501
|
Del Tredici K, Ludolph AC, Feldengut S, Jacob C, Reichmann H, Bohl JR, Braak H. Fabry Disease With Concomitant Lewy Body Disease. J Neuropathol Exp Neurol 2020; 79:378-392. [PMID: 32016321 PMCID: PMC7092358 DOI: 10.1093/jnen/nlz139] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 11/07/2019] [Accepted: 12/15/2019] [Indexed: 12/20/2022] Open
Abstract
Although Gaucher disease can be accompanied by Lewy pathology (LP) and extrapyramidal symptoms, it is unknown if LP exists in Fabry disease (FD), another progressive multisystem lysosomal storage disorder. We aimed to elucidate the distribution patterns of FD-related inclusions and LP in the brain of a 58-year-old cognitively unimpaired male FD patient suffering from predominant hypokinesia. Immunohistochemistry (CD77, α-synuclein, collagen IV) and neuropathological staging were performed on 100-µm sections. Tissue from the enteric or peripheral nervous system was unavailable. As controls, a second cognitively unimpaired 50-year-old male FD patient without LP or motor symptoms and 3 age-matched individuals were examined. Inclusion body pathology was semiquantitatively evaluated. Although Lewy neurites/bodies were not present in the 50-year-old individual or in controls, severe neuronal loss in the substantia nigra pars compacta and LP corresponding to neuropathological stage 4 of Parkinson disease was seen in the 58-year-old FD patient. Major cerebrovascular lesions and/or additional pathologies were absent in this individual. We conclude that Lewy body disease with parkinsonism can occur within the context of FD. Further studies determining the frequencies of both inclusion pathologies in large autopsy-controlled FD cohorts could help clarify the implications of both lesions for disease pathogenesis, potential spreading mechanisms, and therapeutic interventions.
Collapse
Affiliation(s)
- Kelly Del Tredici
- Clinical Neuroanatomy Section, Department of Neurology, Center for Biomedical Research, University of Ulm
| | | | - Simone Feldengut
- Clinical Neuroanatomy Section, Department of Neurology, Center for Biomedical Research, University of Ulm
| | - Christian Jacob
- Clinical Neuroanatomy Section, Department of Neurology, Center for Biomedical Research, University of Ulm.,Institute for Anatomy and Cell Biology, University of Ulm, Ulm
| | - Heinz Reichmann
- Department of Neurology, Dresden University of Technology, Dresden
| | - Jürgen R Bohl
- Institute of Neuropathology, University of Mainz, Mainz, Germany
| | - Heiko Braak
- Clinical Neuroanatomy Section, Department of Neurology, Center for Biomedical Research, University of Ulm
| |
Collapse
|
502
|
Aspholm EE, Matečko-Burmann I, Burmann BM. Keeping α-Synuclein at Bay: A More Active Role of Molecular Chaperones in Preventing Mitochondrial Interactions and Transition to Pathological States? Life (Basel) 2020; 10:E289. [PMID: 33227899 PMCID: PMC7699229 DOI: 10.3390/life10110289] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/10/2020] [Accepted: 11/16/2020] [Indexed: 01/04/2023] Open
Abstract
The property of molecular chaperones to dissolve protein aggregates of Parkinson-related α-synuclein has been known for some time. Recent findings point to an even more active role of molecular chaperones preventing the transformation of α-synuclein into pathological states subsequently leading to the formation of Lewy bodies, intracellular inclusions containing protein aggregates as well as broken organelles found in the brains of Parkinson's patients. In parallel, a short motif around Tyr39 was identified as being crucial for the aggregation of α-synuclein. Interestingly, this region is also one of the main segments in contact with a diverse pool of molecular chaperones. Further, it could be shown that the inhibition of the chaperone:α-synuclein interaction leads to a binding of α-synuclein to mitochondria, which could also be shown to lead to mitochondrial membrane disruption as well as the possible proteolytic processing of α-synuclein by mitochondrial proteases. Here, we will review the current knowledge on the role of molecular chaperones in the regulation of physiological functions as well as the direct consequences of impairing these interactions-i.e., leading to enhanced mitochondrial interaction and consequential mitochondrial breakage, which might mark the initial stages of the structural transition of α-synuclein towards its pathological states.
Collapse
Affiliation(s)
- Emelie E. Aspholm
- Department of Chemistry and Molecular Biology, University of Gothenburg, 40530 Göteborg, Sweden;
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, 40530 Göteborg, Sweden;
| | - Irena Matečko-Burmann
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, 40530 Göteborg, Sweden;
- Department of Psychiatry and Neurochemistry, University of Gothenburg, 40530 Göteborg, Sweden
| | - Björn M. Burmann
- Department of Chemistry and Molecular Biology, University of Gothenburg, 40530 Göteborg, Sweden;
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, 40530 Göteborg, Sweden;
| |
Collapse
|
503
|
Brekk OR, Honey JR, Lee S, Hallett PJ, Isacson O. Cell type-specific lipid storage changes in Parkinson's disease patient brains are recapitulated by experimental glycolipid disturbance. Proc Natl Acad Sci U S A 2020; 117:27646-27654. [PMID: 33060302 PMCID: PMC7959493 DOI: 10.1073/pnas.2003021117] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Neurons are dependent on proper trafficking of lipids to neighboring glia for lipid exchange and disposal of potentially lipotoxic metabolites, producing distinct lipid distribution profiles among various cell types of the central nervous system. Little is known of the cellular distribution of neutral lipids in the substantia nigra (SN) of Parkinson's disease (PD) patients and its relationship to inflammatory signaling. This study aimed to determine human PD SN neutral lipid content and distribution in dopaminergic neurons, astrocytes, and microglia relative to age-matched healthy subject controls. The results show that while total neutral lipid content was unchanged relative to age-matched controls, the levels of whole SN triglycerides were correlated with inflammation-attenuating glycoprotein non-metastatic melanoma protein B (GPNMB) signaling in human PD SN. Histological localization of neutral lipids using a fluorescent probe (BODIPY) revealed that dopaminergic neurons and midbrain microglia significantly accumulated intracellular lipids in PD SN, while adjacent astrocytes had a reduced lipid load overall. This pattern was recapitulated by experimental in vivo inhibition of glucocerebrosidase activity in mice. Agents or therapies that restore lipid homeostasis among neurons, astrocytes, and microglia could potentially correct PD pathogenesis and disease progression.
Collapse
Affiliation(s)
- Oeystein Roed Brekk
- Neuroregeneration Institute, McLean Hospital/Departments of Neurology and Psychiatry, Harvard Medical School, Belmont, MA 02478
| | - Jonathan R Honey
- Neuroregeneration Institute, McLean Hospital/Harvard Medical School, Belmont, MA 02478
| | - Seungil Lee
- Neuroregeneration Institute, McLean Hospital/Harvard Medical School, Belmont, MA 02478
| | - Penelope J Hallett
- Neuroregeneration Institute, McLean Hospital/Departments of Neurology and Psychiatry, Harvard Medical School, Belmont, MA 02478
| | - Ole Isacson
- Neuroregeneration Institute, McLean Hospital/Departments of Neurology and Psychiatry, Harvard Medical School, Belmont, MA 02478
| |
Collapse
|
504
|
Henrich MT, Geibl FF, Lakshminarasimhan H, Stegmann A, Giasson BI, Mao X, Dawson VL, Dawson TM, Oertel WH, Surmeier DJ. Determinants of seeding and spreading of α-synuclein pathology in the brain. SCIENCE ADVANCES 2020; 6:eabc2487. [PMID: 33177086 PMCID: PMC7673735 DOI: 10.1126/sciadv.abc2487] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 09/22/2020] [Indexed: 05/22/2023]
Abstract
In Parkinson's disease (PD), fibrillar forms of α-synuclein are hypothesized to propagate through synaptically coupled networks, causing Lewy pathology (LP) and neurodegeneration. To more rigorously characterize the determinants of spreading, preformed α-synuclein fibrils were injected into the mouse pedunculopontine nucleus (PPN), a brain region that manifests LP in PD patients and the distribution of developing α-synuclein pathology compared to that ascertained by anterograde and retrograde connectomic mapping. Within the PPN, α-synuclein pathology was cell-specific, being robust in PD-vulnerable cholinergic neurons but not in neighboring noncholinergic neurons. While nearly all neurons projecting to PPN cholinergics manifested α-synuclein pathology, the kinetics, magnitude, and persistence of the propagated pathology were unrelated to the strength of those connections. Thus, neuronal phenotype governs the somatodendritic uptake of pathological α-synuclein, and while the afferent connectome restricts the subsequent spreading of pathology, its magnitude and persistence is not a strict function of the strength of coupling.
Collapse
Affiliation(s)
- Martin T Henrich
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Department of Neurology, Philipps University Marburg, Marburg 35043, Germany
| | - Fanni F Geibl
- Department of Neurology, Philipps University Marburg, Marburg 35043, Germany
| | - Harini Lakshminarasimhan
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Anna Stegmann
- Department of Neurology, Philipps University Marburg, Marburg 35043, Germany
| | - Benoit I Giasson
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| | - Xiaobo Mao
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Valina L Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ted M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Wolfgang H Oertel
- Department of Neurology, Philipps University Marburg, Marburg 35043, Germany
| | - D James Surmeier
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
505
|
Laferrière F, He X, Zinghirino F, Doudnikoff E, Faggiani E, Meissner WG, Bezard E, De Giorgi F, Ichas F. Overexpression of α-Synuclein by Oligodendrocytes in Transgenic Mice Does Not Recapitulate the Fibrillar Aggregation Seen in Multiple System Atrophy. Cells 2020; 9:E2371. [PMID: 33138150 PMCID: PMC7693764 DOI: 10.3390/cells9112371] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/20/2020] [Accepted: 10/26/2020] [Indexed: 11/17/2022] Open
Abstract
The synucleinopathy underlying multiple system atrophy (MSA) is characterized by the presence of abundant amyloid inclusions containing fibrillar α-synuclein (α-syn) aggregates in the brains of the patients and is associated with an extensive neurodegeneration. In contrast to Parkinson's disease (PD) where the pathological α-syn aggregates are almost exclusively neuronal, the α-syn inclusions in MSA are principally observed in oligodendrocytes (OLs) where they form glial cytoplasmic inclusions (GCIs). This is intriguing because differentiated OLs express low levels of α-syn, yet pathogenic amyloid α-syn seeds require significant amounts of α-syn monomers to feed their fibrillar growth and to eventually cause the buildup of cytopathological inclusions. One of the transgenic mouse models of this disease is based on the targeted overexpression of human α-syn in OLs using the PLP promoter. In these mice, the histopathological images showing a rapid emergence of S129-phosphorylated α-syn inside OLs are considered as equivalent to GCIs. Instead, we report here that they correspond to the accumulation of phosphorylated α-syn monomers/oligomers and not to the appearance of the distinctive fibrillar α-syn aggregates that are present in the brains of MSA or PD patients. In spite of a propensity to co-sediment with myelin sheath contaminants, the phosphorylated forms found in the brains of the transgenic animals are soluble (>80%). In clear contrast, the phosphorylated species present in the brains of MSA and PD patients are insoluble fibrils (>95%). Using primary cultures of OLs from PLP-αSyn mice we observed a variable association of S129-phosphorylated α-syn with the cytoplasmic compartment, the nucleus and with membrane domains suggesting that OLs functionally accommodate the phospho-α-syn deriving from experimental overexpression. Yet and while not taking place spontaneously, fibrillization can be seeded in these primary cultures by challenging the OLs with α-syn preformed fibrils (PFFs). This indicates that a targeted overexpression of α-syn does not model GCIs in mice but that it can provide a basis for seeding aggregation using PFFs. This approach could help establishing a link between α-syn aggregation and the development of a clinical phenotype in these transgenic animals.
Collapse
Affiliation(s)
- Florent Laferrière
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33076 Bordeaux, France; (F.L.); (X.H.); (F.Z.); (E.D.); (E.F.); (W.G.M.); (E.B.)
- Institut des Maladies Neurodégénératives, UMR 5293, Université de Bordeaux, 33076 Bordeaux, France
| | - Xin He
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33076 Bordeaux, France; (F.L.); (X.H.); (F.Z.); (E.D.); (E.F.); (W.G.M.); (E.B.)
- Institut des Maladies Neurodégénératives, UMR 5293, Université de Bordeaux, 33076 Bordeaux, France
- Department of Neurology, Sheng Jing Hospital of China Medical University, Shenyang 110004, China
| | - Federica Zinghirino
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33076 Bordeaux, France; (F.L.); (X.H.); (F.Z.); (E.D.); (E.F.); (W.G.M.); (E.B.)
- Institut des Maladies Neurodégénératives, UMR 5293, Université de Bordeaux, 33076 Bordeaux, France
- Dipartimento di Scienze Biomediche e Biotecnologiche, BIOMETEC, Università degli Studi di Catania, 95123 Catania, Italy
| | - Evelyne Doudnikoff
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33076 Bordeaux, France; (F.L.); (X.H.); (F.Z.); (E.D.); (E.F.); (W.G.M.); (E.B.)
- Institut des Maladies Neurodégénératives, UMR 5293, Université de Bordeaux, 33076 Bordeaux, France
| | - Emilie Faggiani
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33076 Bordeaux, France; (F.L.); (X.H.); (F.Z.); (E.D.); (E.F.); (W.G.M.); (E.B.)
- Institut des Maladies Neurodégénératives, UMR 5293, Université de Bordeaux, 33076 Bordeaux, France
| | - Wassilios G. Meissner
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33076 Bordeaux, France; (F.L.); (X.H.); (F.Z.); (E.D.); (E.F.); (W.G.M.); (E.B.)
- Institut des Maladies Neurodégénératives, UMR 5293, Université de Bordeaux, 33076 Bordeaux, France
- Service de Neurologie, CRMR Atrophie Multisystématisée, CHU Bordeaux, 33000 Bordeaux, France
| | - Erwan Bezard
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33076 Bordeaux, France; (F.L.); (X.H.); (F.Z.); (E.D.); (E.F.); (W.G.M.); (E.B.)
- Institut des Maladies Neurodégénératives, UMR 5293, Université de Bordeaux, 33076 Bordeaux, France
| | - Francesca De Giorgi
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33076 Bordeaux, France; (F.L.); (X.H.); (F.Z.); (E.D.); (E.F.); (W.G.M.); (E.B.)
- Institut des Maladies Neurodégénératives, UMR 5293, Université de Bordeaux, 33076 Bordeaux, France
- INSERM, Laboratoire de Neurosciences Expérimentales et Cliniques, U-1084, Université de Poitiers, 86000 Poitiers, France
| | - François Ichas
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33076 Bordeaux, France; (F.L.); (X.H.); (F.Z.); (E.D.); (E.F.); (W.G.M.); (E.B.)
- Institut des Maladies Neurodégénératives, UMR 5293, Université de Bordeaux, 33076 Bordeaux, France
- INSERM, Laboratoire de Neurosciences Expérimentales et Cliniques, U-1084, Université de Poitiers, 86000 Poitiers, France
| |
Collapse
|
506
|
Ho GPH, Ramalingam N, Imberdis T, Wilkie EC, Dettmer U, Selkoe DJ. Upregulation of Cellular Palmitoylation Mitigates α-Synuclein Accumulation and Neurotoxicity. Mov Disord 2020; 36:348-359. [PMID: 33103814 DOI: 10.1002/mds.28346] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 09/29/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Synucleinopathies, including Parkinson's disease (PD), are characterized by α-synuclein (αS) cytoplasmic inclusions. αS-dependent vesicle-trafficking defects are important in PD pathogenesis, but their mechanisms are not well understood. Protein palmitoylation, post-translational addition of the fatty acid palmitate to cysteines, promotes trafficking by anchoring specific proteins to the vesicle membrane. αS itself cannot be palmitoylated as it lacks cysteines, but it binds to membranes, where palmitoylation occurs, via an amphipathic helix. We hypothesized that abnormal αS membrane-binding impairs trafficking by disrupting palmitoylation. Accordingly, we investigated the therapeutic potential of increasing cellular palmitoylation. OBJECTIVES We asked whether upregulating palmitoylation by inhibiting the depalmitoylase acyl-protein-thioesterase-1 (APT1) ameliorates pathologic αS-mediated cellular phenotypes and sought to identify the mechanism. METHODS Using human neuroblastoma cells, rat neurons, and iPSC-derived PD patient neurons, we examined the effects of pharmacologic and genetic downregulation of APT1 on αS-associated phenotypes. RESULTS APT1 inhibition or knockdown decreased αS cytoplasmic inclusions, reduced αS serine-129 phosphorylation (a PD neuropathological marker), and protected against αS-dependent neurotoxicity. We identified the APT1 substrate microtubule-associated-protein-6 (MAP6), which binds to vesicles in a palmitoylation-dependent manner, as a key mediator of these effects. Mechanistically, we found that pathologic αS accelerated palmitate turnover on MAP6, suggesting that APT1 inhibition corrects a pathological αS-dependent palmitoylation deficit. We confirmed the disease relevance of this mechanism by demonstrating decreased MAP6 palmitoylation in neurons from αS gene triplication patients. CONCLUSIONS Our findings demonstrate a novel link between the fundamental process of palmitoylation and αS pathophysiology. Upregulating palmitoylation represents an unexplored therapeutic strategy for synucleinopathies. © 2020 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Gary P H Ho
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Nagendran Ramalingam
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Thibaut Imberdis
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Erin C Wilkie
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Ulf Dettmer
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Dennis J Selkoe
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
507
|
Nuber S, Nam AY, Rajsombath MM, Cirka H, Hronowski X, Wang J, Hodgetts K, Kalinichenko LS, Müller CP, Lambrecht V, Winkler J, Weihofen A, Imberdis T, Dettmer U, Fanning S, Selkoe DJ. A Stearoyl-Coenzyme A Desaturase Inhibitor Prevents Multiple Parkinson Disease Phenotypes in α-Synuclein Mice. Ann Neurol 2020; 89:74-90. [PMID: 32996158 PMCID: PMC7756464 DOI: 10.1002/ana.25920] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 09/25/2020] [Accepted: 09/25/2020] [Indexed: 12/20/2022]
Abstract
Objective Parkinson disease (PD) has useful symptomatic treatments that do not slow the neurodegenerative process, and no significant disease‐modifying treatments are approved. A key therapeutic target in PD is α‐synuclein (αS), which is both genetically implicated and accumulates in Lewy bodies rich in vesicles and other lipid membranes. Reestablishing αS homeostasis is a central goal in PD. Based on previous lipidomic analyses, we conducted a mouse trial of a stearoyl–coenzyme A desaturase (SCD) inhibitor (“5b”) that prevented αS‐positive vesicular inclusions and cytotoxicity in cultured human neurons. Methods Oral dosing and brain activity of 5b were established in nontransgenic mice. 5b in drinking water was given to mice expressing wild‐type human αS (WT) or an amplified familial PD αS mutation (E35K + E46K + E61K ["3K"]) beginning near the onset of nigral and cortical neurodegeneration and the robust PD‐like motor syndrome in 3K. Motor phenotypes, brain cytopathology, and SCD‐related lipid changes were quantified in 5b‐ versus placebo‐treated mice. Outcomes were compared to effects of crossing 3K to SCD1−/− mice. Results 5b treatment reduced αS hyperphosphorylation in E46K‐expressing human neurons, in 3K neural cultures, and in both WT and 3K αS mice. 5b prevented subtle gait deficits in WT αS mice and the PD‐like resting tremor and progressive motor decline of 3K αS mice. 5b also increased αS tetramers and reduced proteinase K‐resistant lipid‐rich aggregates. Similar benefits accrued from genetically deleting 1 SCD allele, providing target validation. Interpretation Prolonged reduction of brain SCD activity prevented PD‐like neuropathology in multiple PD models. Thus, an orally available SCD inhibitor potently ameliorates PD phenotypes, positioning this approach to treat human α‐synucleinopathies. ANN NEUROL 2021;89:74–90
Collapse
Affiliation(s)
- Silke Nuber
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Alice Y Nam
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Molly M Rajsombath
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Haley Cirka
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Junmin Wang
- Chemical Biology & Proteomics, Biogen, Cambridge, MA, USA
| | - Kevin Hodgetts
- Laboratory for Drug Discovery in Neurodegeneration, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Liubov S Kalinichenko
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Christian P Müller
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Vera Lambrecht
- Division of Molecular Neurology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Jürgen Winkler
- Division of Molecular Neurology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Andreas Weihofen
- Neurodegenerative Diseases Research Unit, Biogen, Cambridge, MA, USA
| | - Thibaut Imberdis
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Ulf Dettmer
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Saranna Fanning
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Dennis J Selkoe
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
508
|
Megadalton-sized Dityrosine Aggregates of α-Synuclein Retain High Degrees of Structural Disorder and Internal Dynamics. J Mol Biol 2020; 432:166689. [PMID: 33211011 PMCID: PMC7779668 DOI: 10.1016/j.jmb.2020.10.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 10/15/2020] [Accepted: 10/15/2020] [Indexed: 02/06/2023]
Abstract
Despite their large size, αSyn dityrosine aggregates are dynamic and disordered. αSyn dityrosine aggregates specifically form in complex environments. αSyn dityrosine aggregates retain residual membrane binding activity. Dityrosine aggregates inhibit amyloid formation of monomeric αSyn. αSyn dityrosine aggregates are not cytotoxic.
Heterogeneous aggregates of the human protein α-synuclein (αSyn) are abundantly found in Lewy body inclusions of Parkinson’s disease patients. While structural information on classical αSyn amyloid fibrils is available, little is known about the conformational properties of disease-relevant, non-canonical aggregates. Here, we analyze the structural and dynamic properties of megadalton-sized dityrosine adducts of αSyn that form in the presence of reactive oxygen species and cytochrome c, a proapoptotic peroxidase that is released from mitochondria during sustained oxidative stress. In contrast to canonical cross-β amyloids, these aggregates retain high degrees of internal dynamics, which enables their characterization by solution-state NMR spectroscopy. We find that intermolecular dityrosine crosslinks restrict αSyn motions only locally whereas large segments of concatenated molecules remain flexible and disordered. Indistinguishable aggregates form in crowded in vitro solutions and in complex environments of mammalian cell lysates, where relative amounts of free reactive oxygen species, rather than cytochrome c, are rate limiting. We further establish that dityrosine adducts inhibit classical amyloid formation by maintaining αSyn in its monomeric form and that they are non-cytotoxic despite retaining basic membrane-binding properties. Our results suggest that oxidative αSyn aggregation scavenges cytochrome c’s activity into the formation of amorphous, high molecular-weight structures that may contribute to the structural diversity of Lewy body deposits.
Collapse
|
509
|
Tomás M, Martínez-Alonso E, Martínez-Martínez N, Cara-Esteban M, Martínez-Menárguez JA. Fragmentation of the Golgi complex of dopaminergic neurons in human substantia nigra: New cytopathological findings in Parkinson's disease. Histol Histopathol 2020; 36:47-60. [PMID: 33078843 DOI: 10.14670/hh-18-270] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Fragmentation of the Golgi ribbon is a common feature of Parkinson´s disease and other neurodegenerative diseases. This alteration could be the consequence of the anterograde and retrograde transport imbalance, α-synuclein aggregates, and/or cytoskeleton alterations. Most information on this process has been obtained from cellular and animal experimental models, and as such, there is little information available on human tissue. If the information on human tissue was available, it may help to understand the cytopathological mechanisms of this disease. In the present study, we analyzed the morphological characteristics of the Golgi complex of dopaminergic neurons in human samples of substantia nigra of control and Parkinson's disease patients. We measured the expression levels of putative molecules involved in Golgi fragmentation, including α-synuclein, tubulin, and Golgi-associated regulatory and structural proteins. We show that, as a consequence of the disease, the Golgi complex is fragmented into small stacks without vesiculation. We found that only a limited number of regulatory proteins are altered. Rab1, a small GTPase regulating endoplasmic reticulum-to-Golgi transport, is the most dramatically affected, being highly overexpressed in the surviving neurons. We found that the SNARE protein syntaxin 5 forms extracellular aggregates resembling the amyloid plaques characteristic of Alzheimer's disease. These findings may help to understand the cytopathology of Parkinson's disease.
Collapse
Affiliation(s)
- Mónica Tomás
- Department of Human Anatomy and Embryology, Medical School, Universitat de Valencia, Valencia, Spain.
| | - Emma Martínez-Alonso
- Department of Cell Biology and Histology, Medical School, University of Murcia, Murcia, Spain
| | | | - Mireia Cara-Esteban
- Department of Human Anatomy and Embryology, Medical School, Universitat de Valencia, Valencia, Spain
| | | |
Collapse
|
510
|
Belarbi K, Cuvelier E, Bonte MA, Desplanque M, Gressier B, Devos D, Chartier-Harlin MC. Glycosphingolipids and neuroinflammation in Parkinson's disease. Mol Neurodegener 2020; 15:59. [PMID: 33069254 PMCID: PMC7568394 DOI: 10.1186/s13024-020-00408-1] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 10/01/2020] [Indexed: 12/15/2022] Open
Abstract
Parkinson's disease is a progressive neurodegenerative disease characterized by the loss of dopaminergic neurons of the nigrostriatal pathway and the formation of neuronal inclusions known as Lewy bodies. Chronic neuroinflammation, another hallmark of the disease, is thought to play an important role in the neurodegenerative process. Glycosphingolipids are a well-defined subclass of lipids that regulate crucial aspects of the brain function and recently emerged as potent regulators of the inflammatory process. Deregulation in glycosphingolipid metabolism has been reported in Parkinson's disease. However, the interrelationship between glycosphingolipids and neuroinflammation in Parkinson's disease is not well known. This review provides a thorough overview of the links between glycosphingolipid metabolism and immune-mediated mechanisms involved in neuroinflammation in Parkinson's disease. After a brief presentation of the metabolism and function of glycosphingolipids in the brain, it summarizes the evidences supporting that glycosphingolipids (i.e. glucosylceramides or specific gangliosides) are deregulated in Parkinson's disease. Then, the implications of these deregulations for neuroinflammation, based on data from human inherited lysosomal glycosphingolipid storage disorders and gene-engineered animal studies are outlined. Finally, the key molecular mechanisms by which glycosphingolipids could control neuroinflammation in Parkinson's disease are highlighted. These include inflammasome activation and secretion of pro-inflammatory cytokines, altered calcium homeostasis, changes in the blood-brain barrier permeability, recruitment of peripheral immune cells or production of autoantibodies.
Collapse
Affiliation(s)
- Karim Belarbi
- Univ. Lille, Inserm, CHU-Lille, Lille Neuroscience & Cognition, 1 Place de Verdun, 59006 Lille, France
- Département de Pharmacologie de la Faculté de Pharmacie, Univ. Lille, Lille, France
| | - Elodie Cuvelier
- Univ. Lille, Inserm, CHU-Lille, Lille Neuroscience & Cognition, 1 Place de Verdun, 59006 Lille, France
- Département de Pharmacologie de la Faculté de Pharmacie, Univ. Lille, Lille, France
| | - Marie-Amandine Bonte
- Univ. Lille, Inserm, CHU-Lille, Lille Neuroscience & Cognition, 1 Place de Verdun, 59006 Lille, France
| | - Mazarine Desplanque
- Univ. Lille, Inserm, CHU-Lille, Lille Neuroscience & Cognition, 1 Place de Verdun, 59006 Lille, France
- Département de Pharmacologie de la Faculté de Pharmacie, Univ. Lille, Lille, France
| | - Bernard Gressier
- Univ. Lille, Inserm, CHU-Lille, Lille Neuroscience & Cognition, 1 Place de Verdun, 59006 Lille, France
- Département de Pharmacologie de la Faculté de Pharmacie, Univ. Lille, Lille, France
| | - David Devos
- Univ. Lille, Inserm, CHU-Lille, Lille Neuroscience & Cognition, 1 Place de Verdun, 59006 Lille, France
- Département de Pharmacologie Médicale, I-SITE ULNE, LiCEND, Lille, France
| | | |
Collapse
|
511
|
Angelopoulou E, Paudel YN, Villa C, Piperi C. Arylsulfatase A (ASA) in Parkinson's Disease: From Pathogenesis to Biomarker Potential. Brain Sci 2020; 10:E713. [PMID: 33036336 PMCID: PMC7601048 DOI: 10.3390/brainsci10100713] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 09/30/2020] [Accepted: 10/02/2020] [Indexed: 01/28/2023] Open
Abstract
Parkinson's disease (PD), the second most common neurodegenerative disorder after Alzheimer's disease, is a clinically heterogeneous disorder, with obscure etiology and no disease-modifying therapy to date. Currently, there is no available biomarker for PD endophenotypes or disease progression. Accumulating evidence suggests that mutations in genes related to lysosomal function or lysosomal storage disorders may affect the risk of PD development, such as GBA1 gene mutations. In this context, recent studies have revealed the emerging role of arylsulfatase A (ASA), a lysosomal hydrolase encoded by the ARSA gene causing metachromatic leukodystrophy (MLD) in PD pathogenesis. In particular, altered ASA levels have been detected during disease progression, and reduced enzymatic activity of ASA has been associated with an atypical PD clinical phenotype, including early cognitive impairment and essential-like tremor. Clinical evidence further reveals that specific ARSA gene variants may act as genetic modifiers in PD. Recent in vitro and in vivo studies indicate that ASA may function as a molecular chaperone interacting with α-synuclein (SNCA) in the cytoplasm, preventing its aggregation, secretion and cell-to-cell propagation. In this review, we summarize the results of recent preclinical and clinical studies on the role of ASA in PD, aiming to shed more light on the potential implication of ASA in PD pathogenesis and highlight its biomarker potential.
Collapse
Affiliation(s)
- Efthalia Angelopoulou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Yam Nath Paudel
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor 47500, Malaysia;
| | - Chiara Villa
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| |
Collapse
|
512
|
Gilmozzi V, Gentile G, Castelo Rueda MP, Hicks AA, Pramstaller PP, Zanon A, Lévesque M, Pichler I. Interaction of Alpha-Synuclein With Lipids: Mitochondrial Cardiolipin as a Critical Player in the Pathogenesis of Parkinson's Disease. Front Neurosci 2020; 14:578993. [PMID: 33122994 PMCID: PMC7573567 DOI: 10.3389/fnins.2020.578993] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/10/2020] [Indexed: 12/31/2022] Open
Abstract
Alpha-Synuclein (α-Syn) is a central protein in the pathogenesis of synucleinopathies, a group of neurodegenerative disorders including Parkinson’s disease (PD). Although its role in neurotransmission is well established, the precise role of this protein in disease pathogenesis is still not fully understood. It is, however, widely regarded to be associated with the misfolding and accumulation of toxic intracellular aggregates. In fact, α-Syn is the most abundant protein component of Lewy bodies and Lewy neurites, which are also characterized by a high lipid content. Lipids, the main constituents of cellular membranes, have been implicated in many aspects of PD-related processes. α-Syn interacts with membrane phospholipids and free fatty acids via its N-terminal domain, and altered lipid-protein complexes might enhance both its binding to synaptic and mitochondrial membranes and its oligomerization. Several studies have highlighted a specific interaction of α-Syn with the phospholipid cardiolipin (CL), a major constituent of mitochondrial membranes. By interacting with CL, α-Syn is able to disrupt mitochondrial membrane integrity, leading to mitochondrial dysfunction. Additionally, externalized CL is able to facilitate the refolding of toxic α-Syn species at the outer mitochondrial membrane. In this review, we discuss how α-Syn/lipid interactions, in particular the α-Syn/CL interaction at the mitochondrial membrane, may affect α-Syn aggregation and mitochondrial dysfunction and may thus represent an important mechanism in the pathogenesis of PD.
Collapse
Affiliation(s)
- Valentina Gilmozzi
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Giovanna Gentile
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | | | - Andrew A Hicks
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Peter P Pramstaller
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy.,Department of Neurology, University of Lübeck, Lübeck, Germany
| | - Alessandra Zanon
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Martin Lévesque
- Department of Psychiatry and Neurosciences, Cervo Brain Research Centre, Université Laval, Quebec, QC, Canada
| | - Irene Pichler
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| |
Collapse
|
513
|
Mahato AK, Sidorova YA. Glial cell line-derived neurotrophic factors (GFLs) and small molecules targeting RET receptor for the treatment of pain and Parkinson's disease. Cell Tissue Res 2020; 382:147-160. [PMID: 32556722 PMCID: PMC7529621 DOI: 10.1007/s00441-020-03227-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 04/27/2020] [Indexed: 02/07/2023]
Abstract
Rearranged during transfection (RET), in complex with glial cell line-derived (GDNF) family receptor alpha (GFRα), is the canonical signaling receptor for GDNF family ligands (GFLs) expressed in both central and peripheral parts of the nervous system and also in non-neuronal tissues. RET-dependent signaling elicited by GFLs has an important role in the development, maintenance and survival of dopamine and sensory neurons. Both Parkinson's disease and neuropathic pain are devastating disorders without an available cure, and at the moment are only treated symptomatically. GFLs have been studied extensively in animal models of Parkinson's disease and neuropathic pain with remarkable outcomes. However, clinical trials with recombinant or viral vector-encoded GFL proteins have produced inconclusive results. GFL proteins are not drug-like; they have poor pharmacokinetic properties and activate multiple receptors. Targeting RET and/or GFRα with small molecules may resolve the problems associated with using GFLs as drugs and can result in the development of therapeutics for disease-modifying treatments against Parkinson's disease and neuropathic pain.
Collapse
Affiliation(s)
- Arun Kumar Mahato
- Institute of Biotechnology, HiLIFE, University of Helsinki, Viikinkaari 5D, 00014, Helsinki, Finland
| | - Yulia A Sidorova
- Institute of Biotechnology, HiLIFE, University of Helsinki, Viikinkaari 5D, 00014, Helsinki, Finland.
| |
Collapse
|
514
|
Airavaara M, Parkkinen I, Konovalova J, Albert K, Chmielarz P, Domanskyi A. Back and to the Future: From Neurotoxin-Induced to Human Parkinson's Disease Models. ACTA ACUST UNITED AC 2020; 91:e88. [PMID: 32049438 DOI: 10.1002/cpns.88] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Parkinson's disease (PD) is an age-related neurodegenerative disorder characterized by motor symptoms such as tremor, slowness of movement, rigidity, and postural instability, as well as non-motor features like sleep disturbances, loss of ability to smell, depression, constipation, and pain. Motor symptoms are caused by depletion of dopamine in the striatum due to the progressive loss of dopamine neurons in the substantia nigra pars compacta. Approximately 10% of PD cases are familial arising from genetic mutations in α-synuclein, LRRK2, DJ-1, PINK1, parkin, and several other proteins. The majority of PD cases are, however, idiopathic, i.e., having no clear etiology. PD is characterized by progressive accumulation of insoluble inclusions, known as Lewy bodies, mostly composed of α-synuclein and membrane components. The cause of PD is currently attributed to cellular proteostasis deregulation and mitochondrial dysfunction, which are likely interdependent. In addition, neuroinflammation is present in brains of PD patients, but whether it is the cause or consequence of neurodegeneration remains to be studied. Rodents do not develop PD or PD-like motor symptoms spontaneously; however, neurotoxins, genetic mutations, viral vector-mediated transgene expression and, recently, injections of misfolded α-synuclein have been successfully utilized to model certain aspects of the disease. Here, we critically review the advantages and drawbacks of rodent PD models and discuss approaches to advance pre-clinical PD research towards successful disease-modifying therapy. © 2020 The Authors.
Collapse
Affiliation(s)
- Mikko Airavaara
- Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Ilmari Parkkinen
- Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Julia Konovalova
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Katrina Albert
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Piotr Chmielarz
- Department of Brain Biochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Andrii Domanskyi
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| |
Collapse
|
515
|
CLR01 protects dopaminergic neurons in vitro and in mouse models of Parkinson's disease. Nat Commun 2020; 11:4885. [PMID: 32985503 PMCID: PMC7522721 DOI: 10.1038/s41467-020-18689-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 08/27/2020] [Indexed: 12/15/2022] Open
Abstract
Parkinson’s disease (PD) affects millions of patients worldwide and is characterized by alpha-synuclein aggregation in dopamine neurons. Molecular tweezers have shown high potential as anti-aggregation agents targeting positively charged residues of proteins undergoing amyloidogenic processes. Here we report that the molecular tweezer CLR01 decreased aggregation and toxicity in induced pluripotent stem cell-derived dopaminergic cultures treated with PD brain protein extracts. In microfluidic devices CLR01 reduced alpha-synuclein aggregation in cell somas when axonal terminals were exposed to alpha-synuclein oligomers. We then tested CLR01 in vivo in a humanized alpha-synuclein overexpressing mouse model; mice treated at 12 months of age when motor defects are mild exhibited an improvement in motor defects and a decreased oligomeric alpha-synuclein burden. Finally, CLR01 reduced alpha-synuclein-associated pathology in mice injected with alpha-synuclein aggregates into the striatum or substantia nigra. Taken together, these results highlight CLR01 as a disease-modifying therapy for PD and support further clinical investigation. CLR01 is a molecular tweezer that inhibits protein aggregation. Here the authors show that CLR01 protects dopaminergic neurons in vitro and in vivo in human neurons and in mouse models showing potential as a disease-modifying therapy for Parkinson’s disease.
Collapse
|
516
|
Patient-Derived Induced Pluripotent Stem Cell-Based Models in Parkinson's Disease for Drug Identification. Int J Mol Sci 2020; 21:ijms21197113. [PMID: 32993172 PMCID: PMC7582359 DOI: 10.3390/ijms21197113] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/23/2020] [Accepted: 09/25/2020] [Indexed: 12/13/2022] Open
Abstract
Parkinson's disease (PD) is a common progressive neurodegenerative disorder characterized by loss of striatal-projecting dopaminergic neurons of the ventral forebrain, resulting in motor and cognitive deficits. Despite extensive efforts in understanding PD pathogenesis, no disease-modifying drugs exist. Recent advances in cell reprogramming technologies have facilitated the generation of patient-derived models for sporadic or familial PD and the identification of early, potentially triggering, pathological phenotypes while they provide amenable systems for drug discovery. Emerging developments highlight the enhanced potential of using more sophisticated cellular systems, including neuronal and glial co-cultures as well as three-dimensional systems that better simulate the human pathophysiology. In combination with high-throughput high-content screening technologies, these approaches open new perspectives for the identification of disease-modifying compounds. In this review, we discuss current advances and the challenges ahead in the use of patient-derived induced pluripotent stem cells for drug discovery in PD. We address new concepts implicating non-neuronal cells in disease pathogenesis and highlight the necessity for functional assays, such as calcium imaging and multi-electrode array recordings, to predict drug efficacy. Finally, we argue that artificial intelligence technologies will be pivotal for analysis of the large and complex data sets obtained, becoming game-changers in the process of drug discovery.
Collapse
|
517
|
Investigating the Structure of Neurotoxic Protein Aggregates Inside Cells. Trends Cell Biol 2020; 30:951-966. [PMID: 32981805 DOI: 10.1016/j.tcb.2020.08.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/13/2020] [Accepted: 08/17/2020] [Indexed: 12/22/2022]
Abstract
Neurodegenerative diseases affect the lives of millions of people across the world, being particularly prevalent in the aging population. Despite huge research efforts, conclusive insights into the disease mechanisms are still lacking. Therefore, therapeutic strategies are limited to symptomatic treatments. A common histopathological hallmark of many neurodegenerative diseases is the presence of large pathognomonic protein aggregates, but their role in the disease pathology is unclear and subject to controversy. Here, we discuss imaging methods allowing investigation of these structures within their cellular environment: conventional electron microscopy (EM), super-resolution light microscopy (SR-LM), and cryo-electron tomography (cryo-ET). Multidisciplinary approaches are key for understanding neurodegenerative diseases and may contribute to the development of effective treatments. For simplicity, we focus on huntingtin aggregates, characteristic of Huntington's disease.
Collapse
|
518
|
Detecting Oxidative Stress Biomarkers in Neurodegenerative Disease Models and Patients. Methods Protoc 2020; 3:mps3040066. [PMID: 32987935 PMCID: PMC7712543 DOI: 10.3390/mps3040066] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/17/2020] [Accepted: 09/21/2020] [Indexed: 12/13/2022] Open
Abstract
Oxidative stress is prominent in many neurodegenerative diseases. Along with mitochondrial dysfunction and pathological protein aggregation, increased levels of reactive oxygen and nitrogen species, together with impaired antioxidant defense mechanisms, are frequently observed in Alzheimer's, Parkinson's, Huntington's disease and amyotrophic lateral sclerosis. The presence of oxidative stress markers in patients' plasma and cerebrospinal fluid may aid early disease diagnoses, as well as provide clues regarding the efficacy of experimental disease-modifying therapies in clinical trials. In preclinical animal models, the detection and localization of oxidatively damaged lipids, proteins and nucleic acids helps to identify most vulnerable neuronal populations and brain areas, and elucidate the molecular pathways and the timeline of pathology progression. Here, we describe the protocol for the detection of oxidative stress markers using immunohistochemistry on formaldehyde-fixed, paraffin-embedded tissue sections, applicable to the analysis of postmortem samples and tissues from animal models. In addition, we provide a simple method for the detection of malondialdehyde in tissue lysates and body fluids, which is useful for screening and the identification of tissues and structures in the nervous system which are most affected by oxidative stress.
Collapse
|
519
|
Jęśko H, Cieślik M, Gromadzka G, Adamczyk A. Dysfunctional proteins in neuropsychiatric disorders: From neurodegeneration to autism spectrum disorders. Neurochem Int 2020; 141:104853. [PMID: 32980494 DOI: 10.1016/j.neuint.2020.104853] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 09/05/2020] [Accepted: 09/22/2020] [Indexed: 02/06/2023]
Abstract
Despite fundamental differences in disease course and outcomes, neurodevelopmental (autism spectrum disorders - ASD) and neurodegenerative disorders (Alzheimer's disease - AD and Parkinson's disease - PD) present surprising, common traits in their molecular pathomechanisms. Uncontrolled oligomerization and aggregation of amyloid β (Aβ), microtubule-associated protein (MAP) tau, or α-synuclein (α-syn) contribute to synaptic impairment and the ensuing neuronal death in both AD and PD. Likewise, the pathogenesis of ASD may be attributed, at least in part, to synaptic dysfunction; attention has also been recently paid to irregularities in the metabolism and function of the Aβ precursor protein (APP), tau, or α-syn. Commonly affected elements include signaling pathways that regulate cellular metabolism and survival such as insulin/insulin-like growth factor (IGF) - PI3 kinase - Akt - mammalian target of rapamycin (mTOR), and a number of key synaptic proteins critically involved in neuronal communication. Understanding how these shared pathomechanism elements operate in different conditions may help identify common targets and therapeutic approaches.
Collapse
Affiliation(s)
- Henryk Jęśko
- Department of Cellular Signalling, M. Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawińskiego Str., 02-106, Warsaw, Poland.
| | - Magdalena Cieślik
- Department of Cellular Signalling, M. Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawińskiego Str., 02-106, Warsaw, Poland.
| | - Grażyna Gromadzka
- Cardinal Stefan Wyszynski University, Faculty of Medicine. Collegium Medicum, Wóycickiego 1/3, 01-938, Warsaw, Poland.
| | - Agata Adamczyk
- Department of Cellular Signalling, M. Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawińskiego Str., 02-106, Warsaw, Poland.
| |
Collapse
|
520
|
Kumar ST, Jagannath S, Francois C, Vanderstichele H, Stoops E, Lashuel HA. How specific are the conformation-specific α-synuclein antibodies? Characterization and validation of 16 α-synuclein conformation-specific antibodies using well-characterized preparations of α-synuclein monomers, fibrils and oligomers with distinct structures and morphology. Neurobiol Dis 2020; 146:105086. [PMID: 32971232 DOI: 10.1016/j.nbd.2020.105086] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/30/2020] [Accepted: 09/17/2020] [Indexed: 12/14/2022] Open
Abstract
Increasing evidence suggests that alpha-synuclein (α-syn) oligomers are obligate intermediates in the pathway involved in α-syn fibrillization and Lewy body (LB) formation, and may also accumulate within LBs in Parkinson's disease (PD) and other synucleinopathies. Therefore, the development of tools and methods to detect and quantify α-syn oligomers has become increasingly crucial for mechanistic studies to understand their role in PD, and to develop new diagnostic methods and therapies for PD and other synucleinopathies. The majority of these tools and methods rely primarily on the use of aggregation state-specific or conformation-specific antibodies. Given the impact of the data and knowledge generated using these antibodies on shaping the foundation and directions of α-syn and PD research, it is crucial that these antibodies are thoroughly characterized, and their specificity or ability to capture diverse α-syn species is tested and validated. Herein, we describe an antibody characterization and validation pipeline that allows a systematic investigation of the specificity of α-syn antibodies using well-defined and well-characterized preparations of various α-syn species, including monomers, fibrils, and different oligomer preparations that are characterized by distinct morphological, chemical and secondary structure properties. This pipeline was used to characterize 18 α-syn antibodies, 16 of which have been reported as conformation- or oligomer-specific antibodies, using an array of techniques, including immunoblot analysis (slot blot and Western blot), a digital ELISA assay using single molecule array technology and surface plasmon resonance. Our results show that i) none of the antibodies tested are specific for one particular type of α-syn species, including monomers, oligomers or fibrils; ii) all antibodies that were reported to be oligomer-specific also recognized fibrillar α-syn; and iii) a few antibodies showed high specificity for oligomers and fibrils but did not bind to monomers. These findings suggest that the great majority of α-syn aggregate-specific antibodies do not differentiate between oligomers and fibrils, thus highlighting the importance of exercising caution when interpreting results obtained using these antibodies. Our results also underscore the critical importance of the characterization and validation of antibodies before their use in mechanistic studies and as diagnostic tools or therapeutic agents. This will not only improve the quality and reproducibility of research and reduce costs but will also reduce the number of therapeutic antibody failures in the clinic.
Collapse
Affiliation(s)
- Senthil T Kumar
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, EPFL, Switzerland
| | - Somanath Jagannath
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, EPFL, Switzerland
| | | | - Hugo Vanderstichele
- ADx NeuroSciences, Technologiepark 94, Ghent, Belgium; Biomarkable, Gent, Belgium
| | - Erik Stoops
- ADx NeuroSciences, Technologiepark 94, Ghent, Belgium
| | - Hilal A Lashuel
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, EPFL, Switzerland.
| |
Collapse
|
521
|
Heras-Garvin A, Stefanova N. From Synaptic Protein to Prion: The Long and Controversial Journey of α-Synuclein. Front Synaptic Neurosci 2020; 12:584536. [PMID: 33071772 PMCID: PMC7536368 DOI: 10.3389/fnsyn.2020.584536] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 08/26/2020] [Indexed: 12/12/2022] Open
Abstract
Since its discovery 30 years ago, α-synuclein (α-syn) has been one of the most studied proteins in the field of neuroscience. Dozens of groups worldwide have tried to reveal not only its role in the CNS but also in other organs. α-syn has been linked to several processes essential in brain homeostasis such as neurotransmitter release, synaptic function, and plasticity. However, despite the efforts made in this direction, the main function of α-syn is still unknown. Moreover, α-syn became a protein of interest for neurologists and neuroscientists when mutations in its gene were found associated with Parkinson's disease (PD) and even more when α-syn protein deposits were observed in the brain of PD, dementia with Lewy bodies (DLB), and multiple system atrophy (MSA) patients. At present, the abnormal accumulation of α-syn constitutes one of the pathological hallmarks of these disorders, also referred to as α-synucleinopathies, and it is used for post-mortem diagnostic criteria. Whether α-syn aggregation is cause or consequence of the pathogenic events underlying α-synucleinopathies remains unclear and under discussion. Recently, different in vitro and in vivo studies have shown the ability of pathogenic α-syn to spread between cells, not only within the CNS but also from peripheral locations such as the gut, salivary glands, and through the olfactory network into the CNS, inducing abnormal misfolding of endogenous α-syn and leading to neurodegeneration and motor and cognitive impairment in animal models. Thus, it has been suggested that α-syn should be considered a prion protein. Here we present an update of what we know about α-syn function, aggregation and spreading, and its role in neurodegeneration. We also discuss the rationale and findings supporting the hypothetical prion nature of α-syn, its weaknesses, and future perspectives for research and the development of disease-modifying therapies.
Collapse
Affiliation(s)
- Antonio Heras-Garvin
- Division of Neurobiology, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Nadia Stefanova
- Division of Neurobiology, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
522
|
Sharma K, Mehra S, Sawner AS, Markam PS, Panigrahi R, Navalkar A, Chatterjee D, Kumar R, Kadu P, Patel K, Ray S, Kumar A, Maji SK. Effect of Disease-Associated P123H and V70M Mutations on β-Synuclein Fibrillation. ACS Chem Neurosci 2020; 11:2836-2848. [PMID: 32833434 DOI: 10.1021/acschemneuro.0c00405] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Synucleinopathies are a class of neurodegenerative diseases, including Parkinson's disease (PD), Dementia with Lewy bodies (DLB), and Multiple System Atrophy (MSA). The common pathological hallmark of synucleinopathies is the filamentous α-synuclein (α-Syn) aggregates along with membrane components in cytoplasmic inclusions in the brain. β-Synuclein (β-Syn), an isoform of α-Syn, inhibits α-Syn aggregation and prevents its neurotoxicity, suggesting the neuroprotective nature of β-Syn. However, this notion changed with the discovery of disease-associated β-Syn mutations, V70M and P123H, in patients with DLB. It is still unclear how these missense mutations alter the structural and amyloidogenic properties of β-Syn, leading to neurodegeneration. Here, we characterized the biophysical properties and investigated the effect of mutations on β-Syn fibrillation under different conditions. V70M and P123H show high membrane binding affinity compared to wild-type β-Syn, suggesting their potential role in membrane interactions. β-Syn and its mutants do not aggregate under normal physiological conditions; however, the proteins undergo self-polymerization in a slightly acidic microenvironment and/or in the presence of an inducer, forming long unbranched amyloid fibrils similar to α-Syn. Strikingly, V70M and P123H mutants exhibit accelerated fibrillation compared to native β-Syn under these conditions. NMR study further revealed that these point mutations induce local perturbations at the site of mutation in β-Syn. Overall, our data provide insight into the biophysical properties of disease-associated β-Syn mutations and demonstrate that these mutants make the native protein more susceptible to aggregation in an altered microenvironment.
Collapse
Affiliation(s)
- Karan Sharma
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai, India 400076
| | - Surabhi Mehra
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai, India 400076
| | - Ajay S. Sawner
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai, India 400076
| | - Pratap S. Markam
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai, India 400076
| | - Rajlaxmi Panigrahi
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai, India 400076
| | - Ambuja Navalkar
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai, India 400076
| | - Debdeep Chatterjee
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai, India 400076
| | - Rakesh Kumar
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai, India 400076
| | - Pradeep Kadu
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai, India 400076
| | - Komal Patel
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai, India 400076
| | - Soumik Ray
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai, India 400076
| | - Ashutosh Kumar
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai, India 400076
| | - Samir K. Maji
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai, India 400076
| |
Collapse
|
523
|
Chmielarz P, Er Ş, Konovalova J, Bandres L, Hlushchuk I, Albert K, Panhelainen A, Luk K, Airavaara M, Domanskyi A. GDNF/RET Signaling Pathway Activation Eliminates Lewy Body Pathology in Midbrain Dopamine Neurons. Mov Disord 2020; 35:2279-2289. [PMID: 32964492 DOI: 10.1002/mds.28258] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 08/03/2020] [Accepted: 08/06/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Parkinson's disease (PD) is associated with proteostasis disturbances and accumulation of misfolded α-synuclein (α-syn), a cytosolic protein present in high concentrations at pre-synaptic neuronal terminals. It is a primary constituent of intracellular protein aggregates known as Lewy neurites or Lewy bodies. Progression of Lewy pathology caused by the prion-like self-templating properties of misfolded α-syn is a characteristic feature in the brains of PD patients. Glial cell line-derived neurotrophic factor (GDNF) promotes survival of mature dopamine (DA) neurons in vitro and in vivo. However, the data on its effect on Lewy pathology is controversial. OBJECTIVES We studied the effects of GDNF on misfolded α-syn accumulation in DA neurons. METHODS Lewy pathology progression was modeled by the application of α-syn preformed fibrils in cultured DA neurons and in the adult mice. RESULTS We discovered that GDNF prevented accumulation of misfolded α-syn in DA neurons in culture and in vivo. These effects were abolished by deletion of receptor tyrosine kinase rearranged during transfection (RET) or by inhibitors of corresponding signaling pathway. Expression of constitutively active RET protected DA neurons from fibril-induced α-syn accumulation. CONCLUSIONS For the first time, we have shown the neurotrophic factor-mediated protection against the misfolded α-syn propagation in DA neurons, uncovered underlying receptors, and investigated the involved signaling pathways. These results demonstrate that activation of GDNF/RET signaling can be an effective therapeutic approach to prevent Lewy pathology spread at early stages of PD. © 2020 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Piotr Chmielarz
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland.,Department of Brain Biochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Smętna, Poland
| | - Şafak Er
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Julia Konovalova
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Laura Bandres
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Irena Hlushchuk
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Katrina Albert
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Anne Panhelainen
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Kelvin Luk
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Mikko Airavaara
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland.,Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Andrii Domanskyi
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| |
Collapse
|
524
|
Kiechle M, Grozdanov V, Danzer KM. The Role of Lipids in the Initiation of α-Synuclein Misfolding. Front Cell Dev Biol 2020; 8:562241. [PMID: 33042996 PMCID: PMC7523214 DOI: 10.3389/fcell.2020.562241] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 08/26/2020] [Indexed: 01/06/2023] Open
Abstract
The aggregation of α-synuclein (α-syn) is inseparably connected to Parkinson’s disease (PD). It is now well-established that certain forms of α-syn aggregates, oligomers and fibrils, can exert neurotoxicity in synucleinopathies. With the exception of rare familial forms, the vast majority of PD cases are idiopathic. Understanding the earliest molecular mechanisms that cause initial α-syn misfolding could help to explain why PD affects only some individuals and others not. Factors that chaperone the transition of α-syn’s physiological to pathological function are of particular interest, since they offer opportunities for intervention. The relationship between α-syn and lipids represents one of those factors. Membrane interaction is crucial for normal cellular function, but lipids also induce the aggregation of α-syn, causing cell toxicity. Also, disease-causing or risk-factor mutations in genes related to lipid metabolism like PLA2G6, SCARB2 or GBA1 highlight the close connection between PD and lipids. Despite the clear link, the ambivalent interaction has not been studied sufficiently so far. In this review, we address how α-syn interacts with lipids and how they can act as key factor for orchestrating toxic conversion of α-syn. Furthermore, we will discuss a scenario in which initial α-syn aggregation is determined by shifts in lipid/α-syn ratio as well as by dyshomeostasis of membrane bound/unbound state of α-syn.
Collapse
|
525
|
Xylaki M, Boumpoureka I, Kokotou MG, Marras T, Papadimitriou G, Kloukina I, Magrioti V, Kokotos G, Vekrellis K, Emmanouilidou E. Changes in the cellular fatty acid profile drive the proteasomal degradation of α-synuclein and enhance neuronal survival. FASEB J 2020; 34:15123-15145. [PMID: 32931072 DOI: 10.1096/fj.202001344r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/20/2020] [Accepted: 09/01/2020] [Indexed: 01/04/2023]
Abstract
Parkinson's disease is biochemically characterized by the deposition of aberrant aggregated α-synuclein in the affected neurons. The aggregation properties of α-synuclein greatly depend on its affinity to bind cellular membranes via a dynamic interaction with specific lipid moieties. In particular, α-synuclein can interact with arachidonic acid (AA), a polyunsaturated fatty acid, in a manner that promotes the formation of α-helix enriched assemblies. In a cellular context, AA is released from membrane phospholipids by phospholipase A2 (PLA2 ). To investigate the impact of PLA2 activity on α-synuclein aggregation, we have applied selective PLA2 inhibitors to a SH-SY5Y cellular model where the expression of human wild-type α-synuclein is correlated with a gradual accumulation of soluble oligomers and subsequent cell death. We have found that pharmacological and genetic inhibition of GIVA cPLA2 resulted in a dramatic decrease of intracellular oligomeric and monomeric α-synuclein significantly promoting cell survival. Our data suggest that alterations in the levels of free fatty acids, and especially AA and adrenic acid, promote the formation of α-synuclein conformers which are more susceptible to proteasomal degradation. This mechanism is active only in living cells and is generic since it does not depend on the absolute quantity of α-synuclein, the presence of disease-linked point mutations, the expression system or the type of cells. Our findings indicate that the α-synuclein-fatty acid interaction can be a critical determinant of the conformation and fate of α-synuclein in the cell interior and, as such, cPLA2 inhibitors could serve to alleviate the intracellular, potentially pathological, α-synuclein burden.
Collapse
Affiliation(s)
- Mary Xylaki
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Ioanna Boumpoureka
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Maroula G Kokotou
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Theodoros Marras
- Laboratory of Biochemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Georgia Papadimitriou
- Laboratory of Biochemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Ismini Kloukina
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Victoria Magrioti
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | - George Kokotos
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Kostas Vekrellis
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Evangelia Emmanouilidou
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece.,Laboratory of Biochemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
526
|
Galet B, Cheval H, Ravassard P. Patient-Derived Midbrain Organoids to Explore the Molecular Basis of Parkinson's Disease. Front Neurol 2020; 11:1005. [PMID: 33013664 PMCID: PMC7500100 DOI: 10.3389/fneur.2020.01005] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 07/30/2020] [Indexed: 12/20/2022] Open
Abstract
Induced pluripotent stem cell-derived organoids offer an unprecedented access to complex human tissues that recapitulate features of architecture, composition and function of in vivo organs. In the context of Parkinson's Disease (PD), human midbrain organoids (hMO) are of significant interest, as they generate dopaminergic neurons expressing markers of Substantia Nigra identity, which are the most vulnerable to degeneration. Combined with genome editing approaches, hMO may thus constitute a valuable tool to dissect the genetic makeup of PD by revealing the effects of risk variants on pathological mechanisms in a representative cellular environment. Furthermore, the flexibility of organoid co-culture approaches may also enable the study of neuroinflammatory and neurovascular processes, as well as interactions with other brain regions that are also affected over the course of the disease. We here review existing protocols to generate hMO, how they have been used so far to model PD, address challenges inherent to organoid cultures, and discuss applicable strategies to dissect the molecular pathophysiology of the disease. Taken together, the research suggests that this technology represents a promising alternative to 2D in vitro models, which could significantly improve our understanding of PD and help accelerate therapeutic developments.
Collapse
Affiliation(s)
- Benjamin Galet
- Molecular Pathophysiology of Parkinson's Disease Group, Paris Brain Institute (ICM), INSERM U, CNRS UMR 7225, Sorbonne University, Paris, France
| | | | | |
Collapse
|
527
|
Nasrollahi-Shirazi S, Szöllösi D, Yang Q, Muratspahic E, El-Kasaby A, Sucic S, Stockner T, Nanoff C, Freissmuth M. Functional Impact of the G279S Substitution in the Adenosine A 1-Receptor (A 1R-G279S 7.44), a Mutation Associated with Parkinson's Disease. Mol Pharmacol 2020; 98:250-266. [PMID: 32817461 PMCID: PMC7116137 DOI: 10.1124/molpharm.120.000003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 06/17/2020] [Indexed: 12/21/2022] Open
Abstract
In medium-size, spiny striatal neurons of the direct pathway, dopamine D1- and adenosine A1-receptors are coexpressed and are mutually antagonistic. Recently, a mutation in the gene encoding the A1-receptor (A1R), A1R-G279S7.44, was identified in an Iranian family: two affected offspring suffered from early-onset l-DOPA-responsive Parkinson's disease. The link between the mutation and the phenotype is unclear. Here, we explored the functional consequence of the G279S substitution on the activity of the A1-receptor after heterologous expression in HEK293 cells. The mutation did not affect surface expression and ligand binding but changed the susceptibility to heat denaturation: the thermodynamic stability of A1R-G279S7.44 was enhanced by about 2 and 8 K when compared with wild-type A1-receptor and A1R-Y288A7.53 (a folding-deficient variant used as a reference), respectively. In contrast, the kinetic stability was reduced, indicating a lower energy barrier for conformational transitions in A1R-G279S7.44 (73 ± 23 kJ/mol) than in wild-type A1R (135 ± 4 kJ/mol) or in A1R-Y288A7.53 (184 ± 24 kJ/mol). Consistent with this lower energy barrier, A1R-G279S7.44 was more effective in promoting guanine nucleotide exchange than wild-type A1R. We detected similar levels of complexes formed between D1-receptors and wild-type A1R or A1R-G279S7.44 by coimmunoprecipitation and bioluminescence resonance energy transfer. However, lower concentrations of agonist were required for half-maximum inhibition of dopamine-induced cAMP accumulation in cells coexpressing D1-receptor and A1R-G279S7.44 than in those coexpressing wild-type A1R. These observations predict enhanced inhibition of dopaminergic signaling by A1R-G279S7.44 in vivo, consistent with a pathogenic role in Parkinson's disease. SIGNIFICANCE STATEMENT: Parkinson's disease is caused by a loss of dopaminergic input from the substantia nigra to the caudate nucleus and the putamen. Activation of the adenosine A1-receptor antagonizes responses elicited by dopamine D1-receptor. We show that this activity is more pronounced in a mutant version of the A1-receptor (A1R-G279S7.44), which was identified in individuals suffering from early-onset Parkinson's disease.
Collapse
Affiliation(s)
- Shahrooz Nasrollahi-Shirazi
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Daniel Szöllösi
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Qiong Yang
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Edin Muratspahic
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Ali El-Kasaby
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Sonja Sucic
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Thomas Stockner
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Christian Nanoff
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Michael Freissmuth
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
528
|
Schaser AJ, Stackhouse TL, Weston LJ, Kerstein PC, Osterberg VR, López CS, Dickson DW, Luk KC, Meshul CK, Woltjer RL, Unni VK. Trans-synaptic and retrograde axonal spread of Lewy pathology following pre-formed fibril injection in an in vivo A53T alpha-synuclein mouse model of synucleinopathy. Acta Neuropathol Commun 2020; 8:150. [PMID: 32859276 PMCID: PMC7456087 DOI: 10.1186/s40478-020-01026-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 08/19/2020] [Indexed: 12/20/2022] Open
Abstract
It is necessary to develop an understanding of the specific mechanisms involved in alpha-synuclein aggregation and propagation to develop disease modifying therapies for age-related synucleinopathies, including Parkinson's disease and Dementia with Lewy Bodies. To adequately address this question, we developed a new transgenic mouse model of synucleinopathy that expresses human A53T SynGFP under control of the mouse prion protein promoter. Our characterization of this mouse line demonstrates that it exhibits several distinct advantages over other, currently available, mouse models. This new model allows rigorous study of the initial location of Lewy pathology formation and propagation in the living brain, and strongly suggests that aggregation begins in axonal structures with retrograde propagation to the cell body. This model also shows expeditious development of alpha-synuclein pathology following induction with small, in vitro-generated alpha-synuclein pre-formed fibrils (PFFs), as well as accelerated cell death of inclusion-bearing cells. Using this model, we found that aggregated alpha-synuclein somatic inclusions developed first in neurons, but later showed a second wave of inclusion formation in astrocytes. Interestingly, astrocytes appear to survive much longer after inclusion formation than their neuronal counterparts. This model also allowed careful study of peripheral-to-central spread of Lewy pathology after PFF injection into the hind limb musculature. Our results clearly show evidence of progressive, retrograde trans-synaptic spread of Lewy pathology through known neuroanatomically connected pathways in the motor system. As such, we have developed a promising tool to understand the biology of neurodegeneration associated with alpha-synuclein aggregation and to discover new treatments capable of altering the neurodegenerative disease course of synucleinopathies.
Collapse
Affiliation(s)
- Allison J Schaser
- Department of Neurology and Jungers Center for Neurosciences Research, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Teresa L Stackhouse
- Department of Neurology and Jungers Center for Neurosciences Research, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Leah J Weston
- Department of Neurology and Jungers Center for Neurosciences Research, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Patrick C Kerstein
- Vollum Institute, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Valerie R Osterberg
- Department of Neurology and Jungers Center for Neurosciences Research, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Claudia S López
- Multiscale Microscopy Core, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Kelvin C Luk
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Charles K Meshul
- Research Services, Veterans Affairs Medical Center, Portland, OR, 97239, USA
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Randall L Woltjer
- Department of Pathology, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Vivek K Unni
- Department of Neurology and Jungers Center for Neurosciences Research, Oregon Health and Science University, Portland, OR, 97239, USA.
- Parkinson Center, Department of Neurology, Oregon Health and Science University, Portland, OR, 97239, USA.
| |
Collapse
|
529
|
Koss DJ, Bondarevaite O, Adams S, Leite M, Giorgini F, Attems J, Outeiro TF. RAB39B is redistributed in dementia with Lewy bodies and is sequestered within aβ plaques and Lewy bodies. Brain Pathol 2020; 31:120-132. [PMID: 32762091 PMCID: PMC8018064 DOI: 10.1111/bpa.12890] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/22/2020] [Accepted: 07/26/2020] [Indexed: 12/19/2022] Open
Abstract
Loss of function mutations within the vesicular trafficking protein Ras analogy in brain 39B (RAB39B) are associated with rare X‐linked Parkinson’s disease (PD). Physiologically, RAB39B is localized to Golgi vesicles and recycling endosomes and is required for glutamatergic receptor maturation but also for alpha‐Synuclein (aSyn) homeostasis and the inhibition of its aggregation. Despite evidence linking RAB39B to neurodegeneration, the involvement of the protein in idiopathic neurodegenerative diseases remains undetermined. Here, analysis of the spatial distribution and expression of RAB39B was conducted in post‐mortem human brain tissue from cases of dementia with Lewy bodies (DLB, n = 10), Alzheimer’s disease (AD, n = 12) and controls (n = 12). Assessment of cortical RAB39B immunoreactivity using tissue microarrays revealed an overall reduction in the area of RAB39B positive gray matter in DLB cases when compared to controls and AD cases. Strikingly, RAB39B co‐localized with beta‐amyloid (Aβ) plaques in all cases examined and was additionally present in a subpopulation of Lewy bodies (LBs) in DLB. Biochemical measures of total RAB39B levels within the temporal cortex were unchanged between DLB, AD and controls. However, upon subcellular fractionation, a reduction of RAB39B in the cytoplasmic pool was found in DLB cases, alongside an increase of phosphorylated aSyn and Aβ in whole tissue lysates. The reduction of cytoplasmic RAB39B is consistent with an impaired reserve capacity for RAB39B‐associated functions, which in turn may facilitate LB aggregation and synaptic impairment. Collectively, our data support the involvement of RAB39B in the pathogenesis of DLB and the co‐aggregation of RAB39B with Aβ in plaques suggests that age‐associated cerebral Aβ pathology may be contributory to the loss of RAB39B. Thus RAB39B, its associated functional pathways and its entrapment in aggregates may be considered as future targets for therapeutic interventions to impede the overall pathological burden and cellular dysfunction in Lewy body diseases.
Collapse
Affiliation(s)
- David J Koss
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK
| | - Odeta Bondarevaite
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK
| | - Sara Adams
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK
| | - Marta Leite
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK
| | - Flaviano Giorgini
- Department of Genetics and Genome Biology, University of Leicester, University Road, Leicester, LE1 7RH, UK
| | - Johannes Attems
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK
| | - Tiago F Outeiro
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK.,Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Goettingen, Goettingen, Germany.,Max Planck Institute for Experimental Medicine, Goettingen, Germany
| |
Collapse
|
530
|
Newberry RW, Arhar T, Costello J, Hartoularos GC, Maxwell AM, Naing ZZC, Pittman M, Reddy NR, Schwarz DMC, Wassarman DR, Wu TS, Barrero D, Caggiano C, Catching A, Cavazos TB, Estes LS, Faust B, Fink EA, Goldman MA, Gomez YK, Gordon MG, Gunsalus LM, Hoppe N, Jaime-Garza M, Johnson MC, Jones MG, Kung AF, Lopez KE, Lumpe J, Martyn C, McCarthy EE, Miller-Vedam LE, Navarro EJ, Palar A, Pellegrino J, Saylor W, Stephens CA, Strickland J, Torosyan H, Wankowicz SA, Wong DR, Wong G, Redding S, Chow ED, DeGrado WF, Kampmann M. Robust Sequence Determinants of α-Synuclein Toxicity in Yeast Implicate Membrane Binding. ACS Chem Biol 2020; 15:2137-2153. [PMID: 32786289 DOI: 10.1021/acschembio.0c00339] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Protein conformations are shaped by cellular environments, but how environmental changes alter the conformational landscapes of specific proteins in vivo remains largely uncharacterized, in part due to the challenge of probing protein structures in living cells. Here, we use deep mutational scanning to investigate how a toxic conformation of α-synuclein, a dynamic protein linked to Parkinson's disease, responds to perturbations of cellular proteostasis. In the context of a course for graduate students in the UCSF Integrative Program in Quantitative Biology, we screened a comprehensive library of α-synuclein missense mutants in yeast cells treated with a variety of small molecules that perturb cellular processes linked to α-synuclein biology and pathobiology. We found that the conformation of α-synuclein previously shown to drive yeast toxicity-an extended, membrane-bound helix-is largely unaffected by these chemical perturbations, underscoring the importance of this conformational state as a driver of cellular toxicity. On the other hand, the chemical perturbations have a significant effect on the ability of mutations to suppress α-synuclein toxicity. Moreover, we find that sequence determinants of α-synuclein toxicity are well described by a simple structural model of the membrane-bound helix. This model predicts that α-synuclein penetrates the membrane to constant depth across its length but that membrane affinity decreases toward the C terminus, which is consistent with orthogonal biophysical measurements. Finally, we discuss how parallelized chemical genetics experiments can provide a robust framework for inquiry-based graduate coursework.
Collapse
Affiliation(s)
- Robert W. Newberry
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94143, United States
| | - Taylor Arhar
- Chemistry and Chemical Biology Graduate Program, University of California, San Francisco, California 94143, United States
| | - Jean Costello
- Integrative Program in Quantitative Biology, University of California, San Francisco, California 94143, United States
| | - George C. Hartoularos
- Integrative Program in Quantitative Biology, University of California, San Francisco, California 94143, United States
| | - Alison M. Maxwell
- Chemistry and Chemical Biology Graduate Program, University of California, San Francisco, California 94143, United States
| | - Zun Zar Chi Naing
- Integrative Program in Quantitative Biology, University of California, San Francisco, California 94143, United States
| | - Maureen Pittman
- Integrative Program in Quantitative Biology, University of California, San Francisco, California 94143, United States
| | - Nishith R. Reddy
- Integrative Program in Quantitative Biology, University of California, San Francisco, California 94143, United States
| | - Daniel M. C. Schwarz
- Chemistry and Chemical Biology Graduate Program, University of California, San Francisco, California 94143, United States
| | - Douglas R. Wassarman
- Chemistry and Chemical Biology Graduate Program, University of California, San Francisco, California 94143, United States
| | - Taia S. Wu
- Chemistry and Chemical Biology Graduate Program, University of California, San Francisco, California 94143, United States
| | - Daniel Barrero
- Integrative Program in Quantitative Biology, University of California, San Francisco, California 94143, United States
| | - Christa Caggiano
- Integrative Program in Quantitative Biology, University of California, San Francisco, California 94143, United States
| | - Adam Catching
- Integrative Program in Quantitative Biology, University of California, San Francisco, California 94143, United States
| | - Taylor B. Cavazos
- Integrative Program in Quantitative Biology, University of California, San Francisco, California 94143, United States
| | - Laurel S. Estes
- Integrative Program in Quantitative Biology, University of California, San Francisco, California 94143, United States
| | - Bryan Faust
- Integrative Program in Quantitative Biology, University of California, San Francisco, California 94143, United States
| | - Elissa A. Fink
- Integrative Program in Quantitative Biology, University of California, San Francisco, California 94143, United States
| | - Miriam A. Goldman
- Integrative Program in Quantitative Biology, University of California, San Francisco, California 94143, United States
| | - Yessica K. Gomez
- Integrative Program in Quantitative Biology, University of California, San Francisco, California 94143, United States
| | - M. Grace Gordon
- Integrative Program in Quantitative Biology, University of California, San Francisco, California 94143, United States
| | - Laura M. Gunsalus
- Integrative Program in Quantitative Biology, University of California, San Francisco, California 94143, United States
| | - Nick Hoppe
- Integrative Program in Quantitative Biology, University of California, San Francisco, California 94143, United States
| | - Maru Jaime-Garza
- Integrative Program in Quantitative Biology, University of California, San Francisco, California 94143, United States
| | - Matthew C. Johnson
- Integrative Program in Quantitative Biology, University of California, San Francisco, California 94143, United States
| | - Matthew G. Jones
- Integrative Program in Quantitative Biology, University of California, San Francisco, California 94143, United States
| | - Andrew F. Kung
- Integrative Program in Quantitative Biology, University of California, San Francisco, California 94143, United States
| | - Kyle E. Lopez
- Integrative Program in Quantitative Biology, University of California, San Francisco, California 94143, United States
| | - Jared Lumpe
- Integrative Program in Quantitative Biology, University of California, San Francisco, California 94143, United States
| | - Calla Martyn
- Integrative Program in Quantitative Biology, University of California, San Francisco, California 94143, United States
| | - Elizabeth E. McCarthy
- Integrative Program in Quantitative Biology, University of California, San Francisco, California 94143, United States
| | - Lakshmi E. Miller-Vedam
- Integrative Program in Quantitative Biology, University of California, San Francisco, California 94143, United States
| | - Erik J. Navarro
- Integrative Program in Quantitative Biology, University of California, San Francisco, California 94143, United States
| | - Aji Palar
- Integrative Program in Quantitative Biology, University of California, San Francisco, California 94143, United States
| | - Jenna Pellegrino
- Integrative Program in Quantitative Biology, University of California, San Francisco, California 94143, United States
| | - Wren Saylor
- Integrative Program in Quantitative Biology, University of California, San Francisco, California 94143, United States
| | - Christina A. Stephens
- Integrative Program in Quantitative Biology, University of California, San Francisco, California 94143, United States
| | - Jack Strickland
- Integrative Program in Quantitative Biology, University of California, San Francisco, California 94143, United States
| | - Hayarpi Torosyan
- Integrative Program in Quantitative Biology, University of California, San Francisco, California 94143, United States
| | - Stephanie A. Wankowicz
- Integrative Program in Quantitative Biology, University of California, San Francisco, California 94143, United States
| | - Daniel R. Wong
- Integrative Program in Quantitative Biology, University of California, San Francisco, California 94143, United States
| | - Garrett Wong
- Integrative Program in Quantitative Biology, University of California, San Francisco, California 94143, United States
| | - Sy Redding
- Department of Biochemistry and Biophysics, University of California, San Francisco, California 94143, United States
| | - Eric D. Chow
- Department of Biochemistry and Biophysics, University of California, San Francisco, California 94143, United States
| | - William F. DeGrado
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94143, United States
| | - Martin Kampmann
- Department of Biochemistry and Biophysics, University of California, San Francisco, California 94143, United States
- Institute for Neurodegenerative Disease, University of California, San Francisco, California 94143, United States
- Chan Zuckerberg Biohub, San Francisco, California 94158, United States
| |
Collapse
|
531
|
C. elegans Models to Study the Propagation of Prions and Prion-Like Proteins. Biomolecules 2020; 10:biom10081188. [PMID: 32824215 PMCID: PMC7464663 DOI: 10.3390/biom10081188] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/10/2020] [Accepted: 08/13/2020] [Indexed: 12/14/2022] Open
Abstract
A hallmark common to many age-related neurodegenerative diseases, such as Alzheimer’s disease (AD), Parkinson’s disease (PD), and amyotrophic lateral sclerosis (ALS), is that patients develop proteinaceous deposits in their central nervous system (CNS). The progressive spreading of these inclusions from initially affected sites to interconnected brain areas is reminiscent of the behavior of bona fide prions in transmissible spongiform encephalopathies (TSEs), hence the term prion-like proteins has been coined. Despite intensive research, the exact mechanisms that facilitate the spreading of protein aggregation between cells, and the associated loss of neurons, remain poorly understood. As population demographics in many countries continue to shift to higher life expectancy, the incidence of neurodegenerative diseases is also rising. This represents a major challenge for healthcare systems and patients’ families, since patients require extensive support over several years and there is still no therapy to cure or stop these diseases. The model organism Caenorhabditis elegans offers unique opportunities to accelerate research and drug development due to its genetic amenability, its transparency, and the high degree of conservation of molecular pathways. Here, we will review how recent studies that utilize this soil dwelling nematode have proceeded to investigate the propagation and intercellular transmission of prions and prion-like proteins and discuss their relevance by comparing their findings to observations in other model systems and patients.
Collapse
|
532
|
Chatterjee M, van Steenoven I, Huisman E, Oosterveld L, Berendse H, van der Flier WM, Del Campo M, Lemstra AW, van de Berg WDJ, Teunissen CE. Contactin-1 Is Reduced in Cerebrospinal Fluid of Parkinson's Disease Patients and Is Present within Lewy Bodies. Biomolecules 2020; 10:biom10081177. [PMID: 32806791 PMCID: PMC7463939 DOI: 10.3390/biom10081177] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 08/01/2020] [Accepted: 08/05/2020] [Indexed: 01/09/2023] Open
Abstract
Synaptic degeneration is an early phenomenon in Parkinson's disease (PD) pathogenesis. We aimed to investigate whether levels of synaptic proteins contactin-1 and contactin-2 in cerebrospinal fluid (CSF) of PD patients are reduced compared to dementia with Lewy bodies (DLB) patients and controls and to evaluate their relationship with α-synuclein aggregation. Contactin-1 and -2 were measured in CSF from PD patients (n = 58), DLB patients (n = 72) and age-matched controls (n = 90). Contactin concentration differences between diagnostic groups were assessed by general linear models adjusted for age and sex. Contactin immunoreactivity was characterized in postmortem substantia nigra, hippocampus and entorhinal cortex tissue of PD patients (n = 4) and controls (n = 4), and its relation to α-syn aggregation was evaluated using confocal laser scanning microscopy. Contactin-1 levels were lower in PD patients (42 (36-49) pg/mL) compared to controls (52 (44-58) pg/mL, p = 0.003) and DLB patients (56 (46-67) pg/mL, p = 0.001). Contactin-2 levels were similar across all diagnostic groups. Within the PD patient group, contactin-1 correlated with t-α-syn, tTau and pTau (r = 0.30-0.50, p < 0.05), whereas contactin-2 only correlated with t-α-syn (r = 0.34, p = 0.03). Contactin-1 and -2 were observed within nigral and cortical Lewy bodies and clustered within bulgy Lewy neurites in PD brains. A decrease in CSF contactin-1 may reflect synaptic degeneration underlying Lewy body pathology in PD.
Collapse
Affiliation(s)
- Madhurima Chatterjee
- Neurochemistry Laboratory, Clinical Chemistry Department, Amsterdam Neuroscience, Amsterdam University Medical Centers, Vrije Universiteit, 1105 AZ Amsterdam, The Netherlands; (M.C.); (M.D.C.)
| | - Inger van Steenoven
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam University Medical Centers, Vrije Universiteit, 1105 AZ Amsterdam, The Netherlands; (I.v.S.); (W.M.v.d.F.); (A.W.L.)
| | - Evelien Huisman
- Department of Anatomy and Neurosciences, Section Clinical Neuroanatomy, Amsterdam Neuroscience, Amsterdam University Medical Centers, Vrije Universiteit, 1105 AZ Amsterdam, The Netherlands; (E.H.); (L.O.); (W.D.J.v.d.B.)
| | - Linda Oosterveld
- Department of Anatomy and Neurosciences, Section Clinical Neuroanatomy, Amsterdam Neuroscience, Amsterdam University Medical Centers, Vrije Universiteit, 1105 AZ Amsterdam, The Netherlands; (E.H.); (L.O.); (W.D.J.v.d.B.)
| | - Henk Berendse
- Department of Neurology, Amsterdam Neuroscience, Amsterdam University Medical Centers, Vrije Universiteit, 1105 AZ Amsterdam, The Netherlands;
| | - Wiesje M. van der Flier
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam University Medical Centers, Vrije Universiteit, 1105 AZ Amsterdam, The Netherlands; (I.v.S.); (W.M.v.d.F.); (A.W.L.)
- Department of Epidemiology & Biostatistics, Amsterdam Neuroscience, Amsterdam University Medical Centers, Vrije Universiteit, 1105 AZ Amsterdam, The Netherlands
| | - Marta Del Campo
- Neurochemistry Laboratory, Clinical Chemistry Department, Amsterdam Neuroscience, Amsterdam University Medical Centers, Vrije Universiteit, 1105 AZ Amsterdam, The Netherlands; (M.C.); (M.D.C.)
| | - Afina W. Lemstra
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam University Medical Centers, Vrije Universiteit, 1105 AZ Amsterdam, The Netherlands; (I.v.S.); (W.M.v.d.F.); (A.W.L.)
| | - Wilma D. J. van de Berg
- Department of Anatomy and Neurosciences, Section Clinical Neuroanatomy, Amsterdam Neuroscience, Amsterdam University Medical Centers, Vrije Universiteit, 1105 AZ Amsterdam, The Netherlands; (E.H.); (L.O.); (W.D.J.v.d.B.)
| | - Charlotte E. Teunissen
- Neurochemistry Laboratory, Clinical Chemistry Department, Amsterdam Neuroscience, Amsterdam University Medical Centers, Vrije Universiteit, 1105 AZ Amsterdam, The Netherlands; (M.C.); (M.D.C.)
- Correspondence: ; Tel.: +31-20-4443-680
| |
Collapse
|
533
|
Alpha-Synuclein FRET Biosensors Reveal Early Alpha-Synuclein Aggregation in the Endoplasmic Reticulum. Life (Basel) 2020; 10:life10080147. [PMID: 32796544 PMCID: PMC7460339 DOI: 10.3390/life10080147] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 11/17/2022] Open
Abstract
Endoplasmic reticulum (ER) dysfunction is important for alpha-synuclein (αS) acquired toxicity. When targeted to the ER in SH-SY5Y cells, transient or stable expression of αS resulted in the formation of compact αS-positive structures in a small subpopulation of cells, resembling αS inclusions. Thus, because of the limitations of immunofluorescence, we developed a set of αS FRET biosensors (AFBs) able to track αS conformation in cells. In native conditions, expression in i36, a stable cell line for ER αS, of intermolecular AFBs, reporters in which CFP or YFP has been fused with the C-terminal of αS (αS-CFP/αS-YFP), resulted in no Förster resonance energy transfer (FRET), whereas expression of the intramolecular AFB, a probe obtained by fusing YFP and CFP with αS N- or C- termini (YFP-αS-CFP), showed a positive FRET signal. These data confirmed that αS has a predominantly globular, monomeric conformation in native conditions. Differently, under pro-aggregating conditions, the intermolecular AFB was able to sense significantly formation of αS oligomers, when AFB was expressed in the ER rather than ubiquitously, suggesting that the ER can favor changes in αS conformation when aggregation is stimulated. These results show the potential of AFBs as a new, valuable tool to track αS conformational changes in vivo.
Collapse
|
534
|
Genoud S, Jones MWM, Trist BG, Deng J, Chen S, Hare DJ, Double KL. Simultaneous structural and elemental nano-imaging of human brain tissue. Chem Sci 2020; 11:8919-8927. [PMID: 34123146 PMCID: PMC8163372 DOI: 10.1039/d0sc02844d] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Examining chemical and structural characteristics of micro-features in complex tissue matrices is essential for understanding biological systems. Advances in multimodal chemical and structural imaging using synchrotron radiation have overcome many issues in correlative imaging, enabling the characterization of distinct microfeatures at nanoscale resolution in ex vivo tissues. We present a nanoscale imaging method that pairs X-ray ptychography and X-ray fluorescence microscopy (XFM) to simultaneously examine structural features and quantify elemental content of microfeatures in complex ex vivo tissues. We examined the neuropathological microfeatures Lewy bodies, aggregations of superoxide dismutase 1 (SOD1) and neuromelanin in human post-mortem Parkinson's disease tissue. Although biometals play essential roles in normal neuronal biochemistry, their dyshomeostasis is implicated in Parkinson's disease aetiology. Here we show that Lewy bodies and SOD1 aggregates have distinct elemental fingerprints yet are similar in structure, whilst neuromelanin exhibits different elemental composition and a distinct, disordered structure. The unique approach we describe is applicable to the structural and chemical characterization of a wide range of complex biological tissues at previously unprecedented levels of detail. Structural and chemical characterisation of microfeatures in unadulterated Parkinson's disease brain tissue using synchrotron nanoscale XFM and ptychography.![]()
Collapse
Affiliation(s)
- Sian Genoud
- Brain and Mind Centre and Discipline of Pharmacology, The University of Sydney Camperdown NSW 2050 Australia
| | - Michael W M Jones
- Central Analytical Research Facility, Institute for Future Environments, Queensland University of Technology Brisbane QLD 4000 Australia
| | - Benjamin Guy Trist
- Brain and Mind Centre and Discipline of Pharmacology, The University of Sydney Camperdown NSW 2050 Australia
| | - Junjing Deng
- Advanced Photon Source, Argonne National Laboratory Lemont IL 60439 USA
| | - Si Chen
- Advanced Photon Source, Argonne National Laboratory Lemont IL 60439 USA
| | - Dominic James Hare
- Brain and Mind Centre and Discipline of Pharmacology, The University of Sydney Camperdown NSW 2050 Australia .,School of Biosciences, Department of Clinical Pathology, The University of Melbourne Parkville VIC 3010 Australia .,Atomic Medicine Initiative, University of Technology Sydney NSW 2007 Australia
| | - Kay L Double
- Brain and Mind Centre and Discipline of Pharmacology, The University of Sydney Camperdown NSW 2050 Australia
| |
Collapse
|
535
|
Amyloidogenic Intrinsically Disordered Proteins: New Insights into Their Self-Assembly and Their Interaction with Membranes. Life (Basel) 2020; 10:life10080144. [PMID: 32784399 PMCID: PMC7459996 DOI: 10.3390/life10080144] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/02/2020] [Accepted: 08/06/2020] [Indexed: 12/21/2022] Open
Abstract
Aβ, IAPP, α-synuclein, and prion proteins belong to the amyloidogenic intrinsically disordered proteins’ family; indeed, they lack well defined secondary and tertiary structures. It is generally acknowledged that they are involved, respectively, in Alzheimer’s, Type II Diabetes Mellitus, Parkinson’s, and Creutzfeldt–Jakob’s diseases. The molecular mechanism of toxicity is under intense debate, as many hypotheses concerning the involvement of the amyloid and the toxic oligomers have been proposed. However, the main role is represented by the interplay of protein and the cell membrane. Thus, the understanding of the interaction mechanism at the molecular level is crucial to shed light on the dynamics driving this phenomenon. There are plenty of factors influencing the interaction as mentioned above, however, the overall view is made trickier by the apparent irreproducibility and inconsistency of the data reported in the literature. Here, we contextualized this topic in a historical, and even more importantly, in a future perspective. We introduce two novel insights: the chemical equilibrium, always established in the aqueous phase between the free and the membrane phospholipids, as mediators of protein-transport into the core of the bilayer, and the symmetry-breaking of oligomeric aggregates forming an alternating array of partially ordered and disordered monomers.
Collapse
|
536
|
Brekk OR, Korecka JA, Crapart CC, Huebecker M, MacBain ZK, Rosenthal SA, Sena-Esteves M, Priestman DA, Platt FM, Isacson O, Hallett PJ. Upregulating β-hexosaminidase activity in rodents prevents α-synuclein lipid associations and protects dopaminergic neurons from α-synuclein-mediated neurotoxicity. Acta Neuropathol Commun 2020; 8:127. [PMID: 32762772 PMCID: PMC7409708 DOI: 10.1186/s40478-020-01004-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 07/27/2020] [Indexed: 01/17/2023] Open
Abstract
Sandhoff disease (SD) is a lysosomal storage disease, caused by loss of β-hexosaminidase (HEX) activity resulting in the accumulation of ganglioside GM2. There are shared features between SD and Parkinson's disease (PD). α-synuclein (aSYN) inclusions, the diagnostic hallmark sign of PD, are frequently found in the brain in SD patients and HEX knockout mice, and HEX activity is reduced in the substantia nigra in PD. In this study, we biochemically demonstrate that HEX deficiency in mice causes formation of high-molecular weight (HMW) aSYN and ubiquitin in the brain. As expected from HEX enzymatic function requirements, overexpression in vivo of HEXA and B combined, but not either of the subunits expressed alone, increased HEX activity as evidenced by histochemical assays. Biochemically, such HEX gene expression resulted in increased conversion of GM2 to its breakdown product GM3. In a neurodegenerative model of overexpression of aSYN in rats, increasing HEX activity by AAV6 gene transfer in the substantia nigra reduced aSYN embedding in lipid compartments and rescued dopaminergic neurons from degeneration. Overall, these data are consistent with a paradigm shift where lipid abnormalities are central to or preceding protein changes typically associated with PD.
Collapse
Affiliation(s)
- Oeystein R Brekk
- Neuroregeneration Institute, McLean Hospital / Harvard Medical School, Belmont, MA, USA
| | - Joanna A Korecka
- Neuroregeneration Institute, McLean Hospital / Harvard Medical School, Belmont, MA, USA
- Current address: Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | - Cecile C Crapart
- Neuroregeneration Institute, McLean Hospital / Harvard Medical School, Belmont, MA, USA
| | - Mylene Huebecker
- Department of Pharmacology, University of Oxford, Oxford, UK
- Current address: Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Zachary K MacBain
- Neuroregeneration Institute, McLean Hospital / Harvard Medical School, Belmont, MA, USA
| | - Sara Ann Rosenthal
- Neuroregeneration Institute, McLean Hospital / Harvard Medical School, Belmont, MA, USA
| | - Miguel Sena-Esteves
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, USA
| | | | - Frances M Platt
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Ole Isacson
- Neuroregeneration Institute, McLean Hospital / Harvard Medical School, Belmont, MA, USA.
| | - Penelope J Hallett
- Neuroregeneration Institute, McLean Hospital / Harvard Medical School, Belmont, MA, USA.
| |
Collapse
|
537
|
Mahoney-Sánchez L, Bouchaoui H, Ayton S, Devos D, Duce JA, Devedjian JC. Ferroptosis and its potential role in the physiopathology of Parkinson's Disease. Prog Neurobiol 2020; 196:101890. [PMID: 32726602 DOI: 10.1016/j.pneurobio.2020.101890] [Citation(s) in RCA: 297] [Impact Index Per Article: 59.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 06/15/2020] [Accepted: 07/13/2020] [Indexed: 02/07/2023]
Abstract
Parkinson's Disease (PD) is a common and progressive neurodegenerative disorder characterised by motor impairments as well as non-motor symptoms. While dopamine-based therapies are effective in fighting the symptoms in the early stages of the disease, a lack of neuroprotective drugs means that the disease continues to progress. Along with the traditionally recognised pathological hallmarks of dopaminergic neuronal death and intracellular α-synuclein (α-syn) depositions, iron accumulation, elevated oxidative stress and lipid peroxidation damage are further conspicuous features of PD pathophysiology. However, the underlying mechanisms linking these pathological hallmarks with neurodegeneration still remain unclear. Ferroptosis, a regulated iron dependent cell death pathway involving a lethal accumulation of lipid peroxides, shares several features with PD pathophysiology. Interestingly, α-syn has been functionally linked with the metabolism of both iron and lipid, suggesting a possible interplay between dysregulated α-syn and other PD pathological hallmarks related to ferroptosis. This review will address the importance for understanding these disease mechanisms that could be targeted therapeutically. Anti-ferroptosis molecules are neuroprotective in PD animal models and the anti-ferroptotic iron chelator, deferiprone, slowed disease progression and improved motor function in two independent clinical trials for PD. An ongoing larger multi-centre phase 2 clinical trial will confirm the therapeutic potential of deferiprone and the relevance of ferroptosis in PD. This review addresses the known pathological features of PD in relation to the ferroptosis pathway with therapeutic implications of targeting this cell death pathway.
Collapse
Affiliation(s)
- Laura Mahoney-Sánchez
- Department of Medical Pharmacology, Lille University, INSERM UMRS_1172, University Hospital Centre, LICEND COEN Centre, LilNCog - Lille Neuroscience & Cognition, 59000, France
| | - Hind Bouchaoui
- Department of Medical Pharmacology, Lille University, INSERM UMRS_1172, University Hospital Centre, LICEND COEN Centre, LilNCog - Lille Neuroscience & Cognition, 59000, France
| | - Scott Ayton
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, 30 Royal Parade, Parkville, Victoria, 3052, Australia
| | - David Devos
- Department of Medical Pharmacology, Lille University, INSERM UMRS_1172, University Hospital Centre, LICEND COEN Centre, LilNCog - Lille Neuroscience & Cognition, 59000, France.
| | - James A Duce
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, 30 Royal Parade, Parkville, Victoria, 3052, Australia; ALBORADA Drug Discovery Institute, University of Cambridge, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0AH, United Kingdom.
| | - Jean-Christophe Devedjian
- Department of Medical Pharmacology, Lille University, INSERM UMRS_1172, University Hospital Centre, LICEND COEN Centre, LilNCog - Lille Neuroscience & Cognition, 59000, France; Université du Littoral Côte d'Opale-1, place de l'Yser, BP 72033, 59375, Dunkerque Cedex, France
| |
Collapse
|
538
|
Chmielarz P, Saarma M. Neurotrophic factors for disease-modifying treatments of Parkinson's disease: gaps between basic science and clinical studies. Pharmacol Rep 2020; 72:1195-1217. [PMID: 32700249 PMCID: PMC7550372 DOI: 10.1007/s43440-020-00120-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 06/16/2020] [Accepted: 06/19/2020] [Indexed: 02/07/2023]
Abstract
Abstract Background Neurotrophic factors are endogenous proteins promoting the survival of different neural cells. Therefore, they elicited great interest as a possible treatment for neurodegenerative disorders, including Parkinson’s Disease (PD). PD is the second most common neurodegenerative disorder, scientifically characterized more than 200 years ago and initially linked with motor abnormalities. Currently, the disease is viewed as a highly heterogeneous, progressive disorder with a long presymptomatic phase, and both motor and non-motor symptoms. Presently only symptomatic treatments for PD are available. Neurohistopathological changes of PD affected brains have been described more than 100 years ago and characterized by the presence of proteinaceous inclusions known as Lewy bodies and degeneration of dopamine neurons. Despite more than a century of investigations, it has remained unclear why dopamine neurons die in PD. Methods This review summarizes literature data from preclinical studies and clinical trials of neurotrophic factor based therapies for PD and discuss it from the perspective of the current understanding of PD biology. Results Newest data point towards dysfunctions of mitochondria, autophagy-lysosomal pathway, unfolded protein response and prion protein-like spreading of misfolded alpha-synuclein that is the major component of Lewy bodies. Yet, the exact chain of events leading to the demise of dopamine neurons is unclear and perhaps different in subpopulations of patients. Conclusions Gaps in our understanding of underlying disease etiology have hindered our attempts to find treatments able to slow down the progression of PD. Graphic abstract ![]()
Collapse
Affiliation(s)
- Piotr Chmielarz
- Department of Brain Biochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland.
| | - Mart Saarma
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
539
|
Terry-Kantor E, Tripathi A, Imberdis T, LaVoie ZM, Ho GPH, Selkoe D, Fanning S, Ramalingam N, Dettmer U. Rapid Alpha-Synuclein Toxicity in a Neural Cell Model and Its Rescue by a Stearoyl-CoA Desaturase Inhibitor. Int J Mol Sci 2020; 21:E5193. [PMID: 32707907 PMCID: PMC7432784 DOI: 10.3390/ijms21155193] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/16/2020] [Accepted: 07/16/2020] [Indexed: 01/28/2023] Open
Abstract
Genetic and biochemical evidence attributes neuronal loss in Parkinson's disease (PD) and related brain diseases to dyshomeostasis of the 14 kDa protein α-synuclein (αS). There is no consensus on how αS exerts toxicity. Explanations range from disturbed vesicle biology to proteotoxicity caused by fibrillar aggregates. To probe these mechanisms further, robust cellular toxicity models are needed, but their availability is limited. We previously reported that a shift from dynamic multimers to monomers is an early event in αS dyshomeostasis, as caused by familial PD (fPD)-linked mutants such as E46K. Excess monomers accumulate in round, lipid-rich inclusions. Engineered αS '3K' (E35K+E46K+E61K) amplifies E46K, causing a PD-like, L-DOPA-responsive motor phenotype in transgenic mice. Here, we present a cellular model of αS neurotoxicity after transducing human neuroblastoma cells to express yellow fluorescent protein (YFP)-tagged αS 3K in a doxycycline-dependent manner. αS-3K::YFP induction causes pronounced growth defects that accord with cell death. We tested candidate compounds for their ability to restore growth, and stearoyl-CoA desaturase (SCD) inhibitors emerged as a molecule class with growth-restoring capacity, but the therapeutic window varied among compounds. The SCD inhibitor MF-438 fully restored growth while exerting no apparent cytotoxicity. Our αS bioassay will be useful for elucidating compound mechanisms, for pharmacokinetic studies, and for compound/genetic screens.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Nagendran Ramalingam
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (E.T.-K.); (A.T.); (T.I.); (Z.M.L.); (G.P.H.H.); (D.S.); (S.F.)
| | - Ulf Dettmer
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (E.T.-K.); (A.T.); (T.I.); (Z.M.L.); (G.P.H.H.); (D.S.); (S.F.)
| |
Collapse
|
540
|
Wang R, Sun H, Ren H, Wang G. α-Synuclein aggregation and transmission in Parkinson's disease: a link to mitochondria and lysosome. SCIENCE CHINA-LIFE SCIENCES 2020; 63:1850-1859. [PMID: 32681494 DOI: 10.1007/s11427-020-1756-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 06/11/2020] [Indexed: 12/14/2022]
Abstract
The presence of intraneuronal Lewy bodies (LBs) and Lewy neurites (LNs) in the substantia nigra (SN) composed of aggregated α-synuclein (α-syn) has been recognized as a hallmark of pathological changes in Parkinson's disease (PD). Numerous studies have shown that aggregated α-syn is necessary for neurotoxicity. Meanwhile, the mitochondrial and lysosomal dysfunctions are associated with α-syn pathogenicity The hypothesis that α-syn transmission in the human brain contributes to the instigation and progression of PD has provided insights into PD pathology. This review will provide a brief overview of increasing researches that shed light on the relationship of α-syn aggregation with mitochondrial and lysosomal dysfunctions, and highlight recent understanding of α-syn transmission in PD pathology.
Collapse
Affiliation(s)
- Rui Wang
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Neuropsychiatric Diseases & Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Hongyang Sun
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Neuropsychiatric Diseases & Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Haigang Ren
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Neuropsychiatric Diseases & Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China.
| | - Guanghui Wang
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Neuropsychiatric Diseases & Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
541
|
Thomas R, Hallett PJ, Isacson O. Experimental studies of mitochondrial and lysosomal function in in vitro and in vivo models relevant to Parkinson's disease genetic risk. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 154:279-302. [PMID: 32739007 DOI: 10.1016/bs.irn.2020.02.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Several studies have identified the involvement of mitochondrial and lysosomal dysfunction in Parkinson's disease (PD) pathology. In this review we discuss recent work that has identified deficits in mitophagy, mitochondrial network formation, increased sensitivity to mitochondrial stressors and alterations in proteins regulating mitochondrial fission and fusion associated with patient-derived fibroblasts harboring mutations in LRRK2 gene and from sporadic PD patient cells. We further focus on alterations of lysosomal enzymes, in particular glucocerebrosidase activity, and resultant lipid dyshomeostasis in PD and aging, in human tissue and in vivo rodent models. Future studies aimed at understanding the convergence of mitochondrial and lysosomal pathways will be of essence for the identification of unique cellular defects in PD and for the development of new treatments.
Collapse
Affiliation(s)
- Ria Thomas
- Neuroregeneration Research Institute, Harvard Medical School/McLean Hospital, Belmont, MA, United States.
| | - Penelope J Hallett
- Neuroregeneration Research Institute, Harvard Medical School/McLean Hospital, Belmont, MA, United States.
| | - Ole Isacson
- Neuroregeneration Research Institute, Harvard Medical School/McLean Hospital, Belmont, MA, United States.
| |
Collapse
|
542
|
Kumar R, Donakonda S, Müller SA, Lichtenthaler SF, Bötzel K, Höglinger GU, Koeglsperger T. Basic Fibroblast Growth Factor 2-Induced Proteome Changes Endorse Lewy Body Pathology in Hippocampal Neurons. iScience 2020; 23:101349. [PMID: 32707433 PMCID: PMC7381695 DOI: 10.1016/j.isci.2020.101349] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/11/2020] [Accepted: 07/03/2020] [Indexed: 12/15/2022] Open
Abstract
Hippocampal Lewy body pathology (LBP) is associated with changes in neurotrophic factor signaling and neuronal energy metabolism. LBP progression is attributed to the aggregation of α-synuclein (α-Syn) and its cell-to-cell transmission via extracellular vehicles (EVs). We recently discovered an enhanced EV release in basic fibroblast growth factor (bFGF)-treated hippocampal neurons. Here, we examined the EV and cell lysate proteome changes in bFGF-treated hippocampal neurons. We identified n = 2,310 differentially expressed proteins (DEPs) induced by bFGF. We applied weighted protein co-expression network analysis (WPCNA) to generate protein modules from DEPs and mapped them to published LBP datasets. This approach revealed n = 532 LBP-linked DEPs comprising key α-Syn-interacting proteins, LBP-associated RNA-binding proteins (RBPs), and neuronal ion channels and receptors that can impact LBP onset and progression. In summary, our deep proteomic analysis affirms the potential influence of bFGF signaling on LBP-related proteome changes and associated molecular interactions.
Collapse
Affiliation(s)
- Rohit Kumar
- German Center for Neurodegenerative Diseases (DZNE), 81337 Munich, Germany; Faculty of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany; Department of Neurology, Ludwig Maximilian University, 81377 Munich, Germany.
| | - Sainitin Donakonda
- Institute of Immunology and Experimental Oncology, Technical University of Munich, 81675 Munich, Germany
| | - Stephan A Müller
- German Center for Neurodegenerative Diseases (DZNE), 81337 Munich, Germany
| | - Stefan F Lichtenthaler
- German Center for Neurodegenerative Diseases (DZNE), 81337 Munich, Germany; Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
| | - Kai Bötzel
- Department of Neurology, Ludwig Maximilian University, 81377 Munich, Germany
| | - Günter U Höglinger
- German Center for Neurodegenerative Diseases (DZNE), 81337 Munich, Germany; Faculty of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany; Department of Neurology, Hannover Medical School (MHH), 30625 Hannover, Germany
| | - Thomas Koeglsperger
- German Center for Neurodegenerative Diseases (DZNE), 81337 Munich, Germany; Department of Neurology, Ludwig Maximilian University, 81377 Munich, Germany.
| |
Collapse
|
543
|
Hatton C, Reeve A, Lax NZ, Blain A, Ng YS, El-Agnaf O, Attems J, Taylor JP, Turnbull D, Erskine D. Complex I reductions in the nucleus basalis of Meynert in Lewy body dementia: the role of Lewy bodies. Acta Neuropathol Commun 2020; 8:103. [PMID: 32646480 PMCID: PMC7346628 DOI: 10.1186/s40478-020-00985-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 07/01/2020] [Indexed: 12/11/2022] Open
Abstract
Neurons of the nucleus basalis of Meynert (nbM) are vulnerable to Lewy body formation and neuronal loss, which is thought to underlie cognitive dysfunction in Lewy body dementia (LBD). There is continued debate about whether Lewy bodies exert a neurodegenerative effect by affecting mitochondria, or whether they represent a protective mechanism. Therefore, the present study sought to determine whether the nbM is subject to mitochondrial dysfunctional in LBD and the association of Lewy body formation with such changes. Post-mortem nbM tissue was stained for Complex I or IV and quantitated relative to porin with immunofluorescence using confocal microscopy of individual cells from LBD (303 neurons, 8 cases), control (362 neurons, 8 cases) and asymptomatic incidental LBD (iLBD) cases (99 neurons, 2 cases). Additionally, α-synuclein, tau and amyloid-β pathology were analysed using quantitative immunohistochemistry, and respiratory chain markers were compared in cells with Lewy bodies (N = 134) and unaffected cells (N = 272). The expression of Complex I normalised to mitochondrial mass was significantly lower in LBD compared to control and iLBD cases and this was unrelated to local neuropathological burdens but trended toward a relationship with neuronal loss. Furthermore, Complex I expression was higher in cells with Lewy bodies compared to adjacent cells without α-synuclein aggregates. These findings suggest that Complex I deficits in the nbM occur in symptomatic LBD cases and may relate to neuronal loss, but that contrary to the view that Lewy body formation underlies neuronal dysfunction and damage in LBD, Lewy bodies are associated with higher Complex I expression than neurons without Lewy bodies. One could speculate that Lewy bodies may provide a mechanism to encapsulate damaged mitochondria and/or α-synuclein oligomers, thus protecting neurons from their cytotoxic effects.
Collapse
|
544
|
Kim Y, Connor JR. The roles of iron and HFE genotype in neurological diseases. Mol Aspects Med 2020; 75:100867. [PMID: 32654761 DOI: 10.1016/j.mam.2020.100867] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/21/2020] [Accepted: 05/24/2020] [Indexed: 12/13/2022]
Abstract
Iron accumulation is a recurring pathological phenomenon in many neurological diseases including Parkinson's disease, Alzheimer's disease, amyotrophic lateral sclerosis, and others. Iron is essential for normal development and functions of the brain; however, excess redox-active iron can also lead to oxidative damage and cell death. Especially for terminally differentiated cells like neurons, regulation of reactive oxygen species is critical for cell viability. As a result, cellular iron level is tightly regulated. Although iron accumulation related to neurological diseases has been well documented, the pathoetiological contributions of the homeostatic iron regulator (HFE), which controls cellular iron uptake, is less understood. Furthermore, a common HFE variant, H63D HFE, has been identified as a modifier of multiple neurological diseases. This review will discuss the roles of iron and HFE in the brain as well as their impact on various disease processes.
Collapse
Affiliation(s)
- Yunsung Kim
- Penn State College of Medicine, Department of Neurosurgery, Hershey, PA, USA
| | - James R Connor
- Penn State College of Medicine, Department of Neurosurgery, Hershey, PA, USA.
| |
Collapse
|
545
|
Bhaskar S, Gowda J, Prasanna J, Kumar A. Does altering proteasomal activity and trafficking reduce the arborization mediated specific vulnerability of SNpc dopaminergic neurons of Parkinson's disease? Med Hypotheses 2020; 143:110062. [PMID: 32652429 DOI: 10.1016/j.mehy.2020.110062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/27/2020] [Indexed: 01/15/2023]
Abstract
Parkinson's disease (PD) is a late-onset degenerative neuronal disorder and stands second among the neurological disorders with 1% of the total world population being affected. The disease originates majorly due to compromised function of the dopaminergic (DA) neurons in the Substantia Nigra pars compacta (SNpc), but not the ventral tegmental area (VTA) region of the midbrain. The differential susceptibility for degeneration is majorly attributed to morphological, molecular, and electrophysiological heterogeneity existing in DA neurons of SNpc and VTA. Long-range axonal arborization and a higher number of synapses in SNpc DA neurons make it more vulnerable compared to VTA DA neurons. Studies have shown that a decrease in such axonal arborization places DA neurons at decreased risk in PD. The two well established underlying mechanisms are a) As arborization is an energy-demanding process, increased redistribution of mitochondria to the axonal terminals occurs to satisfy the bioenergetic requirement b) The stabilization of axon-promoting factors at the axonal tip is an essential component for enhancing the arborization process. Interfering with any of these two processes would probably alleviate the degeneration of SNpc DA neurons. To accomplish the decreased stability of arborizing factors and thereby increase the resilience of SNpc DA neurons, we hypothesize the activation of anterograde transport-dependent recruitment of proteasomes to axon terminals as one of the most favorable approaches. Understanding this putative avenue of enhancing proteasomal activity and migration to the axonal tip could provide insight into the progression of neurodegeneration in PD and possibly offer a novel therapeutic strategy.
Collapse
Affiliation(s)
- Smitha Bhaskar
- Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education, Allalsandra, Yelahanka, Bengaluru 560065, Karnataka, India
| | - Jeevan Gowda
- Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education, Allalsandra, Yelahanka, Bengaluru 560065, Karnataka, India
| | - Jyothi Prasanna
- Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education, Allalsandra, Yelahanka, Bengaluru 560065, Karnataka, India
| | - Anujith Kumar
- Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education, Allalsandra, Yelahanka, Bengaluru 560065, Karnataka, India.
| |
Collapse
|
546
|
Krahn AI, Wells C, Drewry DH, Beitel LK, Durcan TM, Axtman AD. Defining the Neural Kinome: Strategies and Opportunities for Small Molecule Drug Discovery to Target Neurodegenerative Diseases. ACS Chem Neurosci 2020; 11:1871-1886. [PMID: 32464049 DOI: 10.1021/acschemneuro.0c00176] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Kinases are highly tractable drug targets that have reached unparalleled success in fields such as cancer but whose potential has not yet been realized in neuroscience. There are currently 55 approved small molecule kinase-targeting drugs, 48 of which have an anticancer indication. The intrinsic complexity linked to central nervous system (CNS) drug development and a lack of validated targets has hindered progress in developing kinase inhibitors for CNS disorders when compared to other therapeutic areas such as oncology. Identification and/or characterization of new kinases as potential drug targets for neurodegenerative diseases will create opportunities for the development of CNS drugs in the future. The track record of kinase inhibitors in other disease indications supports the idea that with the best targets identified small molecule kinase modulators will become impactful therapeutics for neurodegenerative diseases. This Review highlights the imminent need for new therapeutics to treat the most prevalent neurodegenerative diseases as well as the promise of kinase inhibitors to address this need. With a focus on kinases that remain largely unexplored after decades of dedicated research in the kinase field, we offer specific examples of understudied kinases that are supported by patient-derived data as linked to Alzheimer's disease, Parkinson's disease, and/or amyotrophic lateral sclerosis. Finally, we show literature-reported high-quality inhibitors for several understudied kinases and suggest other kinases that merit additional medicinal chemistry efforts to elucidate their therapeutic potential.
Collapse
Affiliation(s)
- Andrea I. Krahn
- Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal, QC, Canada H3A 2B4
| | - Carrow Wells
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - David H. Drewry
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Lenore K. Beitel
- Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal, QC, Canada H3A 2B4
| | - Thomas M. Durcan
- Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal, QC, Canada H3A 2B4
| | - Alison D. Axtman
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
547
|
Ganeva I, Kukulski W. Membrane Architecture in the Spotlight of Correlative Microscopy. Trends Cell Biol 2020; 30:577-587. [DOI: 10.1016/j.tcb.2020.04.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/27/2020] [Accepted: 04/01/2020] [Indexed: 12/19/2022]
|
548
|
Deng J, Yang Y, Luo L, Xiao Y, Luan T. Lipid analysis and lipidomics investigation by ambient mass spectrometry. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115924] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
549
|
Prolyl Endopeptidase-Like Facilitates the α-Synuclein Aggregation Seeding, and This Effect Is Reverted by Serine Peptidase Inhibitor PMSF. Biomolecules 2020; 10:biom10060962. [PMID: 32630529 PMCID: PMC7355856 DOI: 10.3390/biom10060962] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/16/2020] [Accepted: 06/23/2020] [Indexed: 12/18/2022] Open
Abstract
The aggregation of α-synuclein (α-Syn) is a characteristic of Parkinson’s disease (PD). α-Syn oligomerization/aggregation is accelerated by the serine peptidase, prolyl oligopeptidase (POP). Factors that affect POP conformation, including most of its inhibitors and an impairing mutation in its active site, influence the acceleration of α-Syn aggregation resulting from the interaction of these proteins. It is noteworthy, however, that α-Syn is not cleaved by POP. Prolyl endopeptidase-like (PREPL) protein is structurally related to the serine peptidases belonging to the POP family. Based on the α-Syn–POP studies and knowing that PREPL may contribute to the regulation of synaptic vesicle exocytosis, when this protein can encounter α-Syn, we investigated the α-Syn–PREPL interaction. The binding of these two human proteins was observed with an apparent affinity constant of about 5.7 μM and, as in the α-Syn assays with POP, the presence of PREPL accelerated the oligomerization/aggregation events, with no α-Syn cleavage. Furthermore, despite this lack of hydrolytic cleavage, the serine peptidase active site inhibitor phenylmethylsulfonyl fluoride (PMSF) abolished the enhancement of the α-Syn aggregation by PREPL. Therefore, given the attention to POP inhibitors as potential drugs to treat synucleinopathies, the present data point to PREPL as another potential target to be explored for this purpose.
Collapse
|
550
|
Savyon M, Engelender S. SUMOylation in α-Synuclein Homeostasis and Pathology. Front Aging Neurosci 2020; 12:167. [PMID: 32670048 PMCID: PMC7330056 DOI: 10.3389/fnagi.2020.00167] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 05/14/2020] [Indexed: 12/15/2022] Open
Abstract
The accumulation and aggregation of α-synuclein are central to Parkinson’s disease (PD), yet the molecular mechanisms responsible for these events are not fully understood. Post-translational modifications of α-synuclein regulate several of its properties, including degradation, interaction with proteins and membranes, aggregation and toxicity. SUMOylation is a post-translational modification involved in various nuclear and extranuclear processes, such as subcellular protein targeting, mitochondrial fission and synaptic plasticity. Protein SUMOylation increases in response to several stressful situations, from viral infections to trauma. In this framework, an increasing amount of evidence has implicated SUMOylation in several neurodegenerative diseases, including PD. This review will discuss recent findings in the role of SUMOylation as a regulator of α-synuclein accumulation, aggregation and toxicity, and its possible implication in neurodegeneration that underlies PD.
Collapse
Affiliation(s)
- Mor Savyon
- Department of Biochemistry, The B. Rappaport Faculty of Medicine and Institute of Medical Research, Technion - Israel Institute of Technology, Haifa, Israel
| | - Simone Engelender
- Department of Biochemistry, The B. Rappaport Faculty of Medicine and Institute of Medical Research, Technion - Israel Institute of Technology, Haifa, Israel
| |
Collapse
|