501
|
Abstract
Now that mesenchymal stem cells (MSCs) have been shown to be perivascular in vivo, the existing traditional view that focuses on the multipotent differentiation capacity of these cells should be expanded to include their equally interesting role as cellular modulators that brings them into a broader therapeutic scenario. We discuss existing evidence that leads us to propose that during local injury, MSCs are released from their perivascular location, become activated, and establish a regenerative microenvironment by secreting bioactive molecules and regulating the local immune response. These trophic and immunomodulatory activities suggest that MSCs may serve as site-regulated "drugstores" in vivo.
Collapse
Affiliation(s)
- Arnold I Caplan
- Skeletal Research Center, Department of Biology, Case Western Reserve University, Cleveland, OH 44106-7080, USA.
| | | |
Collapse
|
502
|
Li G, Zheng B, Meszaros LB, Vella JB, Usas A, Matsumoto T, Huard J. Identification and characterization of chondrogenic progenitor cells in the fascia of postnatal skeletal muscle. J Mol Cell Biol 2011; 3:369-77. [PMID: 21729867 DOI: 10.1093/jmcb/mjr014] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Intramuscular injection of bone morphogenetic proteins (BMPs) has been shown to induce ectopic bone formation. A chondrogenic phase is typically observed in this process, which suggests that there may exist a chondrogenic subpopulation of cells residing in skeletal muscle. Two prospective cell populations were isolated from rat skeletal muscle: fascia-derived cells (FDCs), extracted from gluteus maximus muscle fascia (epimysium) and muscle-derived cells (MDCs) isolated from the muscle body. Both populations were investigated for their cell surface marker profiles (flowcytometry analysis), proliferation rates as well as their myogenic and chondrogenic potentials. The majority of FDCs expressed mesenchymal stromal cell markers but not endothelial cell markers. FDCs underwent chondrogenic differentiation after BMP4 treatment in vitro, but not myogenic differentiation. Although MDCs showed chondrogenic potential, they expressed the myogenic cell marker desmin and readily underwent myogenic differentiation in vitro; however, the chondrogenic potential of the MDCs is confounded by the presence of FDC-like cells residing in the muscle perimysium and endomysium. To clarify the role of the muscle-derived myogenic cells in chondrogenesis, mixed pellets with varying ratios of FDCs and L6 myoblasts were formed and studied for chondrogenic potential. Our results indicated that the chondrogenic potential of the mixed pellets decreased with the increased ratio of myogenic cells to FDCs supporting the role of FDCs in chondrogenesis. Taken together, our results suggest that non-myogenic cells residing in the fascia of skeletal muscle have a strong chondrogenic potential and may represent a novel donor cell source for cartilage regeneration and repair.
Collapse
Affiliation(s)
- Guangheng Li
- Stem Cell Research Center, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | | | | | | | | | | | | |
Collapse
|
503
|
Gobbi A, Karnatzikos G, Scotti C, Mahajan V, Mazzucco L, Grigolo B. One-Step Cartilage Repair with Bone Marrow Aspirate Concentrated Cells and Collagen Matrix in Full-Thickness Knee Cartilage Lesions: Results at 2-Year Follow-up. Cartilage 2011; 2:286-99. [PMID: 26069587 PMCID: PMC4300809 DOI: 10.1177/1947603510392023] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVE The purpose of our study was to determine the effectiveness of cartilage repair utilizing 1-step surgery with bone marrow aspirate concentrate (BMAC) and a collagen I/III matrix (Chondro-Gide, Geistlich, Wolhusen, Switzerland). MATERIALS AND METHODS We prospectively followed up for 2 years 15 patients (mean age, 48 years) who were operated for grade IV cartilage lesions of the knee. Six of the patients had multiple chondral lesions; the average size of the lesions was 9.2 cm(2). All patients underwent a mini-arthrotomy and concomitant transplantation with BMAC covered with the collagen matrix. Coexisting pathologies were treated before or during the same surgery. X-rays and MRI were collected preoperatively and at 1 and 2 years' follow-up. Visual analog scale (VAS), International Knee Documentation Committee (IKDC), Knee injury and Osteoarthritis Outcome Score (KOOS), Lysholm, Marx, SF-36 (physical/mental), and Tegner scores were collected preoperatively and at 6, 12, and 24 months' follow-up. Four patients gave their consent for second-look arthroscopy and 3 of them for a concomitant biopsy. RESULTS Patients showed significant improvement in all scores at final follow-up (P < 0.005). Patients presenting single lesions and patients with small lesions showed higher improvement. MRI showed coverage of the lesion with hyaline-like tissue in all patients in accordance with clinical results. Hyaline-like histological findings were also reported for all the specimens analyzed. No adverse reactions or postoperative complications were noted. CONCLUSION This study showed that 1-step surgery with BMAC and collagen I/III matrix could be a viable technique in the treatment of grade IV knee chondral lesions.
Collapse
Affiliation(s)
- Alberto Gobbi
- Orthopaedic Arthroscopic Surgery International, Bioresearch Foundation, Milan, Italy
| | - Georgios Karnatzikos
- Orthopaedic Arthroscopic Surgery International, Bioresearch Foundation, Milan, Italy
| | - Celeste Scotti
- Residency Program in Orthopaedics and Traumatology, University of Milan, Milan, Italy
| | - Vivek Mahajan
- Orthopaedic Arthroscopic Surgery International, Bioresearch Foundation, Milan, Italy
| | - Laura Mazzucco
- Centro Trasfusionale e Laboratorio Biotecnologie, Ospedale SS Antonioe Biagio, Alessandria, Italy
| | - Brunella Grigolo
- Laboratorio di Immunoreumatologia e Rigenerazione Tissutale, Istituto Ortopedico Rizzoli , Bologna, Italy
| |
Collapse
|
504
|
Boucher SE. Simplified PCR assay for detecting early stages of multipotent mesenchymal stromal cell differentiation. Methods Mol Biol 2011; 698:387-403. [PMID: 21431533 DOI: 10.1007/978-1-60761-999-4_28] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
With increased demand for standardized stem cell-based assays in basic and clinical research, there is a concerted effort to develop and share quick, robust validated assays for tracking multipotent mesenchymal stromal cell (MSC) status and multipotency retention. With respect to determining differentiation capacity, classical method is to perform time-consuming histological stain assays to detect mature differentiated cell types, which can take up to 1 month or more. To accelerate identification of MSC lineage commitment, we developed and validated a simple PCR-based growth and differentiation assay to routinely detect MSC lineage commitment within 7 days. By establishing a standardized PCR assay system, critical attributes can be temporally tracked in cultured MSC. In addition to meeting the reference criteria for MSC identification, this approach is also utilized in quality testing and lot release of stem cell media products.
Collapse
|
505
|
Wang L, Ott L, Seshareddy K, Weiss ML, Detamore MS. Musculoskeletal tissue engineering with human umbilical cord mesenchymal stromal cells. Regen Med 2011; 6:95-109. [PMID: 21175290 DOI: 10.2217/rme.10.98] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Multipotent mesenchymal stromal cells (MSCs) hold tremendous promise for tissue engineering and regenerative medicine, yet with so many sources of MSCs, what are the primary criteria for selecting leading candidates? Ideally, the cells will be multipotent, inexpensive, lack donor site morbidity, donor materials should be readily available in large numbers, immunocompatible, politically benign and expandable in vitro for several passages. Bone marrow MSCs do not meet all of these criteria and neither do embryonic stem cells. However, a promising new cell source is emerging in tissue engineering that appears to meet these criteria: MSCs derived from Wharton's jelly of umbilical cord MSCs. Exposed to appropriate conditions, umbilical cord MSCs can differentiate in vitro along several cell lineages such as the chondrocyte, osteoblast, adipocyte, myocyte, neuronal, pancreatic or hepatocyte lineages. In animal models, umbilical cord MSCs have demonstrated in vivo differentiation ability and promising immunocompatibility with host organs/tissues, even in xenotransplantation. In this article, we address their cellular characteristics, multipotent differentiation ability and potential for tissue engineering with an emphasis on musculoskeletal tissue engineering.
Collapse
Affiliation(s)
- Limin Wang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, MI 48109, USA
| | | | | | | | | |
Collapse
|
506
|
van der Kraan PM, Goumans MJ, Blaney Davidson E, ten Dijke P. Age-dependent alteration of TGF-β signalling in osteoarthritis. Cell Tissue Res 2011; 347:257-65. [PMID: 21638205 PMCID: PMC3250613 DOI: 10.1007/s00441-011-1194-6] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Accepted: 05/06/2011] [Indexed: 12/28/2022]
Abstract
Osteoarthritis (OA) is a disease of articular cartilage, with aging as the main risk factor. In OA, changes in chondrocytes lead to the autolytic destruction of cartilage. Transforming growth factor-β has recently been demonstrated to signal not only via activin receptor-like kinase 5 (ALK5)-induced Smad2/3 phosphorylation, but also via ALK1-induced Smad1/5/8 phosphorylation in articular cartilage. In aging cartilage and experimental OA, the ratio ALK1/ALK5 has been found to be increased, and the expression of ALK1 is correlated with matrix metalloproteinase-13 expression. The age-dependent shift towards Smad1/5/8 signalling might trigger the differentiation of articular chondrocytes with an autolytic phenotype.
Collapse
Affiliation(s)
- Peter M van der Kraan
- Department of Rheumatology, Radboud University Nijmegen Medical Centre Nijmegen, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands.
| | | | | | | |
Collapse
|
507
|
Albarenque SM, Zwacka RM, Mohr A. Both human and mouse mesenchymal stem cells promote breast cancer metastasis. Stem Cell Res 2011; 7:163-71. [PMID: 21763624 DOI: 10.1016/j.scr.2011.05.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Revised: 04/27/2011] [Accepted: 05/02/2011] [Indexed: 12/26/2022] Open
Abstract
Cell therapy has the potential to offer novel treatment modalities for a number of diseases including cancer, and stem cells and in particular mesenchymal stem cells (MSCs) have been experimentally used to deliver therapeutic transgenes. However, conflicting reports have on the one side found that human MSCs can promote metastasis, while on the other hand other studies have shown that MSCs can stall the growth of metastatic lesions. In order to clarify the role of MSCs in metastasis development, we tested whether murine MSCs would behave similarly to human cells in mice. We found that the tissue distribution of human and mouse MSCs was nearly identical after intravenous injection. In mice with MDA-MB-231 mammary carcinoma xenografts we found that a fraction of MSCs infiltrated the primary tumor mass, but that the general tissue distribution of MSCs was unaffected by the tumor-burden. About half of the tumor-burdened animals that were treated with murine and human MSCs, respectively, harbored metastatic lesions with only 17% of controls showing metastatic nodules. Hence, both human and mouse MSCs possess metastasis-promoting activity raising concerns about the safe use of MSCs, but at the same time making the use of murine transgenic model systems feasible to study the role of MSCs in metastasis development and possibly finding ways of using them safely as cell therapeutic vehicles.
Collapse
Affiliation(s)
- Stella Maris Albarenque
- National University of Ireland, Galway, National Centre for Biomedical Engineering Science, Molecular Therapeutics Group, Galway, Ireland
| | | | | |
Collapse
|
508
|
Cucchiarini M, Ekici M, Schetting S, Kohn D, Madry H. Metabolic activities and chondrogenic differentiation of human mesenchymal stem cells following recombinant adeno-associated virus-mediated gene transfer and overexpression of fibroblast growth factor 2. Tissue Eng Part A 2011; 17:1921-33. [PMID: 21417714 DOI: 10.1089/ten.tea.2011.0018] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The genetic manipulation of bone marrow-derived mesenchymal stem cells (MSCs) is an attractive approach to produce therapeutic platforms for settings that aim at restoring articular cartilage defects. Here, we examined the effects of recombinant adeno-associated virus (rAAV)-mediated overexpression of human fibroblast growth factor 2 (hFGF-2), a mitogenic factor also known to influence MSC differentiation, upon the proliferative and chondrogenic activities of human MSCs (hMSCs) in a three-dimensional environment that supports chondrogenesis in vitro. Prolonged, significant FGF-2 synthesis was noted in rAAV-hFGF-2-transduced monolayer and aggregate cultures of hMSCs, leading to enhanced, dose-dependent cell proliferation compared with control treatments (rAAV-lacZ transduction and absence of vector administration). Chondrogenic differentiation (proteoglycans, type-II collagen, and SOX9 expression) was successfully achieved in all types of aggregates, without significant difference between conditions. Most remarkably, application of rAAV-hFGF-2 reduced the expression of type-I and type-X collagen, possibly due to increased levels of matrix metalloproteinase-13, a key matrix-degrading enzyme. FGF-2 overexpression also decreased mineralization and the expression of osteogenic markers such as alkaline phosphatase, with diminished levels of RUNX-2, a transcription factor for osteoblast-related genes. Altogether, the present findings show the ability of rAAV-mediated FGF-2 gene transfer to expand hMSCs with an advantageous differentiation potential for future, indirect therapeutic approaches that aim at treating articular cartilage defects in vivo.
Collapse
Affiliation(s)
- Magali Cucchiarini
- Experimental Orthopaedics and Osteoarthritis Research, Saarland University Medical Center, Saarland University, Homburg/Saar, Germany.
| | | | | | | | | |
Collapse
|
509
|
Park SH, Choi BH, Park SR, Min BH. Chondrogenesis of Rabbit Mesenchymal Stem Cells in Fibrin/Hyaluronan Composite ScaffoldIn Vitro. Tissue Eng Part A 2011; 17:1277-86. [DOI: 10.1089/ten.tea.2010.0337] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Sang-Hyug Park
- Cell Therapy Center, Ajou University Medical Center, Suwon, Korea
- Department of Molecular Science and Technology, Ajou University Medical Center, Suwon, Korea
| | - Byung Hyune Choi
- Division of Biomedical and Bioengineering Sciences, Inha University College of Medicine, Incheon, Korea
| | - So Ra Park
- Department of Physiology, Inha University College of Medicine, Incheon, Korea
| | - Byoung-Hyun Min
- Cell Therapy Center, Ajou University Medical Center, Suwon, Korea
- Department of Molecular Science and Technology, Ajou University Medical Center, Suwon, Korea
- Department of Orthopedic Surgery, School of Medicine, Ajou University, Suwon, Korea
| |
Collapse
|
510
|
Hwang NS, Varghese S, Li H, Elisseeff J. Regulation of osteogenic and chondrogenic differentiation of mesenchymal stem cells in PEG-ECM hydrogels. Cell Tissue Res 2011; 344:499-509. [PMID: 21503601 DOI: 10.1007/s00441-011-1153-2] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Accepted: 02/25/2011] [Indexed: 12/13/2022]
Abstract
Bone-marrow-derived mesenchymal stem cells (MSCs) are candidates for regeneration applications in musculoskeletal tissue such as cartilage and bone. Various soluble factors in the form of growth factors and cytokines have been widely studied for directing the chondrogenic and osteogenic differentiation of MSCs, but little is known about the way that the composition of extracellular matrix (ECM) components in three-dimensional microenvironments plays a role in regulating the differentiation of MSCs. To define whether ECM components influence the regulation of osteogenic and chondrogenic differentiation by MSCs, we encapsulated MSCs in poly-(ethylene glycol)-based (PEG-based) hydrogels containing exogenous type I collagen, type II collagen, or hyaluronic acids (HA) and cultured them for up to 6 weeks in chondrogenic medium containing transforming growth factor-β1 (10 ng/ml) or osteogenic medium. Actin cytoskeleton organization and cellular morphology were strongly dependent on which ECM components were added to the PEG-based hydrogels. Additionally, chondrogenic differentiation of MSCs was marginally enhanced in collagen-matrix-based hydrogels, whereas osteogenic differentiation, as measured by calcium accumulation, was induced in HA-containing hydrogels. Thus, the microenvironments created by exogenous ECM components seem to modulate the fate of MSC differentiation.
Collapse
Affiliation(s)
- Nathaniel S Hwang
- Wilmer Eye Institute and Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | | | | | | |
Collapse
|
511
|
Gawlitta D, Farrell E, Malda J, Creemers LB, Alblas J, Dhert WJA. Modulating endochondral ossification of multipotent stromal cells for bone regeneration. TISSUE ENGINEERING PART B-REVIEWS 2011; 16:385-95. [PMID: 20131956 DOI: 10.1089/ten.teb.2009.0712] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
For years it has been recognized that engineering of large bone constructs will be feasible only if the hurdle of vascularization is overcome. Attempts to engineer bone tissue have predominantly focused on intramembranous (direct) bone formation. A relatively new and most likely more physiological approach in this line is endochondral bone formation, comprising an intermediate cartilaginous stage. Cartilage in nature is an avascular tissue and its cells are equipped to survive the poor oxygenation and nutritional conditions inherent to implanted tissues. Subsequent terminal differentiation (hypertrophy) of the chondrocytes initiates the formation of a mineralized matrix that will then be converted into bone. Through this mechanism, our long bones grow and most fractures heal through the process of secondary fracture healing. The feasibility of the attractive concept of endochondral bone tissue engineering has already been shown. Most emphasis has gone to the multipotent stromal cells because of their great potential for expansion and differentiation and immunoprivileged nature. This review will focus on the promises and current status of this new field. Further, potent modulators of endochondral bone tissue engineering, including oxygen tension and mechanical stimuli, will be discussed.
Collapse
Affiliation(s)
- Debby Gawlitta
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | | | | | |
Collapse
|
512
|
Puetzer JL, Petitte JN, Loboa EG. Comparative review of growth factors for induction of three-dimensional in vitro chondrogenesis in human mesenchymal stem cells isolated from bone marrow and adipose tissue. TISSUE ENGINEERING PART B-REVIEWS 2011; 16:435-44. [PMID: 20196646 DOI: 10.1089/ten.teb.2009.0705] [Citation(s) in RCA: 158] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The ability of bone-marrow-derived mesenchymal stem cells (MSCs) and adipose-derived stem cells (ASCs) to undergo chondrogenic differentiation has been studied extensively, and it has been suggested that the chondrogenic potential of these stem cells differ from each other. Here, we provide a comprehensive review and analysis of the various growth factor induction agents for MSC and ASC three-dimensional in vitro chondrogenic differentiation. In general, the most common growth factors for chondrogenic induction come from the transforming growth factor beta (TGFbeta) superfamily. To date, the most promising growth factors for chondrogenesis appear to be TGFbeta-3 and bone morphogenetic protein (BMP)-6. A thorough review of the literature indicates that human MSCs (hMSCs) appear to exhibit the highest chondrogenic potential in three-dimensional culture in the medium containing both dexamethasone and TGFbeta-3. Some reports indicate that the addition of BMP-6 to TFGbeta-3 and dexamethasone further increases hMSC chondrogenesis, but these results are still not consistently supported. Induction of human ASC (hASC) chondrogenesis appears most successful when dexamethasone, TGFbeta-3, and BMP-6 are used in combination. However, to date, current formulations do not always result in stable differentiation to the chondrocytic lineage by hMSCs and hASCs. Continued research must be performed to examine the expression cascades of the TFGbeta superfamily to further determine the effects of each growth factor alone and in combination on these stem cell lines.
Collapse
Affiliation(s)
- Jennifer L Puetzer
- Joint Department of Biomedical Engineering at UNC-Chapel Hill and North Carolina State University, Raleigh, North Carolina 27695, USA
| | | | | |
Collapse
|
513
|
Li Q, Liu T, Zhang L, Liu Y, Zhang W, Liu W, Cao Y, Zhou G. The role of bFGF in down-regulating α-SMA expression of chondrogenically induced BMSCs and preventing the shrinkage of BMSC engineered cartilage. Biomaterials 2011; 32:4773-81. [PMID: 21459437 DOI: 10.1016/j.biomaterials.2011.03.020] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2011] [Accepted: 03/06/2011] [Indexed: 12/11/2022]
Abstract
Bone marrow stromal cells (BMSCs) have proved to be an ideal cell source for cartilage regeneration. Our previous studies demonstrated that a three-dimensional (3D) cartilage could be constructed successfully in vitro using BMSCs and biodegradable scaffolds. However, an obvious shrinkage and deformation was observed during in vitro chondrogenic induction. According to the literatures, it can be speculated that the up-regulation of smooth muscle actin-alpha (α-SMA) caused by transforming growth factor beta (TGFβ) is one of the leading reasons and that basic fibroblast growth factor (bFGF) could antagonize the role of TGFβ to down-regulate α-SMA expression and prevent the shrinkage of BMSC engineered cartilage. This study testified these speculations by adding bFGF to chondrogenic media. According to the current results, chondrogenic induction significantly up-regulated α-SMA expression of BMSCs at both cell and tissue levels, and the engineered tissue only retained 12.4% of original size after 6 weeks of chondrogenic induction. However, the supplement of bFGF in chondrogenic media efficiently down-regulated α-SMA expression and the engineered tissue still retained over 60% of original size after 6 weeks of culture. Moreover, bFGF showed a beneficial influence on 3D cartilage formation of BMSCs in terms of gene expression and deposition of cartilage specific matrices. All these results suggested that bFGF could repress α-SMA expression caused by chondrogenic induction, efficiently prevent shrinkage of BMSC engineered tissue, and have a positive influence on cartilage formation, which provides a clue for both shape control and quality improvement of BMSC engineered 3D cartilage.
Collapse
Affiliation(s)
- Qiong Li
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, Shanghai Stem Cell Institute, 639 Zhi Zao Ju Road, Shanghai 200011, PR China
| | | | | | | | | | | | | | | |
Collapse
|
514
|
Augello A, De Bari C. The regulation of differentiation in mesenchymal stem cells. Hum Gene Ther 2011; 21:1226-38. [PMID: 20804388 DOI: 10.1089/hum.2010.173] [Citation(s) in RCA: 264] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stromal/stem cells (MSCs) are a population of stromal cells present in the bone marrow and most connective tissues, capable of differentiation into mesenchymal tissues such as bone and cartilage. MSCs are attractive candidates for biological cell-based tissue repair approaches because of their extensive proliferative ability in culture while retaining their mesenchymal multilineage differentiation potential. In addition to its undoubted scientific interest, the prospect of monitoring and controlling MSC differentiation is a crucial regulatory and clinical requirement. Hence, the molecular regulation of MSC differentiation has been extensively studied. Most of the studies are in vitro, because the identity of MSCs in their tissues of origin in vivo remains undefined. This review addresses the current knowledge of the molecular basis of differentiation of cultured MSCs, with a particular focus on chondrogenesis and osteogenesis. Building on the information coming from developmental biology studies of embryonic skeletogenesis, several signaling pathways and transcription factors have been investigated and shown to play critical roles in MSC differentiation. In particular, the Wnt and transforming growth factor-β/bone morphogenetic protein signaling pathways are well known to modulate in MSCs the molecular differentiation into cartilage and bone. Relevant to the emerging concept of stem cell niches is the demonstration that physical factors can also participate in the regulation of MSC differentiation. Knowledge of the regulation of MSC differentiation will be critical in the design of three-dimensional culture systems and bioreactors for automated bioprocessing through mathematical models applied to systems biology and network science.
Collapse
Affiliation(s)
- Andrea Augello
- Regenerative Medicine Unit, Bone and Musculoskeletal Research Programme, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, United Kingdom
| | | |
Collapse
|
515
|
Hsu SH, Huang TB, Cheng SJ, Weng SY, Tsai CL, Tseng CS, Chen DC, Liu TY, Fu KY, Yen BL. Chondrogenesis from human placenta-derived mesenchymal stem cells in three-dimensional scaffolds for cartilage tissue engineering. Tissue Eng Part A 2011; 17:1549-60. [PMID: 21284540 DOI: 10.1089/ten.tea.2010.0419] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Human placenta-derived mesenchymal stem cells (hPMSCs) represent a promising source of stem cells. The application of hPMSCs in cartilage tissue engineering, however, was less reported. In this study, hPMSCs were grown in a three-dimensional (3D) environment for cartilage tissue formation in vitro. To select proper scaffolds for 3D culture of mesenchymal stem cells (MSCs), rat adipose-derived MSCs were initially employed to optimize the composition and condition of the 3D environment. The suitability of a poly(D,L-lactide-co-glycolide) (PLGA) precision scaffold previously developed for seeding and culture of primary chondrocytes was tested for MSCs. It was established that MSCs had to be embedded in alginate gel before seeded in the PLGA precision scaffold for cartilage-like tissue formation. The inclusion of nano-sized calcium-deficient hydroxyapatite (nCDHA) and/or a recombinant protein containing arginine-glycine-aspartate (RGD) into the alginate gel enhanced the chondrogenesis for both rat adipose-derived MSCs and hPMSCs. The amount of extracellular matrix such as glycosaminoglycan and type II collagen accumulated during a period of 21 days was found to be the greatest for hPMSCs embedded in the alginate/nCDHA/RGD gel and injected and cultivated in the precision scaffold. Also, histological analyses revealed the lacunae formation and extracellular matrix production from the seeded hPMSCs. Comparing human bone marrow-derived MSCs (hBMSCs) and hPMSCs grown in the previous composite scaffolds, the secretion of glycosaminoglycan was twice as higher for hPMSCs as that for hBMSCs. It was concluded that the alginate/nCDHA/RGD mixed gel in the aforementioned system could provide a 3D environment for the chondrogenesis of hPMSCs, and the PLGA precision scaffold could provide the dimensional stability of the whole construct. This study also suggested that hPMSCs, when grown in a suitable scaffold, may be a good source of stem cells for building up the tissue-engineered cartilage.
Collapse
Affiliation(s)
- Shan-hui Hsu
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
516
|
Auletta JJ, Zale EA, Welter JF, Solchaga LA. Fibroblast Growth Factor-2 Enhances Expansion of Human Bone Marrow-Derived Mesenchymal Stromal Cells without Diminishing Their Immunosuppressive Potential. Stem Cells Int 2011; 2011:235176. [PMID: 21437189 PMCID: PMC3062108 DOI: 10.4061/2011/235176] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2010] [Accepted: 01/13/2011] [Indexed: 12/11/2022] Open
Abstract
Allogeneic hematopoietic stem cell transplantation is the main curative therapy for many hematologic malignancies. Its potential relies on graft-versus-tumor effects which associate with graft-versus-host disease. Mesenchymal stromal cells (MSCs) possess immunomodulatory properties that make them attractive therapeutic alternatives. We evaluated the in vitro immunosuppressive activity of medium conditioned by human MSCs from 5 donors expanded 13 passages with or without FGF-2. FGF-2 supplementation increased expansion 3,500- and 240,000-fold by passages 7 and 13, respectively. There were no differences in immunosuppressive activity between media conditioned by passage-matched cells expanded under different conditions, but media conditioned by FGF-treated MSCs were superior to population doubling-matched controls. The immunosuppressive activity was maintained in three of the preparations but decreased with expansion in two. The proliferation induced by FGF-2 did not result in loss of immunosuppressive activity. However, because the immunosuppressive activity was not consistently preserved, caution must be exercised to ensure that the activity of the cells is sufficient after extensive expansion.
Collapse
Affiliation(s)
- Jeffery J. Auletta
- Divisions of Pediatric Hematology/Oncology and Pediatric Infectious Diseases, Department of Pediatrics, University Hospitals Case Medical Center, Cleveland, OH 44106, USA
| | - Elizabeth A. Zale
- Hathaway Brown School, 19600 North Park Boulevard, Shaker Heights, OH 44122, USA
| | - Jean F. Welter
- Skeletal Research Center, Department of Biology, Case Western Reserve University, Cleveland, OH 44106-7080, USA
| | - Luis A. Solchaga
- Division of Hematology and Oncology, Department of General Medical Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- BioMimetic Therapeutics, Inc., Franklin, TN 37067, USA
| |
Collapse
|
517
|
Shin MK, Jang YH, Yoo HJ, Kang DW, Park MH, Kim MK, Song JH, Kim SD, Min G, You HK, Choi KY, Bae YS, Min DS. N-formyl-methionyl-leucyl-phenylalanine (fMLP) promotes osteoblast differentiation via the N-formyl peptide receptor 1-mediated signaling pathway in human mesenchymal stem cells from bone marrow. J Biol Chem 2011; 286:17133-43. [PMID: 21372136 DOI: 10.1074/jbc.m110.197772] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Binding of N-formyl-methionyl-leucyl-phenylalanine (fMLP) to its specific cell surface receptor, N-formyl peptide receptor (FPR), triggers different cascades of biochemical events, eventually leading to cellular activation. However, the physiological role of fMLP and FPR during differentiation of mesenchymal stem cells is unknown. In this study, we attempted to determine whether fMLP regulates differentiation of mesenchymal stem cells derived from bone marrow. Analysis by quantitative-PCR and flow cytometry showed significantly increased expression of FPR1, but not FPR2 and FPR3, during osteoblastic differentiation. fMLP, a specific ligand of FPR1, promotes osteoblastic commitment and suppresses adipogenic commitment under differentiation conditions. Remarkably, fMLP-stimulated osteogenesis is associated with increased expression of osteogenic markers and mineralization, which were blocked by cyclosporine H, a selective FPR1 antagonist. In addition, fMLP inhibited expression of peroxisome proliferator-activated receptor-γ1, a major regulator of adipocytic differentiation. fMLP-stimulated osteogenic differentiation was mediated via FPR1-phospholipase C/phospholipase D-Ca(2+)-calmodulin-dependent kinase II-ERK-CREB signaling pathways. Finally, fMLP promoted bone formation in zebrafish and rabbits, suggesting its physiological relevance in vivo. Collectively, our findings provide novel insight into the functional role of fMLP in bone biology, with important implications for its potential use as a therapeutic agent for treatment of bone-related disorders.
Collapse
Affiliation(s)
- Min Kyoung Shin
- Department of Molecular Biology, College of Natural Science, Pusan National University, 30 Jangjeon Dong, Geumjeong gu, Busan 609-735, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
518
|
Brey DM, Motlekar NA, Diamond SL, Mauck RL, Garino JP, Burdick JA. High-throughput screening of a small molecule library for promoters and inhibitors of mesenchymal stem cell osteogenic differentiation. Biotechnol Bioeng 2011; 108:163-74. [PMID: 20824673 DOI: 10.1002/bit.22925] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The use of high-throughput screening (HTS) techniques has long been employed by the pharmaceutical industry to increase discovery rates for new drugs that could be useful for disease treatment, yet this technology has only been minimally applied in other applications such as in tissue regeneration. In this work, an assay for the osteogenic differentiation of human mesenchymal stem cells (hMSCs) was developed and used to screen a library of small molecules for their potential as either promoters or inhibitors of osteogenesis, based on levels of alkaline phosphatase activity and cellular viability. From a library of 1,040 molecules, 36 promoters, and 20 inhibitors were identified as hits based on statistical criteria. Osteopromoters from this library were further investigated using standard culture techniques and a wider range of outcomes to verify that these compounds drive cellular differentiation. Several hits led to some improvement in the expression of alkaline phosphatase, osteogenic gene expression, and matrix mineralization by hMSCs when compared to the standard dexamethasone supplemented media and one molecule was investigated in combination with a recently identified biodegradable and osteoconductive polymer. This work illustrates the ability of HTS to more rapidly identify potential molecules to control stem cell differentiation.
Collapse
Affiliation(s)
- Darren M Brey
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, 240 Skirkanich Hall, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | |
Collapse
|
519
|
Coutu DL, Cuerquis J, El Ayoubi R, Forner KA, Roy R, François M, Griffith M, Lillicrap D, Yousefi AM, Blostein MD, Galipeau J. Hierarchical scaffold design for mesenchymal stem cell-based gene therapy of hemophilia B. Biomaterials 2011; 32:295-305. [PMID: 20864158 DOI: 10.1016/j.biomaterials.2010.08.094] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Accepted: 08/29/2010] [Indexed: 12/14/2022]
Abstract
Gene therapy for hemophilia B and other hereditary plasma protein deficiencies showed great promise in pre-clinical and early clinical trials. However, safety concerns about in vivo delivery of viral vectors and poor post-transplant survival of ex vivo modified cells remain key hurdles for clinical translation of gene therapy. We here describe a 3D scaffold system based on porous hydroxyapatite-PLGA composites coated with biomineralized collagen 1. When combined with autologous gene-engineered factor IX (hFIX) positive mesenchymal stem cells (MSCs) and implanted in hemophilic mice, these scaffolds supported long-term engraftment and systemic protein delivery by MSCs in vivo. Optimization of the scaffolds at the macro-, micro- and nanoscales provided efficient cell delivery capacity, MSC self-renewal and osteogenesis respectively, concurrent with sustained delivery of hFIX. In conclusion, the use of gene-enhanced MSC-seeded scaffolds may be of practical use for treatment of hemophilia B and other plasma protein deficiencies.
Collapse
Affiliation(s)
- Daniel L Coutu
- Lady Davis Institute for Medical Research, McGill University, Montreal, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
520
|
A scaffold-free in vitro model for osteogenesis of human mesenchymal stem cells. Tissue Cell 2011; 43:91-100. [PMID: 21329953 DOI: 10.1016/j.tice.2010.12.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Revised: 12/21/2010] [Accepted: 12/27/2010] [Indexed: 11/21/2022]
Abstract
For studying cellular processes three-dimensional (3D) in vitro models are of a high importance. For tissue engineering approaches osseous differentiation is performed on 3D scaffolds, but material depending influences promote cellular processes like adhesion, proliferation and differentiation. To investigate developmental processes of mesenchymal stem cells without cell-substrate interactions, self-contained in vitro models mimicking physiological condition are required. However, with respect to scientific investigations and pharmaceutical tests, it is essential that these tissue models are well characterised and are of a high reproducibility. In order to establish an appropriate in vitro model for bone formation, different protocols are compared and optimised regarding their aggregate formation efficiency, homogeneity of the aggregates, the viability and their ability to induce differentiation into the osteogenic lineage. The protocols for the generation of 3D cell models are based on rotation culture, hanging drop technique, and the cultivation in non adhesive culture vessels (single vessels as well as 96 well plates). To conclude, the cultivation of hMSCs in 96 well non adhesive plates facilitates an easy way to cultivate homogenous cellular aggregates with high performance efficiency in parallel. The size can be controlled by the initial cell density per well and within this spheroids, bone formation has been induced.
Collapse
|
521
|
Cals FLJ, Hellingman CA, Koevoet W, Baatenburg de Jong RJ, van Osch GJVM. Effects of transforming growth factor-β subtypes on in vitro cartilage production and mineralization of human bone marrow stromal-derived mesenchymal stem cells. J Tissue Eng Regen Med 2011; 6:68-76. [PMID: 21305699 DOI: 10.1002/term.399] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2010] [Accepted: 11/11/2010] [Indexed: 12/19/2022]
Abstract
Human bone marrow stromal-derived mesenchymal stem cells (hBMSCs) will differentiate into chondrocytes in response to defined chondrogenic medium containing transforming growth factor-β (TGFβ). Results in the literature suggest that the three mammalian subtypes of TGFβ (TGFβ1, TGFβ2 and TGFβ3) provoke certain subtype-specific activities. Therefore, the aim of our study was to investigate whether the TGFβ subtypes affect chondrogenic differentiation of in vitro cultured hBMSCs differently. HBMSC pellets were cultured for 5 weeks in chondrogenic media containing either 2.5, 10 or 25 ng/ml of TGFβ1, TGFβ2 or TGFβ3. All TGFβ subtypes showed a comparable dose-response curve, with significantly less cartilage when 2.5 ng/ml was used and no differences between 10 and 25 ng/ml. Four donors with variable chondrogenic capacity were used to evaluate the effect of 10 ng/ml of either TGFβ subtype on cartilage formation. No significant TGFβ subtype-dependent differences were observed in the total amount of collagen or glycosaminoglycans. Cells from a donor with low chondrogenic capacity performed equally badly with all TGFβ subtypes, while a good donor overall performed well. After addition of β-glycerophosphate during the last 2 weeks of culture, the expression of hypertrophy markers was analysed and mineralization was demonstrated by alkaline phosphatase activity and alizarin red staining. No significant TGFβ subtype-dependent differences were observed in expression collagen type X or VEGF secretion. Nevertheless, pellets cultured with TGFβ1 had significantly less mineralization than pellets cultured with TGFβ3. In conclusion, this study suggests that TGFβ subtypes do affect terminal differentiation of in vitro cultured hBMSCs differently.
Collapse
Affiliation(s)
- F L J Cals
- Department of Otorhinolaryngology and Head and Neck Surgery, Erasmus MC, University Medical Centre Rotterdam, The Netherlands
| | | | | | | | | |
Collapse
|
522
|
Martin Y, Eldardiri M, Lawrence-Watt DJ, Sharpe JR. Microcarriers and Their Potential in Tissue Regeneration. TISSUE ENGINEERING PART B-REVIEWS 2011; 17:71-80. [PMID: 21083436 DOI: 10.1089/ten.teb.2010.0559] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Yella Martin
- Blond McIndoe Research Foundation, Queen Victoria Hospital, East Grinstead, West Sussex, United kingdom
| | - Mohamed Eldardiri
- Blond McIndoe Research Foundation, Queen Victoria Hospital, East Grinstead, West Sussex, United kingdom
| | - Diana J. Lawrence-Watt
- Blond McIndoe Research Foundation, Queen Victoria Hospital, East Grinstead, West Sussex, United kingdom
| | - Justin R. Sharpe
- Blond McIndoe Research Foundation, Queen Victoria Hospital, East Grinstead, West Sussex, United kingdom
| |
Collapse
|
523
|
Culture media for the differentiation of mesenchymal stromal cells. Acta Biomater 2011; 7:463-77. [PMID: 20688199 DOI: 10.1016/j.actbio.2010.07.037] [Citation(s) in RCA: 192] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Revised: 07/20/2010] [Accepted: 07/27/2010] [Indexed: 02/08/2023]
Abstract
Mesenchymal stromal cells (MSCs) can be isolated from various tissues such as bone marrow aspirates, fat or umbilical cord blood. These cells have the ability to proliferate in vitro and differentiate into a series of mesoderm-type lineages, including osteoblasts, chondrocytes, adipocytes, myocytes and vascular cells. Due to this ability, MSCs provide an appealing source of progenitor cells which may be used in the field of tissue regeneration for both research and clinical purposes. The key factors for successful MSC proliferation and differentiation in vitro are the culture conditions. Hence, we here summarize the culture media and their compositions currently available for the differentiation of MSCs towards osteogenic, chondrogenic, adipogenic, endothelial and vascular smooth muscle phenotypes. However, optimal combination of growth factors, cytokines and serum supplements and their concentration within the media is essential for the in vitro culture and differentiation of MSCs and thereby for their application in advanced tissue engineering.
Collapse
|
524
|
Hellingman CA, Davidson ENB, Koevoet W, Vitters EL, van den Berg WB, van Osch GJVM, van der Kraan PM. Smad signaling determines chondrogenic differentiation of bone-marrow-derived mesenchymal stem cells: inhibition of Smad1/5/8P prevents terminal differentiation and calcification. Tissue Eng Part A 2011; 17:1157-67. [PMID: 21142619 DOI: 10.1089/ten.tea.2010.0043] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The aim of this study was to investigate the roles of Smad2/3 and Smad1/5/8 phosphorylation in transforming growth factor-beta-induced chondrogenic differentiation of bone-marrow-derived mesenchymal stem cells (BMSCs) to assess whether specific targeting of different Smad signaling pathways offers possibilities to prevent terminal differentiation and mineralization of chondrogenically differentiated BMSCs. Terminally differentiated chondrocytes produced in vitro by chondrogenic differentiation of BMSCs or studied ex vivo during murine embryonic limb formation stained positive for both Smad2/3P and Smad1/5/8P. Hyaline-like cartilage produced in vitro by articular chondrocytes or studied in ex vivo articular cartilage samples that lacked expression for matrix metalloproteinase 13 and collagen X only expressed Smad2/3P. When either Smad2/3 or Smad1/5/8 phosphorylation was blocked in BMSC culture by addition of SB-505124 or dorsomorphin throughout culture, no collagen II expression was observed, indicating that both pathways are involved in early chondrogenesis. Distinct functions for these pathways were demonstrated when Smad signaling was blocked after the onset of chondrogenesis. Blocking Smad2/3P after the onset of chondrogenesis resulted in a halt in collagen II production. On the other hand, blocking Smad1/5/8P during this time period resulted in decreased expression of matrix metalloproteinase 13, collagen X, and alkaline phosphatase while allowing collagen II production. Moreover, blocking Smad1/5/8P prevented mineralization. This indicates that while Smad2/3P is important for continuation of collagen II deposition, Smad1/5/8 phosphorylation is associated with terminal differentiation and mineralization.
Collapse
Affiliation(s)
- Catharine A Hellingman
- Department of Otorhinolaryngology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
525
|
Battula VL, Evans KW, Hollier BG, Shi Y, Marini FC, Ayyanan A, Wang RY, Brisken C, Guerra R, Andreeff M, Mani SA. Epithelial-mesenchymal transition-derived cells exhibit multilineage differentiation potential similar to mesenchymal stem cells. Stem Cells 2011; 28:1435-45. [PMID: 20572012 DOI: 10.1002/stem.467] [Citation(s) in RCA: 218] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The epithelial-to-mesenchymal transition (EMT) is an embryonic process that becomes latent in most normal adult tissues. Recently, we have shown that induction of EMT endows breast epithelial cells with stem cell traits. In this report, we have further characterized the EMT-derived cells and shown that these cells are similar to mesenchymal stem cells (MSCs) with the capacity to differentiate into multiple tissue lineages. For this purpose, we induced EMT by ectopic expression of Twist, Snail, or transforming growth factor-beta in immortalized human mammary epithelial cells. We found that the EMT-derived cells and MSCs share many properties including the antigenic profile typical of MSCs, that is, CD44(+), CD24(-), and CD45(-). Conversely, MSCs express EMT-associated genes, such as Twist, Snail, and mesenchyme forkhead 1 (FOXC2). Interestingly, CD140b (platelet-derived growth factor receptor-beta), a marker for naive MSCs, is exclusively expressed in EMT-derived cells and not in their epithelial counterparts. Moreover, functional analyses revealed that EMT-derived cells but not the control cells can differentiate into alizarin red S-positive mature osteoblasts, oil red O-positive adipocytes and alcian blue-positive chondrocytes similar to MSCs. We also observed that EMT-derived cells but not the control cells invade and migrate towards MDA-MB-231 breast cancer cells similar to MSCs. In vivo wound homing assays in nude mice revealed that the EMT-derived cells home to wound sites similar to MSCs. In conclusion, we have demonstrated that the EMT-derived cells are similar to MSCs in gene expression, multilineage differentiation, and ability to migrate towards tumor cells and wound sites.
Collapse
Affiliation(s)
- Venkata Lokesh Battula
- Section of Molecular Hematology and Therapy, Department of Stem Cell Transplantation, The University of Texas-M.D. Anderson Cancer Center, Houston, Texas, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
526
|
Hildner F, Albrecht C, Gabriel C, Redl H, van Griensven M. State of the art and future perspectives of articular cartilage regeneration: a focus on adipose-derived stem cells and platelet-derived products. J Tissue Eng Regen Med 2011; 5:e36-51. [PMID: 21413156 DOI: 10.1002/term.386] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Accepted: 10/21/2010] [Indexed: 12/15/2022]
Abstract
Trauma, malposition and age-related degeneration of articular cartilage often result in severe lesions that do not heal spontaneously. Many efforts over the last centuries have been undertaken to support cartilage healing, with approaches ranging from symptomatic treatment to structural cartilage regeneration. Microfracture and matrix-associated autologous chondrocyte transplantation (MACT) can be regarded as one of the most effective techniques available today to treat traumatic cartilage defects. Research is focused on the development of new biomaterials, which are intended to provide optimized physical and biochemical conditions for cell proliferation and cartilage synthesis. New attempts have also been undertaken to replace chondrocytes with cells that are more easily available and cause less donor site morbidity, e.g. adipose derived stem cells (ASC). The number of in vitro studies on adult stem cells has rapidly increased during the last decade, indicating that many variables have yet to be optimized to direct stem cells towards the desired lineage. The present review gives an overview of the difficulties of cartilage repair and current cartilage repair techniques. Moreover, it reviews new fields of cartilage tissue engineering, including stem cells, co-cultures and platelet-rich plasma (PRP).
Collapse
Affiliation(s)
- F Hildner
- Red Cross Blood Transfusion Service of Upper Austria, Linz, Austria.
| | | | | | | | | |
Collapse
|
527
|
Wei Y, Chen YH, Li LY, Lang J, Yeh SP, Shi B, Yang CC, Yang JY, Lin CY, Lai CC, Hung MC. CDK1-dependent phosphorylation of EZH2 suppresses methylation of H3K27 and promotes osteogenic differentiation of human mesenchymal stem cells. Nat Cell Biol 2011; 13:87-94. [PMID: 21131960 PMCID: PMC3076036 DOI: 10.1038/ncb2139] [Citation(s) in RCA: 314] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Accepted: 11/10/2010] [Indexed: 12/16/2022]
Abstract
Enhancer of zeste homologue 2 (EZH2) is the catalytic subunit of Polycomb repressive complex 2 (PRC2) and catalyses the trimethylation of histone H3 on Lys 27 (H3K27), which represses gene transcription. EZH2 enhances cancer-cell invasiveness and regulates stem cell differentiation. Here, we demonstrate that EZH2 can be phosphorylated at Thr 487 through activation of cyclin-dependent kinase 1 (CDK1). The phosphorylation of EZH2 at Thr 487 disrupted EZH2 binding with the other PRC2 components SUZ12 and EED, and thereby inhibited EZH2 methyltransferase activity, resulting in inhibition of cancer-cell invasion. In human mesenchymal stem cells, activation of CDK1 promoted mesenchymal stem cell differentiation into osteoblasts through phosphorylation of EZH2 at Thr 487. These findings define a signalling link between CDK1 and EZH2 that may have an important role in diverse biological processes, including cancer-cell invasion and osteogenic differentiation of mesenchymal stem cells.
Collapse
Affiliation(s)
- Yongkun Wei
- Department of Molecular and Cellular Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Ya-Huey Chen
- Center for Molecular Medicine, China Medical University Hospital, Taichung 404, Taiwan
| | - Long-Yuan Li
- Center for Molecular Medicine, China Medical University Hospital, Taichung 404, Taiwan
- Graduate Institute of Cancer Biology, China Medical University, Taichung 404, Taiwan
- Asia University, Taichung 413, Taiwan
| | - Jingyu Lang
- Department of Molecular and Cellular Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Su-Peng Yeh
- Division of Hematology and Oncology, Department of Medicine, China Medical University and Hospital, Taichung 404, Taiwan
| | - Bin Shi
- Department of Molecular and Cellular Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Cheng-Chieh Yang
- Department of Molecular and Cellular Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Jer-Yen Yang
- Department of Molecular and Cellular Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Chun-Yi Lin
- Center for Molecular Medicine, China Medical University Hospital, Taichung 404, Taiwan
| | - Chien-Chen Lai
- Graduate Institute of Chinese Medical Science, China Medical University, Taichung 404, Taiwan
- Institute of Molecular Biology, National Chung Hsing University, Taichung 402, Taiwan
| | - Mien-Chie Hung
- Department of Molecular and Cellular Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
- Center for Molecular Medicine, China Medical University Hospital, Taichung 404, Taiwan
- Graduate Institute of Cancer Biology, China Medical University, Taichung 404, Taiwan
- Asia University, Taichung 413, Taiwan
- Program in Cancer Biology, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA
| |
Collapse
|
528
|
Solchaga LA, Penick KJ, Welter JF. Chondrogenic differentiation of bone marrow-derived mesenchymal stem cells: tips and tricks. Methods Mol Biol 2011; 698:253-78. [PMID: 21431525 PMCID: PMC3106977 DOI: 10.1007/978-1-60761-999-4_20] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
It is well known that adult cartilage lacks the ability to repair itself; this makes articular cartilage a very attractive target for tissue engineering. The majority of articular cartilage repair models attempt to deliver or recruit reparative cells to the site of injury. A number of efforts are directed to the characterization of progenitor cells and the understanding of the mechanisms involved in their chondrogenic differentiation. Our laboratory has focused on cartilage repair using mesenchymal stem cells and studied their differentiation into cartilage. Mesenchymal stem cells are attractive candidates for cartilage repair due to their osteogenic and chondrogenic potential, ease of harvest, and ease of expansion in culture. However, the need for chondrogenic differentiation is superposed on other technical issues associated with cartilage repair; this adds a level of complexity over using mature chondrocytes. This chapter will focus on the methods involved in the isolation and expansion of human mesenchymal stem cells, their differentiation along the chondrogenic lineage, and the qualitative and quantitative assessment of chondrogenic differentiation.
Collapse
Affiliation(s)
- Luis A Solchaga
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA.
| | | | | |
Collapse
|
529
|
Hardy R, Cooper MS. Glucocorticoid-induced osteoporosis - a disorder of mesenchymal stromal cells? Front Endocrinol (Lausanne) 2011; 2:24. [PMID: 22654798 PMCID: PMC3356084 DOI: 10.3389/fendo.2011.00024] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Accepted: 08/06/2011] [Indexed: 12/04/2022] Open
Abstract
Glucocorticoids are a class of steroid hormones that are essential to life but cause serious harm in excess. The main clinical features of glucocorticoid excess are due to adverse effects on cells and tissues that arise from a common developmental precursor - the mesenchymal stromal cell (MSC; sometimes referred to as the mesenchymal stem cell). Interestingly glucocorticoids appear essential for the differentiation of cells and tissues that arise from MSCs. High levels of glucocorticoids are used in tissue engineering strategies to enhance the formation of tissues such as bone, cartilage, and muscle. This article discusses the paradox that glucocorticoids both enhance and impair MSC development and function. It will describe how endogenous glucocorticoids are likely to be important in these processes in vivo and will discuss the implications for therapies aimed at reducing the damage associated with the use of therapeutic glucocorticoids.
Collapse
Affiliation(s)
- Rowan Hardy
- Centre for Endocrinology, Diabetes and Metabolism, The Institute of Biomedical Research, The Medical School, University of BirminghamBirmingham, UK
| | - Mark S. Cooper
- Centre for Endocrinology, Diabetes and Metabolism, The Institute of Biomedical Research, The Medical School, University of BirminghamBirmingham, UK
- *Correspondence: Mark S. Cooper, The Institute of Biomedical Research, The Medical School, University of Birmingham, Birmingham, B15 2TH, UK. e-mail:
| |
Collapse
|
530
|
Mara CSD, Sartori AR, Duarte AS, Andrade ALL, Pedro MAC, Coimbra IB. Periosteum as a source of mesenchymal stem cells: the effects of TGF-β3 on chondrogenesis. Clinics (Sao Paulo) 2011; 66:487-92. [PMID: 21552678 PMCID: PMC3072013 DOI: 10.1590/s1807-59322011000300022] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2010] [Accepted: 12/06/2010] [Indexed: 12/27/2022] Open
Abstract
INTRODUCTION Numerous experimental efforts have been undertaken to induce the healing of lesions within articular cartilage by re-establishing competent repair tissue. Adult mesenchymal stem cells have attracted attention as a source of cells for cartilage tissue engineering. The purpose of this study was to investigate chondrogenesis employing periosteal mesenchymal cells. METHODS Periosteum was harvested from patients who underwent orthopedic surgeries. Mesenchymal stem cells were characterized through flow cytometry using specific antibodies. The stem cells were divided into four groups. Two groups were stimulated with transforming growth factor β3 (TGF-β3), of which one group was cultivated in a monolayer culture and the other was cultured in a micromass culture. The remaining two groups were cultivated in monolayer or micromass cultures in the absence of TGF-β3. Cell differentiation was verified through quantitative reverse transcription-polymerase chain reaction (RT-PCR) and using western blot analysis. RESULT In the groups cultured without TGF-β3, only the cells maintained in the micromass culture expressed type II collagen. Both the monolayer and the micromass groups that were stimulated with TGF-β3 expressed type II collagen, which was observed in both quantitative RT-PCR and western blot analysis. The expression of type II collagen was significantly greater in the micromass system than in the monolayer system. CONCLUSION The results of this study demonstrate that the interactions between the cells in the micromass culture system can regulate the proliferation and differentiation of periosteal mesenchymal cells during chondrogenesis and that this effect is enhanced by TGF-β3.
Collapse
Affiliation(s)
- Cristiane Sampaio de Mara
- Laboratory of Molecular Biology of Cartilage, Division of Rheumatology, Department of Clinical Medicine, State University of Campinas.
| | | | | | | | | | | |
Collapse
|
531
|
Kuske B, Savkovic V, zur Nieden NI. Improved media compositions for the differentiation of embryonic stem cells into osteoblasts and chondrocytes. Methods Mol Biol 2011; 690:195-215. [PMID: 21042995 DOI: 10.1007/978-1-60761-962-8_14] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Differentiation procedures leading to osteogenic and chondrogenic differentiation of embryonic stem cells (ESCs) have been established and well upgraded over the past decade. Novel cell-culture conditions, signaling inducers, and chemical modifications of cellular environment have been found and optimized for use as steering or supporting modules in ESC differentiation. While most of the novel studies of osteoblasts or chondrocytes differentiated from ESCs deal with their regenerative potential, the "childhood diseases" of basic differentiation have not yet been quite solved. Purification procedures are still facing a lack of exclusive markers for osteogenic progenitors and a collateral development of other cell types at the end points of differentiation that possibly lead to teratomas. This chapter discusses the role of novel markers and inducers in osteogenic and chondrogenic differentiation, their effect on signaling pathways, particularly on that of Wnt/beta-catenin, and the time-specific manner of their action. We present an improved osteogenic differentiation protocol based on the hanging drop method and a time-optimized use of 1α,25-(OH)(2) vitamin D(3), all-trans retinoic acid, and bone morphogenetic protein 2 (BMP-2) with an end point efficiency increased up to 90% and a protocol for chondrogenic differentiation, which employs BMP-2 and transforming growth factor β1 as chondrogenic inducers, with 60% chondrogenic end point efficiency.
Collapse
Affiliation(s)
- Beatrice Kuske
- Department of Cell Biology & Neuroscience, University of California Riverside, Riverside, CA, USA
| | | | | |
Collapse
|
532
|
Chonanant C, Jearanaikoon N, Leelayuwat C, Limpaiboon T, Tobin MJ, Jearanaikoon P, Heraud P. Characterisation of chondrogenic differentiation of human mesenchymal stem cells using synchrotron FTIR microspectroscopy. Analyst 2011; 136:2542-51. [DOI: 10.1039/c1an15182g] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
533
|
Shanmugasundaram S, Chaudhry H, Arinzeh TL. Microscale versus nanoscale scaffold architecture for mesenchymal stem cell chondrogenesis. Tissue Eng Part A 2010; 17:831-40. [PMID: 20973751 DOI: 10.1089/ten.tea.2010.0409] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Nanofiber scaffolds, produced by the electrospinning technique, have gained widespread attention in tissue engineering due to their morphological similarities to the native extracellular matrix. For cartilage repair, studies have examined their feasibility; however these studies have been limited, excluding the influence of other scaffold design features. This study evaluated the effect of scaffold design, specifically examining a range of nano to micron-sized fibers and resulting pore size and mechanical properties, on human mesenchymal stem cells (MSCs) derived from the adult bone marrow during chondrogenesis. MSC differentiation was examined on these scaffolds with an emphasis on temporal gene expression of chondrogenic markers and the pluripotent gene, Sox2, which has yet to be explored for MSCs during chondrogenesis and in combination with tissue engineering scaffolds. Chondrogenic markers of aggrecan, chondroadherin, sox9, and collagen type II were highest for cells on micron-sized fibers (5 and 9 μm) with pore sizes of 27 and 29 μm, respectively, in comparison to cells on nano-sized fibers (300 nm and 600 to 1400 nm) having pore sizes of 2 and 3 μm, respectively. Undifferentiated MSCs expressed high levels of the Sox2 gene but displayed negligible levels on all scaffolds with or without the presence of inductive factors, suggesting that the physical features of the scaffold play an important role in differentiation. Micron-sized fibers with large pore structures and mechanical properties comparable to the cartilage ECM enhanced chondrogenesis, demonstrating architectural features as well as mechanical properties of electrospun fibrous scaffolds enhance differentiation.
Collapse
|
534
|
Bone marrow stem cell derived paracrine factors for regenerative medicine: current perspectives and therapeutic potential. BONE MARROW RESEARCH 2010; 2011:207326. [PMID: 22046556 PMCID: PMC3195349 DOI: 10.1155/2011/207326] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Accepted: 10/12/2010] [Indexed: 12/11/2022]
Abstract
During the past several years, there has been intense research in the field of bone marrow-derived stem cell (BMSC) therapy to facilitate its translation into clinical setting. Although a lot has been accomplished, plenty of challenges lie ahead. Furthermore, there is a growing body of evidence showing that administration of BMSC-derived conditioned media (BMSC-CM) can recapitulate the beneficial effects observed after stem cell therapy. BMSCs produce a wide range of cytokines and chemokines that have, until now, shown extensive therapeutic potential. These paracrine mechanisms could be as diverse as stimulating receptor-mediated survival pathways, inducing stem cell homing and differentiation or regulating the anti-inflammatory effects in wounded areas. The current review reflects the rapid shift of interest from BMSC to BMSC-CM to alleviate many logistical and technical issues regarding cell therapy and evaluates its future potential as an effective regenerative therapy.
Collapse
|
535
|
Khan WS, Johnson DS, Hardingham TE. The potential of stem cells in the treatment of knee cartilage defects. Knee 2010; 17:369-374. [PMID: 20051319 DOI: 10.1016/j.knee.2009.12.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2009] [Revised: 12/06/2009] [Accepted: 12/07/2009] [Indexed: 02/02/2023]
Abstract
Cartilage is frequently damaged but only shows a limited capacity for repair. There are a number of treatment strategies currently available for the repair of articular cartilage defects including abrasion chondroplasty, subchondral drilling, microfracture and mosaicplasty but these show variable results. For the younger patients, there is great interest in the potential of cell-based strategies to provide a biological replacement of damaged cartilage using autologous chondrocytes. The results of clinical studies using these cell-based techniques do not conclusively show improvement over conventional techniques. These techniques also do not consistently result in the formation of the desired hyaline cartilage rather than fibrocartilage. Mesenchymal stem cells present a promising cell source for cartilage repair. Mesenchymal stem cells have been isolated from a number of adult tissues including the bone marrow and the synovial fat pad. These cells have the ability to proliferate in culture and differentiate down different pathways including the chondrogenic pathway. In the first instance, differentiated stem cells can be used for the repair of localised cartilage defects by producing hyaline cartilage. In the future, this strategy has the potential to be extended to treat more generalised cartilage defects, especially as the cell source is not a limiting factor. The use of cell-based therapies also allows the versatility of using scaffolds and growth factors, with recombinant proteins or gene therapy. A number of challenges however still need to be overcome including further work on identifying the optimal source of stem cells, along with refining the conditions that enhance expansion and chondrogenesis.
Collapse
Affiliation(s)
- Wasim S Khan
- UK Centre for Tissue Engineering, University of Manchester, Oxford Road, M13 9PL UK.
| | | | | |
Collapse
|
536
|
Steck E, Bertram H, Walther A, Brohm K, Mrozik B, Rathmann M, Merle C, Gelinsky M, Richter W. Enhanced Biochemical and Biomechanical Properties of Scaffolds Generated by Flock Technology for Cartilage Tissue Engineering. Tissue Eng Part A 2010; 16:3697-707. [DOI: 10.1089/ten.tea.2009.0817] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Eric Steck
- Research Center for Experimental Orthopaedics, Orthopaedic University Hospital Heidelberg, Heidelberg, Germany
| | - Helge Bertram
- Research Center for Experimental Orthopaedics, Orthopaedic University Hospital Heidelberg, Heidelberg, Germany
| | - Anja Walther
- Max Bergmann Center of Biomaterials and Institute for Materials Science, Technische Universität Dresden, Dresden, Germany
| | - Kathrin Brohm
- Research Center for Experimental Orthopaedics, Orthopaedic University Hospital Heidelberg, Heidelberg, Germany
| | - Birgit Mrozik
- Institute of Textile Machinery and High Performance Material Technology, Technische Universität Dresden, Dresden, Germany
| | - Maxi Rathmann
- Research Center for Experimental Orthopaedics, Orthopaedic University Hospital Heidelberg, Heidelberg, Germany
| | - Christian Merle
- Orthopaedics I, Orthopaedic University Clinic Heidelberg, Heidelberg, Germany
| | - Michael Gelinsky
- Max Bergmann Center of Biomaterials and Institute for Materials Science, Technische Universität Dresden, Dresden, Germany
| | - Wiltrud Richter
- Research Center for Experimental Orthopaedics, Orthopaedic University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
537
|
De Bari C, Kurth TB, Augello A. Mesenchymal stem cells from development to postnatal joint homeostasis, aging, and disease. BIRTH DEFECTS RESEARCH. PART C, EMBRYO TODAY : REVIEWS 2010; 90:257-71. [PMID: 21181887 DOI: 10.1002/bdrc.20189] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Joint morphogenesis involves signaling pathways and growth factors that recur in the adult life with less redundancy to safeguard joint homeostasis. Loss of such homeostasis due to abnormal signaling networks as in aging could lead to diseases such as osteoarthritis. Stem cells are the cellular counterpart and targets of the morphogenetic signals, and they function to maintain the tissues by ensuring replacement of cells lost to physiological turnover, injury, aging, and disease. Mesenchymal stem cells (MSCs) are key players in regenerative medicine for their ability to differentiate toward multiple lineages such as cartilage and bone, but they age along the host body and senesce when serially passaged in culture. Understanding correlations between aging and its effects on MSCs is of the utmost importance to explain how aging happens and unravel the underlying mechanisms. The investigation of the MSC senescence in culture will help in developing more efficient and standardized cell culture methods for cellular therapies in skeletal regenerative medicine. An important area to explore in biomedical sciences is the role of endogenous stem cell niches in joint homeostasis, remodeling, and disease. It is anticipated that an understanding of the stem cell niches and related remodeling signals will allow the development of pharmacological interventions to support effective joint tissue regeneration, to restore joint homeostasis, and to prevent osteoarthritis.
Collapse
Affiliation(s)
- Cosimo De Bari
- Regenerative Medicine Unit, Musculoskeletal Programme, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom.
| | | | | |
Collapse
|
538
|
Tare RS, Kanczler J, Aarvold A, Jones AMH, Dunlop DG, Oreffo ROC. Skeletal stem cells and bone regeneration: translational strategies from bench to clinic. Proc Inst Mech Eng H 2010; 224:1455-70. [PMID: 21287831 DOI: 10.1243/09544119jeim750] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Clinical imperatives for new bone to replace or restore the function of traumatized or bone lost as a consequence of age or disease has led to the need for therapies or procedures to generate bone for skeletal applications. Tissue regeneration promises to deliver specifiable replacement tissues and the prospect of efficacious alternative therapies for orthopaedic applications such as non-union fractures, healing of critical sized segmental defects and regeneration of articular cartilage in degenerative joint diseases. In this paper we review the current understanding of the continuum of cell development from skeletal stem cells, osteoprogenitors through to mature osteoblasts and the role of the matrix microenvironment, vasculature and factors that control their fate and plasticity in skeletal regeneration. Critically, this review addresses in vitro and in vivo models to investigate laboratory and clinical based strategies for the development of new technologies for skeletal repair and the key translational points to clinical success. The application of developmental paradigms of musculoskeletal tissue formation specifically, understanding developmental biology of bone formation particularly in the adult context of injury and disease will, we propose, offer new insights into skeletal cell biology and tissue regeneration allowing for the critical integration of stem cell science, tissue engineering and clinical applications. Such interdisciplinary, iterative approaches will be critical in taking patient aspirations to clinical reality.
Collapse
Affiliation(s)
- R S Tare
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Developmental Origins of Health and Disease, Institute of Developmental Sciences, University of Southampton School of Medicine, Southampton, United Kingdom
| | | | | | | | | | | |
Collapse
|
539
|
Imaizumi M, Nomoto Y, Sugino T, Miyake M, Wada I, Nakamura T, Omori K. Potential of induced pluripotent stem cells for the regeneration of the tracheal wall. Ann Otol Rhinol Laryngol 2010; 119:697-703. [PMID: 21049856 DOI: 10.1177/000348941011901009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Our previous studies focused on basic research and the clinical applications of an artificial trachea. However, the prefabricated artificial trachea cannot be utilized for pediatric airways, because the tracheal frame needs to expand as the child develops. The purpose of this study was to evaluate the potential of induced pluripotent stem (iPS) cells for the regeneration of the tracheal wall. METHODS We cultured iPS cells in a 3-dimensional (3-D) scaffold in chondrocyte differentiation medium (bioengineered scaffold model), and the results were compared with those in a 3-D scaffold without iPS cells (control scaffold model). The 3-D scaffolds were implanted into tracheal defects in 8 nude rats. After 4 weeks, the regenerated tissue was histologically examined. RESULTS Implanted iPS cells were confirmed to exist in all 5 rats implanted with bioengineered scaffolds. Cartilage-like tissue was observed in the regenerated tracheal wall in 2 of the 5 rats in the bioengineered scaffold model, but in none of the 3 rats in the control scaffold model. CONCLUSIONS Implanted iPS cells were confirmed to exist in the bioengineered scaffold. Cartilage-like tissue was regenerated in the tracheal defect. This study demonstrated the potential of iPS cells in the regeneration of the tracheal wall.
Collapse
Affiliation(s)
- Mitsuyoshi Imaizumi
- Dept of Otolaryngology, Fukushima Medical University, School of Medicine, 1 Hikarigaoka, Fukushima 960-1295, Japan
| | | | | | | | | | | | | |
Collapse
|
540
|
Rhodes LV, Antoon JW, Muir SE, Elliott S, Beckman BS, Burow ME. Effects of human mesenchymal stem cells on ER-positive human breast carcinoma cells mediated through ER-SDF-1/CXCR4 crosstalk. Mol Cancer 2010; 9:295. [PMID: 21087507 PMCID: PMC2998478 DOI: 10.1186/1476-4598-9-295] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Accepted: 11/18/2010] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Adult human mesenchymal stem cells (hMSC) have been shown to home to sites of carcinoma and affect biological processes, including tumour growth and metastasis. Previous findings have been conflicting and a clear understanding of the effects of hMSCs on cancer remains to be established. Therefore, we set out to investigate the impact of hMSCs on the oestrogen receptor positive, hormone-dependent breast carcinoma cell line MCF-7. RESULTS In this study, we show the effects of hMSCs on cancer cells are mediated through a secreted factor(s) which are enhanced by cancer cell-hMSC contact/communication. In addition to enhanced proliferation when in co-culture with hMSCs, MCF-7 cells were found to have increased migration potential in vitro. Inhibition of ER signalling by the pure anti-oestrogen ICI 182,780 decreased the effect of hMSCs on MCF-7 cell proliferation and migration supporting a role for ER signalling in the hMSC/MCF-7 cell interaction. Additionally, hMSCs have been shown to secrete a wide variety of growth factors and chemokines including stromal cell-derived factor-1 (SDF-1). This coupled with the knowledge that SDF-1 is an ER-mediated gene linked with hormone-independence and metastasis led to the investigation of the SDF-1/CXCR4 signalling axis in hMSC-MCF-7 cell interaction. Experiments revealed an increase in SDF-1 gene expression both in vivo and in vitro when MCF-7 cells were cultured with hMSCs. SDF-1 treatment of MCF-7 cells alone increased proliferation to just below that seen with hMSC co-culture. Additionally, blocking SDF-1 signalling using a CXCR4-specific inhibitor decreased hMSC induced proliferation and migration of MCF-7. However, the combined treatment of ICI and AMD3100 reduced MCF-7 cell proliferation and migration below control levels, indicating targeting both the ER and CXCR4 pathways is effective in decreasing the hMSCs induction of MCF-7 cell proliferation and migration. CONCLUSIONS The sum of these data reveals the relationship between tumour microenvironment and tumour growth and progression. Better understanding of the mechanisms involved in this tumour stroma cell interaction may provide novel targets for the development of treatment strategies for oestrogen receptor positive, hormone-independent, and endocrine-resistant breast carcinoma.
Collapse
Affiliation(s)
- Lyndsay V Rhodes
- Department of Medicine, Section of Haematology and Medical Oncology, Tulane University Health Science Centre, New Orleans, Louisiana, USA.
| | | | | | | | | | | |
Collapse
|
541
|
Karbanová J, Soukup T, Suchánek J, Pytlík R, Corbeil D, Mokrý J. Characterization of dental pulp stem cells from impacted third molars cultured in low serum-containing medium. Cells Tissues Organs 2010; 193:344-65. [PMID: 21071916 DOI: 10.1159/000321160] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2010] [Indexed: 01/02/2023] Open
Abstract
We isolated and expanded stem cells from dental pulp from extracted third molars using an innovative culture method consisting of low serum-containing medium supplemented with epidermal growth factor and platelet-derived growth factor BB. We evaluated the differentiation potential of these cells when they were growing either adherently or as micromass/spheroid cultures in various media. Undifferentiated and differentiated cells were analyzed by flow cytometry, immunocytochemistry and immunoblotting. The flow cytometry results showed that the dental pulp stem cells (DPSCs) were positive for mesenchymal stromal cell markers, but negative for hematopoietic markers. Immunocytochemical and/or immunoblotting analyses revealed the expression of numerous stem cell markers, including nanog, Sox2, nestin, Musashi-1 and nucleostemin, whereas they were negative for markers associated with differentiated neural, vascular and hepatic cells. Surprisingly, the cells were only slightly positive for α-smooth muscle actin, and a heterogeneous expression of CD146 was observed. When cultured in osteogenic media, they expressed osteonectin, osteopontin and procollagen I, and in micromass cultures, they produced collagen I. DPSCs cultured in TGF-β1/3-supplemented media produced extracellular matrix typical of cartilaginous tissue. The addition of vascular endothelial growth factor to serum-free media resulted in the expression of endothelial markers. Interestingly, when cultured in neurogenic media, DPSCs exhibited de novo or upregulated markers of undifferentiated and differentiated neural cells. Collectively, our data show that DPSCs are self-renewing and able to express markers of bone, cartilage, vascular and neural tissues, suggesting their multipotential capacity. Their easy accessibility makes these cells a suitable source of somatic stem cells for tissue engineering.
Collapse
Affiliation(s)
- Jana Karbanová
- Department of Histology and Embryology, Charles University in Prague, Faculty of Medicine, Prague, Czech Republic.
| | | | | | | | | | | |
Collapse
|
542
|
Cohen J, Zaleski KL, Nourissat G, Julien TP, Randolph MA, Yaremchuk MJ. Survival of porcine mesenchymal stem cells over the alginate recovered cellular method. J Biomed Mater Res A 2010; 96:93-9. [DOI: 10.1002/jbm.a.32961] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 07/12/2010] [Accepted: 07/15/2010] [Indexed: 02/01/2023]
|
543
|
Boeuf S, Richter W. Chondrogenesis of mesenchymal stem cells: role of tissue source and inducing factors. Stem Cell Res Ther 2010; 1:31. [PMID: 20959030 PMCID: PMC2983444 DOI: 10.1186/scrt31] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Multipotent mesenchymal stromal cells (MSCs) are an attractive cell source for cell therapy in cartilage. Although their therapeutic potential is clear, the requirements and conditions for effective induction of chondrogenesis in MSCs and for the production of a stable cartilaginous tissue by these cells are far from being understood. Different sources of MSCs have been considered for cartilage tissue engineering, mainly based on criteria of availability, as for adipose tissue, or of proximity to cartilage and the joint environment in vivo, as for bone marrow and synovial tissues. Focussing on human MSCs, this review will provide an overview of studies featuring comparative analysis of the chondrogenic differentiation of MSCs from different sources. In particular, it will examine the influence of the cells' origin on the requirements for the induction of chondrogenesis and on the phenotype achieved by the cells after differentiation.
Collapse
Affiliation(s)
- Stephane Boeuf
- Research Centre for Experimental Orthopaedics, Orthopaedic University Hospital Heidelberg, Schlierbacher Landstrasse 200a, 69118 Heidelberg, Germany.
| | | |
Collapse
|
544
|
Haleem AM, Singergy AAE, Sabry D, Atta HM, Rashed LA, Chu CR, Shewy MTE, Azzam A, Aziz MTA. The Clinical Use of Human Culture-Expanded Autologous Bone Marrow Mesenchymal Stem Cells Transplanted on Platelet-Rich Fibrin Glue in the Treatment of Articular Cartilage Defects: A Pilot Study and Preliminary Results. Cartilage 2010; 1:253-261. [PMID: 21170288 PMCID: PMC3002255 DOI: 10.1177/1947603510366027] [Citation(s) in RCA: 216] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE: To test the hypothesis that platelet-rich fibrin glue (PR-FG) can be used clinically as a scaffold to deliver autologous culture-expanded bone marrow mesenchymal stem cells (BM-MSCs) for cartilage repair and to report clinical results 1 y after implantation of MSCs PR-FG. PATIENTS AND METHODS: Autologous BM-MSCs were culture expanded, placed on PR-FG intraoperatively, and then transplanted into 5 full-thickness cartilage defects of femoral condyles of 5 patients and covered with an autologous periosteal flap. Patients were evaluated clinically at 6 and 12 mo by the Lysholm and Revised Hospital for Special Surgery Knee (RHSSK) scores and radiographically by x-rays and magnetic resonance imaging (MRI) at the same time points. Repair tissue in 2 patients was rated arthroscopically after 12 mo using the International Cartilage Repair Society (ICRS) Arthroscopic Score. STUDY DESIGN: Case series; level of evidence 4. RESULTS: All patients' symptoms improved over the follow-up period of 12 mo. Average Lysholm and RHSSK scores for all patients showed statistically significant improvement at 6 and 12 mo postoperatively (P < 0.05). There was no statistically significant difference between the 6 and 12 mo postoperative clinical scores (P = 0.18). ICRS arthroscopic scores were 8/12 and 11/12 (nearly normal) for the 2 patients who consented to arthroscopy. MRI of 3 patients at 12 mo postoperatively revealed complete defect fill and complete surface congruity with native cartilage, whereas that of 2 patients showed incomplete congruity. CONCLUSION: Autologous BM-MSC transplantation on PR-FG as a cell scaffold may be an effective approach to promote the repair of articular cartilage defects of the knee in human patients.
Collapse
Affiliation(s)
- Amgad M. Haleem
- Department of Orthopedic Surgery, Cairo University School of Medicine, Cairo, Egypt
- Department of Orthopedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | - Dina Sabry
- Department of Medical Biochemistry, Molecular Biology and Tissue Engineering Unit, Cairo University School of Medicine, Cairo, Egypt
| | - Hazem M. Atta
- Department of Medical Biochemistry, Molecular Biology and Tissue Engineering Unit, Cairo University School of Medicine, Cairo, Egypt
| | - Laila A. Rashed
- Department of Medical Biochemistry, Molecular Biology and Tissue Engineering Unit, Cairo University School of Medicine, Cairo, Egypt
| | - Constance R. Chu
- Department of Orthopedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Mohammed T. El Shewy
- Department of Orthopedic Surgery, Cairo University School of Medicine, Cairo, Egypt
| | - Akram Azzam
- Department of Medical Biochemistry, Molecular Biology and Tissue Engineering Unit, Cairo University School of Medicine, Cairo, Egypt
| | - Mohammed T. Abdel Aziz
- Department of Medical Biochemistry, Molecular Biology and Tissue Engineering Unit, Cairo University School of Medicine, Cairo, Egypt
| |
Collapse
|
545
|
Han HS, Lee S, Kim JH, Seong SC, Lee MC. Changes in chondrogenic phenotype and gene expression profiles associated with the in vitro expansion of human synovium-derived cells. J Orthop Res 2010; 28:1283-91. [PMID: 20225285 DOI: 10.1002/jor.21129] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We undertook this study to characterize changes in the proliferative capacities, chondrogenic phenotypes, and gene expression profiles of human synovium-derived progenitor cells from osteoarthritic patients during in vitro expansion. Cells isolated from osteoarthritic synovia were cultured, and growth rates during serial passages were evaluated. Surface molecule expressions were determined by flow cytometry and cytogenetic analyses were performed. After chondrogenic differentiation in cell pellets, we evaluated type II collagen and glycosaminoglycan (GAG) synthesis. To assess whether the in vitro expansion of synovium-derived cells affects gene expression, we performed microarray analyses on cells at passage 0, 1, 2, 4, 6, and 8. Synovium-derived cells were rapidly expanded in vitro through passage 8 (about 130 days), and after passage 6, the proliferation rates decreased slightly with a wide range of individual variations. The expressions of CD166, CD49a, and CD106 decreased, whereas those of CD10, CD29, CD44, CD73, CD90, and CD105 showed no significant change. Karyotype analysis revealed no evidence of chromosome abnormalities. The staining of type II collagen and GAG in differentiated cell pellets showed rapid weakening. Genome-wide microarray analysis showed that synovium-derived cells from late passages over-expressed genes associated with cell cycle prolongation and cell aging, and less-expressed genes associated with cell growth stimulation. The in vitro expansion of synovium-derived cells was accompanied with decreased proliferative capacity and the chondrogenic phenotype, which might be modulated by change in gene expression patterns.
Collapse
Affiliation(s)
- Hyuk-Soo Han
- Department of Orthopaedic Surgery, Seoul National University, College of Medicine, 28 Yongondong, Chongnogu, 110-744 Seoul, South Korea
| | | | | | | | | |
Collapse
|
546
|
The ascorbic acid paradox. Biochem Biophys Res Commun 2010; 400:466-70. [DOI: 10.1016/j.bbrc.2010.08.052] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Accepted: 08/14/2010] [Indexed: 01/08/2023]
|
547
|
Gong Z, Xiong H, Long X, Wei L, Li J, Wu Y, Lin Z. Use of synovium-derived stromal cells and chitosan/collagen type I scaffolds for cartilage tissue engineering. Biomed Mater 2010; 5:055005. [PMID: 20826911 DOI: 10.1088/1748-6041/5/5/055005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The objective was to investigate synovium-derived stromal cells (SDSCs) coupled with chitosan/collagen type I (CS/COL-I) scaffolds for cartilage engineering. CS/COL-I scaffolds were fabricated through freeze-drying and cross-linked by 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide. SDSCs were isolated from synovium and cultured onto CS/COL-I scaffolds, constructs of which were incubated in serum-free chondrogenic medium with sequential application of TGF-β1 and bFGF for up to 21 days and then implanted into nude mice. The physical characteristics of the scaffolds were examined. The quality of the in vitro constructs was assessed in terms of DNA content by PicoGreen assay and cartilaginous matrix by histological examination. The implants of the constructs were evaluated by histological and immunohistochemical examinations and reverse transcription PCR. Results indicated that the CS/COL-I scaffold showed porous structures, and the DNA content of SDSCs in CS/COL-I scaffolds increased at 1 week culture time. Both of the constructs in vitro and the implants were examined with positive stained GAGs histologically and the implants with positive collagen type II immunohistochemically. RT-PCR of the implants indicated that aggrecan and collagen type II expressed. It suggested that SDSCs coupled with CS/COL-I scaffolds treated sequentially with TGF-β1 and bFGF in vitro were highly competent for engineered cartilage formation in vitro and in vivo.
Collapse
Affiliation(s)
- Zhongcheng Gong
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
548
|
Buckley CT, Vinardell T, Kelly DJ. Oxygen tension differentially regulates the functional properties of cartilaginous tissues engineered from infrapatellar fat pad derived MSCs and articular chondrocytes. Osteoarthritis Cartilage 2010; 18:1345-54. [PMID: 20650328 DOI: 10.1016/j.joca.2010.07.004] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Revised: 07/07/2010] [Accepted: 07/14/2010] [Indexed: 02/02/2023]
Abstract
BACKGROUND For current tissue engineering or regenerative medicine strategies, chondrocyte (CC)- or mesenchymal stem cell (MSC)-seeded constructs are typically cultured in normoxic conditions (20% oxygen). However, within the knee joint capsule a lower oxygen tension exists. OBJECTIVE The objective of this study was to investigate how CCs and infrapatellar fad pad derived MSCs will respond to a low oxygen (5%) environment in 3D agarose culture. Our hypothesis was that culture in a low oxygen environment (5%) will enhance the functional properties of cartilaginous tissues engineered using both cell sources. EXPERIMENTAL DESIGN Cell-encapsulated agarose hydrogel constructs (seeded with CCs or infrapatellar fat pad (IFP) derived MSCs) were prepared and cultured in a chemically defined serum-free medium in the presence (CCs and MSCs) or absence (CCs only) of transforming growth factor-beta3 (TGF-β3) in normoxic (20%) or low oxygen (5%) conditions for 42 days. Constructs were assessed at days 0, 21 and 42 in terms of mechanical properties, biochemical content and histologically. RESULTS Low oxygen tension (5%) was observed to promote extracellular matrix (ECM) production by CCs cultured in the absence of TGF-β3, but was inhibitory in the presence of TGF-β3. In contrast, a low oxygen tension enhanced chondrogenesis of IFP constructs in the presence of TGF-β3, leading to superior mechanical functionality compared to CCs cultured in identical conditions. CONCLUSIONS Extrapolating the results of this study to the in vivo setting, it would appear that joint fat pad derived MSCs may possess a superior potential to generate a functional repair tissue in low oxygen tensions. However, in the context of in vitro cartilage tissue engineering, CCs maintained in normoxic conditions in the presence of TGF-β3 generate the most mechanically functional tissue.
Collapse
Affiliation(s)
- C T Buckley
- Trinity Centre for Bioengineering, School of Engineering, Trinity College Dublin, Dublin 2, Ireland
| | | | | |
Collapse
|
549
|
Mosna F, Sensebé L, Krampera M. Human Bone Marrow and Adipose Tissue Mesenchymal Stem Cells: A User's Guide. Stem Cells Dev 2010; 19:1449-70. [DOI: 10.1089/scd.2010.0140] [Citation(s) in RCA: 254] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Federico Mosna
- Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, Policlinico “G.B. Rossi”—University of Verona, Verona, Italy
| | - Luc Sensebé
- Etablissement Français du Sang (EFS), Centre-Atlantique and EA3855 University François Rabelais, Tours, France
| | - Mauro Krampera
- Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, Policlinico “G.B. Rossi”—University of Verona, Verona, Italy
| |
Collapse
|
550
|
Jukes JM, van der Aa LJ, Hiemstra C, van Veen T, Dijkstra PJ, Zhong Z, Feijen J, van Blitterswijk CA, de Boer J. A newly developed chemically crosslinked dextran-poly(ethylene glycol) hydrogel for cartilage tissue engineering. Tissue Eng Part A 2010; 16:565-73. [PMID: 19737051 DOI: 10.1089/ten.tea.2009.0173] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cartilage tissue engineering, in which chondrogenic cells are combined with a scaffold, is a cell-based approach to regenerate damaged cartilage. Various scaffold materials have been investigated, among which are hydrogels. Previously, we have developed dextran-based hydrogels that form under physiological conditions via a Michael-type addition reaction. Hydrogels can be formed in situ by mixing a thiol-functionalized dextran with a tetra-acrylated star poly(ethylene glycol) solution. In this article we describe how the degradation time of dextran-poly(ethylene glycol) hydrogels can be varied from 3 to 7 weeks by changing the degree of substitution of thiol groups on dextran. The degradation times increased slightly after encapsulation of chondrocytes in the gels. The effect of the gelation reaction on cell viability and cartilage formation in the hydrogels was investigated. Chondrocytes or embryonic stem cells were mixed in the aqueous dextran solution, and we confirmed that the cells survived gelation. After a 3-week culturing period, chondrocytes and embryonic stem cell-derived embryoid bodies were still viable and both cell types produced cartilaginous tissue. Our data demonstrate the potential of dextran hydrogels for cartilage tissue engineering strategies.
Collapse
Affiliation(s)
- Jojanneke M Jukes
- Department of Tissue Regeneration, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|