501
|
Kottschade LA, Pond GR, Olszanski AJ, Zakharia Y, Domingo-Musibay E, Hauke RJ, Curti BD, Schober S, Milhem MM, Block MS, Hieken T, McWilliams RR. SALVO: Single-Arm Trial of Ipilimumab and Nivolumab as Adjuvant Therapy for Resected Mucosal Melanoma. Clin Cancer Res 2023; 29:2220-2225. [PMID: 37000165 DOI: 10.1158/1078-0432.ccr-22-3207] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/29/2023] [Accepted: 03/29/2023] [Indexed: 04/01/2023]
Abstract
PURPOSE Mucosal melanoma is a rare, aggressive form of melanoma with extremely high recurrence rates despite definitive surgical resection with curative intent. Currently there is no consensus on adjuvant therapy. Data on checkpoint inhibitors for adjuvant therapy are lacking. PATIENTS AND METHODS We performed a single-arm, multicenter clinical trial using "flip dose" ipilimumab (1 mg/kg q3w × 4 cycles), and nivolumab (3 mg/kg q3w × 4 cycles), then nivolumab 480 mg q4w × 11 cycles to complete a year of adjuvant therapy. Participants must have had R0/R1 resection ≤90 days before registration, no prior systemic therapy (adjuvant radiotherapy allowed), ECOG 0/1, and no uncontrolled autoimmune disease or other invasive cancer. Patients were recruited through the Midwest Melanoma Partnership/Hoosier Oncology Network. RESULTS From September 2017 to August 2021, 35 patients were enrolled. Of these, 29 (83%) had R0 resections, and 7 (20%) received adjuvant radiotherapy. Median age was 67 years, 21 (60.0%) female. Recurrence-free survival (RFS) rates at 1 and 2 years were 50% [95% confidence interval (CI), 31%-66%] and 37% (95% CI, 19%-55%), respectively. Overall survival rates at 1 and 2 years were 87% (95% CI, 68%-95%) and 68% (95% CI, 46%-83%), respectively. Median RFS was 10.3 months (95% CI, 5.7-25.8). Most common grade 3 toxicities were diarrhea (14%), hypertension (14%), and hyponatremia (11%), with no grade 4/5 toxicities. CONCLUSIONS Flip-dose ipilimumab and nivolumab after resection of mucosal melanoma is associated with outcomes improved over that of surgical resection alone. Long-term follow-up, subgroup analyses and correlative studies are ongoing.
Collapse
Affiliation(s)
| | | | | | | | | | - Ralph J Hauke
- Nebraska Cancer Specialists-Midwest Cancer Center, Omaha, Nebraska
| | | | | | | | | | | | | |
Collapse
|
502
|
Faleck DM, Dougan M, Tello M, Grossman JE, Moss AC, Postow MA. Accelerating the Evolution of Immune-Related Enterocolitis Management. J Clin Oncol 2023; 41:3110-3115. [PMID: 37040601 PMCID: PMC10256374 DOI: 10.1200/jco.22.02914] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/14/2023] [Accepted: 03/09/2023] [Indexed: 04/13/2023] Open
Affiliation(s)
- David M. Faleck
- Gastroenterology, Hepatology & Nutrition Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Weill Cornell Medical College, New York, NY
| | - Michael Dougan
- Division of Gastroenterology and Department of Medicine, Massachusetts General Hospital, and Harvard Medical School, Boston, MA
| | | | | | - Alan C. Moss
- Division of Gastroenterology, Department of Medicine, Boston Medical Center, Boston, MA
| | - Michael A. Postow
- Department of Medicine, Weill Cornell Medical College, New York, NY
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
503
|
Zhao Z, Zhang W, Pang L, Zeng L, Liu S, Liu J. Pancreatic adverse events of immune checkpoint inhibitors therapy for solid cancer patients: a systematic review and meta-analysis. Front Immunol 2023; 14:1166299. [PMID: 37359551 PMCID: PMC10289552 DOI: 10.3389/fimmu.2023.1166299] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/30/2023] [Indexed: 06/28/2023] Open
Abstract
Objective This review aims to determine the incidence and risk of pancreatic adverse events (AEs) associated with immune checkpoint inhibitors (ICIs) therapy for solid tumors. Methods We conducted a comprehensive systematic literature search in PubMed, Embase, and Cochrane Library up to March 15, 2023, to identify all randomized controlled trials comparing ICIs with standard treatment in solid tumors. We included studies that reported immune-related pancreatitis or elevation of serum amylase or lipase levels. Following protocol registration in PROSPERO, we conducted a systematic review and meta-analysis. Results 59 unique randomized controlled trials with at least one ICI-containing arm (41 757 patients) were retrieved. The incidences for all-grade pancreatitis, amylase elevation and lipase elevation were 0.93% (95% CI 0.77-1.13), 2.57% (95% CI 1.83-3.60) and 2.78% (95% CI 1.83-4.19), respectively. The incidences for grade ≥3 pancreatitis, amylase elevation and lipase elevation were 0.68% (95% CI 0.54-0.85), 1.17% (95% CI 0.83-1.64) and 1.71% (95% CI 1.18-2.49), respectively. The use of ICIs was associated with an increased risk of all-grade pancreatic immune-related AEs (irAEs) including pancreatitis (OR=2.04, 95% CI 1.42-2.94, P =0.0001), amylase elevation (OR=1.91, 95% CI 1.47-2.49, P < 0.0001) and lipase elevation (OR=1.77, 95% CI 1.37-2.29, P < 0.0001). In addition to these, the post-hoc analysis found that PD-1 inhibitors had a significant higher risk of pancreatic AEs compared with PD-L1 inhibitors and the patients undergoing dual ICI therapy were at a significantly higher risk of pancreatic AEs than the patients receiving single ICI therapy. Conclusion Our study provides an overview of the incidence and risk of ICI-associated pancreatitis and pancreatic enzyme elevations in the treatment of solid tumors. Our findings may help raise awareness among clinicians of the potential for ICI-associated pancreatic AEs in clinical practice. Systematic review registration https://www.crd.york.ac.uk/PROSPERO, identifier 345350.
Collapse
Affiliation(s)
- Zhe Zhao
- Department of Oncology, Jinan Central Hospital, Shandong University, Jinan, Shandong, China
| | - Weike Zhang
- Department of Oncology, Jinan Central Hospital, Shandong University, Jinan, Shandong, China
| | - Longbin Pang
- Pulmonary and Critical Care Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Liangjie Zeng
- Department of Oncology, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Surui Liu
- Department of Oncology, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Jie Liu
- Department of Oncology, Jinan Central Hospital, Shandong University, Jinan, Shandong, China
- Department of Oncology, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
504
|
Zheng X, Ma H, Dong Y, Fang M, Wang J, Xiong X, Liang J, Han M, You A, Yin Q, Huang W. Immune-related biomarkers predict the prognosis and immune response of breast cancer based on bioinformatic analysis and machine learning. Funct Integr Genomics 2023; 23:201. [PMID: 37291471 DOI: 10.1007/s10142-023-01124-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/10/2023]
Abstract
Breast cancer (BC) is the malignancy with the highest mortality rate among women, identification of immune-related biomarkers facilitates precise diagnosis and improvement of the survival rate in early-stage BC patients. 38 hub genes significantly positively correlated with tumor grade were identified based on weighted gene coexpression network analysis (WGCNA) by integrating the clinical traits and transcriptome analysis. Six candidate genes were screened from 38 hub genes basing on least absolute shrinkage and selection operator (LASSO)-Cox and random forest. Four upregulated genes (CDC20, CDCA5, TTK and UBE2C) were identified as biomarkers with the log-rank p < 0.05, in which high expression levels of them showed a poor overall survival (OS) and recurrence-free survival (RFS). A risk model was finally constructed using LASSO-Cox regression coefficients and it possessed superior capability to identify high risk patients and predict OS (p < 0.0001, AUC at 1-, 3- and 5-years are 0.81, 0.73 and 0.79, respectively). Decision curve analysis demonstrated risk score was the best prognostic predictor, and low risk represented a longer survival time and lower tumor grade. Importantly, multiple immune cell types and immunotherapy targets were observed increase in expression levels in high-risk group, most of which were significantly correlated with four genes. In summary, the immune-related biomarkers could accurately predict the prognosis and character the immune responses in BC patients. In addition, the risk model is conducive to the tiered diagnosis and treatment of BC patients.
Collapse
Affiliation(s)
- Xuewei Zheng
- School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China
| | - Haodi Ma
- School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China
| | - Yirui Dong
- School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China
| | - Mengmiao Fang
- School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China
| | - Junxiang Wang
- School of Mathematics and Statistics, Henan University of Science and Technology, Luoyang, China
| | - Xin Xiong
- Department of Pathology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jing Liang
- The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
| | - Meng Han
- School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China
| | - Aimin You
- The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
| | - Qinan Yin
- School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China.
| | - Wenbin Huang
- The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China.
| |
Collapse
|
505
|
Ibis B, Aliazis K, Cao C, Yenyuwadee S, Boussiotis VA. Immune-related adverse effects of checkpoint immunotherapy and implications for the treatment of patients with cancer and autoimmune diseases. Front Immunol 2023; 14:1197364. [PMID: 37342323 PMCID: PMC10277501 DOI: 10.3389/fimmu.2023.1197364] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/15/2023] [Indexed: 06/22/2023] Open
Abstract
During the past decade, there has been a revolution in cancer therapeutics by the emergence of antibody-based immunotherapies that modulate immune responses against tumors. These therapies have offered treatment options to patients who are no longer responding to classic anti-cancer therapies. By blocking inhibitory signals mediated by surface receptors that are naturally upregulated during activation of antigen-presenting cells (APC) and T cells, predominantly PD-1 and its ligand PD-L1, as well as CTLA-4, such blocking agents have revolutionized cancer treatment. However, breaking these inhibitory signals cannot be selectively targeted to the tumor microenvironment (TME). Since the physiologic role of these inhibitory receptors, known as immune checkpoints (IC) is to maintain peripheral tolerance by preventing the activation of autoreactive immune cells, IC inhibitors (ICI) induce multiple types of immune-related adverse effects (irAEs). These irAEs, together with the natural properties of ICs as gatekeepers of self-tolerance, have precluded the use of ICI in patients with pre-existing autoimmune diseases (ADs). However, currently accumulating data indicates that ICI might be safely administered to such patients. In this review, we discuss mechanisms of well established and newly recognized irAEs and evolving knowledge from the application of ICI therapies in patients with cancer and pre-existing ADs.
Collapse
Affiliation(s)
- Betul Ibis
- Division of Hematology-Oncology Beth Israel Deaconess Medical Center, Boston, MA, United States
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Konstantinos Aliazis
- Division of Hematology-Oncology Beth Israel Deaconess Medical Center, Boston, MA, United States
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Carol Cao
- Division of Hematology-Oncology Beth Israel Deaconess Medical Center, Boston, MA, United States
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, United States
- Harvard College, Cambridge, MA, United States
| | - Sasitorn Yenyuwadee
- Division of Hematology-Oncology Beth Israel Deaconess Medical Center, Boston, MA, United States
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Vassiliki A. Boussiotis
- Division of Hematology-Oncology Beth Israel Deaconess Medical Center, Boston, MA, United States
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, United States
- Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
506
|
Lu W, Zhang H, Guo Q, Gou Z, Yao J. Selected cutaneous adverse events in patients treated with ICI monotherapy and combination therapy: a retrospective pharmacovigilance study and meta-analysis. Front Pharmacol 2023; 14:1076473. [PMID: 37332342 PMCID: PMC10272362 DOI: 10.3389/fphar.2023.1076473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 05/15/2023] [Indexed: 06/20/2023] Open
Abstract
Introduction: Cutaneous adverse events are commonly reported immune-related adverse events (irAEs), some of which are serious or even life-threatening, and it is essential to study these specific cutaneous AEs to understand their characteristics and risk. Methods: We performed a meta-analysis of published clinical trials for immune checkpoint inhibitors (ICIs) to evaluate the incidence of cutaneous adverse events, using data from PubMed, Embase, and the Cochrane Library databases. Results: A total of 232 trials with 45,472 patients were involved. Results showed that anti-PD-1 and targeted therapy combinations were associated with higher risk for most of the selected cutaneous adverse events. In addition, a retrospective pharmacovigilance study was conducted using the Food and Drug Administration (FDA) Adverse Events System database. Reporting odds ratio (ROR) and Bayesian information components (IC) were used to perform the disproportionality analysis. Cases were extracted from January 2011 to September 2020. We identified 381 (20.24%) maculopapular rash, 213 (11.32%) vitiligo, 215 (11.42%) Stevens-Johnson syndrome (SJS), and 165 (8.77%) toxic epidermal necrolysis (TEN) cases. For vitiligo, anti-PD-1/L1 combined with anti-CTLA-4 therapy showed the strongest signal (ROR: 55.89; 95% CI: 42.34-73.78; IC025: 4.73). Palmar-plantar erythrodysesthesia (PPE) was reported with the most significant association with combined anti-PD-1/L1 and VEGF (R)-TKIs (ROR: 18.67; 95% CI: 14.77-23.60; IC025: 3.67). For SJS/TEN, antiPD-1 inhibitors showed the strongest signal (ROR: 3.07; 95% CI: 2.68-3.52; IC025: 1.39). The median onset time of vitiligo and SJS/TEN was 83 and 24 days, respectively. Conclusion: Overall, in selected cutaneous AEs, each of them showed specific characteristics. It is necessary to realize their differences and take appropriate interventions in patients with different regimens.
Collapse
Affiliation(s)
- Wenchao Lu
- Department of Pharmacy, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Huiyun Zhang
- Department of Oncology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Qixiang Guo
- Department of Pharmacy, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Zhuoyue Gou
- Institute for Drug Evaluation, Peking University Health Science Center, Beijing, China
| | - Jiannan Yao
- Department of Oncology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
507
|
Nassiri F, Patil V, Yefet LS, Singh O, Liu J, Dang RMA, Yamaguchi TN, Daras M, Cloughesy TF, Colman H, Kumthekar PU, Chen CC, Aiken R, Groves MD, Ong SS, Ramakrishna R, Vogelbaum MA, Khagi S, Kaley T, Melear JM, Peereboom DM, Rodriguez A, Yankelevich M, Nair SG, Puduvalli VK, Aldape K, Gao A, López-Janeiro Á, de Andrea CE, Alonso MM, Boutros P, Robbins J, Mason WP, Sonabend AM, Stupp R, Fueyo J, Gomez-Manzano C, Lang FF, Zadeh G. Oncolytic DNX-2401 virotherapy plus pembrolizumab in recurrent glioblastoma: a phase 1/2 trial. Nat Med 2023; 29:1370-1378. [PMID: 37188783 PMCID: PMC10287560 DOI: 10.1038/s41591-023-02347-y] [Citation(s) in RCA: 122] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 04/12/2023] [Indexed: 05/17/2023]
Abstract
Immune-mediated anti-tumoral responses, elicited by oncolytic viruses and augmented with checkpoint inhibition, may be an effective treatment approach for glioblastoma. Here in this multicenter phase 1/2 study we evaluated the combination of intratumoral delivery of oncolytic virus DNX-2401 followed by intravenous anti-PD-1 antibody pembrolizumab in recurrent glioblastoma, first in a dose-escalation and then in a dose-expansion phase, in 49 patients. The primary endpoints were overall safety and objective response rate. The primary safety endpoint was met, whereas the primary efficacy endpoint was not met. There were no dose-limiting toxicities, and full dose combined treatment was well tolerated. The objective response rate was 10.4% (90% confidence interval (CI) 4.2-20.7%), which was not statistically greater than the prespecified control rate of 5%. The secondary endpoint of overall survival at 12 months was 52.7% (95% CI 40.1-69.2%), which was statistically greater than the prespecified control rate of 20%. Median overall survival was 12.5 months (10.7-13.5 months). Objective responses led to longer survival (hazard ratio 0.20, 95% CI 0.05-0.87). A total of 56.2% (95% CI 41.1-70.5%) of patients had a clinical benefit defined as stable disease or better. Three patients completed treatment with durable responses and remain alive at 45, 48 and 60 months. Exploratory mutational, gene-expression and immunophenotypic analyses revealed that the balance between immune cell infiltration and expression of checkpoint inhibitors may potentially inform on response to treatment and mechanisms of resistance. Overall, the combination of intratumoral DNX-2401 followed by pembrolizumab was safe with notable survival benefit in select patients (ClinicalTrials.gov registration: NCT02798406).
Collapse
Affiliation(s)
- Farshad Nassiri
- Division of Neurosurgery, University of Toronto, Toronto, Ontario, Canada
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Vikas Patil
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Leeor S Yefet
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Olivia Singh
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Jeff Liu
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Rachel M A Dang
- Department of Human Genetics, University of California Los Angeles, Los Angeles, CA, USA
| | - Takafumi N Yamaguchi
- Department of Human Genetics, University of California Los Angeles, Los Angeles, CA, USA
| | - Mariza Daras
- Division of Neuro-oncology, University of California San Francisco, San Francisco, CA, USA
| | - Timothy F Cloughesy
- UCLA Neuro-Oncology Program, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Howard Colman
- Huntsman Cancer Institute and Department of Neurosurgery, University of Utah, Salt Lake City, UT, USA
| | - Priya U Kumthekar
- Department of Neurology, Division of Neuro-Oncology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Clark C Chen
- Department of Neurosurgery, University of Minnesota, Minneapolis, MI, USA
| | - Robert Aiken
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA
| | | | - Shirley S Ong
- Division of Neuro-Oncology, Department of Neurology, the Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Rohan Ramakrishna
- Department of Neurological Surgery, Weill Cornell Medical College, New York Presbyterian Hospital, New York, NY, USA
| | - Michael A Vogelbaum
- Department of Neuro-Oncology, Neuro-Oncology Program, Moffitt Cancer Center, Tampa, FL, USA
| | - Simon Khagi
- Division of Medical Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Thomas Kaley
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jason M Melear
- Department of Internal Medicine, Baylor University Medical Center, Dallas, TX, USA
| | - David M Peereboom
- The Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Cleveland Clinic, Cleveland, OH, USA
| | - Analiz Rodriguez
- Department of Neurosurgery, University of Arkansas for Medical Sciences, Little Rock, AK, USA
| | - Maxim Yankelevich
- Department of Pediatrics, University of Michigan, Ann Arbor Beaumont Children's Hospital, Royal Oak, MI, USA
| | - Suresh G Nair
- Lehigh Valley Topper Cancer Institute, Allentown, PA, USA
| | - Vinay K Puduvalli
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kenneth Aldape
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD, USA
| | - Andrew Gao
- Department of Laboratory Medicine and Pathobiology, University Health Network, Toronto, Ontario, Canada
| | - Álvaro López-Janeiro
- Department of Pathology, Clínica Universidad de Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IdISNA), Pamplona, Spain
| | - Carlos E de Andrea
- Department of Pathology, Clínica Universidad de Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IdISNA), Pamplona, Spain
| | - Marta M Alonso
- Navarra Institute for Health Research (IdISNA), Pamplona, Spain
- Department of Pediatrics, Clínica Universidad de Navarra, Pamplona, Spain
- Program of Solid Tumors, Center for the Applied Medical Research (CIMA), Pamplona, Spain
| | - Paul Boutros
- Department of Human Genetics, University of California Los Angeles, Los Angeles, CA, USA
| | | | - Warren P Mason
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Adam M Sonabend
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Roger Stupp
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Department of Medicine, Division of Hematology/Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Juan Fueyo
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Candelaria Gomez-Manzano
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Frederick F Lang
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gelareh Zadeh
- Division of Neurosurgery, University of Toronto, Toronto, Ontario, Canada.
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada.
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
508
|
van Zeijl MCT, van Breeschoten J, de Wreede LC, Wouters MWJM, Hilarius DL, Blank CU, Aarts MJB, van den Berkmortel FWPJ, de Groot JWB, Hospers GAP, Kapiteijn E, Piersma D, van Rijn RS, Stevense-den Boer MA, van der Veldt AAM, Vreugdenhil G, Boers-Sonderen MJ, Suijkerbuijk KPM, Haanen JBAG, van den Eertwegh AJM. Real-world Outcomes of Ipilimumab Plus Nivolumab Combination Therapy in a Nation-wide Cohort of Advanced Melanoma Patients in the Netherlands. J Immunother 2023; 46:197-204. [PMID: 37103470 DOI: 10.1097/cji.0000000000000468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/02/2023] [Indexed: 04/28/2023]
Abstract
In phase III trials, ipilimumab plus nivolumab combination therapy is highly efficacious for advanced melanoma, despite many treatment-related grades 3-4 adverse events. Here, we report real-world safety and survival outcomes of ipilimumab plus nivolumab for advanced melanoma. Patients with advanced melanoma who received first-line ipilimumab plus nivolumab between January 1, 2015 and June 30, 2021 were selected from the Dutch Melanoma Treatment Registry. We evaluated response status at 3, 6, 12, 18, and 24 months. OS and PFS were estimated with the Kaplan-Meier method. Separate analyses were performed for patients with or without brain metastases and for patients who met the inclusion criteria of the Checkmate-067 trial. In total, 709 patients received first-line ipilimumab plus nivolumab. Three hundred sixty (50.7%) patients experienced grade 3-4 adverse events, with 211 of the (58.6%) patients requiring hospital admission. The median treatment duration was 42 days (IQR = 31-139). At 24 months, disease control was achieved in 37% of patients. Median PFS since the start of treatment was 6.6 months (95% CI: 5.3-8.7), and median OS was 28.7 months (95% CI: 20.7-42.2). CheckMate-067 trial-like patients had a 4-year OS of 50% (95% CI: 43-59). Among patients with no asymptomatic or symptomatic brain metastases, the 4-year OS probabilities were 48% (95% CI: 41-55), 45% (95% CI: 35-57), and 32% (95% CI: 23-46). Ipilimumab plus nivolumab can achieve long-term survival in advanced melanoma patients in a real-world setting, including patients not represented in the CheckMate-067 trial. However, the proportion of patients with disease control in the real world is lower compared with clinical trials.
Collapse
Affiliation(s)
- Michiel C T van Zeijl
- Scientific Department, Dutch Institute for Clinical Auditing
- Department of Medical Oncology, Leiden University Medical Centre
| | - Jesper van Breeschoten
- Scientific Department, Dutch Institute for Clinical Auditing
- Department of Medical Oncology, Amsterdam UMC-location VUmc, Cancer Center Amsterdam
| | - Liesbeth C de Wreede
- Department of Biomedical Data Sciences, Leiden University Medical Centre, Leiden, The Netherlands
| | - Michel W J M Wouters
- Scientific Department, Dutch Institute for Clinical Auditing
- Department of Biomedical Data Sciences, Leiden University Medical Centre, Leiden, The Netherlands
- Department of Surgical Oncology, Netherlands Cancer Institute
| | | | - Christian U Blank
- Divisions of Medical Oncology and Molecular Oncology & Immunology, Netherlands Cancer Institute
- Division of Molecular Oncology & Immunology, Netherlands Cancer Institute, Amsterdam
| | - Maureen J B Aarts
- Department of Medical Oncology, GROW-School for Oncology and Reproduction, Maastricht University Medical Centre, Maastricht
| | | | | | - Geke A P Hospers
- Department of Medical Oncology, University Medical Centre Groningen, University of Groningen, Groningen
| | - Ellen Kapiteijn
- Department of Medical Oncology, Leiden University Medical Centre
| | - Djura Piersma
- Department of Internal Medicine, Medisch Spectrum Twente, Enschede
| | | | | | - Astrid A M van der Veldt
- Department of Medical Oncology and Radiology & Nuclear Medicine, Erasmus Medical Centre, Rotterdam
| | | | | | | | - John B A G Haanen
- Department of Medical Oncology, Leiden University Medical Centre
- Divisions of Medical Oncology and Molecular Oncology & Immunology, Netherlands Cancer Institute
- Division of Molecular Oncology & Immunology, Netherlands Cancer Institute, Amsterdam
| | | |
Collapse
|
509
|
Al-Saghir T, Suleiman N, Goodman BD, Ferguson MW, Tejwani S. A Case of Immune-Mediated Pneumonitis Associated With Dual Nivolumab and Ipilimumab Immunotherapy Treatment. Cureus 2023; 15:e40792. [PMID: 37485100 PMCID: PMC10362781 DOI: 10.7759/cureus.40792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2023] [Indexed: 07/25/2023] Open
Abstract
Nivolumab and ipilimumab are immunotherapy agents used in combination to treat metastatic melanoma and have proven to be efficacious. However, they have been linked to the development of immune-mediated inflammatory processes in various organ systems and tissues, including immune-mediated pneumonitis (IMP). This case report describes a 50-year-old female patient with metastatic melanoma who was treated with nivolumab and ipilimumab therapy and developed IMP as a complication. Despite treatment with steroids and infliximab, the patient's condition worsened, and she passed away due to respiratory compromise. This report emphasizes the potential for serious complications in patients receiving combination immunotherapy and highlights the importance of close monitoring and risk stratification, particularly in patients with underlying lung conditions.
Collapse
Affiliation(s)
- Tala Al-Saghir
- Internal Medicine, Henry Ford Health System, Detroit, USA
| | - Noor Suleiman
- Internal Medicine, Henry Ford Health System, Detroit, USA
| | | | | | - Sheela Tejwani
- Medical Oncology, Henry Ford Health System, Detroit, USA
| |
Collapse
|
510
|
Anderson KG, Braun DA, Buqué A, Gitto SB, Guerriero JL, Horton B, Keenan BP, Kim TS, Overacre-Delgoffe A, Ruella M, Triplett TA, Veeranki O, Verma V, Zhang F. Leveraging immune resistance archetypes in solid cancer to inform next-generation anticancer therapies. J Immunother Cancer 2023; 11:e006533. [PMID: 37399356 PMCID: PMC10314654 DOI: 10.1136/jitc-2022-006533] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2023] [Indexed: 07/05/2023] Open
Abstract
Anticancer immunotherapies, such as immune checkpoint inhibitors, bispecific antibodies, and chimeric antigen receptor T cells, have improved outcomes for patients with a variety of malignancies. However, most patients either do not initially respond or do not exhibit durable responses due to primary or adaptive/acquired immune resistance mechanisms of the tumor microenvironment. These suppressive programs are myriad, different between patients with ostensibly the same cancer type, and can harness multiple cell types to reinforce their stability. Consequently, the overall benefit of monotherapies remains limited. Cutting-edge technologies now allow for extensive tumor profiling, which can be used to define tumor cell intrinsic and extrinsic pathways of primary and/or acquired immune resistance, herein referred to as features or feature sets of immune resistance to current therapies. We propose that cancers can be characterized by immune resistance archetypes, comprised of five feature sets encompassing known immune resistance mechanisms. Archetypes of resistance may inform new therapeutic strategies that concurrently address multiple cell axes and/or suppressive mechanisms, and clinicians may consequently be able to prioritize targeted therapy combinations for individual patients to improve overall efficacy and outcomes.
Collapse
Affiliation(s)
- Kristin G Anderson
- Department of Microbiology, Immunology and Cancer Biology, Obstetrics and Gynecology, Carter Center for Immunology Research, University of Virginia, Charlottesville, Virginia, USA
- University of Virginia Comprehensive Cancer Center, University of Virginia, Charlottesville, Virginia, USA
| | - David A Braun
- Center of Molecular and Cellular Oncology, Yale University Yale Cancer Center, New Haven, Connecticut, USA
| | - Aitziber Buqué
- Department of Radiation Oncology, Weill Cornell Medical College, New York, New York, USA
| | - Sarah B Gitto
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jennifer L Guerriero
- Division of Breast Surgery, Department of Surgery, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Brendan Horton
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Bridget P Keenan
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, California, USA
| | - Teresa S Kim
- Department of Surgery, University of Washington, Seattle, Washington, USA
| | - Abigail Overacre-Delgoffe
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Marco Ruella
- Department of Medicine, Division of Hematology and Oncology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Todd A Triplett
- Department of Immunotherapeutics and Biotechnology, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, Texas, USA
| | - Omkara Veeranki
- Medical Affairs and Clinical Development, Caris Life Sciences Inc, Irving, Texas, USA
| | - Vivek Verma
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
- The Hormel Institute, University of Minnesota, Austin, Minnesota, USA
| | - Fan Zhang
- Department of Pharmaceutics, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
511
|
Gaißler A, Bochem J, Spreuer J, Ottmann S, Martens A, Amaral T, Wagner NB, Claassen M, Meier F, Terheyden P, Garbe C, Eigentler T, Weide B, Pawelec G, Wistuba-Hamprecht K. Early decrease of blood myeloid-derived suppressor cells during checkpoint inhibition is a favorable biomarker in metastatic melanoma. J Immunother Cancer 2023; 11:e006802. [PMID: 37286306 PMCID: PMC10254874 DOI: 10.1136/jitc-2023-006802] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2023] [Indexed: 06/09/2023] Open
Abstract
BACKGROUND The need for reliable clinical biomarkers to predict which patients with melanoma will benefit from immune checkpoint blockade (ICB) remains unmet. Several different parameters have been considered in the past, including routine differential blood counts, T cell subset distribution patterns and quantification of peripheral myeloid-derived suppressor cells (MDSC), but none has yet achieved sufficient accuracy for clinical utility. METHODS Here, we investigated potential cellular biomarkers from clinical routine blood counts as well as several myeloid and T cell subsets, using flow cytometry, in two independent cohorts of a total of 141 patients with stage IV M1c melanoma before and during ICB. RESULTS Elevated baseline frequencies of monocytic MDSCs (M-MDSC) in the blood were confirmed to predict shorter overall survival (OS) (HR 2.086, p=0.030) and progression-free survival (HR 2.425, p=0.001) in the whole patient cohort. However, we identified a subgroup of patients with highly elevated baseline M-MDSC frequencies that fell below a defined cut-off during therapy and found that these patients had a longer OS that was similar to that of patients with low baseline M-MDSC frequencies. Importantly, patients with high M-MDSC frequencies exhibited a skewed baseline distribution of certain other immune cells but these did not influence patient survival, illustrating the paramount utility of MDSC assessment. CONCLUSION We confirmed that in general, highly elevated frequencies of peripheral M-MDSC are associated with poorer outcomes of ICB in metastatic melanoma. However, one reason for an imperfect correlation between high baseline MDSCs and outcome for individual patients may be the subgroup of patients identified here, with rapidly decreasing M-MDSCs on therapy, in whom the negative effect of high M-MDSC frequencies was lost. These findings might contribute to developing more reliable predictors of late-stage melanoma response to ICB at the individual patient level. A multifactorial model seeking such markers yielded only MDSC behavior and serum lactate dehydrogenase as predictors of treatment outcome.
Collapse
Affiliation(s)
- Andrea Gaißler
- Department of Dermatology, University Hospital Tübingen, Eberhard Karls University of Tübingen, Tübingen, Germany
- Internal Medicine I, University Hospital Tübingen, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Jonas Bochem
- Department of Dermatology, University Hospital Tübingen, Eberhard Karls University of Tübingen, Tübingen, Germany
- Internal Medicine I, University Hospital Tübingen, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Janine Spreuer
- Department of Dermatology, University Hospital Tübingen, Eberhard Karls University of Tübingen, Tübingen, Germany
- Internal Medicine I, University Hospital Tübingen, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Shannon Ottmann
- Department of Dermatology, University Hospital Tübingen, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Alexander Martens
- Department of Dermatology, University Hospital Tübingen, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Teresa Amaral
- Department of Dermatology, University Hospital Tübingen, Eberhard Karls University of Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image Guided and Functionally Instructed Tumor Therapies", Tübingen, Germany
| | - Nikolaus Benjamin Wagner
- Department of Dermatology, University Hospital Tübingen, Eberhard Karls University of Tübingen, Tübingen, Germany
- Department of Dermatology, Venereology and Allergology, Kantonsspital St Gallen, Sankt Gallen, Switzerland
| | - Manfred Claassen
- Internal Medicine I, University Hospital Tübingen, Eberhard Karls University of Tübingen, Tübingen, Germany
- Department of Computer Science, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Friedegund Meier
- Skin Cancer Center at the University Cancer Centre and National Center for Tumor Diseases Dresden; Department of Dermatology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | | | - Claus Garbe
- Department of Dermatology, University Hospital Tübingen, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Thomas Eigentler
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Dermatology, Venereology and Allergology, Berlin, Germany
| | - Benjamin Weide
- Department of Dermatology, University Hospital Tübingen, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Graham Pawelec
- Department of Immunology, Interfaculty Institute for Cell Biology, Eberhard Karls University Tübingen, Tübingen, Germany
- Health Sciences North Research Institute, Sudbury, Ontario, Canada
| | - Kilian Wistuba-Hamprecht
- Department of Dermatology, University Hospital Tübingen, Eberhard Karls University of Tübingen, Tübingen, Germany
- Internal Medicine I, University Hospital Tübingen, Eberhard Karls University of Tübingen, Tübingen, Germany
- Department of Immunology, Interfaculty Institute for Cell Biology, Eberhard Karls University Tübingen, Tübingen, Germany
| |
Collapse
|
512
|
Lin AC, Park SJ, Daniels GA, Borooah S. Pigmentary retinopathy associated with immune therapy for advanced cutaneous melanoma. Am J Ophthalmol Case Rep 2023; 30:101849. [PMID: 37131528 PMCID: PMC10149182 DOI: 10.1016/j.ajoc.2023.101849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/23/2023] [Accepted: 04/06/2023] [Indexed: 05/04/2023] Open
Abstract
Purpose To describe a case of bilateral retinal pigmentary changes in the setting of immune checkpoint inhibitor therapy (ICIT). Observations A 69-year-old man with a history of advanced cutaneous melanoma was started on combination ICIT with nivolumab and ipilimumab and stereotactic body radiation therapy. Soon after, he developed photopsias and nyctalopia with findings of discrete retinal pigmentary changes bilaterally. Initial visual acuities were 20/20 and 20/30 in the right and left eye, respectively. Multi-modal imaging revealed sub-retinal deposits with progressive changes in pigmentation and autofluorescence, associated with decreased peripheral fields on formal perimetry. A full-field electroretinogram revealed attenuated and delayed a- and b-waves. Positive serum retinal autoantibodies were identified. The patient developed left-sided optic nerve edema and center-involving cystoid macular edema which improved after treatment with sub-tenon's triamcinolone. Conclusions The use of ICIT has greatly expanded in oncologic practice with subsequent increases in immune related adverse events that pose significant systemic and ophthalmologic morbidities. We propose that the new retinal pigmentary changes seen in this case are the sequelae of an autoimmune inflammatory response against pigmented cells. This adds to the rare side effects that may occur after ICIT.
Collapse
Affiliation(s)
- Andrew C. Lin
- Shiley Eye Institute, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Soo J. Park
- Division of Hematology and Oncology, Moores Cancer Center, University of California, San Diego, La Jolla, CA, 92037, USA
| | - Gregory A. Daniels
- Division of Hematology and Oncology, Moores Cancer Center, University of California, San Diego, La Jolla, CA, 92037, USA
| | - Shyamanga Borooah
- Shiley Eye Institute, University of California, San Diego, La Jolla, CA, 92093, USA
- Corresponding author. 9415 Campus Point Drive, La Jolla, CA, 92093, USA.
| |
Collapse
|
513
|
Kong X, Chen L, Su Z, Sullivan RJ, Blum SM, Qi Z, Liu Y, Huo Y, Fang Y, Zhang L, Gao J, Wang J. Toxicities associated with immune checkpoint inhibitors: a systematic study. Int J Surg 2023; 109:1753-1768. [PMID: 37132038 PMCID: PMC10389211 DOI: 10.1097/js9.0000000000000368] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 03/12/2023] [Indexed: 05/04/2023]
Abstract
BACKGROUND Available evidence shows that the incidence of toxicities associated with cancer immunotherapy, such as programmed cell death 1 (PD-1) and programmed cell death 1 ligand 1 (PD-L1)-related toxicities, is estimated to be between 0.3 and 1.3%. OBJECTIVE This systematic review aimed to investigate cancer patients' susceptibility to toxicities associated with PD-1/PD-L1 inhibitors and establish a clinically relevant landscape of side effects of PD-1/PD-L1 inhibitors. DATA SOURCES Relevant publications from PubMed, Embase, Cochrane Library, Web of Science, and China National Knowledge Infrastructure (CNKI) between 2014 and 2019. STUDY ELIGIBILITY CRITERIA, PARTICIPANTS, AND INTERVENTIONS We searched randomized controlled trials (RCTs) reporting treatment-related toxicities associated with PD-1 and PD-L1 inhibitors in the treatment of cancers. The primary endpoint was to assess the difference in the incidences of toxicities between cancer patients who did and did not receive PD-1/PD-L1 inhibitors. A total of 29 RCTs, incorporating 8576 patients, met the eligibility criteria. STUDY APPRAISAL AND SYNTHESIS METHODS We calculated the pooled relative risks and corresponding 95% CIs using a random-effects model and assessed the heterogeneity between different groups. The subgroup analyses were conducted based on cancer type, toxicity grade (severity), system and organ, treatment regimens in the intervention arm and the control arm, PD-1/PD-L1 inhibitor drug type, and cancer type. RESULTS A total of 11 categories (e.g. endocrine toxicity), and 39 toxicity types (e.g. hyperthyroidism) were identified. For toxicities at any grade, those treated with PD-1/PD-L1 inhibitors were at lower risks for gastrointestinal toxicity, hematologic toxicity, and treatment event leading to discontinuation; and were at higher risks for respiratory toxicity (all P <0.05). Those treated with PD-1/PD-L1 inhibitors were at lower risks for fatigue, asthenia, and peripheral edema and were at higher risks for pyrexia, cough, dyspnea, pneumonitis, and pruritus. LIMITATIONS The present research is a meta-analysis at the study level rather than at the patient level; insights on risk factors associated with the development of toxicities cannot be found in our study. There was a possible overlap in Common Terminology Criteria for Adverse Events (CTCAE) definitions which prevents understanding the true rates of specific toxicities. CONCLUSIONS AND IMPLICATIONS OF KEY FINDINGS For most toxicity types based on system and organ, the incidence proportions for patients in the intervention arm were lower than those in the control arm, which suggested the general safety of PD-1/PD-L1 inhibitors against conventional chemotherapy and cytotoxic t-lymphocyte-associated protein 4 (CTLA-4) inhibitors. Future research should focus on taking effective targeted measures to decrease the risks of different toxicities for different patient populations. SYSTEMATIC REVIEW REGISTRATION NUMBER We registered the research protocol with PROSPERO (registration number CRD42019135113).
Collapse
Affiliation(s)
- Xiangyi Kong
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Li Chen
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhaohui Su
- Center on Smart and Connected Health Technologies, Mays Cancer Center, School of Nursing, UT Health San Antonio, San Antonio,Texas, United States of America
| | - Ryan J. Sullivan
- Center for Melanoma, Massachusetts General Hospital Cancer Center, Harvard Medical School, Harvard University, Boston, Massachusetts, United States of America
| | - Steven M. Blum
- Department of Medicine-Oncology, Dana-Farber Cancer Institute, Harvard Medical School,Harvard University, Boston, Massachusetts, United States of America
| | - Zhihong Qi
- Clinical Laboratory, Peking Union Medical College Hospital, China
| | - Yulu Liu
- Fintech Lab, Department of Computer Science, Chow Yei Ching Building, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Yujia Huo
- Suzhou Industrial Park Monash Research Institute of Science and Technology, Suzhou, China
| | - Yi Fang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lin Zhang
- Suzhou Industrial Park Monash Research Institute of Science and Technology, Suzhou, China
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
- The School of Public Health and Preventive Medicine, Monash University, Victoria, Australia
| | - Jidong Gao
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Jing Wang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
514
|
Tan Y, Lu Y, Chen S, Zou C, Qin B. Immunotherapy for ocular melanoma: a bibliometric and visualization analysis from 1991 to 2022. Front Oncol 2023; 13:1161759. [PMID: 37324010 PMCID: PMC10265996 DOI: 10.3389/fonc.2023.1161759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/16/2023] [Indexed: 06/17/2023] Open
Abstract
Background In recent years, new therapeutic options to overcome the mechanisms of tumor immune suppression be effective in the treatment of cutaneous melanoma. These approaches have also been applied in ocular melanoma. The aim of this study is to present the current status and research hotspots of immunotherapy for ocular melanoma from a bibliometric perspective and to explore the field of immunotherapy for malignant ocular melanoma research. Methods In this study, the Web of Science Core Collection database (WoSCC) and Pubmed were selected to search the literature related to immunotherapy of ocular melanoma. Using VOSviewer, CiteSpace, the R package "bibliometrix," and the bibliometric online platform through the construction and visualization of bibliometric networks, the country/region, institution, journal, author, and keywords were analyzed to predict the most recent trends in research pertaining to ocular melanoma and immunotherapy. Results A total of 401 papers and 144 reviews related to immunotherapy of ocular melanoma were included. The United States is the main driver of research in the field, ranking first in terms of the number of publications, total citations, and H-index. The UNIVERSITY OF TEXAS SYSTEM is the most active institution, contributing the most papers. Jager, Martine is the most prolific author, and Carvajal, Richard is the most frequently cited author. CANCERS is the most published journal in the field and J CLIN ONCOL is the most cited journal. In addition to ocular melanoma and immunotherapy, the most popular keywords were "uveal melanoma" and "targeted therapy". According to keyword co-occurrence and burst analysis, uveal melanoma, immunotherapy, melanoma, metastases, bap1, tebentafusp, bioinformatics, conjunctival melanoma, immune checkpoint inhibitors, ipilimumab, pembrolizumab, and other research topics appear to be at the forefront of this field's research and have the potential to remain a hot research topic in the future. Conclusion This is the first bibliometric study in the last 30 years to comprehensively map the knowledge structure and trends in the field of research related to ocular melanoma and immunotherapy. The results comprehensively summarize and identify research frontiers for scholars studying immunotherapy associated with ocular melanoma.
Collapse
Affiliation(s)
- Yao Tan
- Shenzhen Aier Eye Hospital, Aier Eye Hospital, Jinan University, Shenzhen, China
| | - Yijie Lu
- Shenzhen Aier Eye Hospital, Aier Eye Hospital, Jinan University, Shenzhen, China
| | - Sheng Chen
- Shenzhen Eye Hospital, Shenzhen Key Laboratory of Ophthalmology, Affiliated Hospital of Jinan University, Shenzhen, China
| | - Chang Zou
- Shenzhen Aier Eye Hospital, Aier Eye Hospital, Jinan University, Shenzhen, China
- Shenzhen Aier Ophthalmic Technology Institute, Shenzhen, China
- School of Life and Health Sciences, The Chinese University of Kong Hong, Shenzhen, Guangdong, China
| | - Bo Qin
- Shenzhen Aier Eye Hospital, Aier Eye Hospital, Jinan University, Shenzhen, China
- Shenzhen Aier Ophthalmic Technology Institute, Shenzhen, China
| |
Collapse
|
515
|
Foster JB, Alonso MM, Sayour E, Davidson TB, Persson ML, Dun MD, Kline C, Mueller S, Vitanza NA, van der Lugt J. Translational considerations for immunotherapy clinical trials in pediatric neuro-oncology. Neoplasia 2023; 42:100909. [PMID: 37244226 DOI: 10.1016/j.neo.2023.100909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 04/20/2023] [Accepted: 05/11/2023] [Indexed: 05/29/2023]
Abstract
While immunotherapy for pediatric cancer has made great strides in recent decades, including the FDA approval of agents such as dinutuximab and tisgenlecleucel, these successes have rarely impacted children with pediatric central nervous system (CNS) tumors. As our understanding of the biological underpinnings of these tumors evolves, new immunotherapeutics are undergoing rapid clinical translation specifically designed for children with CNS tumors. Most recently, there have been notable clinical successes with oncolytic viruses, vaccines, adoptive cellular therapy, and immune checkpoint inhibition. In this article, the immunotherapy working group of the Pacific Pediatric Neuro-Oncology Consortium (PNOC) reviews the current and future state of immunotherapeutic CNS clinical trials with a focus on clinical trial development. Based on recent therapeutic trials, we discuss unique immunotherapy clinical trial challenges, including toxicity considerations, disease assessment, and correlative studies. Combinatorial strategies and future directions will be addressed. Through internationally collaborative efforts and consortia, we aim to direct this promising field of immuno-oncology to the next frontier of successful application against pediatric CNS tumors.
Collapse
Affiliation(s)
- Jessica B Foster
- Division of Oncology, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA.
| | - Marta M Alonso
- Department of Pediatrics, Program of Solid Tumors, University Clinic of Navarra, Center for the Applied Medical Research (CIMA), Pamplona, Spain
| | - Elias Sayour
- Lillian S. Wells Department of Neurosurgery, Preston A. Wells Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL USA
| | - Tom B Davidson
- Cancer and Blood Disease Institute, Children's Hospital Los Angeles, Keck School of Medicine of University of Southern California, Los Angeles, CA, United States
| | - Mika L Persson
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia; Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Matthew D Dun
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia; Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia; Mark Hughes Foundation Centre for Brain Cancer Research, Paediatric Program, College of Health, Medicine & Wellbeing, University of Newcastle, Callaghan, NSW, Australia
| | - Cassie Kline
- Division of Oncology, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
| | - Sabine Mueller
- Department of Neurology, Department of Neurosurgery and Department of Pediatrics, UCSF, San Francisco, California, USA
| | - Nicholas A Vitanza
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA, USA; Department of Pediatrics, Seattle Children's Hospital, University of Washington, Seattle, WA, USA
| | | |
Collapse
|
516
|
Capdevila J, Hernando J, Teule A, Lopez C, Garcia-Carbonero R, Benavent M, Custodio A, Garcia-Alvarez A, Cubillo A, Alonso V, Carmona-Bayonas A, Alonso-Gordoa T, Crespo G, Jimenez-Fonseca P, Blanco M, Viudez A, La Casta A, Sevilla I, Segura A, Llanos M, Landolfi S, Nuciforo P, Manzano JL. Durvalumab plus tremelimumab for the treatment of advanced neuroendocrine neoplasms of gastroenteropancreatic and lung origin. Nat Commun 2023; 14:2973. [PMID: 37221181 PMCID: PMC10204675 DOI: 10.1038/s41467-023-38611-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 05/10/2023] [Indexed: 05/25/2023] Open
Abstract
Single immune checkpoint blockade in advanced neuroendocrine neoplasms (NENs) shows limited efficacy; dual checkpoint blockade may improve treatment activity. Dune (NCT03095274) is a non-randomized controlled multicohort phase II clinical trial evaluating durvalumab plus tremelimumab activity and safety in advanced NENs. This study included 123 patients presenting between 2017 and 2019 with typical/atypical lung carcinoids (Cohort 1), G1/2 gastrointestinal (Cohort 2), G1/2 pancreatic (Cohort 3) and G3 gastroenteropancreatic (GEP) (Cohort 4) NENs; who progressed to standard therapies. Patients received 1500 mg durvalumab and 75 mg tremelimumab for up to 13 and 4 cycles (every 4 weeks), respectively. The primary objective was the 9-month clinical benefit rate (CBR) for cohorts 1-3 and 9-month overall survival (OS) rate for Cohort 4. Secondary endpoints included objective response rate, duration of response, progression-free survival according to irRECIST, overall survival, and safety. Correlation of PD-L1 expression with efficacy was exploratory. The 9-month CBR was 25.9%/35.5%/25% for Cohorts 1, 2, and 3 respectively. The 9-month OS rate for Cohort 4 was 36.1%, surpassing the futility threshold. Benefit in Cohort 4 was observed regardless of differentiation and Ki67 levels. PD-L1 combined scores did not correlate with treatment activity. Safety profile was consistent with that of prior studies. In conclusion, durvalumab plus tremelimumab is safe in NENs and shows modest survival benefit in G3 GEP-NENs; with one-third of these patients experiencing a prolonged OS.
Collapse
Affiliation(s)
- J Capdevila
- Medical Oncology Department, Vall Hebron University Hospital, Vall Hebron Institute of Oncology (VHIO), Barcelona, Spain.
- Medical Oncology Department, IOB-Quiron-Teknon, Barcelona, Spain.
| | - J Hernando
- Medical Oncology Department, Vall Hebron University Hospital, Vall Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - A Teule
- Medical Oncology Department, Institut Català d'Oncologia (ICO) - IDIBELL L'Hospitalet del Llobregat, L'Hospitalet de Llobregat, Spain
| | - C Lopez
- Medical Oncology Department, Hospital Universitario Marqués de Valdecilla, IDIVAL, Santander, Spain
| | - R Garcia-Carbonero
- Medical Oncology Department, Hospital Universitario 12 de Octubre, Imas12, UCM, CNIO, Madrid, Spain
| | - M Benavent
- Medical Oncology Department, University Hospital Virgen del Rocío, Instituto de Biomedicina de Sevilla (IBIS), Seville, Spain
| | - A Custodio
- Medical Oncology Department, Hospital Universitario La Paz, Madrid, Spain
| | - A Garcia-Alvarez
- Medical Oncology Department, Vall Hebron University Hospital, Vall Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - A Cubillo
- Medical Oncology Department, Hospital Universitario HM Sanchinarro, Madrid, Spain
| | - V Alonso
- Medical Oncology Department, Hospital Universitario Miguel Servet, Instituto de Investigación Sanitaria de Aragón (IISA), Zaragoza, Spain
| | - A Carmona-Bayonas
- Hematology and Medical Oncology Department, Hospital Universitario Morales Meseguer, UMU, IMIB, Murcia, Spain
| | - T Alonso-Gordoa
- Medical Oncology, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - G Crespo
- Medical Oncology Department, Complejo Asistencial Universitario de Burgos, Burgos, Spain
| | - P Jimenez-Fonseca
- Medical Oncology Department, Hospital Universitario Central de Asturias, ISPA, Oviedo, Spain
| | - M Blanco
- Medical Oncology Department, Hospital Universitario Gregorio Marañon, Madrid, Spain
| | - A Viudez
- Medical Oncology Department, Hospital Universitario de Navarra, Pamplona, Spain
| | - A La Casta
- Medical Oncology Department, Hospital Universitario Donostia, San Sebastián, Spain
| | - I Sevilla
- Medical Oncology Department, Investigación Clínica y Traslacional en Cáncer/Instituto de Investigaciones Biomédicas de Málaga (IBIMA)/Hospitales Universitarios Regional y Virgen de la Victoria de Málaga, Málaga, Spain
| | - A Segura
- Medical Oncology Department, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - M Llanos
- Medical Oncology Department, Hospital Universitario de Canarias, San Cristobal de la Laguna, Spain
| | - S Landolfi
- Pathology Department, Vall Hebron University Hospital, CIBERONC, Barcelona, Spain
| | - P Nuciforo
- Molecular Oncology Group. Vall Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - J L Manzano
- Medical Oncology Department, Institut Català d'Oncologia (ICO) - Badalona, Hospital Germans Trias i Pujol, Badalona, Spain
| |
Collapse
|
517
|
Tan X, Li Y, Hou Z, Zhang M, Li L, Wei J. Combination therapy with PD-1 inhibition plus rapamycin and metformin enhances anti-tumor efficacy in triple negative breast cancer. Exp Cell Res 2023:113647. [PMID: 37225011 DOI: 10.1016/j.yexcr.2023.113647] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 05/10/2023] [Accepted: 05/14/2023] [Indexed: 05/26/2023]
Abstract
Immunotherapy using PD-1/PD-L1 inhibitors has been proved to be effective in triple negative breast cancer (TNBC), albeit only in a fraction of patients. Emerging evidences indicate mTOR blockade and metformin may re-orchestrate the immune system in tumors. Herein, in this study we aimed to evaluate the anti-tumor efficacy of PD-1 monoclonal antibody with mTOR inhibitor rapamycin or with the anti-diabetic drug metformin. The status of PD-1/PD-L1 and mTOR pathway was determined through analyzing the TCGA and CCLE data in TNBCs as well as by detection at mRNA and protein level. The inhibition of tumor growth and metastasis by anti-PD-1 combined with rapamycin or with metformin was evaluated in allograft mouse model of TNBC. The effects of combination therapy on the AMPK, mTOR and PD-1/PD-L1 pathways were also evaluated. The combination treatment with PD-1 McAb and rapamycin/metformin had additive effects on suppression of tumor growth and distant metastasis in mice. Compared with the control group and the monotherapy, combined PD-1 McAb with either rapamycin or metformin exhibited more obvious effects on induction of necrosis, CD8+ T lymphocytes infiltrating and inhibition of PD-L1 expression in TNBC homograft. In vitro study showed either rapamycin or metformin not only decreased PD-L1 expression, but increased p-AMPK expression and therefore led to down-regulation of p-S6. In summary, combination of PD-1 antagonist with either rapamycin or metformin led to more infiltrating TILs and decreased PD-L1 resulting in enhanced antitumor immunity and blockade of PD-1/PD-L1 pathway. Our results suggested such combination therapy may be a potential therapeutic strategy for TNBC patients.
Collapse
Affiliation(s)
- Xiaoying Tan
- Department of Pathology, School of Basic Medical Sciences, Shandong University, 44(#) Wenhuaxi Road, Jinan, Shandong, 250012, PR China
| | - Yan Li
- Department of Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Science, 440(#) Jiyan Road, Jinan, Shandong, 250117, PR China
| | - Zhihui Hou
- Department of Pathology, School of Basic Medical Sciences, Shandong University, 44(#) Wenhuaxi Road, Jinan, Shandong, 250012, PR China
| | - Mingwei Zhang
- Department of Pathology, School of Basic Medical Sciences, Shandong University, 44(#) Wenhuaxi Road, Jinan, Shandong, 250012, PR China
| | - Li Li
- Department of Pathology, School of Basic Medical Sciences, Shandong University, 44(#) Wenhuaxi Road, Jinan, Shandong, 250012, PR China; Department of Pathology, Qilu Hospital of Shandong University, 107(#) Wenhuaxi Road, Jinan, Shandong, 250012, PR China.
| | - Junmin Wei
- Department of Oncology, Cancer Center, Qilu Hospital of Shandong University, 107(#) Wenhuaxi Road, Jinan, Shandong, 250012, PR China.
| |
Collapse
|
518
|
Wichmann CW, Poniger S, Guo N, Roselt P, Rudd SE, Donnelly PS, Blyth B, Van Zuylekom J, Rigopoulos A, Burvenich IJG, Morandeau L, Mohamed S, Nowak A, Hegi-Johnson F, MacManus M, Scott AM. Automated radiosynthesis of [ 89Zr]Zr-DFOSq-Durvalumab for imaging of PD-L1 expressing tumours in vivo. Nucl Med Biol 2023; 120-121:108351. [PMID: 37224789 DOI: 10.1016/j.nucmedbio.2023.108351] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/18/2023] [Accepted: 05/04/2023] [Indexed: 05/26/2023]
Abstract
OBJECTIVES 89Zr-labelled proteins are gaining importance in clinical research in a variety of diseases. To date, no clinical study has been reported that utilizes an automated approach for radiosynthesis of 89Zr-labelled radiopharmaceuticals. We aim to develop an automated method for the clinical production of 89Zr-labelled proteins and apply this method to Durvalumab, a monoclonal antibody targeting PD-L1 immune-checkpoint protein. PD-L1 expression is poorly understood and can be up-regulated over the course of chemo- and radiotherapy treatment. The ImmunoPET multicentre study aims to examine the dynamics of PD-L1 expression via 89Zr-Durvalumab PET imaging before, during, and after chemoradiotherapy. The developed automated technique will enable reproducible clinical production of [89Zr]Zr-DFOSq-Durvalumab for this study at three different sites. METHODS Conjugation of Durvalumab to H3DFOSqOEt was optimized for optimal chelator-to-antibody ratio. Automated radiolabelling of H3DFOSq-Durvalumab with zirconium-89 was optimized on the disposable cassette based iPHASE technologies MultiSyn radiosynthesizer using a modified cassette. Activity losses were tracked using a dose calibrator and minimized by optimizing fluid transfers, reaction buffer, antibody formulation additives and pH. The biological profile of the radiolabelled antibody was confirmed in vivo in PD-L1+ (HCC827) and PD-L1- (A549) murine xenografts. Clinical process validation and quality control were performed at three separate study sites to satisfy clinical release criteria. RESULTS H3DFOSq-Durvalumab with an average CAR of 3.02 was obtained. Radiolabelling kinetics in succinate (20 mM, pH 6) were significantly faster when compared to HEPES (0.5 M, pH 7.2) with >90 % conversion observed after 15 min. Residual radioactivity in the 89Zr isotope vial was reduced from 24 % to 0.44 % ± 0.18 % (n = 7) and losses in the reactor vial were reduced from 36 % ± 6 % (n = 4) to 0.82 % ± 0.75 % (n = 4) by including a surfactant in the reaction and formulation buffers. Overall process yield was 75 % ± 6 % (n = 5) and process time was 40 min. Typically, 165 MBq of [89Zr]Zr-DFOSq-Durvalumab with an apparent specific activity of 315 MBq/mg ± 34 MBq/mg (EOS) was obtained in a volume of 3.0 mL. At end-of-synthesis (EOS), radiochemical purity and protein integrity were always >99 % and >96 %, respectively, and dropped to 98 % and 65 % after incubation in human serum for 7 days at 37 °C. Immunoreactive fraction in HEK293/PD-L1 cells was 83.3 ± 9.0 (EOS). Preclinical in vivo data at 144 h p.i. showed excellent SUVmax in PD-L1+ tumour (8.32 ± 0.59) with a tumour-background ratio of 17.17 ± 3.96. [89Zr]Zr-DFOSq-Durvalumab passed all clinical release criteria at each study site and was deemed suitable for administration in a multicentre imaging trial. CONCLUSION Fully automated production of [89Zr]Zr-DFOSq-Durvalumab for clinical use was achieved with minimal exposure to the operator. The cassette-based approach allows for consecutive productions on the same day and offers an alternative to currently used manual protocols. The method should be broadly applicable to other proteins and has the potential for clinical impact considering the growing number of clinical trials investigating 89Zr-labelled antibodies.
Collapse
Affiliation(s)
- Christian W Wichmann
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia; School of Cancer Medicine, La Trobe University, Bundoora, VIC 3083, Australia; Department of Molecular Imaging and Therapy, Austin Health, Heidelberg, VIC 3084, Australia; School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3052, Australia.
| | - Stan Poniger
- Department of Molecular Imaging and Therapy, Austin Health, Heidelberg, VIC 3084, Australia; iPHASE technologies Pty Ltd, Rowville, VIC 3178, Australia
| | - Nancy Guo
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia
| | - Peter Roselt
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, VIC 3000, Australia; Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
| | - Stacey E Rudd
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Paul S Donnelly
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Benjamin Blyth
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, VIC 3000, Australia; Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
| | | | - Angela Rigopoulos
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia
| | - Ingrid J G Burvenich
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia; School of Cancer Medicine, La Trobe University, Bundoora, VIC 3083, Australia
| | - Laurence Morandeau
- Department of Medical Technology and Physics, Sir Charles Gairdner Hospital, Nedlands, WA 6009, Australia
| | - Shifaza Mohamed
- Department of Medical Technology and Physics, Sir Charles Gairdner Hospital, Nedlands, WA 6009, Australia
| | - Anna Nowak
- Office of Deputy Vice Chancellor (Research), University of Western Australia, Crawley, WA 6009, Australia
| | - Fiona Hegi-Johnson
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, VIC 3000, Australia; Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
| | - Michael MacManus
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, VIC 3000, Australia; Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
| | - Andrew M Scott
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia; School of Cancer Medicine, La Trobe University, Bundoora, VIC 3083, Australia; Department of Molecular Imaging and Therapy, Austin Health, Heidelberg, VIC 3084, Australia; Faculty of Medicine, The University of Melbourne, VIC 3000, Australia
| |
Collapse
|
519
|
Chaudagar K, Hieromnimon HM, Khurana R, Labadie B, Hirz T, Mei S, Hasan R, Shafran J, Kelley A, Apostolov E, Al-Eryani G, Harvey K, Rameshbabu S, Loyd M, Bynoe K, Drovetsky C, Solanki A, Markiewicz E, Zamora M, Fan X, Schürer S, Swarbrick A, Sykes DB, Patnaik A. Reversal of Lactate and PD-1-mediated Macrophage Immunosuppression Controls Growth of PTEN/p53-deficient Prostate Cancer. Clin Cancer Res 2023; 29:1952-1968. [PMID: 36862086 PMCID: PMC10192075 DOI: 10.1158/1078-0432.ccr-22-3350] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/28/2022] [Accepted: 02/24/2023] [Indexed: 03/03/2023]
Abstract
PURPOSE Phosphatase and tensin homolog (PTEN) loss of function occurs in approximately 50% of patients with metastatic castrate-resistant prostate cancer (mCRPC), and is associated with poor prognosis and responsiveness to standard-of-care therapies and immune checkpoint inhibitors. While PTEN loss of function hyperactivates PI3K signaling, combinatorial PI3K/AKT pathway and androgen deprivation therapy (ADT) has demonstrated limited anticancer efficacy in clinical trials. Here, we aimed to elucidate mechanism(s) of resistance to ADT/PI3K-AKT axis blockade, and to develop rational combinatorial strategies to effectively treat this molecular subset of mCRPC. EXPERIMENTAL DESIGN Prostate-specific PTEN/p53-deficient genetically engineered mice (GEM) with established 150-200 mm3 tumors, as assessed by ultrasound, were treated with either ADT (degarelix), PI3K inhibitor (copanlisib), or anti-PD-1 antibody (aPD-1), as single agents or their combinations, and tumors were monitored by MRI and harvested for immune, transcriptomic, and proteomic profiling, or ex vivo co-culture studies. Single-cell RNA sequencing on human mCRPC samples was performed using 10X Genomics platform. RESULTS Coclinical trials in PTEN/p53-deficient GEM revealed that recruitment of PD-1-expressing tumor-associated macrophages (TAM) thwarts ADT/PI3Ki combination-induced tumor control. The addition of aPD-1 to ADT/PI3Ki combination led to TAM-dependent approximately 3-fold increase in anticancer responses. Mechanistically, decreased lactate production from PI3Ki-treated tumor cells suppressed histone lactylation within TAM, resulting in their anticancer phagocytic activation, which was augmented by ADT/aPD-1 treatment and abrogated by feedback activation of Wnt/β-catenin pathway. Single-cell RNA-sequencing analysis in mCRPC patient biopsy samples revealed a direct correlation between high glycolytic activity and TAM phagocytosis suppression. CONCLUSIONS Immunometabolic strategies that reverse lactate and PD-1-mediated TAM immunosuppression, in combination with ADT, warrant further investigation in patients with PTEN-deficient mCRPC.
Collapse
Affiliation(s)
- Kiranj Chaudagar
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Hanna M. Hieromnimon
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Rimpi Khurana
- Department of Pharmacology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Brian Labadie
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Taghreed Hirz
- Center for Regenerative Medicine, Massachusetts General Hospital Cancer Center, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Shenglin Mei
- Center for Regenerative Medicine, Massachusetts General Hospital Cancer Center, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Raisa Hasan
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
- St Vincent’s Clinical School, Faculty of Medicine and Health, UNSW Sydney, Kensington, NSW 2052, Australia
| | - Jordan Shafran
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Anne Kelley
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Eva Apostolov
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
- St Vincent’s Clinical School, Faculty of Medicine and Health, UNSW Sydney, Kensington, NSW 2052, Australia
| | - Ghamdan Al-Eryani
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
- St Vincent’s Clinical School, Faculty of Medicine and Health, UNSW Sydney, Kensington, NSW 2052, Australia
| | - Kate Harvey
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
| | - Srikrishnan Rameshbabu
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Mayme Loyd
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Kaela Bynoe
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Catherine Drovetsky
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Ani Solanki
- Animal Resource Center, University of Chicago, Chicago, IL, USA
| | | | - Marta Zamora
- Department of Radiology, University of Chicago, Chicago IL, USA
| | - Xiaobing Fan
- Department of Radiology, University of Chicago, Chicago IL, USA
| | - Stephan Schürer
- Department of Pharmacology, Miller School of Medicine, University of Miami, Miami, FL, USA
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Alex Swarbrick
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
- St Vincent’s Clinical School, Faculty of Medicine and Health, UNSW Sydney, Kensington, NSW 2052, Australia
| | - David B. Sykes
- Center for Regenerative Medicine, Massachusetts General Hospital Cancer Center, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Akash Patnaik
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, IL, USA
| |
Collapse
|
520
|
Cardona Z, Sosman JA, Chandra S, Huang W. Endocrine side effects of immune checkpoint inhibitors. Front Endocrinol (Lausanne) 2023; 14:1157805. [PMID: 37251665 PMCID: PMC10210589 DOI: 10.3389/fendo.2023.1157805] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/05/2023] [Indexed: 05/31/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) have increasingly been the mainstay of treatment for numerous malignancies. However, due to their association with autoimmunity, ICIs have resulted in a variety of side effects that involve multiple organs including the endocrine system. In this review article, we describe our current understanding of the autoimmune endocrinopathies as a result of the use of ICIs. We will review the epidemiology, pathophysiology, clinical presentation, diagnosis, and management of the most commonly encountered endocrinopathies, including thyroiditis, hypophysitis, Type 1 diabetes, adrenalitis, and central diabetes insipidus.
Collapse
Affiliation(s)
- Zulma Cardona
- Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Jeffrey A. Sosman
- Division of Hematology and Oncology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Sunandana Chandra
- Division of Hematology and Oncology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Wenyu Huang
- Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| |
Collapse
|
521
|
Galati D, Zanotta S, Capone M, Madonna G, Mallardo D, Romanelli M, Simeone E, Festino L, Sparano F, Azzaro R, De Filippi R, Pinto A, Paulos CM, Ascierto PA. Potential clinical implications of CD4 +CD26 high T cells for nivolumab treated melanoma patients. J Transl Med 2023; 21:318. [PMID: 37170241 PMCID: PMC10176780 DOI: 10.1186/s12967-023-04184-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 05/05/2023] [Indexed: 05/13/2023] Open
Abstract
BACKGROUND Nivolumab is an anti-PD1 antibody that has dramatically improved metastatic melanoma patients' outcomes. Nevertheless, many patients are resistant to PD-1 inhibition, occasionally experiencing severe off-target immune toxicity. In addition, no robust and reproducible biomarkers have yet been validated to identify the correct selection of patients who will benefit from anti-PD-1 treatment avoiding unwanted side effects. However, the strength of CD26 expression on CD4+ T lymphocytes permits the characterization of three subtypes with variable degrees of responsiveness to tumors, suggesting that the presence of CD26-expressing T cells in patients might be a marker of responsiveness to PD-1-based therapies. METHODS The frequency distribution of peripheral blood CD26-expressing cells was investigated employing multi-parametric flow cytometry in 69 metastatic melanoma patients along with clinical characteristics and blood count parameters at baseline (W0) and compared to 20 age- and sex-matched healthy controls. Percentages of baseline CD4+CD26high T cells were correlated with the outcome after nivolumab treatment. In addition, the frequency of CD4+CD26high T cells at W0 was compared with those obtained after 12 weeks (W1) of therapy in a sub-cohort of 33 patients. RESULTS Circulating CD4+CD26high T cells were significantly reduced in melanoma patients compared to healthy subjects (p = 0.001). In addition, a significant association was observed between a low baseline percentage of CD4+CD26high T cells (< 7.3%) and clinical outcomes, measured as overall survival (p = 0.010) and progression-free survival (p = 0.014). Moreover, patients with clinical benefit from nivolumab therapy had significantly higher frequencies of circulating CD4+CD26high T cells than patients with non-clinical benefit (p = 0.004) at 12 months. Also, a higher pre-treatment proportion of circulating CD4+CD26high T cells was correlated with Disease Control Rate (p = 0.014) and best Overall Response Rate (p = 0.009) at 12 months. Interestingly, after 12 weeks (W1) of nivolumab treatment, percentages of CD4+CD26high T cells were significantly higher in comparison with the frequencies measured at W0 (p < 0.0001), aligning the cell counts with the ranges seen in the blood of healthy subjects. CONCLUSIONS Our study firstly demonstrates that peripheral blood circulating CD4+CD26high T lymphocytes represent potential biomarkers whose perturbations are associated with reduced survival and worse clinical outcomes in melanoma patients.
Collapse
Affiliation(s)
- Domenico Galati
- Istituto Nazionale Tumori IRCCS Fondazione “G. Pascale”, Naples, Italy
- Hematology-Oncology and Stem Cell Transplantation Unit, Istituto Nazionale Tumori IRCCS Fondazione “G. Pascale”, Naples, Italy
| | - Serena Zanotta
- Istituto Nazionale Tumori IRCCS Fondazione “G. Pascale”, Naples, Italy
- Hematology-Oncology and Stem Cell Transplantation Unit, Istituto Nazionale Tumori IRCCS Fondazione “G. Pascale”, Naples, Italy
| | - Mariaelena Capone
- Istituto Nazionale Tumori IRCCS Fondazione “G. Pascale”, Naples, Italy
- Melanoma Cancer Immunotherapy and Innovative Therapy Unit, Istituto Nazionale Tumori IRCCS Fondazione “G. Pascale”, Naples, Italy
| | - Gabriele Madonna
- Istituto Nazionale Tumori IRCCS Fondazione “G. Pascale”, Naples, Italy
- Melanoma Cancer Immunotherapy and Innovative Therapy Unit, Istituto Nazionale Tumori IRCCS Fondazione “G. Pascale”, Naples, Italy
| | - Domenico Mallardo
- Istituto Nazionale Tumori IRCCS Fondazione “G. Pascale”, Naples, Italy
- Melanoma Cancer Immunotherapy and Innovative Therapy Unit, Istituto Nazionale Tumori IRCCS Fondazione “G. Pascale”, Naples, Italy
| | - Marilena Romanelli
- Istituto Nazionale Tumori IRCCS Fondazione “G. Pascale”, Naples, Italy
- Melanoma Cancer Immunotherapy and Innovative Therapy Unit, Istituto Nazionale Tumori IRCCS Fondazione “G. Pascale”, Naples, Italy
| | - Ester Simeone
- Istituto Nazionale Tumori IRCCS Fondazione “G. Pascale”, Naples, Italy
- Melanoma Cancer Immunotherapy and Innovative Therapy Unit, Istituto Nazionale Tumori IRCCS Fondazione “G. Pascale”, Naples, Italy
| | - Lucia Festino
- Istituto Nazionale Tumori IRCCS Fondazione “G. Pascale”, Naples, Italy
- Melanoma Cancer Immunotherapy and Innovative Therapy Unit, Istituto Nazionale Tumori IRCCS Fondazione “G. Pascale”, Naples, Italy
| | - Francesca Sparano
- Istituto Nazionale Tumori IRCCS Fondazione “G. Pascale”, Naples, Italy
- Melanoma Cancer Immunotherapy and Innovative Therapy Unit, Istituto Nazionale Tumori IRCCS Fondazione “G. Pascale”, Naples, Italy
| | - Rosa Azzaro
- Istituto Nazionale Tumori IRCCS Fondazione “G. Pascale”, Naples, Italy
| | - Rosaria De Filippi
- Dipartimento di Medicina Clinica e Chirurgia, Università Degli Studi Federico II, Naples, Italy
| | - Antonio Pinto
- Istituto Nazionale Tumori IRCCS Fondazione “G. Pascale”, Naples, Italy
- Hematology-Oncology and Stem Cell Transplantation Unit, Istituto Nazionale Tumori IRCCS Fondazione “G. Pascale”, Naples, Italy
| | - Chrystal M. Paulos
- Division of Surgical Oncology, Department of Surgery, Emory University, Atlanta, GA USA
- Department of Microbiology and Immunology, Winship Cancer Institute, Emory University, Atlanta, GA USA
| | - Paolo A. Ascierto
- Istituto Nazionale Tumori IRCCS Fondazione “G. Pascale”, Naples, Italy
- Melanoma Cancer Immunotherapy and Innovative Therapy Unit, Istituto Nazionale Tumori IRCCS Fondazione “G. Pascale”, Naples, Italy
| |
Collapse
|
522
|
Tabari A, Cox M, D'Amore B, Mansur A, Dabbara H, Boland G, Gee MS, Daye D. Machine Learning Improves the Prediction of Responses to Immune Checkpoint Inhibitors in Metastatic Melanoma. Cancers (Basel) 2023; 15:2700. [PMID: 37345037 DOI: 10.3390/cancers15102700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/12/2023] [Accepted: 04/27/2023] [Indexed: 06/23/2023] Open
Abstract
Pretreatment LDH is a standard prognostic biomarker for advanced melanoma and is associated with response to ICI. We assessed the role of machine learning-based radiomics in predicting responses to ICI and in complementing LDH for prognostication of metastatic melanoma. From 2008-2022, 79 patients with 168 metastatic hepatic lesions were identified. All patients had arterial phase CT images 1-month prior to initiation of ICI. Response to ICI was assessed on follow-up CT at 3 months using RECIST criteria. A machine learning algorithm was developed using radiomics. Maximum relevance minimum redundancy (mRMR) was used to select features. ROC analysis and logistic regression analyses evaluated performance. Shapley additive explanations were used to identify the variables that are the most important in predicting a response. mRMR selection revealed 15 features that are associated with a response to ICI. The machine learning model combining both radiomics features and pretreatment LDH resulted in better performance for response prediction compared to models that included radiomics or LDH alone (AUC of 0.89 (95% CI: [0.76-0.99]) vs. 0.81 (95% CI: [0.65-0.94]) and 0.81 (95% CI: [0.72-0.91]), respectively). Using SHAP analysis, LDH and two GLSZM were the most predictive of the outcome. Pre-treatment CT radiomic features performed equally well to serum LDH in predicting treatment response.
Collapse
Affiliation(s)
- Azadeh Tabari
- Department of Radiology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02215, USA
| | | | - Brian D'Amore
- Harvard Medical School, Boston, MA 02215, USA
- Department of Surgery, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA
| | | | - Harika Dabbara
- Boston University Chobanian & Avedisian School of Medicine, 72 East Concord Street, Boston, MA 02118, USA
| | - Genevieve Boland
- Harvard Medical School, Boston, MA 02215, USA
- Department of Surgery, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA
| | - Michael S Gee
- Department of Radiology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02215, USA
| | - Dania Daye
- Department of Radiology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
523
|
Shao T, Zhao M, Liang L, Shi L, Tang W. Impact of Extrapolation Model Choices on the Structural Uncertainty in Economic Evaluations for Cancer Immunotherapy: A Case Study of Checkmate 067. PHARMACOECONOMICS - OPEN 2023; 7:383-392. [PMID: 36757569 PMCID: PMC10169997 DOI: 10.1007/s41669-023-00391-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/16/2023] [Indexed: 05/11/2023]
Abstract
OBJECTIVES The aim of this study was to compare the performance of different extrapolation modeling techniques and analyze their impact on structural uncertainties in the economic evaluations of cancer immunotherapy. METHODS The individual patient data was reconstructed through published Checkmate 067 Kaplan Meier curves. Standard parametric models and six flexible techniques were tested, including fractional polynomial, restricted cubic splines, Royston-Parmar models, generalized additive models, parametric mixture models, and mixture cure models. Mean square errors (MSE) and bias from raw survival plots were used to test the model fitness and extrapolation performance. Variability of estimated incremental cost-effectiveness ratios (ICERs) from different models was used to inform the structural uncertainty in economic evaluations. All indicators were analyzed and compared under cut-offs of 3 years and 6.5 years, respectively, to further discuss model impact under different data maturity. R Codes for reproducing this study can be found on GitHub. RESULTS The flexible techniques in general performed better than standard parametric models with smaller MSE irrespective of the data maturity. Survival outcomes projected by long-term extrapolation using immature data differed from those with mature data. Although a best-performing model was not found because several models had very similar MSE in this case, the variability of modeled ICERs significantly increased when prolonging simulation cycles. CONCLUSIONS Flexible techniques show better performance in the case of Checkmate 067, regardless of data maturity. Model choices affect ICERs of cancer immunotherapy, especially when dealing with immature survival data. When researchers lack evidence to identify the 'right' model, we recommend identifying and revealing the model impacts on structural uncertainty.
Collapse
Affiliation(s)
- Taihang Shao
- School of International Pharmaceutical Business, China Pharmaceutical University, Nanjing, 211198, China
- Center for Pharmacoeconomics and Outcomes Research, China Pharmaceutical University, Nanjing, 211198, China
| | - Mingye Zhao
- School of International Pharmaceutical Business, China Pharmaceutical University, Nanjing, 211198, China
- Center for Pharmacoeconomics and Outcomes Research, China Pharmaceutical University, Nanjing, 211198, China
| | - Leyi Liang
- School of International Pharmaceutical Business, China Pharmaceutical University, Nanjing, 211198, China
- Center for Pharmacoeconomics and Outcomes Research, China Pharmaceutical University, Nanjing, 211198, China
| | - Lizheng Shi
- Department of Global Health Management and Policy, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, 70118, USA.
| | - Wenxi Tang
- School of International Pharmaceutical Business, China Pharmaceutical University, Nanjing, 211198, China.
- Department of Public Affairs Management, School of International Pharmaceutical Business, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
524
|
Stadler JC, Keller L, Mess C, Bauer AT, Koett J, Geidel G, Heidrich I, Vidal-Y-Sy S, Andreas A, Stramaglia C, Sementsov M, Haberstroh W, Deitert B, Hoehne IL, Reschke R, Haalck T, Pantel K, Gebhardt C, Schneider SW. Prognostic value of von Willebrand factor levels in patients with metastatic melanoma treated by immune checkpoint inhibitors. J Immunother Cancer 2023; 11:jitc-2022-006456. [PMID: 37258039 DOI: 10.1136/jitc-2022-006456] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2023] [Indexed: 06/02/2023] Open
Abstract
BACKGROUND An increased incidence of thrombotic complications associated with an increased mortality rate has been observed under immune checkpoint inhibition (ICI). Recent investigations on the coagulation pathways have highlighted the direct role of key coagulatory proteins and platelets in cancer initiation, angiogenesis and progression. The aim of this study was to evaluate the prognostic value of von Willebrand factor (vWF) and its regulatory enzyme a disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13 (ADAMTS13), D-dimers and platelets in a cohort of patients with metastatic melanoma receiving ICI. METHODS In a prospective cohort of 83 patients with metastatic melanoma, we measured the systemic levels of vWF-antigen (vWF:Ag), ADAMTS13 activity, D-dimers and platelets, before the beginning of the treatment (baseline), and 6, 12 and 24 weeks after. In parallel, we collected standard biological parameters used in clinical routine to monitor melanoma response (lactate deshydrogenase (LDH), S100). The impact of neutrophil-to-lymphocyte ratio (NLR) and C-reactive protein (CRP) on overall survival (OS) in patients receiving ICI was assessed. Univariable and multivariable Cox proportional models were then used to investigate any potential association of these parameters to clinical progression (progression-free survival (PFS) and OS). Baseline values and variations over therapy course were compared between primary responders and resistant patients. RESULTS Patients with melanoma present with dysregulated levels of vWF:Ag, ADAMTS13 activity, D-dimers, LDH, S100 and CRP at the beginning of treatment. With a median clinical follow-up of 26 months, vWF:Ag interrogated as a continuous variable was significantly associated with PFS in univariate and multivariate analysis (HR=1.04; p=0.007). Lower values of vWF:Ag at baseline were observed in the primary responders group (median: 29.4 µg/mL vs 32.9 µg/mL; p=0.048) when compared with primary resistant patients. As for OS, we found an association with D-dimers and ADAMTS13 activity in univariate analysis and vWF:Ag in univariate and multivariate analysis including v-raf murine sarcoma viral oncogene homolog B1 (BRAF) mutation and Eastern Cooperative Oncology Group (ECOG) performance status. Follow-up over the course of treatment depicts different evolution profiles for vWF:Ag between the primary response and resistance groups. CONCLUSIONS In this prospective cohort, coagulatory parameters such as ADAMTS13 activity and D-dimers are associated with OS but baseline vWF:Ag levels appeared as the only parameter associated with response and OS to ICI. This highlights a potential role of vWF as a biomarker to monitor ICI response of patients with malignant melanoma.
Collapse
Affiliation(s)
- Julia-Christina Stadler
- Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Fleur Hiege Center for Skin Cancer Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Laura Keller
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Centre de Recherche en Cancerologie de Toulouse, Toulouse, France
| | - Christian Mess
- Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alexander T Bauer
- Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Julian Koett
- Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Fleur Hiege Center for Skin Cancer Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Glenn Geidel
- Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Isabel Heidrich
- Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sabine Vidal-Y-Sy
- Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Antje Andreas
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Carlotta Stramaglia
- Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mark Sementsov
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Wiebcke Haberstroh
- Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Benjamin Deitert
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Inka Lilott Hoehne
- Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Robin Reschke
- Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Fleur Hiege Center for Skin Cancer Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thomas Haalck
- Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Klaus Pantel
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Fleur Hiege Center for Skin Cancer Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christoffer Gebhardt
- Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Fleur Hiege Center for Skin Cancer Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan W Schneider
- Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Fleur Hiege Center for Skin Cancer Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
525
|
Tomsitz D, Ruf T, Zierold S, French LE, Heinzerling L. Steroid-Refractory Immune-Related Adverse Events Induced by Checkpoint Inhibitors. Cancers (Basel) 2023; 15:cancers15092538. [PMID: 37174003 PMCID: PMC10177379 DOI: 10.3390/cancers15092538] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/23/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
The occurrence, second-line management and outcome of sr/sd-irAEs was investigated in patients with skin cancer. All skin cancer patients treated with immune checkpoint inhibitors (ICIs) between 2013 and 2021 at a tertiary care center were analyzed retrospectively. Adverse events were coded by CTCAE version 5.0. The course and frequency of irAEs were summarized using descriptive statistics. A total of 406 patients were included in the study. In 44.6% (n = 181) of patients, 229 irAEs were documented. Out of those, 146 irAEs (63.8%) were treated with systemic steroids. Sr-irAEs and sd-irAEs (n = 25) were detected in 10.9% of all irAEs, and in 6.2% of ICI-treated patients. In this cohort, infliximab (48%) and mycophenolate mofetil (28%) were most often administered as second-line immunosuppressants. The type of irAE was the most important factor associated with the choice of second-line immunosuppression. The Sd/sr-irAEs resolved in 60% of cases, had permanent sequelae in 28% of cases, and required third-line therapy in 12%. None of the irAEs were fatal. Although these side effects manifest in only 6.2% of patients under ICI therapy, they impose difficult therapy decisions, especially since there are few data to determine the optimal second-line immunosuppression.
Collapse
Affiliation(s)
- Dirk Tomsitz
- Department of Dermatology and Allergy, University Hospital, LMU Munich, 80539 Munich, Germany
| | - Theresa Ruf
- Department of Dermatology and Allergy, University Hospital, LMU Munich, 80539 Munich, Germany
- SERIO Side Effects Registry Immunooncology, 80337 Munich, Germany
| | - Sarah Zierold
- Department of Dermatology and Allergy, University Hospital, LMU Munich, 80539 Munich, Germany
- SERIO Side Effects Registry Immunooncology, 80337 Munich, Germany
| | - Lars E French
- Department of Dermatology and Allergy, University Hospital, LMU Munich, 80539 Munich, Germany
- Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Lucie Heinzerling
- Department of Dermatology and Allergy, University Hospital, LMU Munich, 80539 Munich, Germany
- SERIO Side Effects Registry Immunooncology, 80337 Munich, Germany
- Department of Dermatology and Allergy, University Hospital Erlangen, 91054 Erlangen, Germany
| |
Collapse
|
526
|
Meacci E, Nachira D, Congedo MT, Ibrahim M, Pariscenti G, Petrella F, Casiraghi M, De Stefani A, Del Regno L, Peris K, Triumbari EKA, Schinzari G, Rossi E, Petracca-Ciavarella L, Vita ML, Chiappetta M, Siciliani A, Peritore V, Manitto M, Morelli L, Zanfrini E, Tabacco D, Calabrese G, Bardoni C, Evangelista J, Spaggiari L, Margaritora S. Surgical Resection of Pulmonary Metastases from Melanoma in Oligometastatic Patients: Results from a Multicentric Study in the Era of Immunoncology and Targeted Therapy. Cancers (Basel) 2023; 15:cancers15092462. [PMID: 37173927 PMCID: PMC10177250 DOI: 10.3390/cancers15092462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/06/2023] [Accepted: 04/12/2023] [Indexed: 05/15/2023] Open
Abstract
In the last decade, the emergence of effective systemic therapies (ESTs) in the form of both targeted and immuno-based therapies has revolutionized the treatment of patients with advanced stage III and stage IV melanoma. Even though lungs represent the most frequent site of melanoma metastases, only limited data are available on the role of surgery in isolated pulmonary metastases from malignant melanoma (PmMM) in the era of ESTs. The aim of this study is to describe the outcomes of patients who underwent metastasectomy of PmMM in the era of ESTs, in order to identify prognostic factors affecting survival and to provide a framework for more informed patient selection of treatmeant with lung surgery in the future. Clinical data of 183 patients who underwent metastasectomy of PmMM between June 2008 and June 2021 were collected among four Italian Thoracic Centers. The main clinical, surgical and oncological variables reviewed were: sex, comorbidities, previous oncological history, melanoma histotypes and primary site, date of primary cancer surgical treatment, melanoma growth phase, Breslow thickness, mutation pattern disease, stage at diagnosis, metastatic sites, DFI (Disease Free Interval), characteristics of lung metastases (number, side, dimension, type of resection), adjuvant therapy after lung metastasectomy, site of recurrence, disease-free survival (DFS) and cancer-specific survival (CSS; defined as the time interval between the first melanoma resection or lung metastasectomy and death from cancer). All patients underwent surgical resection of the primary melanoma before lung metastasectomy. Twenty-six (14.2%) patients already had a synchronous lung metastasis at the time of primary melanoma diagnosis. A wedge resection was performed in 95.6% of cases to radically remove the pulmonary localizations, while an anatomical resection was necessary in the remaining cases. The incidence of major post-operative complications was null, while only 21 patients (11.5%) developed minor complications (mainly air leakage followed by atrial fibrillation). The mean in-hospital stay was 4.46 ± 2.8 days. Thirty- and sixty-day mortality were null. After lung surgery, 89.6% of the population underwent adjuvant treatments (47.0% immunotherapy, 42.6% targeted therapy). During a mean FUP of 107.2 ± 82.3 months, 69 (37.7%) patients died from melanoma disease, 11 (6.0%) from other causes. Seventy-three patients (39.9%) developed a recurrence of disease. Twenty-four (13.1%) patients developed extrapulmonary metastases after pulmonary metastasectomy. The CSS from melanoma resection was: 85% at 5 years, 71% at 10 years, 54% at 15 years, 42% at 20 years and 2% at 25 years. The 5- and 10-year CSS from lung metastasectomy were 71% and 26%, respectively. Prognostic factors negatively affecting CSS from lung metastasectomy at multivariable analysis were: melanoma vertical growth (p = 0.018), previous metastatic sites other than lung (p < 0.001) and DFI < 24 months (p = 0.007). Our results support the evidence that surgical indication confirms its important role in stage IV melanoma with resectable pulmonary metastases, and selected patients can still benefit from pulmonary metastasectomy in terms of overall cancer specific survival. Furthermore, the novel systemic therapies may contribute to prolonged survival after systemic recurrence following pulmonary metastasectomy. Patients with long DFI, radial growth melanoma phase and no site of metastatization other than lung seem to be the best candidate cases for lung metastasectomy; however, to drive stronger conclusions, further studies evaluating the role of metastasectomy in patients with iPmMM are needed.
Collapse
Affiliation(s)
- Elisa Meacci
- Department of General Thoracic Surgery, Fondazione Policlinico Universitario "A. Gemelli", Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Dania Nachira
- Department of General Thoracic Surgery, Fondazione Policlinico Universitario "A. Gemelli", Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Maria Teresa Congedo
- Department of General Thoracic Surgery, Fondazione Policlinico Universitario "A. Gemelli", Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Mohsen Ibrahim
- Thoracic Surgery Unit, Sant'Andrea Hospital, University of Rome La Sapienza, 00185 Rome, Italy
| | | | - Francesco Petrella
- Department of Thoracic Surgery, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
| | - Monica Casiraghi
- Department of Thoracic Surgery, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
| | - Alessandro De Stefani
- Dermatology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Laura Del Regno
- Dermatology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Ketty Peris
- Dermatology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Elizabeth Katherine Anna Triumbari
- Nuclear Medicine Unit, G-STeP Radiopharmacy Research Core Facility, Department of Radiology, Radiotherapy and Hematology, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Giovanni Schinzari
- Medical Oncology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Ernesto Rossi
- Medical Oncology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Leonardo Petracca-Ciavarella
- Department of General Thoracic Surgery, Fondazione Policlinico Universitario "A. Gemelli", Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Maria Letizia Vita
- Department of General Thoracic Surgery, Fondazione Policlinico Universitario "A. Gemelli", Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Marco Chiappetta
- Department of General Thoracic Surgery, Fondazione Policlinico Universitario "A. Gemelli", Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Alessandra Siciliani
- Thoracic Surgery Unit, Sant'Andrea Hospital, University of Rome La Sapienza, 00185 Rome, Italy
| | - Valentina Peritore
- Thoracic Surgery Unit, Sant'Andrea Hospital, University of Rome La Sapienza, 00185 Rome, Italy
| | - Mattia Manitto
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Lucia Morelli
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Edoardo Zanfrini
- Service de Chirurgie Thoracique et de Trasplantation Pulmonaire, Hôpital Européen Georges Pompidou, 75015 Paris, France
| | - Diomira Tabacco
- Department of General Thoracic Surgery, Fondazione Policlinico Universitario "A. Gemelli", Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Giuseppe Calabrese
- Department of General Thoracic Surgery, Fondazione Policlinico Universitario "A. Gemelli", Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Claudia Bardoni
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
| | - Jessica Evangelista
- Department of General Thoracic Surgery, Fondazione Policlinico Universitario "A. Gemelli", Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Lorenzo Spaggiari
- Department of Thoracic Surgery, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
| | - Stefano Margaritora
- Department of General Thoracic Surgery, Fondazione Policlinico Universitario "A. Gemelli", Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
527
|
Ascierto PA, Brentjens R, Khleif SN, Odunsi K, Rezvani K, Ruella M, Sullivan RJ, Fox BA, Puzanov I. The "Great Debate" at Immunotherapy Bridge 2022, Naples, November 30th-December 1st, 2022. J Transl Med 2023; 21:275. [PMID: 37087493 PMCID: PMC10122806 DOI: 10.1186/s12967-023-04117-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 04/09/2023] [Indexed: 04/24/2023] Open
Abstract
The 2022 Immunotherapy Bridge congress (November 30-December 1, Naples, Italy) featured a Great Debate session which addressed three contemporary topics in the field of immunotherapy. The debates included counterpoint views from leading experts and considered whether adoptive cell therapy (ACT) has a role in the treatment of solid tumors, the use of peripheral/blood biomarkers versus tumor microenvironment biomarkers for cancer immunotherapy and the role of chimeric antigen receptor T cell versus natural killer cell therapy. As is the tradition in the Immunotherapy Bridge Great Debates, speakers are invited by the meeting Chairs to express one side of the assigned debate and the opinions given may not fully reflect their own personal views. Audiences voted in favour of either side of the topic both before and after each debate.
Collapse
Affiliation(s)
- Paolo A Ascierto
- Department of Melanoma, Cancer Immunotherapy and Innovative Therapy, Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", Naples, Italy.
| | - Renier Brentjens
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Samir N Khleif
- The Loop Immuno Oncology Laboratory, Georgetown University Medical School, Washington, DC, USA
| | - Kunle Odunsi
- University of Chicago Medicine Comprehensive Cancer Center, Chicago, IL, USA
| | - Katayoun Rezvani
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Marco Ruella
- Center for Cellular Immunotherapies and Division of Hematology-Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Ryan J Sullivan
- Melanoma Program, Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Bernard A Fox
- Earle A. Chiles Research Institute, Robert W. Franz Cancer Research Center, Providence Cancer Institute, Portland, OR, USA
| | - Igor Puzanov
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| |
Collapse
|
528
|
Bhagchandani SH, Vohidov F, Milling LE, Tong EY, Brown CM, Ramseier ML, Liu B, Fessenden TB, Nguyen HVT, Kiel GR, Won L, Langer RS, Spranger S, Shalek AK, Irvine DJ, Johnson JA. Engineering kinetics of TLR7/8 agonist release from bottlebrush prodrugs enables tumor-focused immune stimulation. SCIENCE ADVANCES 2023; 9:eadg2239. [PMID: 37075115 PMCID: PMC10115420 DOI: 10.1126/sciadv.adg2239] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/16/2023] [Indexed: 05/03/2023]
Abstract
Imidazoquinolines (IMDs), such as resiquimod (R848), are of great interest as potential cancer immunotherapies because of their ability to activate Toll-like receptor 7 (TLR7) and/or TLR8 on innate immune cells. Nevertheless, intravenous administration of IMDs causes severe immune-related toxicities, and attempts to improve their tissue-selective exposure while minimizing acute systemic inflammation have proven difficult. Here, using a library of R848 "bottlebrush prodrugs" (BPDs) that differ only by their R848 release kinetics, we explore how the timing of R848 exposure affects immune stimulation in vitro and in vivo. These studies led to the discovery of R848-BPDs that exhibit optimal activation kinetics to achieve potent stimulation of myeloid cells in tumors and substantial reductions in tumor growth following systemic administration in mouse syngeneic tumor models without any observable systemic toxicity. These results suggest that release kinetics can be tuned at the molecular level to provide safe yet effective systemically administered immunostimulant prodrugs for next-generation cancer immunotherapies.
Collapse
Affiliation(s)
- Sachin H. Bhagchandani
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Farrukh Vohidov
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Lauren E. Milling
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Evelyn Yuzhou Tong
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Christopher M. Brown
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Michelle L. Ramseier
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Bin Liu
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Timothy B. Fessenden
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Hung V.-T. Nguyen
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Gavin R. Kiel
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Lori Won
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Robert S. Langer
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA
| | - Stefani Spranger
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Alex K. Shalek
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Darrell J. Irvine
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Jeremiah A. Johnson
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| |
Collapse
|
529
|
Crowder SL, Jim HSL, Hogue S, Carson TL, Byrd DA. Gut microbiome and cancer implications: Potential opportunities for fermented foods. Biochim Biophys Acta Rev Cancer 2023; 1878:188897. [PMID: 37086870 DOI: 10.1016/j.bbcan.2023.188897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/17/2023] [Accepted: 04/17/2023] [Indexed: 04/24/2023]
Abstract
There is a critical opportunity to improve response to immunotherapies and overall cancer survivorship via dietary interventions targeted to modify the gut microbiome, and in turn, potentially enhance anti-cancer immunity. A promising dietary intervention is fermented foods, which may alter gut microbiome composition and, in turn, improve immunity. In this article, we summarize the state of the literature pertaining to the gut microbiome and response to immunotherapy and other cancer treatments, potential clinical implications of utilizing a fermented foods dietary approach to improve cancer treatment outcomes, and existing gaps in the literature regarding the implementation of fermented food interventions among individuals with cancer or with a history of cancer. This review synthesizes a compelling rationale across different disciplines to lay a roadmap for future fermented food dietary intervention research aimed at modulating the gut microbiome to reduce cancer burden.
Collapse
Affiliation(s)
- Sylvia L Crowder
- Department of Health Outcomes and Behavior, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA.
| | - Heather S L Jim
- Department of Health Outcomes and Behavior, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Stephanie Hogue
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Tiffany L Carson
- Department of Health Outcomes and Behavior, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Doratha A Byrd
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| |
Collapse
|
530
|
Zhang H, Shi Y, Ying J, Chen Y, Guo R, Zhao X, Jia L, Xiong J, Jiang F. A bibliometric and visualized research on global trends of immune checkpoint inhibitors related complications in melanoma, 2011-2021. Front Endocrinol (Lausanne) 2023; 14:1164692. [PMID: 37152956 PMCID: PMC10158729 DOI: 10.3389/fendo.2023.1164692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 03/31/2023] [Indexed: 05/09/2023] Open
Abstract
BACKGROUND Melanoma is a malignant tumor that originates from the canceration of melanocytes with a high rate of invasiveness and lethality. Immune escape has been regarded as an important mechanism for tumor development, while the treatment of immune checkpoint inhibitors (ICIs) is beneficial in restoring and enhancing the body's anti-tumor immune response to kill tumor cells. To date, ICIs therapy has achieved remarkable efficacy in treating melanoma patients. Despite the significant clinical benefits of ICIs, multiple complications such as rashes, thyroiditis, and colitis occur in melanoma patients. In this study, we aim to explore the development process and trends in the field of ICIs-related complications in melanoma, analyze current hot topics, and predict future research directions. METHODS We screened the most relevant literatures on ICIs-related complications in melanoma from 2011 to 2021 in the Web of Science Core Collection (WoSCC). Using VOSviewer, CiteSpace and R language packages, we analyzed the research trends in this field. RESULTS A total of 1,087 articles were screened, and the USA had the highest number of publications (publications = 454, citations = 60,483), followed by Germany (publications = 155, citations = 27,743) and Italy (publications = 139, citations = 27,837). The Memorial Sloan Kettering Cancer Center had the most publications, but the Angeles Clinic and Research Institute had the highest average citation rate. Lancet oncology (IF, 2021 = 54.43) was the most prominent of all journals in terms of average citation rate. Reference and keyword cluster analysis revealed that anti-tumor efficacy, adjuvant treatment, clinical response, clinical outcome, etc. were the hotspots and trends of research in recent years. CONCLUSIONS This study offers a comprehensive summary and analysis of global research trends on ICIs-related complications in melanoma. Over the past decade, there has been a significant increase in the number of publications on this topic. However, the safety and benefits of retreatment after the recovery of ICIs-related complications remain unknown. Therefore,the establishment of related prediction models, as well as the immunotherapy of melanoma with ICIs in combination with other adjuvant therapies, are future research hotspots.
Collapse
Affiliation(s)
- Hongyi Zhang
- Department of Plastic Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Breast Surgery, Yangpu Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yanlong Shi
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jianghui Ying
- Department of Plastic Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yi Chen
- Department of Biotechnology, The China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Rong Guo
- Department of Plastic Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xin Zhao
- Department of Plastic Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lingling Jia
- Department of Plastic Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jiachao Xiong
- Department of Plastic Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Fei Jiang
- Department of General Surgery, Fuyang Hospital of Anhui Medical University, Fuyang, China
| |
Collapse
|
531
|
Ascierto PA, Blank C, Eggermont AM, Garbe C, Gershenwald JE, Hamid O, Hauschild A, Luke JJ, Mehnert JM, Sosman JA, Tawbi HA, Mandalà M, Testori A, Caracò C, Osman I, Puzanov I. The "Great Debate" at Melanoma Bridge 2022, Naples, December 1st-3rd, 2022. J Transl Med 2023; 21:265. [PMID: 37072748 PMCID: PMC10114457 DOI: 10.1186/s12967-023-04100-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 03/30/2023] [Indexed: 04/20/2023] Open
Abstract
The Great Debate session at the 2022 Melanoma Bridge congress (December 1-3) featured counterpoint views from leading experts on five contemporary topics of debate in the management of melanoma. The debates considered the choice of anti-lymphocyte-activation gene (LAG)-3 therapy or ipilimumab in combination with anti-programmed death (PD)-1 therapy, whether anti-PD-1 monotherapy is still acceptable as a comparator arm in clinical trials, whether adjuvant treatment of melanoma is still a useful treatment option, the role of adjuvant therapy in stage II melanoma, what role surgery will continue to have in the treatment of melanoma. As is customary in the Melanoma Bridge Great Debates, the speakers are invited by the meeting Chairs to express one side of the assigned debate and the opinions given may not fully reflect personal views. Audiences voted in favour of either side of the argument both before and after each debate.
Collapse
Affiliation(s)
- Paolo A Ascierto
- Department of Melanoma, Cancer Immunotherapy and Innovative Therapy, Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", Naples, Italy.
| | | | - Alexander M Eggermont
- University Medical Center Utrecht & Princess Maxima Center, Utrecht, The Netherlands
- Comprehensive Cancer Center München, Technical University München & Ludwig Maximiliaan University, München, Germany
| | - Claus Garbe
- Center for Dermatooncology, Department of Dermatology, Eberhard Karls University, Tuebingen, Germany
| | - Jeffrey E Gershenwald
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Omid Hamid
- The Angeles Clinic and Research Institute, A Cedars-Sinai Affiliate, Los Angeles, CA, USA
| | - Axel Hauschild
- Department of Dermatology, University of Kiel, Kiel, Germany
| | - Jason J Luke
- University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, Pittsburgh, PA, USA
| | - Janice M Mehnert
- Perlmutter Cancer Center of NYU Langone/NYU Grossman School of Medicine, New York, NY, USA
| | - Jeffrey A Sosman
- Robert H Lurie Comprehensive Cancer Center, Northwestern University Medical Center, Chicago, IL, USA
| | - Hussein A Tawbi
- MD Anderson Brain Metastasis Clinic UT, MD Anderson Cancer Center, Houston, TX, USA
| | | | - Alessandro Testori
- Image regenerative clinic Milan, Italy; EORTC Melanoma Group, Brussels, Belgium
| | - Corrado Caracò
- Division of Surgery of Melanoma and Skin Cancer, Istituto Nazionale Tumori "Fondazione Pascale" IRCCS, Naples, Italy
| | - Iman Osman
- Rudolf L. Baer, NYU Langone Medical Center, New York, NY, USA
| | - Igor Puzanov
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| |
Collapse
|
532
|
Zhou JM, Xiong HF, Chen XP, Zhang ZW, Zhu LP, Wu B. Correlation between immune-related adverse events and long-term outcomes in pembrolizumab-treated patients with unresectable hepatocellular carcinoma: A retrospective study. World J Gastrointest Oncol 2023; 15:689-699. [PMID: 37123056 PMCID: PMC10134210 DOI: 10.4251/wjgo.v15.i4.689] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/16/2022] [Accepted: 03/23/2023] [Indexed: 04/12/2023] Open
Abstract
BACKGROUND Although immune checkpoint inhibitor (ICI) therapy has improved the prognosis of unresectable hepatocellular carcinoma (HCC), it has also resulted in unique immune-related adverse events (irAEs). The relationship between irAE and treatment outcomes in ICI-treated unresectable HCC patients remains unknown.
AIM To elucidate the correlation between immune-related toxic effects and prognosis in patients with unresectable HCC treated with pembrolizumab.
METHODS From March 2019 to February 2021, a total of 190 unresectable HCC (Barcelona Clinic Liver Cancer C) patients receiving pembrolizumab treatment were retrospectively reviewed. Overall survival (OS) was the primary endpoint, while objective response rate (ORR), disease control rate (DCR), and time to progression (TTP) were secondary evaluation indexes. We assessed demographics, irAEs, and outcomes by retrospective review.
RESULTS One hundred and forty-three males and 47 females were included in the study. The ORR and DCR were 12.1% (23/190) and 52.1% (99/190), respectively. The median OS was 376 d [95% confidence interval (CI): 340-411 d] and the median TTP was 98 d (95%CI: 75-124 d). The overall incidence of treatment-related adverse events was 72.6% (138/190) and 10.0% of them were severe irAEs (grade ≥ 3). Child-Pugh B class, portal vein tumor thrombus, extrahepatic metastasis, and hypothyroidism were the independent risk factors for survival. Patients with hypothyroidism showed a longer OS [517 d (95%CI: 423-562) vs 431 d (95%CI: 412-485), P = 0.011] and TTP [125 d (95%CI: 89-154) vs 87 d (95%CI: 61-98), P = 0.004] than those without irAEs.
CONCLUSION Pembrolizumab-treated patients with unresectable HCC who experienced hypothyroidism have promising ORR and durable response. Hypothyroidism, an irAE, may be used as a clinical evaluation parameter of response to ICIs in unresectable HCC.
Collapse
Affiliation(s)
- Jiang-Min Zhou
- Department of Hepatobiliary Surgery, Wuhan Hospital of Traditional Chinese and Western Medicine, Wuhan 430030, Hubei Province, China
| | - Hui-Fang Xiong
- Department of Digestive Medicine, Dongxihu District People’s Hospital, Wuhan 430030, Hubei Province, China
| | - Xiao-Ping Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Zhi-Wei Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | - Li-Ping Zhu
- Department of Hepatobiliary Surgery, Wuhan Hospital of Traditional Chinese and Western Medicine, Wuhan 430030, Hubei Province, China
| | - Biao Wu
- Department of Hepatobiliary Surgery, Wuhan Hospital of Traditional Chinese and Western Medicine, Wuhan 430030, Hubei Province, China
| |
Collapse
|
533
|
Aoki T, Steidl C. Novel insights into Hodgkin lymphoma biology by single-cell analysis. Blood 2023; 141:1791-1801. [PMID: 36548960 PMCID: PMC10646771 DOI: 10.1182/blood.2022017147] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/15/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022] Open
Abstract
The emergence and rapid development of single-cell technologies mark a paradigm shift in cancer research. Various technology implementations represent powerful tools to understand cellular heterogeneity, identify minor cell populations that were previously hard to detect and define, and make inferences about cell-to-cell interactions at single-cell resolution. Applied to lymphoma, recent advances in single-cell RNA sequencing have broadened opportunities to delineate previously underappreciated heterogeneity of malignant cell differentiation states and presumed cell of origin, and to describe the composition and cellular subsets in the ecosystem of the tumor microenvironment (TME). Clinical deployment of an expanding armamentarium of immunotherapy options that rely on targets and immune cell interactions in the TME emphasizes the requirement for a deeper understanding of immune biology in lymphoma. In particular, classic Hodgkin lymphoma (CHL) can serve as a study paradigm because of its unique TME, featuring infrequent tumor cells among numerous nonmalignant immune cells with significant interpatient and intrapatient variability. Synergistic to advances in single-cell sequencing, multiplexed imaging techniques have added a new dimension to describing cellular cross talk in various lymphoma entities. Here, we comprehensively review recent progress using novel single-cell technologies with an emphasis on the TME biology of CHL as an application field. The described technologies, which are applicable to peripheral blood, fresh tissues, and formalin-fixed samples, hold the promise to accelerate biomarker discovery for novel immunotherapeutic approaches and to serve as future assay platforms for biomarker-informed treatment selection, including immunotherapies.
Collapse
Affiliation(s)
- Tomohiro Aoki
- Centre for Lymphoid Cancer, British Columbia Cancer, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Christian Steidl
- Centre for Lymphoid Cancer, British Columbia Cancer, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
534
|
Ao YQ, Gao J, Wang S, Jiang JH, Deng J, Wang HK, Xu B, Ding JY. Immunotherapy of thymic epithelial tumors: molecular understandings and clinical perspectives. Mol Cancer 2023; 22:70. [PMID: 37055838 PMCID: PMC10099901 DOI: 10.1186/s12943-023-01772-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 04/03/2023] [Indexed: 04/15/2023] Open
Abstract
Immunotherapy has emerged to play a rapidly expanding role in the treatment of cancers. Currently, many clinical trials of therapeutic agents are on ongoing with majority of immune checkpoint inhibitors (ICIs) especially programmed death receptor 1 (PD-1) and its ligand 1 (PD-L1) inhibitors. PD-1 and PD-L1, two main immune checkpoints, are expressed at high levels in thymic epithelial tumors (TETs) and could be predictors of the progression and immunotherapeutic efficacy of TETs. However, despite inspiring efficacy reported in clinical trials and clinical practice, significantly higher incidence of immune-related adverse events (irAEs) than other tumors bring challenges to the administration of ICIs in TETs. To develop safe and effective immunotherapeutic patterns in TETs, understanding the clinical properties of patients, the cellular and molecular mechanisms of immunotherapy and irAEs occurrence are crucial. In this review, the progress of both basic and clinical research on immune checkpoints in TETs, the evidence of therapeutic efficacy and irAEs based on PD-1 /PD-L1 inhibitors in TETs treatment are discussed. Additionally, we highlighted the possible mechanisms underlying irAEs, prevention and management strategies, the insufficiency of current research and some worthy research insights. High PD-1/PD-L1 expression in TETs provides a rationale for ICI use. Completed clinical trials have shown an encouraging efficacy of ICIs, despite the high rate of irAEs. A deeper mechanism understanding at molecular level how ICIs function in TETs and why irAEs occur will help maximize the immunotherapeutic efficacy while minimizing irAEs risks in TET treatment to improve patient prognosis.
Collapse
Affiliation(s)
- Yong-Qiang Ao
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, 200032, Shanghai, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jian Gao
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, 200032, Shanghai, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shuai Wang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, 200032, Shanghai, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jia-Hao Jiang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, 200032, Shanghai, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jie Deng
- Institute of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai, China
| | - Hai-Kun Wang
- CAS Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Bei Xu
- Department of Oncology, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Jian-Yong Ding
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, 200032, Shanghai, China.
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
535
|
Müller B, Bärenwaldt A, Herzig P, Zippelius A, Maul LV, Hess V, König D, Läubli H. Changes of peripheral T cell subsets in melanoma patients with immune-related adverse events. Front Immunol 2023; 14:1125111. [PMID: 37122748 PMCID: PMC10130408 DOI: 10.3389/fimmu.2023.1125111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/31/2023] [Indexed: 05/02/2023] Open
Abstract
Introduction Immunotherapies have improved the prognosis of many cancer patients including patients with advanced melanoma. Immune checkpoint receptors including CTLA-4 and PD-1 have been established as main therapeutic targets for immunotherapy of melanoma. Although monotherapy is effective in melanoma patients, a dual therapy approach has been shown to be most effective. Dual checkpoint blockade, however, increases substantially the risk for immune-related adverse events (irAEs). Methods In this study, we characterized peripheral immune cell subsets in patients with anti-PD-1 monotherapy and with dual immune receptors blockade targeting PD-1 and CTLA-4. Results We found differences in peripheral T cells between patients who developed severe immune-related side effects and patients with mild irAEs. We identified several mainly changes in CD8+ T cell subsets in patients with severe irAE under dual PD-1 and CTLA-4 blockade. Discussion This work suggests that peripheral immune cell dynamics could be associated with severe immune-related side effects in patients receiving immune checkpoint inhibitors. These changes could be used as future biomarkers in early diagnosis of irAEs.
Collapse
Affiliation(s)
- Benjamin Müller
- Laboratory for Cancer Immunotherapy and Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Anne Bärenwaldt
- Laboratory for Cancer Immunotherapy and Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Petra Herzig
- Laboratory for Cancer Immunotherapy and Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Alfred Zippelius
- Laboratory for Cancer Immunotherapy and Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
- Division of Oncology, University Hospital Basel, Basel, Switzerland
| | - Lara Valeska Maul
- Department of Dermatology, University Hospital Basel, Basel, Switzerland
| | - Viviane Hess
- Division of Oncology, University Hospital Basel, Basel, Switzerland
| | - David König
- Laboratory for Cancer Immunotherapy and Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
- Division of Oncology, University Hospital Basel, Basel, Switzerland
| | - Heinz Läubli
- Laboratory for Cancer Immunotherapy and Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
- Division of Oncology, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
536
|
Choi JY, Kim TJ. The Current Status and Future Perspectives of Chimeric Antigen Receptor-Engineered T Cell Therapy for the Management of Patients with Endometrial Cancer. Curr Issues Mol Biol 2023; 45:3359-3374. [PMID: 37185744 PMCID: PMC10136476 DOI: 10.3390/cimb45040220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/11/2023] [Accepted: 04/11/2023] [Indexed: 05/17/2023] Open
Abstract
Endometrial cancer (EC) is a gynecological neoplasm that is increasing in occurrence and mortality rates. Although endometrial cancer in the early stages shows a relatively favorable prognosis, there is an increase in cancer-related mortality rates in the advanced or recurrent endometrial carcinoma population and patients in the metastatic setting. This discrepancy has presented an opportunity for research and development of target therapies in this population. After obtaining promising results with hematologic cancers, chimeric antigen receptor (CAR)-T cell immunotherapy is gaining acceptance as a treatment for solid neoplasms. This treatment platform allows T cells to express tumor-specific CARs on the cell surface, which are administered to the patient to treat neoplastic cells. Given that CAR-T cell therapy has shown potential and clinical benefit compared to other T cell treatment platforms, additional research is required to overcome physiological limitations such as CAR-T cell depletion, immunosuppressive tumor microenvironment, and the lack of specific target molecules. Different approaches and development are ongoing to overcome these complications. This review examines CAR-T cell therapy's current use for endometrial carcinomas. We also discuss the significant adverse effects and limitations of this immunotherapeutic approach. Finally, we consolidate signal-seeking early-phase clinical trials and advancements that have shown promising results, leading to the approval of new immunotherapeutic agents for the disease.
Collapse
Affiliation(s)
- Ji-Young Choi
- Department of Gynecology and Infertility Medicine, CHA University Ilsan Medical Center, Goyang 1205, Republic of Korea
| | - Tae-Jin Kim
- Department of Urology, CHA University Ilsan Medical Center, CHA University School of Medicine, Goyang 1205, Republic of Korea
| |
Collapse
|
537
|
Campbell KM, Amouzgar M, Pfeiffer SM, Howes TR, Medina E, Travers M, Steiner G, Weber JS, Wolchok JD, Larkin J, Hodi FS, Boffo S, Salvador L, Tenney D, Tang T, Thompson MA, Spencer CN, Wells DK, Ribas A. Prior anti-CTLA-4 therapy impacts molecular characteristics associated with anti-PD-1 response in advanced melanoma. Cancer Cell 2023; 41:791-806.e4. [PMID: 37037616 PMCID: PMC10187051 DOI: 10.1016/j.ccell.2023.03.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 01/16/2023] [Accepted: 03/08/2023] [Indexed: 04/12/2023]
Abstract
Immune checkpoint inhibitors (ICIs), including CTLA-4- and PD-1-blocking antibodies, can have profound effects on tumor immune cell infiltration that have not been consistent in biopsy series reported to date. Here, we analyze seven molecular datasets of samples from patients with advanced melanoma (N = 514) treated with ICI agents to investigate clinical, genomic, and transcriptomic features of anti-PD-1 response in cutaneous melanoma. We find that prior anti-CTLA-4 therapy is associated with differences in genomic, individual gene, and gene signatures in anti-PD-1 responders. Anti-CTLA-4-experienced melanoma tumors that respond to PD-1 blockade exhibit increased tumor mutational burden, inflammatory signatures, and altered cell cycle processes compared with anti-CTLA-4-naive tumors or anti-CTLA-4-experienced, anti-PD-1-nonresponsive melanoma tumors. We report a harmonized, aggregate resource and suggest that prior CTLA-4 blockade therapy is associated with marked differences in the tumor microenvironment that impact the predictive features of PD-1 blockade therapy response.
Collapse
Affiliation(s)
- Katie M Campbell
- Division of Hematology/Oncology, Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Meelad Amouzgar
- Department of Pathology, Stanford University, Stanford, CA 94305, USA; Parker Institute for Cancer Immunotherapy, San Francisco, CA 94129, USA
| | | | - Timothy R Howes
- Parker Institute for Cancer Immunotherapy, San Francisco, CA 94129, USA
| | - Egmidio Medina
- Division of Hematology/Oncology, Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Michael Travers
- Parker Institute for Cancer Immunotherapy, San Francisco, CA 94129, USA
| | - Gabriela Steiner
- Parker Institute for Cancer Immunotherapy, San Francisco, CA 94129, USA
| | - Jeffrey S Weber
- Perlmutter Cancer Center, NYU School of Medicine, New York, NY 10016, USA
| | - Jedd D Wolchok
- Parker Institute for Cancer Immunotherapy, San Francisco, CA 94129, USA; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Weill Cornell Medicine, New York, NY 10065, USA
| | - James Larkin
- Department of Medical Oncology, The Royal Marsden NHS Foundation Trust, London SW3 6JJ, UK
| | - F Stephen Hodi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Silvia Boffo
- Bristol Myers Squibb Corp., Princeton, NJ 08540, USA
| | - Lisa Salvador
- Bristol Myers Squibb Corp., Princeton, NJ 08540, USA
| | - Daniel Tenney
- Bristol Myers Squibb Corp., Princeton, NJ 08540, USA
| | - Tracy Tang
- Bristol Myers Squibb Corp., Princeton, NJ 08540, USA
| | | | | | - Daniel K Wells
- Parker Institute for Cancer Immunotherapy, San Francisco, CA 94129, USA
| | - Antoni Ribas
- Division of Hematology/Oncology, Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Parker Institute for Cancer Immunotherapy, San Francisco, CA 94129, USA; Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Division of Surgical Oncology, Department of Surgery, University of California, Los Angeles, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90024, USA.
| |
Collapse
|
538
|
Wang Y, Zhou SK, Wang Y, Lu ZD, Zhang Y, Xu CF, Wang J. Engineering tumor-specific gene nanomedicine to recruit and activate T cells for enhanced immunotherapy. Nat Commun 2023; 14:1993. [PMID: 37031188 PMCID: PMC10082825 DOI: 10.1038/s41467-023-37656-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 03/27/2023] [Indexed: 04/10/2023] Open
Abstract
PD-1/PD-L1 blockade therapy that eliminates T-cell inhibition signals is successful, but poor benefits are often observed. Increasing T-cell infiltration and quantity of PD-1/PD-L1 inhibitors in tumor can improve efficacy but remains challenging. Here, we devise tumor-specific gene nanomedicines to mobilize tumor cells to secrete CXCL9 (T-cell chemokine) and anti-PD-L1 scFv (αPD-L1, PD-L1 blocking agent) for enhanced immunotherapy. The tyrosinase promoter-driven NPTyr-C9AP can specifically co-express CXCL9 and αPD-L1 in melanoma cells, thereby forming a CXCL9 gradient for T-cell recruitment and high intratumoral αPD-L1 concentration for enhancing T-cell activation. As a result, NPTyr-C9AP shows strong antimelanoma effects. Moreover, specific co-expression of CXCL9 and αPD-L1 in various tumor cells is achieved by replacing the tyrosinase promoter of NPTyr-C9AP with a survivin promoter, which increases T-cell infiltration and activation and therapeutic efficacy in multiple tumors in female mice. This study provides a strategy to maximize the immunotherapeutic outcome regardless of the heterogeneous tumor microenvironment.
Collapse
Affiliation(s)
- Yue Wang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, P.R. China
| | - Shi-Kun Zhou
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, P.R. China
| | - Yan Wang
- School of Medicine, South China University of Technology, Guangzhou, 510006, P.R. China
| | - Zi-Dong Lu
- School of Medicine, South China University of Technology, Guangzhou, 510006, P.R. China
| | - Yue Zhang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, P.R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, P.R. China
| | - Cong-Fei Xu
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, P.R. China.
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, P.R. China.
- Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, 510006, P.R. China.
| | - Jun Wang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, P.R. China.
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, P.R. China.
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, P.R. China.
| |
Collapse
|
539
|
Diaz-Ramón JL, Gardeazabal J, Izu RM, Garrote E, Rasero J, Apraiz A, Penas C, Seijo S, Lopez-Saratxaga C, De la Peña PM, Sanchez-Diaz A, Cancho-Galan G, Velasco V, Sevilla A, Fernandez D, Cuenca I, Cortes JM, Alonso S, Asumendi A, Boyano MD. Melanoma Clinical Decision Support System: An Artificial Intelligence-Based Tool to Diagnose and Predict Disease Outcome in Early-Stage Melanoma Patients. Cancers (Basel) 2023; 15:2174. [PMID: 37046835 PMCID: PMC10093614 DOI: 10.3390/cancers15072174] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/17/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023] Open
Abstract
This study set out to assess the performance of an artificial intelligence (AI) algorithm based on clinical data and dermatoscopic imaging for the early diagnosis of melanoma, and its capacity to define the metastatic progression of melanoma through serological and histopathological biomarkers, enabling dermatologists to make more informed decisions about patient management. Integrated analysis of demographic data, images of the skin lesions, and serum and histopathological markers were analyzed in a group of 196 patients with melanoma. The interleukins (ILs) IL-4, IL-6, IL-10, and IL-17A as well as IFNγ (interferon), GM-CSF (granulocyte and macrophage colony-stimulating factor), TGFβ (transforming growth factor), and the protein DCD (dermcidin) were quantified in the serum of melanoma patients at the time of diagnosis, and the expression of the RKIP, PIRIN, BCL2, BCL3, MITF, and ANXA5 proteins was detected by immunohistochemistry (IHC) in melanoma biopsies. An AI algorithm was used to improve the early diagnosis of melanoma and to predict the risk of metastasis and of disease-free survival. Two models were obtained to predict metastasis (including "all patients" or only patients "at early stages of melanoma"), and a series of attributes were seen to predict the progression of metastasis: Breslow thickness, infiltrating BCL-2 expressing lymphocytes, and IL-4 and IL-6 serum levels. Importantly, a decrease in serum GM-CSF seems to be a marker of poor prognosis in patients with early-stage melanomas.
Collapse
Affiliation(s)
- Jose Luis Diaz-Ramón
- Dermatology Service, Cruces University Hospital, 48903 Barakaldo, Spain
- Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain
| | - Jesus Gardeazabal
- Dermatology Service, Cruces University Hospital, 48903 Barakaldo, Spain
- Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain
| | - Rosa Maria Izu
- Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain
- Dermatology Service, Basurto University Hospital, 48013 Bilbao, Spain
| | - Estibaliz Garrote
- TECNALIA, Basque Research and Technology Alliance (BRTA), 20850 Gipuzkoa, Spain
- Department of Cell Biology and Histology, University of the Basque Country/EHU, 48940 Leioa, Spain
| | - Javier Rasero
- Department of Psychology, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Aintzane Apraiz
- Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain
- Department of Cell Biology and Histology, University of the Basque Country/EHU, 48940 Leioa, Spain
| | - Cristina Penas
- Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain
- Department of Cell Biology and Histology, University of the Basque Country/EHU, 48940 Leioa, Spain
| | - Sandra Seijo
- Ibermática Innovation Institute, 48170 Zamudio, Spain
| | | | | | - Ana Sanchez-Diaz
- Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain
- Dermatology Service, Basurto University Hospital, 48013 Bilbao, Spain
| | - Goikoane Cancho-Galan
- Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain
- Pathology Service, Basurto University Hospital, 48013 Bilbao, Spain
| | - Veronica Velasco
- Dermatology Service, Cruces University Hospital, 48903 Barakaldo, Spain
- Pathology Service, Cruces University Hospital, 48903 Barakaldo, Spain
| | - Arrate Sevilla
- Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country/EHU, 48940 Leioa, Spain
| | | | - Iciar Cuenca
- Ibermática Innovation Institute, 48170 Zamudio, Spain
| | - Jesus María Cortes
- Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain
- Department of Cell Biology and Histology, University of the Basque Country/EHU, 48940 Leioa, Spain
- IKERBASQUE, The Basque Foundation for Science, 48009 Bilbao, Spain
| | - Santos Alonso
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country/EHU, 48940 Leioa, Spain
| | - Aintzane Asumendi
- Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain
- Department of Cell Biology and Histology, University of the Basque Country/EHU, 48940 Leioa, Spain
| | - María Dolores Boyano
- Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain
- Department of Cell Biology and Histology, University of the Basque Country/EHU, 48940 Leioa, Spain
| |
Collapse
|
540
|
Wu Q, Tian R, He X, Liu J, Ou C, Li Y, Fu X. Machine learning-based integration develops an immune-related risk model for predicting prognosis of high-grade serous ovarian cancer and providing therapeutic strategies. Front Immunol 2023; 14:1164408. [PMID: 37090728 PMCID: PMC10113544 DOI: 10.3389/fimmu.2023.1164408] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 03/28/2023] [Indexed: 04/08/2023] Open
Abstract
BACKGROUND High-grade serous ovarian cancer (HGSOC) is a highly lethal gynecological cancer that requires accurate prognostic models and personalized treatment strategies. The tumor microenvironment (TME) is crucial for disease progression and treatment. Machine learning-based integration is a powerful tool for identifying predictive biomarkers and developing prognostic models. Hence, an immune-related risk model developed using machine learning-based integration could improve prognostic prediction and guide personalized treatment for HGSOC. METHODS During the bioinformatic study in HGSOC, we performed (i) consensus clustering to identify immune subtypes based on signatures of immune and stromal cells, (ii) differentially expressed genes and univariate Cox regression analysis to derive TME- and prognosis-related genes, (iii) machine learning-based procedures constructed by ten independent machine learning algorithms to screen and construct a TME-related risk score (TMErisk), and (iv) evaluation of the effect of TMErisk on the deconstruction of TME, indication of genomic instability, and guidance of immunotherapy and chemotherapy. RESULTS We identified two different immune microenvironment phenotypes and a robust and clinically practicable prognostic scoring system. TMErisk demonstrated superior performance over most clinical features and other published signatures in predicting HGSOC prognosis across cohorts. The low TMErisk group with a notably favorable prognosis was characterized by BRCA1 mutation, activation of immunity, and a better immune response. Conversely, the high TMErisk group was significantly associated with C-X-C motif chemokine ligands deletion and carcinogenic activation pathways. Additionally, low TMErisk group patients were more responsive to eleven candidate agents. CONCLUSION Our study developed a novel immune-related risk model that predicts the prognosis of ovarian cancer patients using machine learning-based integration. Additionally, the study not only depicts the diversity of cell components in the TME of HGSOC but also guides the development of potential therapeutic techniques for addressing tumor immunosuppression and enhancing the response to cancer therapy.
Collapse
Affiliation(s)
- Qihui Wu
- Department of Gynecology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
| | - Ruotong Tian
- Department of Pharmacology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiaoyun He
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
- Departments of Ultrasound Imaging, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jiaxin Liu
- Department of Pathology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Chunlin Ou
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Yimin Li
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiaodan Fu
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
541
|
Ibrahim YS, Amin AH, Jawhar ZH, Alghamdi MA, Al-Awsi GRL, Shbeer AM, Al-Ghamdi HS, Gabr GA, Ramírez-Coronel AA, Almulla AF. "To be or not to Be": Regulatory T cells in melanoma. Int Immunopharmacol 2023; 118:110093. [PMID: 37023699 DOI: 10.1016/j.intimp.2023.110093] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 04/08/2023]
Abstract
In spite of progresses in the therapy of different malignancies, melanoma still remains as one of lethal types of skin tumor. Melanoma is almost easily treatable by surgery alone with higher overall survival rates when it is diagnosed at early stages. However, survival rates are decreased remarkably upon survival if the tumor is progressed to advanced metastatic stages. Immunotherapeutics have been prosperous in the development of anti-tumor responses in patients with melanoma through promotion of the tumor-specific effector T cells in vivo; nonetheless, suitable clinical outcomes have not been satisfactory. One of the underlying causes of the unfavorable clinical outcomes might stem from adverse effects of regulatory T (Treg) cell, which is a prominent mechanism of tumor cells to escape from tumor-specific immune responses. Evidence shows that a poor prognosis and low survival rate in patients with melanoma can be attributed to a higher Treg cell number and function in these subjects. As a result, to promote melanoma-specific anti-tumor responses, depletion of Treg cells appears to be a promising approach; even though the clinical efficacy of different approaches to attain appropriate Treg cell depletion has been inconsistent. Here in this review, the main purpose is to assess the role of Treg cells in the initiation and perpetuation of melanoma and to discuss effective strategies for Treg cell modulation with the aim of melanoma therapy.
Collapse
Affiliation(s)
- Yousif Saleh Ibrahim
- Department of Medical Laboratory Techniques, Al-maarif University College, Ramadi, Al-Anbar, Iraq
| | - Ali H Amin
- Deanship of Scientific Research, Umm Al-Qura University, Makkah 21955, Saudi Arabia; Zoology Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - Zanko Hassan Jawhar
- Department of Medical Laboratory Science, College of Health Sciences, Lebanese French University, Erbil, Kurdistan Region, Iraq; Clinical Biochemistry Department, College of Health Sciences, Hawler Medical University, Erbil, Kurdistan Region, Iraq
| | - Mohammad A Alghamdi
- Internal Medicine Department, Faculty of Medicine, Albaha University, Saudi Arabia
| | | | - Abdullah M Shbeer
- Department of Surgery, Faculty of Medicine, Jazan University, Jazan 45142, Saudi Arabia
| | - Hasan S Al-Ghamdi
- Internal Medicine Department, Division of Dermatology, Faculty of Medicine, Albaha University, Albaha City, Saudi Arabia
| | - Gamal A Gabr
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center, Giza, Egypt.
| | - Andrés Alexis Ramírez-Coronel
- Catholic University of Cuenca, Azogues Campus, Ecuador; University of Palermo, Buenos Aires, Argentina; National University of Education, Azogues, Ecuador; CES University, Colombia
| | - Abbas F Almulla
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| |
Collapse
|
542
|
Luo H, Zhang H, Mao J, Cao H, Tao Y, Zhao G, Zhang Z, Zhang N, Liu Z, Zhang J, Luo P, Xia Y, Cheng Y, Xie Z, Cheng Q, Liu G. Exosome-based nanoimmunotherapy targeting TAMs, a promising strategy for glioma. Cell Death Dis 2023; 14:235. [PMID: 37012233 PMCID: PMC10070666 DOI: 10.1038/s41419-023-05753-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 03/08/2023] [Accepted: 03/16/2023] [Indexed: 04/05/2023]
Abstract
Exosomes, the cell-derived small extracellular vehicles, play a vital role in intracellular communication by reciprocally transporting DNA, RNA, bioactive protein, chains of glucose, and metabolites. With great potential to be developed as targeted drug carriers, cancer vaccines and noninvasive biomarkers for diagnosis, treatment response evaluation, prognosis prediction, exosomes show extensive advantages of relatively high drug loading capacity, adjustable therapeutic agents release, enhanced permeation and retention effect, striking biodegradability, excellent biocompatibility, low toxicity, etc. With the rapid progression of basic exosome research, exosome-based therapeutics are gaining increasing attention in recent years. Glioma, the standard primary central nervous system (CNS) tumor, is still up against significant challenges as current traditional therapies of surgery resection combined with radiotherapy and chemotherapy and numerous efforts into new drugs showed little clinical curative effect. The emerging immunotherapy strategy presents convincing results in many tumors and is driving researchers to exert its potential in glioma. As the crucial component of the glioma microenvironment, tumor-associated macrophages (TAMs) significantly contribute to the immunosuppressive microenvironment and strongly influence glioma progression via various signaling molecules, simultaneously providing new insight into therapeutic strategies. Exosomes would substantially assist the TAMs-centered treatment as drug delivery vehicles and liquid biopsy biomarkers. Here we review the current potential exosome-mediated immunotherapeutics targeting TAMs in glioma and conclude the recent investigation on the fundamental mechanisms of diversiform molecular signaling events by TAMs that promote glioma progression.
Collapse
Affiliation(s)
- Hong Luo
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Hao Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Jinning Mao
- Health management center, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Hui Cao
- Brain Hospital of Hunan Province, The Second People's Hospital of Hunan Province, Changsha, China
- The School of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Yihao Tao
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Guanjian Zhao
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Zhiwen Zhang
- School of Pharmacy, Fudan University, Shanghai, China
| | - Nan Zhang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou, Zhengzhou, China
| | - Jian Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Peng Luo
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Yuguo Xia
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Yuan Cheng
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Zongyi Xie
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| | - Guodong Liu
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
543
|
Pérez-Morales J, Broman KK, Bettampadi D, Haver MK, Zager JS, Schabath MB. Recurrence Patterns for Regionally Metastatic Melanoma Treated in the Era of Adjuvant Therapy: A Systematic Review and Meta-Analysis. Ann Surg Oncol 2023; 30:2364-2374. [PMID: 36479663 DOI: 10.1245/s10434-022-12866-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 11/07/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND The purpose of this systematic review was to examine the timing and patterns of recurrence for patients with regionally metastatic melanoma on the basis of nodal management and receipt of adjuvant therapy. METHODS We identified randomized controlled trials and non-randomized studies published between 2010 and 2020 that reported timing and/or patterns of recurrence. We evaluated recurrence-free survival (RFS), location of recurrence, and surveillance strategy on the basis of receipt of adjuvant systemic therapy and nodal management with observation versus completion dissection. We compared differences in patterns of recurrence across studies using RevMan. RFS was evaluated graphically using point estimates and confidence intervals. RESULTS Among the 19 publications, there was wide variation in study populations, imaging surveillance regimens, and format of recurrence reporting. Patterns of disease recurrence did not differ between adjuvant and placebo/observation groups. A total of 11 studies reported RFS at variable time intervals, which ranged in adjuvant therapy groups (38-88% at 1 year, 29-67% at 2 years, 33-58% at 3 years, and 34-53% at 5 years) and placebo/observation groups (47-63% at 1 year, 39-47% at 2 years, 33-68% at 3 years, and 57% at 5 years). Anti-PD-1 immune therapy and BRAF/MEK inhibitor therapy were superior to placebo at year 1. DISCUSSION We found that adjuvant treatment improved RFS but did not alter the patterns of disease recurrence compared with patients managed without adjuvant systemic treatment. Future studies should separately report sites of disease recurrence on the basis of specific adjuvant systemic treatment and surveillance practices to better advise patients about their patterns and risk of recurrence.
Collapse
Affiliation(s)
- Jaileene Pérez-Morales
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA.
| | - Kristy K Broman
- Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
- Department of Oncologic Sciences, University of South Florida Morsani College of Medicine, Tampa, FL, USA
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Deepti Bettampadi
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Mary Katherine Haver
- Moffitt Biomedical Library, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Jonathan S Zager
- Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
- Department of Oncologic Sciences, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Matthew B Schabath
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| |
Collapse
|
544
|
Garcia D, Mambetsariev I, Fricke J, Schmolze D, Afkhami M, Mannan R, Kim P, Therese Dingal S, Nguyen B, Babikian R, Fong Y, Salgia R. Complete response to chemoimmunotherapy with bevacizumab in synchronous multiple primary cancers: pulmonary adenocarcinoma and sarcomatoid carcinoma. Cold Spring Harb Mol Case Stud 2023; 9:a006262. [PMID: 37160318 PMCID: PMC10240843 DOI: 10.1101/mcs.a006262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/09/2023] [Indexed: 05/11/2023] Open
Abstract
A small percentage of patients have multiple synchronous primary cancers at presentation. In the last five years, many regimens associated with immunotherapy and chemotherapy were approved for first-line metastatic non-small-cell lung cancer (NSCLC) and other solid tumors, but the study of immunotherapy when multiple cancers are present in one patient remains incomplete. Next-generation sequencing biomarkers and immunotherapy markers including PD-L1 can be effectively utilized in the diagnosis and treatment plan for multiple synchronous primary cancers. Immune biomarkers and PD-L1 expression warrant individualized treatments in synchronous primary adenocarcinoma and pulmonary sarcomatoid carcinoma. We describe the case of a patient with pulmonary sarcomatoid carcinoma and lung adenocarcinoma, metastatic to brain de novo. The patient achieved a complete response after only three cycles of carboplatin, paclitaxel, bevacizumab, and atezolizumab and remains free of any evidence of disease after 18 mo of maintenance therapy.
Collapse
Affiliation(s)
- Diogo Garcia
- Department of Medical Oncology, City of Hope, Duarte, California 91010, USA
| | - Isa Mambetsariev
- Department of Medical Oncology, City of Hope, Duarte, California 91010, USA
| | - Jeremy Fricke
- Department of Medical Oncology, City of Hope, Duarte, California 91010, USA
| | - Daniel Schmolze
- Department of Pathology, City of Hope, Duarte, California 91010, USA
| | - Michelle Afkhami
- Department of Pathology, City of Hope, Duarte, California 91010, USA
| | - Rifat Mannan
- Department of Pathology, City of Hope, Duarte, California 91010, USA
| | - Pauline Kim
- Department of Ambulatory Pharmacy, City of Hope, Duarte, California 91010, USA
| | | | - Bao Nguyen
- Department of Diagnostic Radiology, City of Hope, Duarte, California 91010, USA
| | - Razmig Babikian
- Department of Medical Oncology, City of Hope, Duarte, California 91010, USA
| | - Yuman Fong
- Department of Surgery, City of Hope, Duarte, California 91010, USA
| | - Ravi Salgia
- Department of Medical Oncology, City of Hope, Duarte, California 91010, USA;
| |
Collapse
|
545
|
Cole K, Al-Kadhimi Z, Talmadge JE. Highlights into historical and current immune interventions for cancer. Int Immunopharmacol 2023; 117:109882. [PMID: 36848790 PMCID: PMC10355273 DOI: 10.1016/j.intimp.2023.109882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 03/01/2023]
Abstract
Immunotherapy is an additional pillar when combined with traditional standards of care such as chemotherapy, radiotherapy, and surgery for cancer patients. It has revolutionized cancer treatment and rejuvenated the field of tumor immunology. Several types of immunotherapies, including adoptive cellular therapy (ACT) and checkpoint inhibitors (CPIs), can induce durable clinical responses. However, their efficacies vary, and only subsets of cancer patients benefit from their use. In this review, we address three goals: to provide insight into the history of these approaches, broaden our understanding of immune interventions, and discuss current and future approaches. We highlight how cancer immunotherapy has evolved and discuss how personalization of immune intervention may address present limitations. Cancer immunotherapy is considered a recent medical achievement and in 2013 was selected as the "Breakthrough of the Year" by Science. While the breadth of immunotherapeutics has been rapidly expanding, to include the use of chimeric antigen receptor (CAR) T-cell therapy and immune checkpoint inhibitor (ICI) therapy, immunotherapy dates back over 3000 years. The expansive history of immunotherapy, and related observations, have resulted in several approved immune therapeutics beyond the recent emphasis on CAR-T and ICI therapies. In addition to other classical forms of immune intervention, including human papillomavirus (HPV), hepatitis B, and the Mycobacterium bovis Bacillus Calmette-Guérin (BCG) tuberculosis vaccines, immunotherapies have had a broad and durable impact on cancer therapy and prevention. One classic example of immunotherapy was identified in 1976 with the use of intravesical administration of BCG in patients with bladder cancer; resulting in a 70 % eradication rate and is now standard of care. However, a greater impact from the use of immunotherapy is documented by the prevention of HPV infections that are responsible for 98 % of cervical cancer cases. In 2020, the World Health Organization (WHO) estimated that 341,831 women died from cervical cancer [1]. However, administration of a single dose of a bivalent HPV vaccine was shown to be 97.5 % effective in preventing HPV infections. These vaccines not only prevent cervical squamous cell carcinoma and adenocarcinoma, but also oropharyngeal, anal, vulvar, vaginal, and penile squamous cell carcinomas. The breadth, response and durability of these vaccines can be contrasted with CAR-T-cell therapies, which have significant barriers to their widespread use including logistics, manufacturing limitations, toxicity concerns, financial burden and lasting remissions observed in only 30 to 40 % of responding patients. Another, recent immunotherapy focus are ICIs. ICIs are a class of antibodies that can increase the immune responses against cancer cells in patients. However, ICIs are only effective against tumors with a high mutational burden and are associated with a broad spectrum of toxicities requiring interruption of administration and/or administration corticosteroids; both of which limit immune therapy. In summary, immune therapeutics have a broad impact worldwide, utilizing numerous mechanisms of action and when considered in their totality are more effective against a broader range of tumors than initially considered. These new cancer interventions have tremendous potential notability when multiple mechanisms of immune intervention are combined as well as with standard of care modalities.
Collapse
Affiliation(s)
- Kathryn Cole
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Zaid Al-Kadhimi
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA; Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - James E Talmadge
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198-5950, USA; Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
546
|
Chehrazi-Raffle A, Muddasani R, Dizman N, Hsu J, Meza L, Zengin ZB, Malhotra J, Chawla N, Dorff T, Contente-Cuomo T, Dinwiddie D, McDonald BR, McDaniel T, Trent JM, Baehner FL, Murtaza M, Pal SK. Ultrasensitive Circulating Tumor DNA Pilot Study Distinguishes Complete Response and Partial Response With Immunotherapy in Patients With Metastatic Renal Cell Carcinoma. JCO Precis Oncol 2023; 7:e2200543. [PMID: 37027813 DOI: 10.1200/po.22.00543] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023] Open
Abstract
PURPOSE Circulating tumor DNA (ctDNA) has been validated across multiple indications in the adjuvant and surveillance settings. We evaluated whether targeted digital sequencing (TARDIS) may distinguish a partial response (PR) from a complete response (CR) among patients with metastatic renal cell carcinoma (mRCC) receiving immune checkpoint inhibitor (ICI) therapy. MATERIALS AND METHODS Eligible patients had mRCC that yielded a PR or CR to ICI therapy. Peripheral blood was obtained at a single time point for ctDNA analysis. TARDIS was used for quantification of average variant allele fractions (VAFs). Our primary objective was to determine the association between VAFs and depth of response (PR v CR). A secondary objective was to determine whether VAFs were associated with disease progression. RESULTS Twelve patients were analyzed, nine of whom achieved a PR (75%). Patients received either nivolumab monotherapy (50%) or nivolumab plus ipilimumab (50%). ctDNA analysis incorporated an average of 30 patient-specific mutations (range, 19-35); average coverage depth was 103,342 reads per target. TARDIS quantified a significant difference in VAFs between PR and CR (median, 0.181% [IQR, 0.077%-0.420%] v 0.007% [IQR, 0.0%-0.028%], respectively [P = .014]). Of the 12 patients in the series, six patients demonstrated radiographic progression subsequent to ctDNA assessment. Patients who progressed on subsequent scans had significantly higher ctDNA than those who maintained their response (median, 0.362% [IQR, 0.181%-2.71%] v 0.033% [IQR, 0.007%-0.077%], respectively [P = .026]). CONCLUSION In this pilot study, TARDIS accurately differentiated PR from CR among patients with mRCC receiving immunotherapy, and also prospectively identified patients at risk for subsequent progression. Given these findings, we envision subsequent studies that validate these results and investigate the utility of this assay to discern appropriate candidates for discontinuation of immunotherapy.
Collapse
Affiliation(s)
| | | | - Nazli Dizman
- City of Hope Comprehensive Cancer Center, Duarte, CA
| | - JoAnn Hsu
- City of Hope Comprehensive Cancer Center, Duarte, CA
| | - Luis Meza
- City of Hope Comprehensive Cancer Center, Duarte, CA
| | | | | | - Neal Chawla
- City of Hope Comprehensive Cancer Center, Duarte, CA
| | - Tanya Dorff
- City of Hope Comprehensive Cancer Center, Duarte, CA
| | - Tania Contente-Cuomo
- Translational Genomics Research Institute, an affiliate of City of Hope, Phoenix, AZ
| | - Devin Dinwiddie
- Translational Genomics Research Institute, an affiliate of City of Hope, Phoenix, AZ
| | | | - Timothy McDaniel
- Translational Genomics Research Institute, an affiliate of City of Hope, Phoenix, AZ
| | - Jeffrey M Trent
- Translational Genomics Research Institute, an affiliate of City of Hope, Phoenix, AZ
| | | | - Muhammed Murtaza
- Translational Genomics Research Institute, an affiliate of City of Hope, Phoenix, AZ
- University of Wisconsin-Madison, Madison, WI
| | - Sumanta K Pal
- City of Hope Comprehensive Cancer Center, Duarte, CA
| |
Collapse
|
547
|
Arabian S, Boostan A, Darzi S. The role of toll-like receptors (TLRs) and their therapeutic applications in endometrial cancer. Clin Transl Oncol 2023; 25:859-865. [PMID: 36374404 DOI: 10.1007/s12094-022-02999-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 10/28/2022] [Indexed: 11/16/2022]
Abstract
Endometrial cancer (EC) is developed nations' most prevalent form of gynecologic cancer. Patients are frequently diagnosed with EC when the tumor is still limited to the uterus. Patients without tumor metastasis have a 5-year survival rate ranging from 80 to 90%; however, almost 16.8% of EC patients develop a metastatic form of the tumor. In the early stages of tumorigenesis, the immune system is able to identify aberrant cells as non-self, therefore providing the optimal pro-inflammatory microenvironment for the elimination of cancer cells. Although, chronic inflammation can be a crucial aspect of tumor development. Toll-like receptors (TLRs), as the main pattern recognition receptors (PRRs) in innate immunity, may stimulate an inflammatory response and provide cell survival in the tumor microenvironment (TME). TLRs are vital immunomodulators that may significantly impact the development of gynecologic malignancies. Therefore, TLR inhibitors are being researched for their possible benefits in treating gynecologic cancers. The aim of this study is to review the current knowledge in this field and provide some insight into the therapeutic potential of TLR inhibitors in EC.
Collapse
Affiliation(s)
- Sahereh Arabian
- Abnormal Uterine Bleeding Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Aynaz Boostan
- Abnormal Uterine Bleeding Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Satinik Darzi
- Abnormal Uterine Bleeding Research Center, Semnan University of Medical Sciences, Semnan, Iran.
| |
Collapse
|
548
|
Nikoo M, Rabiee F, Mohebbi H, Eghbalifard N, Rajabi H, Yazdani Y, Sakhaei D, Khosravifarsani M, Akhavan-Sigari R. Nivolumab plus ipilimumab combination therapy in cancer: Current evidence to date. Int Immunopharmacol 2023; 117:109881. [PMID: 37012882 DOI: 10.1016/j.intimp.2023.109881] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/29/2023] [Accepted: 02/06/2023] [Indexed: 03/06/2023]
Abstract
Immune checkpoint inhibitors (ICIs) have revolutionized cancer immunotherapy, yielding significant antitumor responses across multiple cancer types. Combination ICI therapy with anti-CTLA-4 and anti-PD-1 antibodies outperforms either antibody alone in terms of clinical efficacy. As a consequence, the U.S. Food and Drug Administration (FDA) approved ipilimumab (anti-CTLA-4) plus nivolumab (anti-PD-1) as the first-ever approved therapies for combined ICI in patients with metastatic melanoma. Despite the success of ICIs, treatment with checkpoint inhibitor combinations poses significant clinical challenges, such as increased rates of immune-related adverse events (irAEs) and drug resistance. Thus, identifying optimal prognostic biomarkers could help to monitor the safety and efficacy of ICIs and identify patients who may benefit the most from these treatments. In this review, we will first go over the fundamentals of the CTLA-4 and PD-1 pathways, as well as the mechanisms of ICI resistance. The results of clinical findings that evaluated the combination of ipilimumab and nivolumab are then summarized to support future research in the field of combination therapy. Finally, the irAEs associated with combined ICI therapy, as well as the underlying biomarkers involved in their management, are discussed.
Collapse
|
549
|
Tinca AC, Raicea A, Szőke AR, Cocuz IG, Şincu MC, Niculescu R, Sabău AH, Popelea MC, Fruntelată RF, Cotoi OS. Morphological aspects and therapeutic options in melanoma: a narrative review of the past decade. ROMANIAN JOURNAL OF MORPHOLOGY AND EMBRYOLOGY = REVUE ROUMAINE DE MORPHOLOGIE ET EMBRYOLOGIE 2023; 64:135-141. [PMID: 37518869 PMCID: PMC10520381 DOI: 10.47162/rjme.64.2.02] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 07/03/2023] [Indexed: 08/01/2023]
Abstract
Melanoma is a malignant cancer of the skin, the incidence of which has been increasing year by year. This neoplasm has high aggressivity as well as the potential for invasion and metastases. Multiple factors related to the proliferation of this type of tumor have been identified, such as exposure to ultraviolet (UV) radiation and specific genetic backgrounds. From a histological and cytological point of view, the most common cells that are found in melanoma are epithelioid or spindle cells. To confirm the diagnosis and the melanocytic origin of the tumor, specific and sensitive markers are used. Also, observation of the behavior of this cancer, including its proliferative properties, has led to the development of multiple therapies, each of which is characteristic of the pathological stage at the time of diagnosis. While surgery is the most important therapeutic and curative option in cases of melanoma in situ, chemotherapy has been the main treatment for advanced stages of melanoma for many years. However, recently, targeted therapy and immunotherapy have changed the approach to treatment. At present, multiple studies are attempting to obtain further data about the tumor microenvironment and investigating how targeting particular molecules can change the prognosis of patients.
Collapse
|
550
|
Filis P, Kyrochristos I, Korakaki E, Baltagiannis EG, Thanos D, Roukos DH. Longitudinal ctDNA profiling in precision oncology and immunο-oncology. Drug Discov Today 2023; 28:103540. [PMID: 36822363 DOI: 10.1016/j.drudis.2023.103540] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/13/2022] [Accepted: 02/15/2023] [Indexed: 02/25/2023]
Abstract
Serial analysis of circulating tumor DNA (ctDNA) over the disease course is emerging as a prognostic, predictive and patient-monitoring biomarker. In the metastatic setting, several multigene ctDNA assays have been approved or recommended by regulatory organizations for personalized targeted therapy, especially for lung cancer. By contrast, in nonmetastatic disease, detection of ctDNA resulting from minimal residual disease (MRD) following multimodal treatment with curative intent presents major technical challenges. Several studies using tumor genotyping-informed serial ctDNA profiling have provided promising findings on the sensitivity and specificity of ctDNA in predicting the risk of recurrence. We discuss progress, limitations and future perspectives relating to the use of ctDNA as a biomarker to guide targeted therapy in metastatic disease, as well as the use of ctDNA MRD detection to guide adjuvant treatment in the nonmetastatic setting.
Collapse
Affiliation(s)
- Panagiotis Filis
- Centre for Biosystems and Genome Network Medicine, Ioannina University, 45110 Ioannina, Greece; Department of Medical Oncology, Medical School, University of Ioannina, 45110 Ioannina, Greece
| | - Ioannis Kyrochristos
- Centre for Biosystems and Genome Network Medicine, Ioannina University, 45110 Ioannina, Greece; Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, D-80539 Munich, Germany
| | - Efterpi Korakaki
- Centre for Biosystems and Genome Network Medicine, Ioannina University, 45110 Ioannina, Greece; Department of Physiology, Medical School, University of Ioannina, Ioannina 45110, Greece
| | - Evangelos G Baltagiannis
- Centre for Biosystems and Genome Network Medicine, Ioannina University, 45110 Ioannina, Greece; Department of Surgery, University Hospital of Ioannina, Ioannina 45500, Greece
| | - Dimitris Thanos
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Dimitrios H Roukos
- Centre for Biosystems and Genome Network Medicine, Ioannina University, 45110 Ioannina, Greece; Department of Systems Biology, Biomedical Research Foundation of the Academy of Athens (BRFAA), 11527 Athens, Greece.
| |
Collapse
|