501
|
Dendritic cell extracellular vesicles. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 349:213-249. [DOI: 10.1016/bs.ircmb.2019.08.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
502
|
Słomka A, Urban SK, Lukacs-Kornek V, Żekanowska E, Kornek M. Large Extracellular Vesicles: Have We Found the Holy Grail of Inflammation? Front Immunol 2018; 9:2723. [PMID: 30619239 PMCID: PMC6300519 DOI: 10.3389/fimmu.2018.02723] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 11/05/2018] [Indexed: 12/17/2022] Open
Abstract
The terms microparticles (MPs) and microvesicles (MVs) refer to large extracellular vesicles (EVs) generated from a broad spectrum of cells upon its activation or death by apoptosis. The unique surface antigens of MPs/MVs allow for the identification of their cellular origin as well as its functional characterization. Two basic aspects of MP/MV functions in physiology and pathological conditions are widely considered. Firstly, it has become evident that large EVs have strong procoagulant properties. Secondly, experimental and clinical studies have shown that MPs/MVs play a crucial role in the pathophysiology of inflammation-associated disorders. A cardinal feature of these disorders is an enhanced generation of platelets-, endothelial-, and leukocyte-derived EVs. Nevertheless, anti-inflammatory effects of miscellaneous EV types have also been described, which provided important new insights into the large EV-inflammation axis. Advances in understanding the biology of MPs/MVs have led to the preparation of this review article aimed at discussing the association between large EVs and inflammation, depending on their cellular origin.
Collapse
Affiliation(s)
- Artur Słomka
- Department of Pathophysiology, Nicolaus Copernicus University in Toruń, Ludwik Rydygier Collegium Medicum, Bydgoszcz, Poland
| | - Sabine Katharina Urban
- Department of Medicine II, Saarland University Medical Center, Saarland University, Homburg, Germany
| | - Veronika Lukacs-Kornek
- Institute of Experimental Immunology, University Hospital of the Rheinische Friedrich-Wilhelms-University, Bonn, Germany
| | - Ewa Żekanowska
- Department of Pathophysiology, Nicolaus Copernicus University in Toruń, Ludwik Rydygier Collegium Medicum, Bydgoszcz, Poland
| | - Miroslaw Kornek
- Department of Oncology, Hematology and Rheumatology, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
503
|
Li L, Lu S, Liang X, Cao B, Wang S, Jiang J, Luo H, He S, Lang J, Zhu G. γδTDEs: An Efficient Delivery System for miR-138 with Anti-tumoral and Immunostimulatory Roles on Oral Squamous Cell Carcinoma. MOLECULAR THERAPY-NUCLEIC ACIDS 2018; 14:101-113. [PMID: 30594069 PMCID: PMC6307324 DOI: 10.1016/j.omtn.2018.11.009] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 11/11/2018] [Accepted: 11/16/2018] [Indexed: 02/05/2023]
Abstract
In this study, we sought to investigate the potential application of γδ T cell-derived extracellular vesicles (γδTDEs) as drug delivery system (DDS) for miR-138 in the treatment of oral squamous cell carcinoma (OSCC). Our data showed that overexpression of miR-138 in γδ T cells obtained miR-138-rich γδTDEs accompanying increased expansion and cytotoxicity of γδ T cells. γδTDEs inherited the cytotoxic profile of γδ T cells and could efficiently deliver miR-138 to OSCC cells, resulting in synergetic inhibition on OSCC both in vitro and in vivo. The pre-immunization by miR-138-rich γδTDEs inhibited the growth of OSCC tumors in immunocompetent C3H mice, but not in nude mice, suggesting an immunomodulatory role by miR-13-rich γδTDEs. γδTDEs and miR-138 additively increased the proliferation, interferon-γ (IFN-γ) production, and cytotoxicity of CD8+ T cells against OSCC cells. Only delivered by γδTDEs can miR-138 efficiently target programmed cell death 1 (PD-1) and CTLA-4 in CD8+ T cells. We conclude that γδTDEs delivering miR-138 could achieve synergetic therapeutic effects on OSCC, which is benefited from the individual direct anti-tumoral effects on OSCC and immunostimulatory effects on T cells by both γδTDEs and miR-138; γδTDEs could serve as an efficient DDS for microRNAs (miRNAs) in the treatment of cancer.
Collapse
Affiliation(s)
- Ling Li
- Department of Head and Neck Surgery, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610041, P.R. China
| | - Shun Lu
- Department of Radiation Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610041, P.R. China
| | - Xinhua Liang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China
| | - Bangrong Cao
- Department of Basic Research, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610041, P.R. China
| | - Shaoxin Wang
- Department of Head and Neck Surgery, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610041, P.R. China
| | - Jian Jiang
- Department of Head and Neck Surgery, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610041, P.R. China
| | - Huaichao Luo
- Department of Clinical Laboratory, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610041, P.R. China
| | - Shuya He
- Department of Clinical Laboratory, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610041, P.R. China
| | - Jinyi Lang
- Department of Radiation Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610041, P.R. China.
| | - Guiquan Zhu
- Department of Head and Neck Surgery, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610041, P.R. China.
| |
Collapse
|
504
|
Role of tumor-derived exosomes in cancer metastasis. Biochim Biophys Acta Rev Cancer 2018; 1871:12-19. [PMID: 30419312 DOI: 10.1016/j.bbcan.2018.10.004] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 10/22/2018] [Accepted: 10/22/2018] [Indexed: 12/21/2022]
Abstract
The highlights of cancer research include the discovery of exosomes, which are small (30-100 nm) sized vesicular nanoparticles released virtually by all cells. Tumor-derived exosomes (TDEs) are notoriously known for orchestrating the invasion-metastasis cascade via systemic pathways that we have previously proposed (1), resulting in a paradigm shift of our understanding about the pathobiology of metastases. In principle, exosomes serve as transport medium for proteins, mRNAs and miRNAs to transmit targeted cues from the primary cell to distant sites via horizontal transfer or cell-receptor interaction. In this chapter, we seek to explore in-depth the mechanisms engendering TDE in the metastatic cascade, along with experimental models to augment our understanding. The aforementioned has also paved way for parallel advancements in the therapeutic armamentarium, as evident from pronounced efforts to exploit the metastatic process for therapeutic targeting. In this light, we aim to examine potential anti-metastatic therapeutic opportunities derived from exosomal research. Lastly, exosomes may play a crucial role in the contemporary era of "liquid biopsies", given the array of molecular information with diagnostic and predictive indications. We thus intend to end this chapter off by exploring future applications of exosomes that could illuminate shortcomings and propel advancements in biomarker research.
Collapse
|
505
|
Gao D, Jiang L. Exosomes in cancer therapy: a novel experimental strategy. Am J Cancer Res 2018; 8:2165-2175. [PMID: 30555736 PMCID: PMC6291654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 10/16/2018] [Indexed: 06/09/2023] Open
Abstract
Exosomes are small membrane vesicles of endocytic origin secreted by most cell types. They play important roles in intercellular communications and many physiological processes. DCs-derived exosomes can prime naïve T cells and activate NK cells to shrink the tumor. Tumor-derived exosomes carry a variety of tumor antigens that trigger the robust tumor antigen-specific immune response. Tumor-derived exosomes also contain metastasis or invasive-related molecules, which maybe potential targets for cancer immunotherapy. Effector T cells-derived exosomes possess cytotoxic activity of their original cells, thus cause tumor cells lysis. In this review, we summarized the recent advances on the biogenesis and composition of exosomes, the functions of anti-tumor immune response, and the promising applications on cancer immunotherapy of exosomes from different origins. Exosomes schlep efficient targets homing to tumor sites and tend to be a promising new tool of immunotherapy to fight cancer in a cell-free system.
Collapse
Affiliation(s)
- Dong Gao
- Research Institute of Shenzhen Beike Biotechnology Co., Ltd.Keyuan Road 18, Shenzhen, Guangdong, P. R. China
- Shenzhen Hornetcorn Biotechnology Co., Ltd.Shihua Road 14, Shenzhen, Guangdong, P. R. China
| | - Lingling Jiang
- Shenzhen Hornetcorn Biotechnology Co., Ltd.Shihua Road 14, Shenzhen, Guangdong, P. R. China
- Sir Run Run Shaw Hospital, College of Medicine, Zhejiang UniversityQingchun East Road 3, Hangzhou, Zhejiang, P. R. China
| |
Collapse
|
506
|
Rayyan M, Zheutlin A, Byrd JB. Clinical research using extracellular vesicles: insights from the International Society for Extracellular Vesicles 2018 Annual Meeting. J Extracell Vesicles 2018; 7:1535744. [PMID: 31162489 PMCID: PMC6211232 DOI: 10.1080/20013078.2018.1535744] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 09/12/2018] [Accepted: 09/27/2018] [Indexed: 11/26/2022] Open
Abstract
The abstracts presented at the 2018 International Society for Extracellular Vesicles Annual Meeting offer unique insight into the newest discoveries related to the biology and applied use of extracellular vesicles (EVs). As an extension of a recent "Clinical-Wrap Up" discussion at the International Society for Extracellular Vesicles 2018 Annual Meeting, a systematic review of each abstract was performed to determine which abstracts could be considered clinical research. Once the clinical research abstracts were identified, systematic data extraction included: the major focus of each clinical research abstract; the countries in which the work was done; and the sample size, if provided in the abstract. Each abstract was reviewed by two independent authors, with a third author resolving discrepancies in cases of disagreement. 174 out of 656 (27%) unique abstracts were determined to be clinical research. Oncology was a principal research focus (51 of the 174 clinical research abstracts, 29%). Many other clinical research abstracts presented at the International Society for Extracellular Vesicles 2018 Annual Meeting focused on the use of human samples for development of methods for potential application in the clinic. Beyond oncology and methods development, a wide range of topics was represented, including cardiovascular disease, neurodegenerative disease, genetics, and many others. Current research involving EVs highlights the common, but false dichotomy of science into curiosity-driven basic science or application-driven clinical research, when in fact both quest for understanding and intent to apply the findings appeared to drive much of the work at the International Society for Extracellular Vesicles 2018 Annual Meeting. Using Pasteur's Quadrant as a framework, we discuss where the field of EV research is heading and how we may gain insight into the biological function of EVs in tandem with how they may benefit individual health.
Collapse
Affiliation(s)
- Morsi Rayyan
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Alex Zheutlin
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - James Brian Byrd
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
507
|
Greening DW, Simpson RJ. Understanding extracellular vesicle diversity – current status. Expert Rev Proteomics 2018; 15:887-910. [DOI: 10.1080/14789450.2018.1537788] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- David W. Greening
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University , Melbourne, Australia
| | - Richard J. Simpson
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University , Melbourne, Australia
| |
Collapse
|
508
|
Ludwig AK, De Miroschedji K, Doeppner TR, Börger V, Ruesing J, Rebmann V, Durst S, Jansen S, Bremer M, Behrmann E, Singer BB, Jastrow H, Kuhlmann JD, El Magraoui F, Meyer HE, Hermann DM, Opalka B, Raunser S, Epple M, Horn PA, Giebel B. Precipitation with polyethylene glycol followed by washing and pelleting by ultracentrifugation enriches extracellular vesicles from tissue culture supernatants in small and large scales. J Extracell Vesicles 2018; 7:1528109. [PMID: 30357008 PMCID: PMC6197019 DOI: 10.1080/20013078.2018.1528109] [Citation(s) in RCA: 185] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 08/07/2018] [Accepted: 09/21/2018] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs) provide a complex means of intercellular signalling between cells at local and distant sites, both within and between different organs. According to their cell-type specific signatures, EVs can function as a novel class of biomarkers for a variety of diseases, and can be used as drug-delivery vehicles. Furthermore, EVs from certain cell types exert beneficial effects in regenerative medicine and for immune modulation. Several techniques are available to harvest EVs from various body fluids or cell culture supernatants. Classically, differential centrifugation, density gradient centrifugation, size-exclusion chromatography and immunocapturing-based methods are used to harvest EVs from EV-containing liquids. Owing to limitations in the scalability of any of these methods, we designed and optimised a polyethylene glycol (PEG)-based precipitation method to enrich EVs from cell culture supernatants. We demonstrate the reproducibility and scalability of this method and compared its efficacy with more classical EV-harvesting methods. We show that washing of the PEG pellet and the re-precipitation by ultracentrifugation remove a huge proportion of PEG co-precipitated molecules such as bovine serum albumine (BSA). However, supported by the results of the size exclusion chromatography, which revealed a higher purity in terms of particles per milligram protein of the obtained EV samples, PEG-prepared EV samples most likely still contain a certain percentage of other non-EV associated molecules. Since PEG-enriched EVs revealed the same therapeutic activity in an ischemic stroke model than corresponding cells, it is unlikely that such co-purified molecules negatively affect the functional properties of obtained EV samples. In summary, maybe not being the purification method of choice if molecular profiling of pure EV samples is intended, the optimised PEG protocol is a scalable and reproducible method, which can easily be adopted by laboratories equipped with an ultracentrifuge to enrich for functional active EVs.
Collapse
Affiliation(s)
- Anna-Kristin Ludwig
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.,Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Kyra De Miroschedji
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Thorsten R Doeppner
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.,Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.,Department of Neurology, University Medical Center Goettingen, Goettingen, Germany
| | - Verena Börger
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Johannes Ruesing
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Essen, Germany
| | - Vera Rebmann
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Stephan Durst
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Sören Jansen
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Michel Bremer
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Elmar Behrmann
- Department of Structural Biology, Max-Planck-Institute for Physiology, Dortmund, Germany.,Institute of Biochemistry - Structural Biochemistry, University of Cologne, Cologne, Germany.,Max Planck Research Group Structural Dynamics of Proteins, Center of Advanced European Studies and Research (caesar), Bonn, Germany
| | - Bernhard B Singer
- Institute of Anatomy, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Holger Jastrow
- Institute of Anatomy, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.,Electron Microscopy Unit, Imaging Center Essen, University Hospital Essen, University of Duisburg, Essen, Germany
| | - Jan Dominik Kuhlmann
- Department of Gynecology and Obstetrics, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,National Center for Tumor Diseases (NCT), Partner Site Dresden, Dresden, Germany.,German Cancer Consortium (DKTK), Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Fouzi El Magraoui
- Biomedical Research, Human Brain Proteomics II, Leibniz-Institut für Analytische Wissenschaften-ISAS, Dortmund, Germany
| | - Helmut E Meyer
- Biomedical Research, Human Brain Proteomics II, Leibniz-Institut für Analytische Wissenschaften-ISAS, Dortmund, Germany
| | - Dirk M Hermann
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Bertram Opalka
- Department of Hematology, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Stefan Raunser
- Department of Structural Biology, Max-Planck-Institute for Physiology, Dortmund, Germany
| | - Matthias Epple
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Essen, Germany
| | - Peter A Horn
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Bernd Giebel
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
509
|
Yang X, Chen J, Wang N, Liu Z, Li Y. Clinical use of dendritic cell-derived exosomes for hepatocellular carcinoma immunotherapy: How far we are? J Hepatol 2018; 69:984-986. [PMID: 30093161 DOI: 10.1016/j.jhep.2018.07.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 07/03/2018] [Accepted: 07/05/2018] [Indexed: 02/05/2023]
Affiliation(s)
- Xinyu Yang
- Department of Pediatric Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Jiale Chen
- Department of Pediatric Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Ning Wang
- Department of Pediatric Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Zhui Liu
- Department of Pediatric Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yuan Li
- Institute of Digestive Surgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
510
|
Emam SE, Ando H, Lila ASA, Shimizu T, Okuhira K, Ishima Y, Mahdy MA, Ghazy FES, Sagawa I, Ishida T. Liposome co-incubation with cancer cells secreted exosomes (extracellular vesicles) with different proteins expressions and different uptake pathways. Sci Rep 2018; 8:14493. [PMID: 30262875 PMCID: PMC6160473 DOI: 10.1038/s41598-018-32861-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 09/17/2018] [Indexed: 12/21/2022] Open
Abstract
We recently showed that in vitro incubation of cells with liposomes of varying compositions can increase exosome secretion and increase the yield of harvested exosomes (extracellular vesicles, EVs). This might foster their potential therapeutic implementations. In the current study, we investigated the surface proteins and the uptake of the harvested exosomes (EVs) to see if the incubation of cells with liposomes would change the biological properties of these exosomes (EVs). Interestingly, exosomes (EVs) induced by solid cationic liposomes lacked some major exosome marker proteins such as CD9, flotillin-1, annexin-A2 and EGF, and subsequently had lower levels of cellular uptake upon re-incubation with donor cancer cells. However, exosomes (EVs) induced under normal condition and by fluid cationic liposomes, displayed the entire spectrum of proteins, and exhibited higher uptake by the donor cancer cells. Although endocytosis was the major uptake pathway of exosomes (EVs) by tumor cells, endocytosis could occur via more than one mechanism. Higher exosome uptake was observed in donor B16BL6 cells than in allogeneic C26 cells, indicating that donor cells might interact specifically with their exosomes (EVs) and avidly internalize them. Taken together, these results suggest a technique for controlling the characteristics of secreted exosomes (EVs) by incubating donor cancer cells with liposomes of varying physiochemical properties.
Collapse
Affiliation(s)
- Sherif E Emam
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1 Sho-machi, Tokushima, 770-8505, Japan
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Hidenori Ando
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1 Sho-machi, Tokushima, 770-8505, Japan
| | - Amr S Abu Lila
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1 Sho-machi, Tokushima, 770-8505, Japan
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
- Department of Pharmaceutics, College of Pharmacy, Hail University, Hail, 81442, Saudi Arabia
| | - Taro Shimizu
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1 Sho-machi, Tokushima, 770-8505, Japan
| | - Keiichiro Okuhira
- Department of Molecular Physical Pharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1 Sho-machi, Tokushima, 770-8505, Japan
| | - Yu Ishima
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1 Sho-machi, Tokushima, 770-8505, Japan
| | - Mahmoud A Mahdy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Fakhr-Eldin S Ghazy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Ikuko Sagawa
- Support Center for Advanced Medical Sciences, Institute of Biomedical Sciences, Tokushima University, 1-78-1 Sho-machi, Tokushima, 770-8505, Japan
| | - Tatsuhiro Ishida
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1 Sho-machi, Tokushima, 770-8505, Japan.
| |
Collapse
|
511
|
Jella KK, Nasti TH, Li Z, Malla SR, Buchwald ZS, Khan MK. Exosomes, Their Biogenesis and Role in Inter-Cellular Communication, Tumor Microenvironment and Cancer Immunotherapy. Vaccines (Basel) 2018; 6:vaccines6040069. [PMID: 30261592 PMCID: PMC6313856 DOI: 10.3390/vaccines6040069] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 09/19/2018] [Accepted: 09/21/2018] [Indexed: 12/14/2022] Open
Abstract
Exosomes are extracellular vesicles ranging from 30 to 150 nm in diameter that contain molecular constituents of their host cells. They are released from different types of cells ranging from immune to tumor cells and play an important role in intercellular communication. Exosomes can be manipulated by altering their host cells and can be loaded with products of interest such as specific drugs, proteins, DNA and RNA species. Due to their small size and the unique composition of their lipid bilayer, exosomes are capable of reaching different cell types where they alter the pathophysiological conditions of the recipient cells. There is growing evidence that exosomes are used as vehicles that can modulate the immune system and play an important role in cancer progression. The cross communication between the tumors and the cells of the immune system has gained attention in various immunotherapeutic approaches for several cancer types. In this review, we discuss the exosome biogenesis, their role in inter-cellular communication, and their capacity to modulate the immune system as a part of future cancer immunotherapeutic approaches and their potential to serve as biomarkers of therapy response.
Collapse
Affiliation(s)
| | - Tahseen H Nasti
- Department of Microbiology and Immunology, Emory University, Atlanta, GA 30322, USA.
| | - Zhentian Li
- Department of Radiation Oncology, Emory University, Atlanta, GA 30322, USA.
| | - Sudarshan R Malla
- Division of Renal Medicine, Emory University, Atlanta, GA 30322, USA.
| | - Zachary S Buchwald
- Department of Radiation Oncology, Emory University, Atlanta, GA 30322, USA.
| | - Mohammad K Khan
- Department of Radiation Oncology, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
512
|
Pinheiro A, Silva AM, Teixeira JH, Gonçalves RM, Almeida MI, Barbosa MA, Santos SG. Extracellular vesicles: intelligent delivery strategies for therapeutic applications. J Control Release 2018; 289:56-69. [PMID: 30261205 DOI: 10.1016/j.jconrel.2018.09.019] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 09/20/2018] [Accepted: 09/21/2018] [Indexed: 12/11/2022]
Abstract
Extracellular vesicles (EV), in particular exosomes, have been the object of intense research, due to their potential to mediate intercellular communication, modulating the phenotype of target cells. The natural properties and functions of EV are being exploited as biomarkers for disease diagnosis and prognosis, and as nano-bio-carriers for the development of new therapeutic strategies. EV have been particularly examined in the field of cancer, but are also increasingly investigated in other areas, like immune-related diseases and regenerative medicine. In this review, the therapeutic use of EV as drug delivery systems is described, balancing the advantages and drawbacks of different routes for their in vivo administration. Systemic and local delivery of EV are discussed, tackling the persisting difficulties in the assessment of their pharmacokinetics, pharmacodynamics and biodistribution in vivo. Finally, we discuss the future perspectives for incorporating EV into delivery systems and their use for an improved and controlled release of EV in vivo.
Collapse
Affiliation(s)
- Alice Pinheiro
- i3S - Instituto de Investigação e Inovação em Saúde da Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; FEUP - Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal
| | - Andreia M Silva
- i3S - Instituto de Investigação e Inovação em Saúde da Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - José H Teixeira
- i3S - Instituto de Investigação e Inovação em Saúde da Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Raquel M Gonçalves
- i3S - Instituto de Investigação e Inovação em Saúde da Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Maria I Almeida
- i3S - Instituto de Investigação e Inovação em Saúde da Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Mário A Barbosa
- i3S - Instituto de Investigação e Inovação em Saúde da Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Susana G Santos
- i3S - Instituto de Investigação e Inovação em Saúde da Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal.
| |
Collapse
|
513
|
Graner MW. Extracellular vesicles in cancer immune responses: roles of purinergic receptors. Semin Immunopathol 2018; 40:465-475. [PMID: 30209547 DOI: 10.1007/s00281-018-0706-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 09/04/2018] [Indexed: 12/24/2022]
Abstract
Extracellular vesicles (EVs) are nano- to micro-scale membrane-enclosed vesicles that are released from presumably all cell types. Tumor cells and immune cells are prodigious generators of EVs often with competing phenotypes in terms of immune suppression versus immune stimulation. Purinergic receptors, proteins that bind diverse purine nucleotides and nucleosides (ATP, ADP, AMP, adenosine), are widely expressed across tissues and cell types, and are prominent players in immune and tumor cell nucleotide metabolism. The effects of purinergic receptor stimulation or agonism tend to produce inflammatory responses that may aid immune stimulation but may also provoke various immune suppression mechanisms, particularly in the tumor microenvironment. EVs released by cells following receptor stimulation are frequently pro-inflammatory, but often also pro-thrombolytic; these EVs may generate an environment that favors tumor progression at the cost of an effective immune response. Purinergic signaling pathways are becoming more recognized as valuable targets in various therapeutic scenarios, including cancer. It is possible that some of those clinically relevant compounds might also impact EV secretion and/or phenotype, which would hopefully capitalize on the immune stimulatory properties of purinergic signaling while minimizing the immune suppressive consequences. This review covers a relatively understudied area in EV biology, but even so, focuses almost exclusively on the purinergic receptors in a very limited capacity. There is much more to evaluate and incorporate into our understanding of extracellular nucleotides in EV biology, and we hope this work prompts further discovery.
Collapse
Affiliation(s)
- Michael W Graner
- Department of Neurosurgery, University of Colorado Denver, Anschutz Medical Campus, RC2, 12700 E 19th Ave, Room 5125, Aurora, CO, 80045, USA.
| |
Collapse
|
514
|
Circulating or tissue microRNAs and extracellular vesicles as potential lung cancer biomarkers: a systematic review. Int J Biol Markers 2018; 33:3-9. [PMID: 29076520 DOI: 10.5301/ijbm.5000307] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
For both lung cancer patients and clinical physicians, tumor biomarkers for more efficient early diagnosis and prediction of prognosis are always wanted. Biomarkers in circulating serum, including microRNAs (miRNAs) and extracellular vesicles, hold the greatest possibilities to partially substitute for tissue biopsy. In this systematic review, studies on circulating or tissue miRNAs and extracellular vesicles as potential biomarkers for lung cancer patients were reviewed and are discussed. Furthermore, the target genes of the miRNAs indicated were identified through the miRTarBase, while the relevant biological processes and pathways of miRNAs in lung cancer were analyzed through MiRNA Enrichment Analysis and Annotation (MiEAA). In conclusion, circulating or tissue miRNAs and extracellular vesicles provide us with a window to explore strategies for diagnosing and assessing prognosis and treatment in lung cancer patients.
Collapse
|
515
|
Jabalee J, Towle R, Garnis C. The Role of Extracellular Vesicles in Cancer: Cargo, Function, and Therapeutic Implications. Cells 2018; 7:cells7080093. [PMID: 30071693 PMCID: PMC6115997 DOI: 10.3390/cells7080093] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 07/27/2018] [Accepted: 07/29/2018] [Indexed: 12/21/2022] Open
Abstract
Extracellular vesicles (EVs) are a heterogeneous collection of membrane-bound structures that play key roles in intercellular communication. EVs are potent regulators of tumorigenesis and function largely via the shuttling of cargo molecules (RNA, DNA, protein, etc.) among cancer cells and the cells of the tumor stroma. EV-based crosstalk can promote proliferation, shape the tumor microenvironment, enhance metastasis, and allow tumor cells to evade immune destruction. In many cases these functions have been linked to the presence of specific cargo molecules. Herein we will review various types of EV cargo molecule and their functional impacts in the context of oncology.
Collapse
Affiliation(s)
- James Jabalee
- Department of Integrative Oncology, British Columbia Cancer Research Center, Vancouver V5Z 1L3, BC, Canada.
| | - Rebecca Towle
- Department of Integrative Oncology, British Columbia Cancer Research Center, Vancouver V5Z 1L3, BC, Canada.
| | - Cathie Garnis
- Department of Integrative Oncology, British Columbia Cancer Research Center, Vancouver V5Z 1L3, BC, Canada.
- Division of Otolaryngology, Department of Surgery, University of British Columbia, Vancouver V6T 1Z4, BC, Canada.
| |
Collapse
|
516
|
Record M, Silvente-Poirot S, Poirot M, Wakelam MJO. Extracellular vesicles: lipids as key components of their biogenesis and functions. J Lipid Res 2018; 59:1316-1324. [PMID: 29764923 PMCID: PMC6071772 DOI: 10.1194/jlr.e086173] [Citation(s) in RCA: 207] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Indexed: 12/15/2022] Open
Abstract
Intercellular communication has been known for decades to involve either direct contact between cells or to operate via circulating molecules, such as cytokines, growth factors, or lipid mediators. During the last decade, we have begun to appreciate the increasing importance of intercellular communication mediated by extracellular vesicles released by viable cells either from plasma membrane shedding (microvesicles, also named microparticles) or from an intracellular compartment (exosomes). Exosomes and microvesicles circulate in all biological fluids and can trigger biological responses at a distance. Their effects include a large variety of biological processes, such as immune surveillance, modification of tumor microenvironment, or regulation of inflammation. Extracellular vesicles can carry a large array of active molecules, including lipid mediators, such as eicosanoids, proteins, and nucleic acids, able to modify the phenotype of receiving cells. This review will highlight the role of the various lipidic pathways involved in the biogenesis and functions of microvesicles and exosomes.
Collapse
Affiliation(s)
- Michel Record
- UMR INSERM 1037-CRCT (Cancer Research Center of Toulouse), University of Toulouse III Paul Sabatier, Team "Cholesterol Metabolism and Therapeutic Innovations," Toulouse, France
| | - Sandrine Silvente-Poirot
- UMR INSERM 1037-CRCT (Cancer Research Center of Toulouse), University of Toulouse III Paul Sabatier, Team "Cholesterol Metabolism and Therapeutic Innovations," Toulouse, France
| | - Marc Poirot
- UMR INSERM 1037-CRCT (Cancer Research Center of Toulouse), University of Toulouse III Paul Sabatier, Team "Cholesterol Metabolism and Therapeutic Innovations," Toulouse, France
| | | |
Collapse
|
517
|
Doeppner TR, Bähr M, Giebel B, Hermann DM. Immunological and non-immunological effects of stem cell-derived extracellular vesicles on the ischaemic brain. Ther Adv Neurol Disord 2018; 11:1756286418789326. [PMID: 30083231 PMCID: PMC6071165 DOI: 10.1177/1756286418789326] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 06/05/2018] [Indexed: 12/21/2022] Open
Abstract
Following the implementation of thrombolysis and endovascular recanalization
strategies, stroke therapy has profoundly changed in recent years. In spite of
these advancements, a considerable proportion of stroke patients still exhibit
functional impairment in the long run, increasing the need for adjuvant
therapies that promote neurological recovery. Stem cell therapies have initially
attracted great interest in the stroke field, since there were hopes that
transplanted cells may allow for the replacement of lost cells. After the
recognition that transplanted cells integrate poorly into existing neural
networks and that they induce brain remodelling in a paracrine way by secreting
a heterogeneous group of nanovesicles, these extracellular vesicles (EVs) have
been identified as key players that mediate restorative effects of stem and
progenitor cells in ischaemic brain tissue. We herein review restorative effects
of EVs in stroke models and discuss immunological and non-immunological
mechanisms that may underlie recovery of function.
Collapse
Affiliation(s)
- Thorsten R Doeppner
- Department of Neurology, University Medical Center Goettingen, Robert-Koch-Str. 40, 37075 Goettingen, Germany
| | - Mathias Bähr
- Department of Neurology, University Medical Center Goettingen, Department of Neurology, Goettingen, Germany
| | - Bernd Giebel
- Institute of Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Dirk M Hermann
- Department of Neurology, University Hospital Essen, Hufelandstr. 55, 45147 Essen, Germany
| |
Collapse
|
518
|
Sun F, Wang JZ, Luo JJ, Wang YQ, Pan Q. Exosomes in the Oncobiology, Diagnosis, and Therapy of Hepatic Carcinoma: A New Player of an Old Game. BIOMED RESEARCH INTERNATIONAL 2018; 2018:2747461. [PMID: 30148162 PMCID: PMC6083546 DOI: 10.1155/2018/2747461] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 06/27/2018] [Accepted: 07/12/2018] [Indexed: 12/20/2022]
Abstract
Exosomes are emerging as essential vehicles mediated cross-talk between different types of cells in tumor microenvironment. The extensive exploration of exosomes in hepatocellular carcinoma (HCC) enhances our comprehension of cancer biology referring to tumor growth, metastasis, immune evasion, and chemoresistance. Besides, the versatile roles of exosomes provide reasonable explanations for the propensity for liver metastasis of gastric cancer, pancreatic ductal adenocarcinoma, breast cancer, and colorectal cancer. The selective-enriched components, especially some specific proteins and noncoding RNAs in exosomes, have great potential as noninvasive biomarkers of HCC with high sensitivity and specificity. The characteristics of exosomes further inspire frontier research to interrupt intercellular malignant signals by controlling the biogenesis, release, or contents of exosomes.
Collapse
Affiliation(s)
- Fang Sun
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Jin-Zhi Wang
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Ji-Jun Luo
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Yu-Qin Wang
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Qin Pan
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| |
Collapse
|
519
|
Yang M, Wu SY. The Advances and Challenges in Utilizing Exosomes for Delivering Cancer Therapeutics. Front Pharmacol 2018; 9:735. [PMID: 30061829 PMCID: PMC6055018 DOI: 10.3389/fphar.2018.00735] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 06/18/2018] [Indexed: 01/09/2023] Open
Affiliation(s)
- Mengliu Yang
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Sherry Y Wu
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
520
|
Tai YL, Chen KC, Hsieh JT, Shen TL. Exosomes in cancer development and clinical applications. Cancer Sci 2018; 109:2364-2374. [PMID: 29908100 PMCID: PMC6113508 DOI: 10.1111/cas.13697] [Citation(s) in RCA: 304] [Impact Index Per Article: 43.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 06/11/2018] [Indexed: 02/06/2023] Open
Abstract
Exosomes participate in cancer progression and metastasis by transferring bioactive molecules between cancer and various cells in the local and distant microenvironments. Such intercellular cross‐talk results in changes in multiple cellular and biological functions in recipient cells. Several hallmarks of cancer have reportedly been impacted by this exosome‐mediated cell‐to‐cell communication, including modulating immune responses, reprogramming stromal cells, remodeling the architecture of the extracellular matrix, or even endowing cancer cells with characteristics of drug resistance. Selectively, loading specific oncogenic molecules into exosomes highlights exosomes as potential diagnostic biomarkers as well as therapeutic targets. In addition, exosome‐based drug delivery strategies in preclinical and clinical trials have been shown to dramatically decrease cancer development. In the present review, we summarize the significant aspects of exosomes in cancer development that can provide novel strategies for potential clinical applications.
Collapse
Affiliation(s)
- Yu-Ling Tai
- Department of Plant Pathology and Microbiology & Center for Biotechnology, National Taiwan University, Taipei, Taiwan.,Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ko-Chien Chen
- Department of Plant Pathology and Microbiology & Center for Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Jer-Tsong Hsieh
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Institute of Biomedical Sciences, Chinese Medical University, Taichung, Taiwan
| | - Tang-Long Shen
- Department of Plant Pathology and Microbiology & Center for Biotechnology, National Taiwan University, Taipei, Taiwan.,Institute of Biomedical Sciences, Chinese Medical University, Taichung, Taiwan
| |
Collapse
|
521
|
Chulpanova DS, Kitaeva KV, James V, Rizvanov AA, Solovyeva VV. Therapeutic Prospects of Extracellular Vesicles in Cancer Treatment. Front Immunol 2018; 9:1534. [PMID: 30018618 PMCID: PMC6037714 DOI: 10.3389/fimmu.2018.01534] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 06/21/2018] [Indexed: 01/04/2023] Open
Abstract
Extracellular vesicles (EVs) are released by all cells within the tumor microenvironment, such as endothelial cells, tumor-associated fibroblasts, pericytes, and immune system cells. The EVs carry the cargo of parental cells formed of proteins and nucleic acids, which can convey cell-to-cell communication influencing the maintenance and spread of the malignant neoplasm, for example, promoting angiogenesis, tumor cell invasion, and immune escape. However, EVs can also suppress tumor progression, either by the direct influence of the protein and nucleic acid cargo of the EVs or via antigen presentation to immune cells as tumor-derived EVs carry on their surface some of the same antigens as the donor cells. Moreover, dendritic cell-derived EVs carry major histocompatibility complex class I and class II/peptide complexes and are able to prime other immune system cell types and activate an antitumor immune response. Given the relative longevity of vesicles within the circulation and their ability to cross blood–brain barriers, modification of these unique organelles offers the potential to create new biological-tools for cancer therapy. This review examines how modification of the EV cargo has the potential to target specific tumor mechanisms responsible for tumor formation and progression to develop new therapeutic strategies and to increase the efficacy of antitumor therapies.
Collapse
Affiliation(s)
- Daria S Chulpanova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Kristina V Kitaeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Victoria James
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, United Kingdom
| | - Albert A Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Valeriya V Solovyeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| |
Collapse
|
522
|
Dörsam B, Reiners KS, von Strandmann EP. Cancer-derived extracellular vesicles: friend and foe of tumour immunosurveillance. Philos Trans R Soc Lond B Biol Sci 2018; 373:rstb.2016.0481. [PMID: 29158311 PMCID: PMC5717436 DOI: 10.1098/rstb.2016.0481] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2017] [Indexed: 12/16/2022] Open
Abstract
Extracellular vesicles (EVs) are important players of intercellular signalling mechanisms, including communication with and among immune cells. EVs can affect the surrounding tissue as well as peripheral cells. Recently, EVs have been identified to be involved in the aetiology of several diseases, including cancer. Tumour cell-released EVs or exosomes have been shown to promote a tumour-supporting environment in non-malignant tissue and, thus, benefit metastasis. The underlying mechanisms are numerous: loss of antigen expression, direct suppression of immune effector cells, exchange of nucleic acids, alteration of the recipient cells' transcription and direct suppression of immune cells. Consequently, tumour cells can subvert the host's immune detection as well as suppress the immune system. On the contrary, recent studies reported the existence of EVs able to activate immune cells, thus promoting the tumour-directed immune response. In this article, the immunosuppressive capabilities of EVs, on the one hand, and their potential use in immunoactivation and therapeutic potential, on the other hand, are discussed. This article is part of the discussion meeting issue ‘Extracellular vesicles and the tumour microenvironment’.
Collapse
Affiliation(s)
- Bastian Dörsam
- Experimental Tumor Research, Center for Tumor Biology and Immunology, Clinic for Hematology, Oncology and Immunology, Philipps University, Hans-Meerwein-Street 3, 35043 Marburg, Germany
| | - Kathrin S Reiners
- Institute of Clinical Chemistry and Clinical Pharmacology, Biomedical Center, University Hospital, University of Bonn, Sigmund-Freud-Street 25, 53127 Bonn, Germany
| | - Elke Pogge von Strandmann
- Experimental Tumor Research, Center for Tumor Biology and Immunology, Clinic for Hematology, Oncology and Immunology, Philipps University, Hans-Meerwein-Street 3, 35043 Marburg, Germany
| |
Collapse
|
523
|
Zhu Q, Heon M, Zhao Z, He M. Microfluidic engineering of exosomes: editing cellular messages for precision therapeutics. LAB ON A CHIP 2018; 18:1690-1703. [PMID: 29780982 PMCID: PMC5997967 DOI: 10.1039/c8lc00246k] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Study of extracellular vesicles (EVs), particularly exosomes, holds significant promise; however, it is technically challenging to define these small and molecularly diverse nanovesicles. With intrinsic molecular payload and biodegradability, molecular engineering of exosomes opens new avenues for mediating cellular responses and developing novel nano-delivery systems in precision therapeutics. Microfluidic lab-on-chip technology is playing pivotal roles in this emerging field. In this review, we have examined scientific advancements of microfluidic technology for engineering exosomes and assessed future applications and perspectives in developing precision therapeutics; this can serve the community via identification of potential new research areas or technologies that are urgently needed in precision therapeutics.
Collapse
Affiliation(s)
- Qingfu Zhu
- Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, Kansas 66045, USA.
| | | | | | | |
Collapse
|
524
|
Extracellular vesicles and ctDNA in lung cancer: biomarker sources and therapeutic applications. Cancer Chemother Pharmacol 2018; 82:171-183. [PMID: 29948020 DOI: 10.1007/s00280-018-3586-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 04/20/2018] [Indexed: 02/05/2023]
Abstract
Lung cancer is the leading cause of cancer death in the world. Recently, targeted therapy and anti-programmed cell death receptor 1 (PD-1) and anti-programmed cell death ligand 1 (PD-L1) immunotherapy have made great progress in treatment of lung cancer. However, responses to these therapies are variable, influenced by genetic alterations, high microsatellite instability and mismatch repair deficiency. Liquid biopsy of extracellular vesicles and circulating tumor DNA (ctDNA) emerges as a new promising non-invasive means that enables not only biomarker determination, but also continuous monitoring of cancer treatment. Notably, tumor extracellular vesicles play important roles in tumor formation and progression, and also serve as natural carriers for anti-tumor drugs and short-interfering RNA. In this review, we summarize the latest progress in understanding the relationships of extracellular vesicles and ctDNA in cancer biology, diagnosis and drug delivery. In particular, the application of extracellular vesicles and ctDNA in anti-PD-1/PD-L1 immunotherapy is discussed.
Collapse
|
525
|
Ottaviani L, Sansonetti M, da Costa Martins PA. Myocardial cell-to-cell communication via microRNAs. Noncoding RNA Res 2018; 3:144-153. [PMID: 30175287 PMCID: PMC6114265 DOI: 10.1016/j.ncrna.2018.05.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/30/2018] [Accepted: 05/25/2018] [Indexed: 12/17/2022] Open
Affiliation(s)
- Lara Ottaviani
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Marida Sansonetti
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Paula A da Costa Martins
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands.,Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, University of Porto, Porto, Portugal
| |
Collapse
|
526
|
Kibria G, Ramos EK, Wan Y, Gius DR, Liu H. Exosomes as a Drug Delivery System in Cancer Therapy: Potential and Challenges. Mol Pharm 2018; 15:3625-3633. [PMID: 29771531 DOI: 10.1021/acs.molpharmaceut.8b00277] [Citation(s) in RCA: 164] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Exosomes play a pivotal role in mediating intercellular communications and package delivery. They have recently been discovered to serve as diagnostic biomarkers as well as a possible drug delivery vehicle based on their nanometer size range and capability to transfer biological materials to recipient cells. Their unique biocompatibility, high stability, preferred tumor homing, and adjustable targeting efficiency can make exosomes an attractive and potentially effective tool of drug delivery in cancer therapy. While exosomes possess properties that make them uniquely suitable for delivery of bioactive molecules, there remains a to-be-filled gap between the current understanding about exosome biology and the ideal application scenarios. In this review, we summarize the characteristics enabling the potential of exosomes for drug delivery as well as the outstanding questions related to exosome composition and function, production and purification, bioengineering and targeting, uptake and biodistribution, efficacy and immune regulation, etc. Advanced technologies are demanded to visualize, characterize, and sort heterogeneous exosome populations. We are positive that the deeper and more comprehensive understanding of exosome biology as well as advanced nanotechnology will certainly accelerate its therapeutic applications.
Collapse
|
527
|
New insights into the biological impacts of immune cell-derived exosomes within the tumor environment. Cancer Lett 2018; 431:115-122. [PMID: 29857125 DOI: 10.1016/j.canlet.2018.05.040] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 05/24/2018] [Accepted: 05/24/2018] [Indexed: 01/15/2023]
Abstract
Exosomes are a group of nano-sized membrane vesicles that transfer proteins, nucleic acids, and lipids to nearby and faraway cells, playing an important role in the intercellular communication within the extracellular environment. Emerging evidences show that exosomes derived from immunocytes, including dendritic cells, T cells, B cells, macrophages, natural killer cells and myeloid-derived suppressor cells, can play an intimate role in the crosstalk among immunocytes in a tumor microenvironment. In this review, we highlight that under tumor conditions, immune cells and tumor cells can be influenced by immunocyte-derived exosomes, resulting in modifications of their phenotype and function. Thus, a better understanding of exosomes derived from different immunocytes would provide novel strategies in generating effective vaccines or improving treatment efficacy in anticancer therapies.
Collapse
|
528
|
Masaoutis C, Mihailidou C, Tsourouflis G, Theocharis S. Exosomes in lung cancer diagnosis and treatment. From the translating research into future clinical practice. Biochimie 2018; 151:27-36. [PMID: 29857182 DOI: 10.1016/j.biochi.2018.05.014] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 05/25/2018] [Indexed: 12/21/2022]
Abstract
Lung cancer is one of the main causes of cancer-related death worldwide. Despite advances in lung cancer pathophysiology, diagnosis and prognosis, a better understanding of the disease is strongly needed in order to establish novel diagnostic and therapeutic approaches that should improve treatment outcomes. Exosomes are a type of cell-secreted extracellular vesicles, which transfer a wide variety of biomolecules, such as proteins, mRNAs, microRNAs, and lipids, are implicated in intercellular communication and modulate tumor-host interactions. The potential value of exosomes and their contents in lung cancer diagnosis, prognosis and prediction of treatment outcome is supported by ample literature. Growing attention has been drawn specifically to the critical role of exosomal miRNAs in lung cancer pathogenesis and their potential clinical utility, especially due to their ability to modulate gene expression post-transcriptionally. Owing to their universal presence in the blood and other bodily fluids, exosomes are considered candidate biomarkers. Furthermore, their ability to deliver biomolecules and drugs to recipient cells renders them possible drug delivery vehicles in lung cancer. Here we review the pathological functions of exosomes in cancer and discuss their possible clinical utility as biomarkers and therapeutic agents in the management of lung cancer.
Collapse
Affiliation(s)
- Christos Masaoutis
- First Department of Pathology, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Gerasimos Tsourouflis
- Second Department of Propedeutic Surgery, National and Kapodistrian University of Athens, Athens, Greece
| | - Stamatios Theocharis
- First Department of Pathology, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
529
|
Muhsin-Sharafaldine MR, McLellan AD. Tumor-Derived Apoptotic Vesicles: With Death They Do Part. Front Immunol 2018; 9:957. [PMID: 29780392 PMCID: PMC5952256 DOI: 10.3389/fimmu.2018.00957] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/17/2018] [Indexed: 12/21/2022] Open
Abstract
Tumor cells release lipid particles known as extracellular vesicles (EV) that contribute to cancer metastasis, to the immune response, and to thrombosis. When tumors are exposed to radiation or chemotherapy, apoptotic vesicles (ApoVs) are released in abundance as the plasma membrane delaminates from the cytoskeleton. Recent studies have suggested that ApoVs are distinct from the EVs released from living cells, such as exosomes or microvesicles. Depending on their treatment conditions, tumor-released ApoV have been suggested to either enhance or suppress anti-cancer immunity. In addition, tumor-derived ApoV possess procoagulant activity that could increase the thrombotic state in cancer patients undergoing chemotherapy or radiotherapy. Since ApoVs are one of the least appreciated type of EVs, we focus in this review on the distinctive characterization of tumor ApoVs and their proposed mechanistic effects on cancer immunity, coagulation, and metastasis.
Collapse
Affiliation(s)
| | - Alexander D McLellan
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
530
|
Urabe F, Kosaka N, Kimura T, Egawa S, Ochiya T. Extracellular vesicles: Toward a clinical application in urological cancer treatment. Int J Urol 2018; 25:533-543. [PMID: 29726046 DOI: 10.1111/iju.13594] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 03/26/2018] [Indexed: 02/06/2023]
Abstract
Extracellular vesicles are nanometer-sized lipid membranous vesicles that are released from almost all types of cells into the extracellular space. Extracellular vesicles have gained considerable attention in the past decade, and emerging evidence suggests that they play novel roles in mediating cancer biology. Extracellular vesicles contain pathogenic components, such as proteins, DNA fragments, messenger ribonucleic acids, non-coding ribonucleic acids and lipids, all of which mediate paracrine signaling in the tumor microenvironment. Extracellular vesicles impact the multistep process of cancer progression through modulation of the immune system, angiogenesis and pre-metastatic niche formation through transfer of their contents. Therefore, a better understanding of their roles in urological cancers will provide opportunities for novel therapeutic strategies. In addition, the contents of extracellular vesicles hold promise for the discovery of liquid-based biomarkers for prostate, kidney and bladder cancers. Here, we summarize the current research regarding extracellular vesicles in urological cancer and discuss potential clinical applications for extracellular vesicles in urological cancer.
Collapse
Affiliation(s)
- Fumihiko Urabe
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan.,Department of Urology, Jikei University School of Medicine, Tokyo, Japan
| | - Nobuyoshi Kosaka
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan
| | - Takahiro Kimura
- Department of Urology, Jikei University School of Medicine, Tokyo, Japan
| | - Shin Egawa
- Department of Urology, Jikei University School of Medicine, Tokyo, Japan
| | - Takahiro Ochiya
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan
| |
Collapse
|
531
|
Strategic design of extracellular vesicle drug delivery systems. Adv Drug Deliv Rev 2018; 130:12-16. [PMID: 29959959 DOI: 10.1016/j.addr.2018.06.017] [Citation(s) in RCA: 182] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 05/21/2018] [Accepted: 06/22/2018] [Indexed: 12/11/2022]
Abstract
Extracellular vesicles (EVs), sub-micron vectors used in intercellular communication, have demonstrated great promise as natural drug delivery systems. Recent reports have detailed impressive in vivo results from the administration of EVs pre-loaded with therapeutic cargo, including small molecules, nanoparticles, proteins and oligonucleotides. These results have sparked intensive research interest across a huge range of disease models. There are, however, enduring limitations that have restricted widespread clinical and pharmaceutical adoption. In this perspective, we discuss these practical and biological concerns, critically compare the relative merit of EVs and synthetic drug delivery systems, and highlight the need for a more comprehensive understanding of in vivo transport and delivery. Within this framework, we seek to establish key areas in which EVs can gain a competitive advantage in order to provide the tangible added value required for widespread translation.
Collapse
|
532
|
The multifaceted role of exosomes in cancer progression: diagnostic and therapeutic implications [corrected]. Cell Oncol (Dordr) 2018; 41:223-252. [PMID: 29667069 DOI: 10.1007/s13402-018-0378-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Recent advances in cancer biology have highlighted the relevance of exosomes and nanovesicles as carriers of genetic and biological messages between cancer cells and their immediate and/or distant environments. It has been found that these molecular cues may play significant roles in cancer progression and metastasis. Cancer cells secrete exosomes containing diverse molecules that can be transferred to recipient cells and/or vice versa to induce a plethora of biological processes, including angiogenesis, metastasis formation, therapeutic resistance, epithelial-mesenchymal transition and epigenetic/stemness (re)programming. While exosomes interact with cells within the tumour microenvironment to promote tumour growth, these vesicles can also facilitate the process of distant metastasis by mediating the formation of pre-metastatic niches. Next to their tumour promoting effects, exosomes have been found to serve as potential tools for cancer diagnosis and therapy. The ease of isolating exosomes and their content from different body fluids has led to the identification of diagnostic and prognostic biomarker signatures, as well as to predictive biomarker signatures for therapeutic responses. Exosomes can also be used as cargos to deliver therapeutic anti-cancer drugs, and they can be engineered to serve as vaccines for immunotherapy. Additionally, it has been found that inhibition of exosome secretion, and thus the transfer of oncogenic molecules, holds promise for inhibiting tumour growth. Here we provide recent information on the diverse roles of exosomes in various cellular and systemic processes governing cancer progression, and discuss novel strategies to halt this progression using exosome-based targeted therapies and methods to inhibit exosome secretion and the transfer of pro-tumorigenic molecules. CONCLUSIONS This review highlights the important role of exosomes in cancer progression and its implications for (non-invasive) diagnostics and the development of novel therapeutic strategies, as well as its current and future applications in clinical trials.
Collapse
|
533
|
Li L, Sun Y, Feng M, Wang L, Liu J. Clinical significance of blood-based miRNAs as biomarkers of non-small cell lung cancer. Oncol Lett 2018; 15:8915-8925. [PMID: 29805626 DOI: 10.3892/ol.2018.8469] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 01/05/2018] [Indexed: 12/18/2022] Open
Abstract
Non-small-cell lung cancer (NSCLC) accounts for 85% of all cases of lung cancer. However, the predicted 5-year survival rate of patients with NSCLC is only 15.9%. microRNAs (miRNAs) are single-stranded, noncoding RNA molecules that are easily detectable in blood in a non-invasive manner, with features of stability, reproducibility and consistency in blood. Therefore, miRNAs derived from blood are able to have a significant impact on NSCLC diagnosis, metastasis and targeted therapies. Compared with the clinical protein markers carcinoembryonic antigen, cytokeratin fragment 21-1 and cancer antigen-125, blood-based miRNAs also display a higher diagnostic efficacy in NSCLC. Exosomal miRNAs are identified to be easily measured and have the potential to be used as diagnostic biomarkers in NSCLC, therefore providing an alternative method of biopsy profiling. The miRNA profile in exosomes is similar to the profile in primary tumor, meaning that this feature may be a powerful tool for NSCLC clinical diagnosis and targeted therapies. The focus of the present review was the clinical significance of blood-based exosomal miRNAs in diagnosis, prognosis, metastasis and targeted therapies of NSCLC.
Collapse
Affiliation(s)
- Lin Li
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Centre, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Yu Sun
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Centre, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Min Feng
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Centre, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Liang Wang
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Centre, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Jing Liu
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Centre, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| |
Collapse
|
534
|
Barros FM, Carneiro F, Machado JC, Melo SA. Exosomes and Immune Response in Cancer: Friends or Foes? Front Immunol 2018; 9:730. [PMID: 29696022 PMCID: PMC5904196 DOI: 10.3389/fimmu.2018.00730] [Citation(s) in RCA: 152] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 03/23/2018] [Indexed: 12/20/2022] Open
Abstract
Exosomes are a type of extracellular vesicle whose study has grown exponentially in recent years. This led to the understanding that these structures, far from being inert waste by-products of cellular functioning, are active players in intercellular communication mechanisms, including in the interactions between cancer cells and the immune system. The deep comprehension of the crosstalk between tumors and the immune systems of their hosts has gained more and more importance, as immunotherapeutic techniques have emerged as viable options for several types of cancer. In this review, we present a comprehensive, updated, and elucidative review of the current knowledge on the functions played by the exosomes in this crosstalk. The roles of these vesicles in tumor antigen presentation, immune activation, and immunosuppression are approached as the relevant interactions between exosomes and the complement system. The last section of this review is reserved for the exploration of the results from the first phase I to II clinical trials of exosomes-based cell-free cancer vaccines.
Collapse
Affiliation(s)
| | - Fatima Carneiro
- Department of Pathology, Centro Hospitalar de São João, Porto, Portugal.,Department of Pathology, Faculty of Medicine of the University of Porto (FMUP), Porto, Portugal.,Institute for Research Innovation in Health (i3S), Porto, Portugal.,Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup), Porto, Portugal
| | - Jose C Machado
- Department of Pathology, Faculty of Medicine of the University of Porto (FMUP), Porto, Portugal.,Institute for Research Innovation in Health (i3S), Porto, Portugal.,Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup), Porto, Portugal
| | - Sónia A Melo
- Department of Pathology, Faculty of Medicine of the University of Porto (FMUP), Porto, Portugal.,Institute for Research Innovation in Health (i3S), Porto, Portugal.,Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup), Porto, Portugal
| |
Collapse
|
535
|
Sun W, Luo JD, Jiang H, Duan DD. Tumor exosomes: a double-edged sword in cancer therapy. Acta Pharmacol Sin 2018; 39:534-541. [PMID: 29542685 PMCID: PMC5888693 DOI: 10.1038/aps.2018.17] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 02/24/2018] [Indexed: 12/15/2022]
Abstract
Tumor cells produce and secrete more nucleic acids, proteins and lipids than normal cells. These molecules are transported in the blood or around the cells in membrane-encapsulated exosomes. Tumor-derived or tumor-associated exosomes (usually 30-100 nm in diameter) contain abundant biological contents resembling those of the parent cells along with signaling messengers for intercellular communication involved in the pathogenesis, development, progression, and metastasis of cancer. As these exosomes can be detected and isolated from various body fluids, they have become attractive new biomarkers for the diagnosis and prognosis of cancer. Furthermore, tumor exosomes have also attracted increasing attention due to their potential as novel therapeutic strategies for the treatment of cancers. On the one hand, the lipid bilayer membrane-encapsulated vesicles are promising carriers of drugs and other therapeutic materials targeting specific cancer cells. On the other hand, tumor exosomes are important mediators for modulation of the microenvironment that orchestrates events critical to the growth and metastasis of cancer cells as well as chemoresistance. Here, we summarize the advances in our understanding of tumor-associated or tumor-derived exosomes in recent years, and discuss their roles in cancer development, progression, invasion, and metastasis of cancers and, more importantly, their potential in strategies for precision therapy of various cancers as well as important caveats.
Collapse
Affiliation(s)
- Wei Sun
- Department of Oncology, Changzhou Second People's Hospital, Changzhou 213003, China
| | - Ju-dong Luo
- Department of Oncology, Changzhou Second People's Hospital, Changzhou 213003, China
| | - Hua Jiang
- Department of Oncology, Changzhou Second People's Hospital, Changzhou 213003, China
| | - Dayue Darrel Duan
- Laboratory of Cardiovascular Phenomics, Department of Pharmacology, University of Nevada School of Medicine, Reno, NV 89557, USA
| |
Collapse
|
536
|
Yang Z, Deng F, Meng L. Effect of dendritic cell immunotherapy on distribution of dendritic cell subsets in non-small cell lung cancer. Exp Ther Med 2018; 15:4856-4860. [PMID: 29805505 PMCID: PMC5952091 DOI: 10.3892/etm.2018.6010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 01/10/2018] [Indexed: 12/12/2022] Open
Abstract
The effect of dendritic cell (DC) immunotherapy on non-small cell lung cancer (NSCLC) and its influence on the distribution of DC subsets were studied. Peripheral blood was drawn from 55 patients, and DCs were cultured in vitro and injected into the patients three times. The changes in DC subsets in NSCLC patients before treatment and after three treatments were observed using a flow cytometer, and the difference in DC subsets between patients and healthy controls was compared. DC subsets in lung cancer tissues, para-carcinoma tissues and normal tissues were analyzed by indirect immunofluorescence and laser scanning confocal microscope (LSCM). The BDCA-1+ DC1 and BDCA-3+ DC2 in lung cancer tissues were significantly increased compared with those in para-carcinoma tissues and normal tissues (P<0.05). The number of DC1 and DC2 in para-carcinoma tissues were increased compared with those in normal tissues (P<0.05). The ratio of DC1 in peripheral blood in the normal control group was obviously higher than that in NSCLC patients (P<0.01). There were significant differences in DC1 and DC1/DC2 ratio in NSCLC patients with different tumor staging, and there were also obvious differences in patients with a different Karnofsky performance status (KPS) score. Moreover, compared with those before treatment, DC1 and DC1/DC2 ratio were significantly increased after three treatments, and there was a significant difference in the comparison of DC1/DC2 ratio between the NSCLC patients with survival time greater than and less than one year. The immune function of NSCLC patients was improved after DC immunotherapy. The survival time of NSCLC patients was closely associated with the DC1/DC2 ratio in peripheral blood. The detection of DC subsets in peripheral blood can help clinicians understand the immune function of NSCLC patients and provide a basis for the clinical judgment of prognosis of NSCLC patients.
Collapse
Affiliation(s)
- Zhongfei Yang
- Department of Pneumology, Dezhou People's Hospital, Dezhou, Shandong 253000, P.R. China
| | - Fang Deng
- Department of Oncology, Dezhou People's Hospital, Dezhou, Shandong 253000, P.R. China
| | - Lingjun Meng
- Department of Oncology, Dezhou People's Hospital, Dezhou, Shandong 253000, P.R. China
| |
Collapse
|
537
|
Mentkowski KI, Snitzer JD, Rusnak S, Lang JK. Therapeutic Potential of Engineered Extracellular Vesicles. AAPS JOURNAL 2018; 20:50. [PMID: 29546642 PMCID: PMC8299397 DOI: 10.1208/s12248-018-0211-z] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 02/27/2018] [Indexed: 12/16/2022]
Abstract
Extracellular vesicles (EVs) comprise a heterogeneous group of small membrane vesicles, including exosomes, which play a critical role in intracellular communication and regulation of numerous physiological processes in health and disease. Naturally released from virtually all cells, these vesicles contain an array of nucleic acids, lipids and proteins which they transfer to target cells within their local milieu and systemically. They have been proposed as a means of “cell-free, cell therapy” for cancer, immune disorders, and more recently cardiovascular disease. In addition, their unique properties of stability, biocompatibility, and low immunogenicity have prompted research into their potential as therapeutic delivery agents for drugs and small molecules. In this review, we aim to provide a comprehensive overview of the current understanding of extracellular vesicle biology as well as engineering strategies in play to improve their therapeutic potential.
Collapse
Affiliation(s)
- Kyle I Mentkowski
- Department of Medicine, Division of Cardiology, Jacobs School of Medicine and Biomedical Sciences, Clinical and Translational Research Center, 895 Ellicott Street, Buffalo, NY, 14203, USA
| | - Jonathan D Snitzer
- Department of Medicine, Division of Cardiology, Jacobs School of Medicine and Biomedical Sciences, Clinical and Translational Research Center, 895 Ellicott Street, Buffalo, NY, 14203, USA
| | - Sarah Rusnak
- Department of Medicine, Division of Cardiology, Jacobs School of Medicine and Biomedical Sciences, Clinical and Translational Research Center, 895 Ellicott Street, Buffalo, NY, 14203, USA
| | - Jennifer K Lang
- Department of Medicine, Division of Cardiology, Jacobs School of Medicine and Biomedical Sciences, Clinical and Translational Research Center, 895 Ellicott Street, Buffalo, NY, 14203, USA.
| |
Collapse
|
538
|
Yang Y, Hong Y, Cho E, Kim GB, Kim IS. Extracellular vesicles as a platform for membrane-associated therapeutic protein delivery. J Extracell Vesicles 2018; 7:1440131. [PMID: 29535849 PMCID: PMC5844050 DOI: 10.1080/20013078.2018.1440131] [Citation(s) in RCA: 177] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 02/07/2018] [Indexed: 02/08/2023] Open
Abstract
Membrane proteins are of great research interest, particularly because they are rich in targets for therapeutic application. The suitability of various membrane proteins as targets for therapeutic formulations, such as drugs or antibodies, has been studied in preclinical and clinical studies. For therapeutic application, however, a protein must be expressed and purified in as close to its native conformation as possible. This has proven difficult for membrane proteins, as their native conformation requires the association with an appropriate cellular membrane. One solution to this problem is to use extracellular vesicles as a display platform. Exosomes and microvesicles are membranous extracellular vesicles that are released from most cells. Their membranes may provide a favourable microenvironment for membrane proteins to take on their proper conformation, activity, and membrane distribution; moreover, membrane proteins can cluster into microdomains on the surface of extracellular vesicles following their biogenesis. In this review, we survey the state-of-the-art of extracellular vesicle (exosome and small-sized microvesicle)-based therapeutics, evaluate the current biological understanding of these formulations, and forecast the technical advances that will be needed to continue driving the development of membrane protein therapeutics.
Collapse
Affiliation(s)
- Yoosoo Yang
- Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
- Division for Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul, Republic of Korea
| | - Yeonsun Hong
- Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea
| | - Eunji Cho
- Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea
| | - Gi Beom Kim
- Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea
| | - In-San Kim
- Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea
| |
Collapse
|
539
|
Kim YS, Ahn JS, Kim S, Kim HJ, Kim SH, Kang JS. The potential theragnostic (diagnostic+therapeutic) application of exosomes in diverse biomedical fields. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2018; 22:113-125. [PMID: 29520164 PMCID: PMC5840070 DOI: 10.4196/kjpp.2018.22.2.113] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 12/21/2017] [Accepted: 01/27/2018] [Indexed: 01/07/2023]
Abstract
Exosomes are membranous vesicles of 30-150 nm in diameter that are derived from the exocytosis of the intraluminal vesicles of many cell types including immune cells, stem cells, cardiovascular cells and tumor cells. Exosomes participate in intercellular communication by delivering their contents to recipient cells, with or without direct contact between cells, and thereby influence physiological and pathological processes. They are present in various body fluids and contain proteins, nucleic acids, lipids, and microRNAs that can be transported to surrounding cells. Theragnosis is a concept in next-generation medicine that simultaneously combines accurate diagnostics with therapeutic effects. Molecular components in exosomes have been found to be related to certain diseases and treatment responses, indicating that they may have applications in diagnosis via molecular imaging and biomarker detection. In addition, recent studies have reported that exosomes have immunotherapeutic applications or can act as a drug delivery system for targeted therapies with drugs and biomolecules. In this review, we describe the formation, structure, and physiological roles of exosomes. We also discuss their roles in the pathogenesis and progression of diseases including neurodegenerative diseases, cardiovascular diseases, and cancer. The potential applications of exosomes for theragnostic purposes in various diseases are also discussed. This review summarizes the current knowledge about the physiological and pathological roles of exosomes as well as their diagnostic and therapeutic uses, including emerging exosome-based therapies that could not be applied until now.
Collapse
Affiliation(s)
- Yong-Seok Kim
- Department of Biochemistry and Molecular Biology, College of Medicine, Seoul 04763, Korea
| | - Jae-Sung Ahn
- Department of Pharmacology and Clinical Pharmacology Laboratory, College of Medicine, Hanyang University, Seoul 04763, Korea
| | - Semi Kim
- Department of Pharmacology and Clinical Pharmacology Laboratory, College of Medicine, Hanyang University, Seoul 04763, Korea
| | - Hyun-Jin Kim
- Department of Pharmacology and Clinical Pharmacology Laboratory, College of Medicine, Hanyang University, Seoul 04763, Korea
| | - Shin-Hee Kim
- Department of Pharmacology and Clinical Pharmacology Laboratory, College of Medicine, Hanyang University, Seoul 04763, Korea
| | - Ju-Seop Kang
- Department of Pharmacology and Clinical Pharmacology Laboratory, College of Medicine, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
540
|
Bae S, Brumbaugh J, Bonavida B. Exosomes derived from cancerous and non-cancerous cells regulate the anti-tumor response in the tumor microenvironment. Genes Cancer 2018; 9:87-100. [PMID: 30108680 PMCID: PMC6086005 DOI: 10.18632/genesandcancer.172] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 05/27/2018] [Indexed: 02/06/2023] Open
Abstract
The tumor microenvironment (TME) is a unique platform of cancer biology that considers the local cellular environment in which a tumor exists. Increasing evidence points to the TME as crucial for either promoting immune tumor rejection or protecting the tumor. The TME includes surrounding blood vessels, the extracellular matrix (ECM), a variety of immune and regulatory cells, and signaling factors. Exosomes have emerged to be molecular contributors in cancer biology, and to modulate and affect the constituents of the TME. Exosomes are small (40-150 nm) membrane vesicles that are derived from an endocytic nature and are later excreted by cells. Depending on the cells from which they originate, exosomes can play a role in tumor suppression or tumor progression. Tumor-derived exosomes (TDEs) have their own unique phenotypic functions. Evidence points to TDEs as key players involved in tumor growth, tumorigenesis, angiogenesis, dysregulation of immune cells and immune escape, metastasis, and resistance to therapies, as well as in promoting anti-tumor response. General exosomes, TDEs, and their influence on the TME are an area of promising research that may provide potential biomarkers for therapy, potentiation of anti-tumor response, development of exosome-based vaccines, and exosome-derived nanocarriers for drugs.
Collapse
Affiliation(s)
- Susan Bae
- Department of Oral Biology, UCLA School of Dentistry, University of California, Los Angeles, CA, USA
| | - Jeffrey Brumbaugh
- Department of Oral Biology, UCLA School of Dentistry, University of California, Los Angeles, CA, USA
| | - Benjamin Bonavida
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| |
Collapse
|
541
|
Colao IL, Corteling R, Bracewell D, Wall I. Manufacturing Exosomes: A Promising Therapeutic Platform. Trends Mol Med 2018; 24:242-256. [PMID: 29449149 DOI: 10.1016/j.molmed.2018.01.006] [Citation(s) in RCA: 288] [Impact Index Per Article: 41.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 01/09/2018] [Accepted: 01/17/2018] [Indexed: 02/07/2023]
Abstract
Extracellular vesicles, in particular the subclass exosomes, are rapidly emerging as a novel therapeutic platform. However, currently very few clinical validation studies and no clearly defined manufacturing process exist. As exosomes progress towards the clinic for treatment of a vast array of diseases, it is important to define the engineering basis for their manufacture early in the development cycle to ensure they can be produced cost-effectively at the appropriate scale. We hypothesize that transitioning to defined manufacturing platforms will increase consistency of the exosome product and improve their clinical advancement as a new therapeutic tool. We present manufacturing technologies and strategies that are being implemented and consider their application for the transition from bench-scale to clinical production of exosomes.
Collapse
Affiliation(s)
- Ivano Luigi Colao
- Department of Biochemical Engineering, University College London, Gower St, London, WC1E 6BT, UK
| | | | - Daniel Bracewell
- Department of Biochemical Engineering, University College London, Gower St, London, WC1E 6BT, UK.
| | - Ivan Wall
- Department of Biochemical Engineering, University College London, Gower St, London, WC1E 6BT, UK; Aston Medical Research Institute, School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK; Department of Nanobiomedical Science, BK21+ NBM Global Research Center for Regenerative Medicine & Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Republic of Korea.
| |
Collapse
|
542
|
Gangadaran P, Hong CM, Ahn BC. An Update on in Vivo Imaging of Extracellular Vesicles as Drug Delivery Vehicles. Front Pharmacol 2018; 9:169. [PMID: 29541030 PMCID: PMC5835830 DOI: 10.3389/fphar.2018.00169] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 02/15/2018] [Indexed: 12/21/2022] Open
Abstract
Extracellular vesicles (EVs) are currently being considered as promising drug delivery vehicles. EVs are naturally occurring vesicles that exhibit many characteristics favorable to serve as drug delivery vehicles. In addition, EVs have inherent properties for treatment of cancers and other diseases. For research and clinical translation of use of EVs as drug delivery vehicles, in vivo tracking of EVs is essential. The latest molecular imaging techniques enable the tracking of EVs in living animals. However, each molecular imaging technique has its certain advantages and limitations for the in vivo imaging of EVs; therefore, understanding the molecular imaging techniques is essential to select the most appropriate imaging technology to achieve the desired imaging goal. In this review, we summarize the characteristics of EVs as drug delivery vehicles and the molecular imaging techniques used in visualizing and monitoring EVs in in vivo environments. Furthermore, we provide a perceptual vision of EVs as drug delivery vehicles and in vivo monitoring of EVs using molecular imaging technologies.
Collapse
Affiliation(s)
| | | | - Byeong-Cheol Ahn
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University and Hospital, Daegu, South Korea
| |
Collapse
|
543
|
Watson DC, Yung BC, Bergamaschi C, Chowdhury B, Bear J, Stellas D, Morales-Kastresana A, Jones JC, Felber BK, Chen X, Pavlakis GN. Scalable, cGMP-compatible purification of extracellular vesicles carrying bioactive human heterodimeric IL-15/lactadherin complexes. J Extracell Vesicles 2018; 7:1442088. [PMID: 29535850 PMCID: PMC5844027 DOI: 10.1080/20013078.2018.1442088] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 02/11/2018] [Indexed: 12/19/2022] Open
Abstract
The development of extracellular vesicles (EV) for therapeutic applications is contingent upon the establishment of reproducible, scalable, and high-throughput methods for the production and purification of clinical grade EV. Methods including ultracentrifugation (U/C), ultrafiltration, immunoprecipitation, and size-exclusion chromatography (SEC) have been employed to isolate EV, each facing limitations such as efficiency, particle purity, lengthy processing time, and/or sample volume. We developed a cGMP-compatible method for the scalable production, concentration, and isolation of EV through a strategy involving bioreactor culture, tangential flow filtration (TFF), and preparative SEC. We applied this purification method for the isolation of engineered EV carrying multiple complexes of a novel human immunostimulatory cytokine-fusion protein, heterodimeric IL-15 (hetIL-15)/lactadherin. HEK293 cells stably expressing the fusion cytokine were cultured in a hollow-fibre bioreactor. Conditioned medium was collected and EV were isolated comparing three procedures: U/C, SEC, or TFF + SEC. SEC demonstrated comparable particle recovery, size distribution, and hetIL-15 density as U/C purification. Relative to U/C, SEC preparations achieved a 100-fold reduction in ferritin concentration, a major protein-complex contaminant. Comparative proteomics suggested that SEC additionally decreased the abundance of cytoplasmic proteins not associated with EV. Combination of TFF and SEC allowed for bulk processing of large starting volumes, and resulted in bioactive EV, without significant loss in particle yield or changes in size, morphology, and hetIL-15/lactadherin density. Taken together, the combination of bioreactor culture with TFF + SEC comprises a scalable, efficient method for the production of highly purified, bioactive EV carrying hetIL-15/lactadherin, which may be useful in targeted cancer immunotherapy approaches.
Collapse
Affiliation(s)
- Dionysios C. Watson
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA
| | - Bryant C. Yung
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
| | - Cristina Bergamaschi
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA
| | - Bhabadeb Chowdhury
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA
| | - Jenifer Bear
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA
| | - Dimitris Stellas
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA
| | | | - Jennifer C. Jones
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Barbara K. Felber
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
| | - George N. Pavlakis
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA
| |
Collapse
|
544
|
Curcumin increases exosomal TCF21 thus suppressing exosome-induced lung cancer. Oncotarget 2018; 7:87081-87090. [PMID: 27894084 PMCID: PMC5349972 DOI: 10.18632/oncotarget.13499] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 10/28/2016] [Indexed: 11/25/2022] Open
Abstract
Curcumin is a novel drug for lung cancer treatment. However, the mechanism underlying the anti-tumor effect of curcumin remains elusive. Previous evidences indicated that, the methylating transferase DNMT1 is downregulated by curcumin, and the transcription factor 21 (TCF21) is suppressed by DNMT1. We hereby attempt to elucidate the correlation between curcumin treatment and TCF21 expression. Exosomes derived from curcumin-pretreated H1299 cells were used to treat BEAS-2B cells, which induced proliferation, colony formation and migration of BEAS-2B cells. An increase in TCF21 expression in response to curcumin was also seen, as revealed by real-time PCR (RT-PCR) and western blot. Analysis using the GEO database (access #GSE21210) indicated that a positive correlation existed between TCF21 levels and lung cancer patient survival. TCF21 overexpression and knockdown was introduced to H1299 cells through lentiviral system, which led to suppression and promotion of tumor growth, respectively. We also demonstrated that DNMT1 expression was downregulated by curcumin. Therefore, curcumin exerts its anti-cancer function by downregulating DNMT1, thereby upregulating TCF21.
Collapse
|
545
|
Maia J, Caja S, Strano Moraes MC, Couto N, Costa-Silva B. Exosome-Based Cell-Cell Communication in the Tumor Microenvironment. Front Cell Dev Biol 2018. [PMID: 29515996 PMCID: PMC5826063 DOI: 10.3389/fcell.2018.00018] [Citation(s) in RCA: 499] [Impact Index Per Article: 71.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Tumors are not isolated entities, but complex systemic networks involving cell-cell communication between transformed and non-transformed cells. The milieu created by tumor-associated cells may either support or halt tumor progression. In addition to cell-cell contact, cells communicate through secreted factors via a highly complex system involving characteristics such as ligand concentration, receptor expression and integration of diverse signaling pathways. Of these, extracellular vesicles, such as exosomes, are emerging as novel cell-cell communication mediators in physiological and pathological scenarios. Exosomes, membrane vesicles of endocytic origin released by all cells (both healthy and diseased), ranging in size from 30 to 150 nm, transport all the main biomolecules, including lipids, proteins, DNAs, messenger RNAs and microRNA, and perform intercellular transfer of components, locally and systemically. By acting not only in tumor cells, but also in tumor-associated cells such as fibroblasts, endothelium, leukocytes and progenitor cells, tumor- and non-tumor cells-derived exosomes have emerged as new players in tumor growth and invasion, tumor-associated angiogenesis, tissue inflammation and immunologic remodeling. In addition, due to their property of carrying molecules from their cell of origin to the peripheral circulation, exosomes have been increasingly studied as sources of tumor biomarkers in liquid biopsies. Here we review the current literature on the participation of exosomes in the communication between tumor and tumor-associated cells, highlighting the role of this process in the setup of tumor microenvironments that modulate tumor initiation and metastasis.
Collapse
Affiliation(s)
- Joana Maia
- Systems Oncology Group, Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal
| | - Sergio Caja
- Systems Oncology Group, Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal
| | | | - Nuno Couto
- Systems Oncology Group, Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal
| | - Bruno Costa-Silva
- Systems Oncology Group, Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal
| |
Collapse
|
546
|
Lässer C, Jang SC, Lötvall J. Subpopulations of extracellular vesicles and their therapeutic potential. Mol Aspects Med 2018; 60:1-14. [PMID: 29432782 DOI: 10.1016/j.mam.2018.02.002] [Citation(s) in RCA: 140] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 01/17/2018] [Accepted: 02/06/2018] [Indexed: 12/20/2022]
Abstract
Extracellular vesicles (EVs), such as exosomes and microvesicles, have over the last 10-15 years been recognized to convey key messages in the molecular communication between cells. Indeed, EVs have the capacity to shuttle proteins, lipids, and nucleotides such as RNA between cells, leading to an array of functional changes in the recipient cells. Importantly, the EV secretome changes significantly in diseased cells and under conditions of cellular stress. More recently, it has become evident that the EV secretome is exceptionally diverse, with many different types of EVs being released by a single cell type, and these EVs can be described in terms of differences in density, molecular cargos, and morphology. This review will discuss the diversity of EVs, will introduce some suggestions for how to categorize them, and will propose how EVs and their subpopulations might be used for very different therapeutic purposes.
Collapse
Affiliation(s)
- Cecilia Lässer
- Krefting Research Centre, Institute of Medicine at Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Su Chul Jang
- Krefting Research Centre, Institute of Medicine at Sahlgrenska Academy, University of Gothenburg, Sweden; Codiak BioSciences, Cambridge, MA 02139, USA
| | - Jan Lötvall
- Krefting Research Centre, Institute of Medicine at Sahlgrenska Academy, University of Gothenburg, Sweden.
| |
Collapse
|
547
|
Borrelli DA, Yankson K, Shukla N, Vilanilam G, Ticer T, Wolfram J. Extracellular vesicle therapeutics for liver disease. J Control Release 2018; 273:86-98. [PMID: 29373816 DOI: 10.1016/j.jconrel.2018.01.022] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 01/19/2018] [Accepted: 01/22/2018] [Indexed: 12/18/2022]
Abstract
Extracellular vesicles (EVs) are endogenous nanoparticles that play important roles in intercellular communication. Unmodified and engineered EVs can be utilized for therapeutic purposes. For instance, mesenchymal stem cell (MSC)-derived EVs have shown promise for tissue repair, while drug-loaded EVs have the potential to be used for cancer treatment. The liver is an ideal target for EV therapy due to the intrinsic regenerative capacity of hepatic tissue and the tropism of systemically injected nanovesicles for this organ. This review will give an overview of the potential of EV therapeutics in liver disease. Specifically, the mechanisms by which MSC-EVs induce liver repair will be covered. Moreover, the use of drug-loaded EVs for the treatment of hepatocellular carcinoma will also be discussed. Although there are several challenges associated with the clinical translation of EVs, these biological nanoparticles represent a promising new therapeutic modality for liver disease.
Collapse
Affiliation(s)
- David A Borrelli
- Department of Transplantation, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Kiera Yankson
- Department of Transplantation, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Neha Shukla
- Department of Transplantation, Mayo Clinic, Jacksonville, FL 32224, USA
| | - George Vilanilam
- Department of Transplantation, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Taylor Ticer
- Department of Transplantation, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Joy Wolfram
- Department of Transplantation, Mayo Clinic, Jacksonville, FL 32224, USA; Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA; Department of Biology, University of North Florida, Jacksonville, FL 32224, USA; Wenzhou Institute of Biomaterials and Engineering, Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, Wenzhou, China.
| |
Collapse
|
548
|
Lindenbergh MFS, Stoorvogel W. Antigen Presentation by Extracellular Vesicles from Professional Antigen-Presenting Cells. Annu Rev Immunol 2018; 36:435-459. [PMID: 29400984 DOI: 10.1146/annurev-immunol-041015-055700] [Citation(s) in RCA: 269] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The initiation and maintenance of adaptive immunity require multifaceted modes of communication between different types of immune cells, including direct intercellular contact, secreted soluble signaling molecules, and extracellular vesicles (EVs). EVs can be formed as microvesicles directly pinched off from the plasma membrane or as exosomes secreted by multivesicular endosomes. Membrane receptors guide EVs to specific target cells, allowing directional transfer of specific and complex signaling cues. EVs are released by most, if not all, immune cells. Depending on the type and status of their originating cell, EVs may facilitate the initiation, expansion, maintenance, or silencing of adaptive immune responses. This review focusses on EVs from professional antigen-presenting cells, their demonstrated and speculated roles, and their potential for cancer immunotherapy.
Collapse
Affiliation(s)
- Marthe F S Lindenbergh
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, NL-3508 TD Utrecht, The Netherlands;
| | - Willem Stoorvogel
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, NL-3508 TD Utrecht, The Netherlands;
| |
Collapse
|
549
|
Lee K, Fraser K, Ghaddar B, Yang K, Kim E, Balaj L, Chiocca EA, Breakefield XO, Lee H, Weissleder R. Multiplexed Profiling of Single Extracellular Vesicles. ACS NANO 2018; 12:494-503. [PMID: 29286635 PMCID: PMC5898240 DOI: 10.1021/acsnano.7b07060] [Citation(s) in RCA: 259] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Extracellular vesicles (EV) are a family of cell-originating, membrane-enveloped nanoparticles with diverse biological function, diagnostic potential, and therapeutic applications. While EV can be abundant in circulation, their small size (∼4 order of magnitude smaller than cells) has necessitated bulk analyses, making many more nuanced biological explorations, cell of origin questions, or heterogeneity investigations impossible. Here we describe a single EV analysis (SEA) technique which is simple, sensitive, multiplexable, and practical. We profiled glioblastoma EV and discovered surprising variations in putative pan-EV as well as tumor cell markers on EV. These analyses shed light on the heterogeneous biomarker profiles of EV. The SEA technology has the potential to address fundamental questions in vesicle biology and clinical applications.
Collapse
Affiliation(s)
- Kyungheon Lee
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge St, CPZN 5206, Boston, Massachusetts 02114, United States
| | - Kyle Fraser
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge St, CPZN 5206, Boston, Massachusetts 02114, United States
| | - Bassel Ghaddar
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge St, CPZN 5206, Boston, Massachusetts 02114, United States
| | - Katy Yang
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge St, CPZN 5206, Boston, Massachusetts 02114, United States
| | - Eunha Kim
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge St, CPZN 5206, Boston, Massachusetts 02114, United States
| | - Leonora Balaj
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| | - E. Antonio Chiocca
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, Massachusetts 02115, United States
| | - Xandra O. Breakefield
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| | - Hakho Lee
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge St, CPZN 5206, Boston, Massachusetts 02114, United States
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge St, CPZN 5206, Boston, Massachusetts 02114, United States
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
- Department of Systems Biology, Harvard Medical School, 200 Longwood Ave, Boston, Massachusetts 02115, United States
| |
Collapse
|
550
|
van Niel G, D'Angelo G, Raposo G. Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol 2018; 19:213-228. [PMID: 29339798 DOI: 10.1038/nrm.2017.125] [Citation(s) in RCA: 5473] [Impact Index Per Article: 781.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Extracellular vesicles are a heterogeneous group of cell-derived membranous structures comprising exosomes and microvesicles, which originate from the endosomal system or which are shed from the plasma membrane, respectively. They are present in biological fluids and are involved in multiple physiological and pathological processes. Extracellular vesicles are now considered as an additional mechanism for intercellular communication, allowing cells to exchange proteins, lipids and genetic material. Knowledge of the cellular processes that govern extracellular vesicle biology is essential to shed light on the physiological and pathological functions of these vesicles as well as on clinical applications involving their use and/or analysis. However, in this expanding field, much remains unknown regarding the origin, biogenesis, secretion, targeting and fate of these vesicles.
Collapse
Affiliation(s)
- Guillaume van Niel
- Center of Psychiatry and Neurosciences, INSERM U895, Paris 75014, France
| | - Gisela D'Angelo
- Institut Curie, Paris Sciences et Lettres Research University, Centre National de la Recherche Scientifique UMR144, Structure and Membrane Compartments, Paris F-75005, France
| | - Graça Raposo
- Institut Curie, Paris Sciences et Lettres Research University, Centre National de la Recherche Scientifique UMR144, Structure and Membrane Compartments, Paris F-75005, France
| |
Collapse
|