60611, USA
| | | |
Collapse
|
513
|
Abstract
Chlamydia sp. are responsible for a wide range of diseases of significant clinical and public health importance. In this review, we highlight how recent cellular and functional genomic approaches have significantly increased our knowledge of the pathogenic mechanisms used by these genetically intractable bacteria. As the extensive repertoire of chlamydial proteins that are translocated into the mammalian host is identified and characterized, a molecular understanding of how Chlamydiae co-opt host cellular functions and block innate immune pathways is beginning to emerge.
Collapse
Affiliation(s)
- Jordan L Cocchiaro
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| | | |
Collapse
|
514
|
A Legionella type IV effector activates the NF-kappaB pathway by phosphorylating the IkappaB family of inhibitors. Proc Natl Acad Sci U S A 2009; 106:13725-30. [PMID: 19666608 DOI: 10.1073/pnas.0907200106] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
NF-kappaB is critical in innate immune defense responses against invading microbial pathogens. Legionella pneumophila infection of lung macrophages causes Legionnaire's disease with pneumonia symptoms. A set of NF-kappaB-controlled genes involved in inflammation and anti-apoptosis are up-regulated in macrophages upon L. pneumophila infection in a Legionella Dot/Icm type IV secretion system-dependent manner. Among approximately 100 Dot/Icm substrates screened, we identified LegK1 as the sole Legionella protein that harbors a highly potent NF-kappaB-stimulating activity. LegK1 does not affect MAPK and IFN pathways. Activation of the NF-kappaB pathway by LegK1 requires its eukaryotic-like Ser/Thr kinase activity and is independent of upstream components in the NF-kappaB pathway, including TRAFs, NIK, MEKK3, and TAK1. Cell-free reconstitution revealed that LegK1 stimulated NF-kappaB activation in the absence of IKKalpha and IKKbeta, and LegK1 efficiently phosphorylated IkappaBalpha on Ser-32 and Ser-36 both in vitro and in cells. LegK1 seems to mimic the host IKK as LegK1 also directly phosphorylated other IkappaB family of inhibitors including p100 in the noncanonical NF-kappaB pathway. Phosphorylation of p100 by LegK1 led to its maturation into p52. Thus, LegK1 is a bacterial effector that directly activates the host NF-kappaB signaling and likely plays important roles in modulating macrophage defense or inflammatory responses during L. pneumophila infection.
Collapse
|
515
|
Nora T, Lomma M, Gomez-Valero L, Buchrieser C. Molecular mimicry: an important virulence strategy employed by Legionella pneumophila to subvert host functions. Future Microbiol 2009; 4:691-701. [DOI: 10.2217/fmb.09.47] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
It is 32 years since Legionella pneumophila was identified and recognized as a human pathogen, causing the severe form of pneumonia termed Legionnaires’ disease, or legionellosis. This bacterium is found in freshwater reservoirs where it replicates in aquatic protozoa and can invade man-made water distribution systems. Although the disease can be treated by antibiotherapy and prevented through surveillance and control measures, reported cases of Legionnaires’ disease continue to rise across Europe and outbreaks of major public health significance still occur. Genome sequencing and analyses led to a giant step forward by suggesting new ways by which this intracellular bacterium might subvert host functions. One particular feature revealed was the presence of many eukaryotic-like proteins, possibly mimicking host proteins to allow intracellular replication of Legionella. Here, we describe the identification and analysis of these proteins and report on recent advances detailing the mechanisms by which these proteins function. Finally, comparative and evolutionary genomic aspects regarding the eukaryotic-like proteins are presented. Collectively, these data have shed new light on the virulence strategies of L. pneumophila, a major aspect of which is molecular mimicry.
Collapse
Affiliation(s)
- Tamara Nora
- Institut Pasteur, Biologie des Bactéries Intracellulaires & CNRS URA 2171, 28 Rue du Dr Roux, 75724 Paris, France
| | - Mariella Lomma
- Institut Pasteur, Biologie des Bactéries Intracellulaires & CNRS URA 2171, 28 Rue du Dr Roux, 75724 Paris, France
| | - Laura Gomez-Valero
- Institut Pasteur, Biologie des Bactéries Intracellulaires & CNRS URA 2171, 28 Rue du Dr Roux, 75724 Paris, France
| | - Carmen Buchrieser
- Institut Pasteur, Biologie des Bactéries Intracellulaires & CNRS URA 2171, 28 Rue du Dr Roux, 75724 Paris, France
| |
Collapse
|
516
|
Kumar Y, Valdivia RH. Leading a sheltered life: intracellular pathogens and maintenance of vacuolar compartments. Cell Host Microbe 2009; 5:593-601. [PMID: 19527886 DOI: 10.1016/j.chom.2009.05.014] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Revised: 05/20/2009] [Accepted: 05/28/2009] [Indexed: 02/02/2023]
Abstract
Many intracellular pathogens survive in vacuolar niches composed of host-derived membranes modified extensively by pathogen proteins and lipids. Although intracellular lifestyles offer protection from humoral immune responses, vacuole-bound pathogens nevertheless face powerful intracellular innate immune surveillance pathways that can trigger fusion with lysosomes, autophagy, and host cell death. Strategies used by vacuole-bound pathogens to invade and establish a replicative vacuole are well described, but how the integrity and stability of these parasitic vacuoles are maintained is poorly understood. Here, we identify potential mechanisms of pathogenic vacuole maintenance and the consequences of vacuole disruption by highlighting select bacterial and protozoan parasites.
Collapse
Affiliation(s)
- Yadunanda Kumar
- Center for Microbial Pathogenesis, Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27710, USA
| | | |
Collapse
|
517
|
Actin dynamics and Rho GTPases regulate the size and formation of parasitophorous vacuoles containing Coxiella burnetii. Infect Immun 2009; 77:4609-20. [PMID: 19635823 DOI: 10.1128/iai.00301-09] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Q fever is a disease caused by Coxiella burnetii. In the host cell, this pathogen generates a large parasitophorous vacuole (PV) with lysosomal characteristics. Here we show that F-actin not only is recruited to but also is involved in the formation of the typical PV. Treatment of infected cells with F-actin-depolymerizing agents alters PV development. The small PVs formed in latrunculin B-treated cells were loaded with transferrin and Lysotracker and labeled with an antibody against cathepsin D, suggesting that latrunculin B did not affect vacuole cargo and its lysosomal characteristics. Nevertheless, the vacuoles were unable to fuse with latex bead phagosomes. It is known that actin dynamics are regulated by the Rho family GTPases. To assess the role of these GTPases in PV formation, infected cells were transfected with pEGFP expressing wild-type and mutant Rac1, Cdc42, and RhoA proteins. Rac1 did not show significant PV association. In contrast, PVs were decorated by both the wild types and constitutively active mutants of Cdc42 and RhoA. This association was inhibited by treatment of infected cells with chloramphenicol, suggesting a role for bacterial protein synthesis in the recruitment of these proteins. Interestingly, a decrease in vacuole size was observed in cells expressing dominant-negative RhoA; however, these small vacuoles accumulated transferrin, Lysotracker, and DQ-BSA. In summary, these results suggest that actin, likely modulated by the GTPases RhoA and Cdc42 and by bacterial proteins, is involved in the formation of the typical PV.
Collapse
|
518
|
Burstein D, Zusman T, Degtyar E, Viner R, Segal G, Pupko T. Genome-scale identification of Legionella pneumophila effectors using a machine learning approach. PLoS Pathog 2009; 5:e1000508. [PMID: 19593377 PMCID: PMC2701608 DOI: 10.1371/journal.ppat.1000508] [Citation(s) in RCA: 193] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Accepted: 06/10/2009] [Indexed: 11/18/2022] Open
Abstract
A large number of highly pathogenic bacteria utilize secretion systems to translocate effector proteins into host cells. Using these effectors, the bacteria subvert host cell processes during infection. Legionella pneumophila translocates effectors via the Icm/Dot type-IV secretion system and to date, approximately 100 effectors have been identified by various experimental and computational techniques. Effector identification is a critical first step towards the understanding of the pathogenesis system in L. pneumophila as well as in other bacterial pathogens. Here, we formulate the task of effector identification as a classification problem: each L. pneumophila open reading frame (ORF) was classified as either effector or not. We computationally defined a set of features that best distinguish effectors from non-effectors. These features cover a wide range of characteristics including taxonomical dispersion, regulatory data, genomic organization, similarity to eukaryotic proteomes and more. Machine learning algorithms utilizing these features were then applied to classify all the ORFs within the L. pneumophila genome. Using this approach we were able to predict and experimentally validate 40 new effectors, reaching a success rate of above 90%. Increasing the number of validated effectors to around 140, we were able to gain novel insights into their characteristics. Effectors were found to have low G+C content, supporting the hypothesis that a large number of effectors originate via horizontal gene transfer, probably from their protozoan host. In addition, effectors were found to cluster in specific genomic regions. Finally, we were able to provide a novel description of the C-terminal translocation signal required for effector translocation by the Icm/Dot secretion system. To conclude, we have discovered 40 novel L. pneumophila effectors, predicted over a hundred additional highly probable effectors, and shown the applicability of machine learning algorithms for the identification and characterization of bacterial pathogenesis determinants. Many pathogenic bacteria exert their function by translocating a set of proteins, termed effectors, into the cytoplasm of their host cell. These effectors subvert various host cell processes for the benefit of the bacteria. Our goal in this study was to identify novel effectors in a genomic scale, towards a better understanding of the molecular mechanisms of bacterial pathogenesis. We developed a computational approach for the detection of new effectors in the intracellular pathogen Legionella pneumophila, the causative agent of the Legionnaires' disease, a severe pneumonia-like disease. The novelty of our approach for detecting effectors is the combination of state-of-the-art machine learning classification algorithms with broad biological knowledge on effector biology in a genomic scale. Applying this method, we detected and experimentally validated dozens of new effectors. Notably, our computational predictions had an exceedingly high accuracy of over 90%. In analyzing these effectors we were able to obtain new insights into the molecular mechanism of the pathogenesis system. Our results suggest, for the first time, that over 10% of the Legionella genome is dedicated to pathogenesis. Finally, our approach is general and can be utilized to study effectors in many other human pathogens.
Collapse
Affiliation(s)
- David Burstein
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Israel
| | - Tal Zusman
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Israel
| | - Elena Degtyar
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Israel
| | - Ram Viner
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Israel
| | - Gil Segal
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Israel
- * E-mail: (GS); (TP)
| | - Tal Pupko
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Israel
- * E-mail: (GS); (TP)
| |
Collapse
|
519
|
Charpentier X, Gabay JE, Reyes M, Zhu JW, Weiss A, Shuman HA. Chemical genetics reveals bacterial and host cell functions critical for type IV effector translocation by Legionella pneumophila. PLoS Pathog 2009; 5:e1000501. [PMID: 19578436 PMCID: PMC2698123 DOI: 10.1371/journal.ppat.1000501] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Accepted: 06/05/2009] [Indexed: 11/18/2022] Open
Abstract
Delivery of effector proteins is a process widely used by bacterial pathogens to subvert host cell functions and cause disease. Effector delivery is achieved by elaborate injection devices and can often be triggered by environmental stimuli. However, effector export by the L. pneumophila Icm/Dot Type IVB secretion system cannot be detected until the bacterium encounters a target host cell. We used chemical genetics, a perturbation strategy that utilizes small molecule inhibitors, to determine the mechanisms critical for L. pneumophila Icm/Dot activity. From a collection of more than 2,500 annotated molecules we identified specific inhibitors of effector translocation. We found that L. pneumophila effector translocation in macrophages requires host cell factors known to be involved in phagocytosis such as phosphoinositide 3-kinases, actin and tubulin. Moreover, we found that L. pneumophila phagocytosis and effector translocation also specifically require the receptor protein tyrosine phosphate phosphatases CD45 and CD148. We further show that phagocytosis is required to trigger effector delivery unless intimate contact between the bacteria and the host is artificially generated. In addition, real-time analysis of effector translocation suggests that effector export is rate-limited by phagocytosis. We propose a model in which L. pneumophila utilizes phagocytosis to initiate an intimate contact event required for the translocation of pre-synthesized effector molecules. We discuss the need for host cell participation in the initial step of the infection and its implications in the L. pneumophila lifestyle. Chemical genetic screening provides a novel approach to probe the host cell functions and factors involved in host-pathogen interactions.
Collapse
Affiliation(s)
- Xavier Charpentier
- Department of Microbiology, Columbia University Medical Center, New York, New York, United States of America
| | - Joëlle E. Gabay
- Department of Microbiology, Columbia University Medical Center, New York, New York, United States of America
| | - Moraima Reyes
- Department of Microbiology, Columbia University Medical Center, New York, New York, United States of America
| | - Jing W. Zhu
- Departments of Medicine and of Microbiology and Immunology, Howard Hughes Medical Institute, Rosalind Russell Medical Research Center for Arthritis, University of California, San Francisco, California, United States of America
| | - Arthur Weiss
- Departments of Medicine and of Microbiology and Immunology, Howard Hughes Medical Institute, Rosalind Russell Medical Research Center for Arthritis, University of California, San Francisco, California, United States of America
| | - Howard A. Shuman
- Department of Microbiology, Columbia University Medical Center, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
520
|
Bartfeld S, Engels C, Bauer B, Aurass P, Flieger A, Brüggemann H, Meyer TF. Temporal resolution of two-tracked NF-kappaB activation by Legionella pneumophila. Cell Microbiol 2009; 11:1638-51. [PMID: 19573161 DOI: 10.1111/j.1462-5822.2009.01354.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The intracellular pathogen Legionella pneumophila activates the transcription factor NF-kappaB in macrophages and human epithelial cells, contributing to cytokine production and anti-apoptosis. The former is important for the innate immune response to infection, the latter for intracellular replication by securing host cell survival. Here, we demonstrate biphasic activation of NF-kappaB by L. pneumophila in human epithelial cells, using a p65-GFP expressing variant of A549 cells. Early in infection, a strong but transient nuclear translocation of p65 was observed. Only flagellin-deficient (DeltafliA and DeltaflaA) mutants could not induce this first, TLR5 and MyD88-dependent activation. The second p65 translocation event, however, is a long-term activation, independent of flagellin, TLR5 and MyD88, and marked by permanent nuclear localization of p65-GFP without oscillation for 30 h. Persistent p65 translocation also involved degradation of IkappaBalpha and upregulation of anti-apoptotic genes. L. pneumophila mutants lacking a functional Dot/Icm secretion system (DeltadotA; DeltaicmB/dotO), Dot/Icm effectors (DeltasdbA; DeltalubX) and two bacterial effector mutants (DeltaenhC; DeltaptsP) could not induce persistent p65 translocation. Strikingly, all these mutants were deficient in intracellular replication in A549 cells. Our data underline the strong connection between NF-kappaB activation and intracellular replication and hints at an active interference of NF-kappaB signalling by L. pneumophila.
Collapse
Affiliation(s)
- Sina Bartfeld
- Max Planck Institute for Infection Biology, Department of Molecular Biology, Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
521
|
Franco IS, Shuman HA, Charpentier X. The perplexing functions and surprising origins of Legionella pneumophila type IV secretion effectors. Cell Microbiol 2009; 11:1435-43. [PMID: 19563462 DOI: 10.1111/j.1462-5822.2009.01351.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Only a limited number of bacterial pathogens evade destruction by phagocytic cells such as macrophages. Legionella pneumophila is a Gram-negative gamma-proteobacterial species that can infect and replicate in alveolar macrophages, causing Legionnaires' disease, a severe pneumonia. L. pneumophila uses a complex secretion system to inject host cells with effector proteins capable of disrupting or altering the host cell processes. The L. pneumophila effectors target multiple processes but are essentially aimed at modifying the properties of the L. pneumophila phagosome by altering vesicular trafficking, gradually creating a specialized vacuole in which the bacteria replicate robustly. In nature, L. pneumophila is thought to parasitize free-living protists, which may have selected for traits that promote virulence of L. pneumophila in humans. Indeed, many effector genes encode proteins with eukaryotic domains and are likely to be of protozoan origin. Sustained horizontal gene transfer events within the protozoan niche may have allowed L. pneumophila to become a professional parasite of phagocytes, simultaneously giving rise to its ability to infect macrophages, cells that constitute the first line of cellular defence against bacterial infections.
Collapse
Affiliation(s)
- Irina S Franco
- Department of Microbiology, Columbia University Medical Center, New York, NY 10032, USA
| | | | | |
Collapse
|
522
|
Purification of Legiobactin and importance of this siderophore in lung infection by Legionella pneumophila. Infect Immun 2009; 77:2887-95. [PMID: 19398549 DOI: 10.1128/iai.00087-09] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
When cultured in a low-iron medium, Legionella pneumophila secretes a siderophore (legiobactin) that is both reactive in the chrome azurol S (CAS) assay and capable of stimulating the growth of iron-starved legionellae. Using anion-exchange high-pressure liquid chromatography (HPLC), we purified legiobactin from culture supernatants of a virulent strain of L. pneumophila. In the process, we detected the ferrated form of legiobactin as well as other CAS-reactive substances. Purified legiobactin had a yellow-gold color and absorbed primarily from 220 nm and below. In accordance, nuclear magnetic resonance spectroscopy revealed that legiobactin lacks aromatic carbons, and among the 13 aliphatics present, there were 3 carbonyls. When examined by HPLC, supernatants from L. pneumophila mutants inactivated for lbtA and lbtB completely lacked legiobactin, indicating that the LbtA and LbtB proteins are absolutely required for siderophore activity. Independently derived lbtA mutants, but not a complemented derivative, displayed a reduced ability to infect the lungs of A/J mice after intratracheal inoculation, indicating that legiobactin is required for optimal intrapulmonary survival by L. pneumophila. This defect, however, was not evident when the lbtA mutant and its parental strain were coinoculated into the lung, indicating that legiobactin secreted by the wild type can promote growth of the mutant in trans. Legiobactin mutants grew normally in murine lung macrophages and alveolar epithelial cells, suggesting that legiobactin promotes something other than intracellular infection of resident lung cells. Overall, these data represent the first documentation of a role for siderophore expression in the virulence of L. pneumophila.
Collapse
|
523
|
Abstract
Professional phagocytes have a vast and sophisticated arsenal of microbicidal features. They are capable of ingesting and destroying invading organisms, and can present microbial antigens on their surface, eliciting acquired immune responses. To survive this hostile response, certain bacterial species have developed evasive strategies that often involve the secretion of effectors to co-opt the cellular machinery of the host. In this Review, we present an overview of the antimicrobial defences of the host cell, with emphasis on macrophages, for which phagocytosis has been studied most extensively. In addition, using Mycobacterium tuberculosis, Listeria monocytogenes, Legionella pneumophila and Coxiella burnetii as examples, we describe some of the evasive strategies used by bacteria.
Collapse
|
524
|
Akhter A, Gavrilin MA, Frantz L, Washington S, Ditty C, Limoli D, Day C, Sarkar A, Newland C, Butchar J, Marsh CB, Wewers MD, Tridandapani S, Kanneganti TD, Amer AO. Caspase-7 activation by the Nlrc4/Ipaf inflammasome restricts Legionella pneumophila infection. PLoS Pathog 2009; 5:e1000361. [PMID: 19343209 PMCID: PMC2657210 DOI: 10.1371/journal.ppat.1000361] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Accepted: 03/02/2009] [Indexed: 01/28/2023] Open
Abstract
Legionella pneumophila (L. pneumophila), the causative agent of a severe form of pneumonia called Legionnaires' disease, replicates in human monocytes and macrophages. Most inbred mouse strains are restrictive to L. pneumophila infection except for the A/J, Nlrc4−/− (Ipaf−/−), and caspase-1−/− derived macrophages. Particularly, caspase-1 activation is detected during L. pneumophila infection of murine macrophages while absent in human cells. Recent in vitro experiments demonstrate that caspase-7 is cleaved by caspase-1. However, the biological role for caspase-7 activation downstream of caspase-1 is not known. Furthermore, whether this reaction is pertinent to the apoptosis or to the inflammation pathway or whether it mediates a yet unidentified effect is unclear. Using the intracellular pathogen L. pneumophila, we show that, upon infection of murine macrophages, caspase-7 was activated downstream of the Nlrc4 inflammasome and required caspase-1 activation. Such activation of caspase-7 was mediated by flagellin and required a functional Naip5. Remarkably, mice lacking caspase-7 and its macrophages allowed substantial L. pneumophila replication. Permissiveness of caspase-7−/− macrophages to the intracellular pathogen was due to defective delivery of the organism to the lysosome and to delayed cell death during early stages of infection. These results reveal a new mechanism for caspase-7 activation downstream of the Nlrc4 inflammasome and present a novel biological role for caspase-7 in host defense against an intracellular bacterium. Legionella pneumophila causes a severe form of pneumonia called Legionnaires' disease. In human macrophages, L. pneumophila establishes special vacuoles that do not fuse with the lysosome and grows intracellularly. However, in mouse macrophages, the bacteria are efficiently delivered to the lysosome for degradation. Importantly, caspase-1 is activated when L. pneumophila infects mouse macrophages, but not when it infects human cells. Caspase-1 activation promotes the fusion of the L. pneumophila vacuole with the lysosome and macrophage death. However, the caspase-1 substrate mediating such effects is unknown. Experiments performed in vitro demonstrate that caspase-7 is a substrate of caspase-1. Yet, it is not known if the reaction takes place within the macrophage, and it is unclear if it has any biological effect. In this study we show that, in mouse macrophages, caspase-7 is activated by L. pneumophila downstream of caspase-1 and requires the host receptors Nlrc4 and Naip5. Remarkably, caspase-7 activation during L. pneumophila infection restricts growth by promoting early macrophage death and efficient delivery of the organism to the lysosome. Consequently, L. pneumophila grows in the macrophages and the lungs of caspase-7−/− mice. Therefore, we demonstrate a novel caspase-7 activation pathway that contributes to the restriction of L. pneumophila infection.
Collapse
Affiliation(s)
- Anwari Akhter
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Center for Microbial Interface Biology and the Department of Internal Medicine, Ohio State University, Columbus, Ohio, United States of America
| | - Mikhail A. Gavrilin
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Center for Microbial Interface Biology and the Department of Internal Medicine, Ohio State University, Columbus, Ohio, United States of America
| | - Laura Frantz
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Center for Microbial Interface Biology and the Department of Internal Medicine, Ohio State University, Columbus, Ohio, United States of America
| | - Songcerae Washington
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Center for Microbial Interface Biology and the Department of Internal Medicine, Ohio State University, Columbus, Ohio, United States of America
| | - Cameron Ditty
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Center for Microbial Interface Biology and the Department of Internal Medicine, Ohio State University, Columbus, Ohio, United States of America
| | - Dominique Limoli
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Center for Microbial Interface Biology and the Department of Internal Medicine, Ohio State University, Columbus, Ohio, United States of America
| | - Colby Day
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Center for Microbial Interface Biology and the Department of Internal Medicine, Ohio State University, Columbus, Ohio, United States of America
| | - Anasuya Sarkar
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Center for Microbial Interface Biology and the Department of Internal Medicine, Ohio State University, Columbus, Ohio, United States of America
| | - Christie Newland
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Center for Microbial Interface Biology and the Department of Internal Medicine, Ohio State University, Columbus, Ohio, United States of America
| | - Jonathan Butchar
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Center for Microbial Interface Biology and the Department of Internal Medicine, Ohio State University, Columbus, Ohio, United States of America
| | - Clay B. Marsh
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Center for Microbial Interface Biology and the Department of Internal Medicine, Ohio State University, Columbus, Ohio, United States of America
| | - Mark D. Wewers
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Center for Microbial Interface Biology and the Department of Internal Medicine, Ohio State University, Columbus, Ohio, United States of America
| | - Susheela Tridandapani
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Center for Microbial Interface Biology and the Department of Internal Medicine, Ohio State University, Columbus, Ohio, United States of America
| | - Thirumala-Devi Kanneganti
- Department of Immunology, St Jude Children's Research Hospital, Memphis, Tennessee, United States of America
- * E-mail: (TDK); (AOA)
| | - Amal O. Amer
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Center for Microbial Interface Biology and the Department of Internal Medicine, Ohio State University, Columbus, Ohio, United States of America
- * E-mail: (TDK); (AOA)
| |
Collapse
|
525
|
Ensminger AW, Isberg RR. Legionella pneumophila Dot/Icm translocated substrates: a sum of parts. Curr Opin Microbiol 2009; 12:67-73. [PMID: 19157961 DOI: 10.1016/j.mib.2008.12.004] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Revised: 12/05/2008] [Accepted: 12/09/2008] [Indexed: 12/15/2022]
Abstract
Legionella pneumophila is an intracellular pathogen of freshwater amoeba and of alveolar macrophages in human hosts. After phagocytosis, L. pneumophila establishes a unique intracellular vacuolar niche that avoids entry into the lysosomal network. Critical for L. pneumophila intracellular growth is the Dot/Icm type IVB translocation system. Although over 80 substrates of the Dot/Icm apparatus have been identified, individual substrates are often genetically redundant, complicating their analysis. Deletion of critical Dot/Icm translocation system components causes a variety of defects during intracellular growth. Many of these effects on the host cell likely result from the actions of one or more Dot/Icm translocated substrates. Loss of single substrates never generates the profound effects observed in strains lacking translocation system components.
Collapse
Affiliation(s)
- Alexander W Ensminger
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, 150 Harrison Avenue, Boston, MA 02111, USA
| | | |
Collapse
|