501
|
Wilson MB, Spivak M, Hegeman AD, Rendahl A, Cohen JD. Metabolomics reveals the origins of antimicrobial plant resins collected by honey bees. PLoS One 2013; 8:e77512. [PMID: 24204850 PMCID: PMC3799627 DOI: 10.1371/journal.pone.0077512] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 08/26/2013] [Indexed: 11/24/2022] Open
Abstract
The deposition of antimicrobial plant resins in honey bee, Apis mellifera, nests has important physiological benefits. Resin foraging is difficult to approach experimentally because resin composition is highly variable among and between plant families, the environmental and plant-genotypic effects on resins are unknown, and resin foragers are relatively rare and often forage in unobservable tree canopies. Subsequently, little is known about the botanical origins of resins in many regions or the benefits of specific resins to bees. We used metabolomic methods as a type of environmental forensics to track individual resin forager behavior through comparisons of global resin metabolite patterns. The resin from the corbiculae of a single bee was sufficient to identify that resin's botanical source without prior knowledge of resin composition. Bees from our apiary discriminately foraged for resin from eastern cottonwood (Populus deltoides), and balsam poplar (P. balsamifera) among many available, even closely related, resinous plants. Cottonwood and balsam poplar resin composition did not show significant seasonal or regional changes in composition. Metabolomic analysis of resin from 6 North American Populus spp. and 5 hybrids revealed peaks characteristic to taxonomic nodes within Populus, while antimicrobial analysis revealed that resin from different species varied in inhibition of the bee bacterial pathogen, Paenibacillus larvae. We conclude that honey bees make discrete choices among many resinous plant species, even among closely related species. Bees also maintained fidelity to a single source during a foraging trip. Furthermore, the differential inhibition of P. larvae by Populus spp., thought to be preferential for resin collection in temperate regions, suggests that resins from closely related plant species many have different benefits to bees.
Collapse
Affiliation(s)
- Michael B. Wilson
- Department of Horticultural Science, University of Minnesota, St. Paul, Minnesota, United States of America
- Microbial and Plant Genomics Institute, University of Minnesota, St. Paul, Minnesota, United States of America
- * E-mail:
| | - Marla Spivak
- Department of Entomology, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Adrian D. Hegeman
- Department of Horticultural Science, University of Minnesota, St. Paul, Minnesota, United States of America
- Microbial and Plant Genomics Institute, University of Minnesota, St. Paul, Minnesota, United States of America
- Department of Plant Biology, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Aaron Rendahl
- School of Statistics, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Jerry D. Cohen
- Department of Horticultural Science, University of Minnesota, St. Paul, Minnesota, United States of America
- Microbial and Plant Genomics Institute, University of Minnesota, St. Paul, Minnesota, United States of America
| |
Collapse
|
502
|
Flenniken ML, Andino R. Non-specific dsRNA-mediated antiviral response in the honey bee. PLoS One 2013; 8:e77263. [PMID: 24130869 PMCID: PMC3795074 DOI: 10.1371/journal.pone.0077263] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 09/01/2013] [Indexed: 12/22/2022] Open
Abstract
Honey bees are essential pollinators of numerous agricultural crops. Since 2006, honey bee populations have suffered considerable annual losses that are partially attributed to Colony Collapse Disorder (CCD). CCD is an unexplained phenomenon that correlates with elevated incidence of pathogens, including RNA viruses. Honey bees are eusocial insects that live in colonies of genetically related individuals that work in concert to gather and store nutrients. Their social organization provides numerous benefits, but also facilitates pathogen transmission between individuals. To investigate honey bee antiviral defense mechanisms, we developed an RNA virus infection model and discovered that administration of dsRNA, regardless of sequence, reduced virus infection. Our results suggest that dsRNA, a viral pathogen associated molecular pattern (PAMP), triggers an antiviral response that controls virus infection in honey bees.
Collapse
Affiliation(s)
- Michelle L. Flenniken
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, California, United States of America
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, Montana, United States of America
- * E-mail: (MLF); (RA)
| | - Raul Andino
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, California, United States of America
- * E-mail: (MLF); (RA)
| |
Collapse
|
503
|
Rosengaus RB, Malak T, Mackintosh C. Immune-priming in ant larvae: social immunity does not undermine individual immunity. Biol Lett 2013; 9:20130563. [PMID: 24108675 DOI: 10.1098/rsbl.2013.0563] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Social insects deploy numerous strategies against pathogens including behavioural, biochemical and immunological responses. While past research has revealed that adult social insects can generate immunity, few studies have focused on the immune function during an insect's early life stages. We hypothesized that larvae of the black carpenter ant Camponotus pennsylvanicus vaccinated with heat-killed Serratia marcescens should be less susceptible to a challenge with an active and otherwise lethal dose of the bacterium. We compared the in vivo benefits of prior vaccination of young larvae relative to naive and ringer injected controls. Regardless of colony of origin, survival parameters of vaccinated individuals following a challenge were significantly higher than those of the other two treatments. Results support the hypothesis that ant larvae exhibit immune-priming. Based on these results, we can infer that brood care by workers does not eliminate the need for individual-level immunological responses. Focusing on these early stages of development within social insect colonies can start addressing the complex dynamics between physiological (individual level) and social (collective) immunity.
Collapse
Affiliation(s)
- Rebeca B Rosengaus
- Department of Marine and Environmental Sciences, Northeastern University, , Boston, MA 02115, USA
| | | | | |
Collapse
|
504
|
Identification of immune response-related genes in the Chinese oak silkworm, Antheraea pernyi by suppression subtractive hybridization. J Invertebr Pathol 2013; 114:313-23. [PMID: 24076149 DOI: 10.1016/j.jip.2013.09.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 08/26/2013] [Accepted: 09/05/2013] [Indexed: 12/21/2022]
Abstract
Insects possess an innate immune system that responds to invading microorganisms. In this study, a subtractive cDNA library was constructed to screen for immune response-related genes in the fat bodies of Antheraea pernyi (Lepidoptera: Saturniidae) pupa challenged with Escherichia coli. Four hundred putative EST clones were identified by suppression subtractive hybridization (SSH), including 50 immune response-related genes, three cytoskeleton genes, eight cell cycle and apoptosis genes, five respiration and energy metabolism genes, five transport genes, 40 metabolism genes, ten stress response genes, four transcription and translation regulation genes and 77 unknown genes. To verify the reliability of the SSH data, the transcription of a set of randomly selected immune response-related genes were confirmed by semi-quantitative reverse transcription-PCR (RT-PCR) and real-time quantitative reverse transcription-PCR (qRT-PCR). These identified immune response-related genes provide insight into understanding the innate immunity in A. pernyi.
Collapse
|
505
|
Barribeau SM, Schmid-Hempel P. Qualitatively different immune response of the bumblebee host, Bombus terrestris, to infection by different genotypes of the trypanosome gut parasite, Crithidia bombi. INFECTION GENETICS AND EVOLUTION 2013; 20:249-56. [PMID: 24055962 DOI: 10.1016/j.meegid.2013.09.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Revised: 09/09/2013] [Accepted: 09/12/2013] [Indexed: 12/21/2022]
Abstract
Insects have a complex and highly successful immune system that responds specifically to different types of parasites. Different genotypes of a parasite species can differ in infectivity and virulence; which is important for host-parasite co-evolutionary processes, such as antagonistic, fluctuating selection. Such coevolution obviously requires a genetic basis, but little is known about how hosts immunologically respond to different genotypes. The common European bumblebee Bombus terrestris is infected by the highly prevalent trypanosome gut parasite, Crithidia bombi. Here we examined expression of 26 immunological and metabolic genes in response to infection by two clones of C. bombi and compared that with exposure to injection with a bacterial challenge. Exposure to the two clones of C. bombi elicits qualitatively different immune expression responses. Interestingly, infection with one clone results in up regulation of AMP's similar to bees given the bacterial challenge, while genes related to metabolism, signalling, and other effectors were similar between the two Crithidia exposures. Bees given different challenges were distinct enough to discern using linear discriminant analyses. We also found strong correlations, both positive and negative, among genes, which may shed light on how suites of genes are regulated and trade-offs in expression within this gene set.
Collapse
Affiliation(s)
- Seth M Barribeau
- Experimental Ecology, Institute of Integrative Biology (IBZ), ETH Zürich, Universitätsstrasse 16, CH-8092 Zürich, Switzerland.
| | | |
Collapse
|
506
|
Woltedji D, Fang Y, Han B, Feng M, Li R, Lu X, Li J. Proteome Analysis of Hemolymph Changes during the Larval to Pupal Development Stages of Honeybee Workers (Apis mellifera ligustica). J Proteome Res 2013; 12:5189-98. [DOI: 10.1021/pr400519d] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Dereje Woltedji
- Institute of Apicultural Research, Key Laboratory of
Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Science, Beijing 100093, China
| | - Yu Fang
- Institute of Apicultural Research, Key Laboratory of
Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Science, Beijing 100093, China
| | - Bin Han
- Institute of Apicultural Research, Key Laboratory of
Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Science, Beijing 100093, China
| | - Mao Feng
- Institute of Apicultural Research, Key Laboratory of
Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Science, Beijing 100093, China
| | - Rongli Li
- Institute of Apicultural Research, Key Laboratory of
Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Science, Beijing 100093, China
| | - Xiaoshan Lu
- Institute of Apicultural Research, Key Laboratory of
Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Science, Beijing 100093, China
| | - Jianke Li
- Institute of Apicultural Research, Key Laboratory of
Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Science, Beijing 100093, China
| |
Collapse
|
507
|
Boncristiani HF, Evans JD, Chen Y, Pettis J, Murphy C, Lopez DL, Simone-Finstrom M, Strand M, Tarpy DR, Rueppell O. In vitro infection of pupae with Israeli acute paralysis virus suggests disturbance of transcriptional homeostasis in honey bees (Apis mellifera). PLoS One 2013; 8:e73429. [PMID: 24039938 PMCID: PMC3764161 DOI: 10.1371/journal.pone.0073429] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Accepted: 07/19/2013] [Indexed: 01/08/2023] Open
Abstract
The ongoing decline of honey bee health worldwide is a serious economic and ecological concern. One major contributor to the decline are pathogens, including several honey bee viruses. However, information is limited on the biology of bee viruses and molecular interactions with their hosts. An experimental protocol to test these systems was developed, using injections of Israeli Acute Paralysis Virus (IAPV) into honey bee pupae reared ex-situ under laboratory conditions. The infected pupae developed pronounced but variable patterns of disease. Symptoms varied from complete cessation of development with no visual evidence of disease to rapid darkening of a part or the entire body. Considerable differences in IAPV titer dynamics were observed, suggesting significant variation in resistance to IAPV among and possibly within honey bee colonies. Thus, selective breeding for virus resistance should be possible. Gene expression analyses of three separate experiments suggest IAPV disruption of transcriptional homeostasis of several fundamental cellular functions, including an up-regulation of the ribosomal biogenesis pathway. These results provide first insights into the mechanisms of IAPV pathogenicity. They mirror a transcriptional survey of honey bees afflicted with Colony Collapse Disorder and thus support the hypothesis that viruses play a critical role in declining honey bee health.
Collapse
Affiliation(s)
- Humberto F. Boncristiani
- Department of Biology, University of North Carolina at Greensboro, Greensboro, North Carolina, United States of America
- * E-mail:
| | - Jay D. Evans
- Bee Research Laboratory, Agricultural Research Service of the United States Department of Agriculture, Beltsville, Maryland, United States of America
| | - Yanping Chen
- Bee Research Laboratory, Agricultural Research Service of the United States Department of Agriculture, Beltsville, Maryland, United States of America
| | - Jeff Pettis
- Bee Research Laboratory, Agricultural Research Service of the United States Department of Agriculture, Beltsville, Maryland, United States of America
| | - Charles Murphy
- Soybean Genomics and Improvement, Agricultural Research Service of the United States Department of Agriculture, Beltsville, Maryland, United States of America
| | - Dawn L. Lopez
- Bee Research Laboratory, Agricultural Research Service of the United States Department of Agriculture, Beltsville, Maryland, United States of America
| | - Michael Simone-Finstrom
- Department of Entomology, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Micheline Strand
- United States Army Research Office, Division of Life Sciences, Research Triangle Park, North Carolina, United States of America
| | - David R. Tarpy
- Department of Entomology, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Olav Rueppell
- Department of Biology, University of North Carolina at Greensboro, Greensboro, North Carolina, United States of America
| |
Collapse
|
508
|
Maggi M, Negri P, Plischuk S, Szawarski N, De Piano F, De Feudis L, Eguaras M, Audisio C. Effects of the organic acids produced by a lactic acid bacterium in Apis mellifera colony development, Nosema ceranae control and fumagillin efficiency. Vet Microbiol 2013; 167:474-83. [PMID: 23978352 DOI: 10.1016/j.vetmic.2013.07.030] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 07/09/2013] [Accepted: 07/29/2013] [Indexed: 02/02/2023]
Abstract
The European honey bee Apis mellifera is known to be affected by many parasites and pathogens that have great impact over the insect development. Among parasites affecting bee health, Nosema ceranae is one of the main biotic factors affecting colony populations. As honey bee populations decline, interest in pathogenic and mutualistic relationships between bees and microorganisms has increased. The main goal of the current study was to assess the effect of the oral administration of the metabolites produced by Lactobacillus johnsonii CRL1647 (mainly organic acids) supplemented in syrup, on: (I) N. ceranae sporulation dynamics before and after fumagillin application, and (II) performance of A. mellifera colonies. Different experiments were conducted to evaluate the effects of these bacterial metabolites on bees: in vitro administration revealed no toxic effects against bees. Colonies fed with the lactic acids incremented their beehive population and also the amount of fat bodies per bee. Finally, the organic acids reduced the intensity of the pathogen after the second application of treatment as well as enhanced the fumagillin efficiency. This study provides important information for the development of new control substances against nosemosis.
Collapse
Affiliation(s)
- Matías Maggi
- Laboratorio de Artrópodos, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, 7600 Mar del Plata, Argentina; CONICET, Consejo Nacional de Investigaciones Científicas y Técnicas, Rivadavia 1917, C1033AJ Buenos Aires, Argentina.
| | | | | | | | | | | | | | | |
Collapse
|
509
|
Manfredini F, Riba-Grognuz O, Wurm Y, Keller L, Shoemaker D, Grozinger CM. Sociogenomics of cooperation and conflict during colony founding in the fire ant Solenopsis invicta. PLoS Genet 2013; 9:e1003633. [PMID: 23950725 PMCID: PMC3738511 DOI: 10.1371/journal.pgen.1003633] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 05/30/2013] [Indexed: 11/18/2022] Open
Abstract
One of the fundamental questions in biology is how cooperative and altruistic behaviors evolved. The majority of studies seeking to identify the genes regulating these behaviors have been performed in systems where behavioral and physiological differences are relatively fixed, such as in the honey bee. During colony founding in the monogyne (one queen per colony) social form of the fire ant Solenopsis invicta, newly-mated queens may start new colonies either individually (haplometrosis) or in groups (pleometrosis). However, only one queen (the “winner”) in pleometrotic associations survives and takes the lead of the young colony while the others (the “losers”) are executed. Thus, colony founding in fire ants provides an excellent system in which to examine the genes underpinning cooperative behavior and how the social environment shapes the expression of these genes. We developed a new whole genome microarray platform for S. invicta to characterize the gene expression patterns associated with colony founding behavior. First, we compared haplometrotic queens, pleometrotic winners and pleometrotic losers. Second, we manipulated pleometrotic couples in order to switch or maintain the social ranks of the two cofoundresses. Haplometrotic and pleometrotic queens differed in the expression of genes involved in stress response, aging, immunity, reproduction and lipid biosynthesis. Smaller sets of genes were differentially expressed between winners and losers. In the second experiment, switching social rank had a much greater impact on gene expression patterns than the initial/final rank. Expression differences for several candidate genes involved in key biological processes were confirmed using qRT-PCR. Our findings indicate that, in S. invicta, social environment plays a major role in the determination of the patterns of gene expression, while the queen's physiological state is secondary. These results highlight the powerful influence of social environment on regulation of the genomic state, physiology and ultimately, social behavior of animals. The characterization of the genomic basis for complex behaviors is one of the major goals of biological research. The genomic state of an individual results from the interplay between its internal condition (the “nature”) and the external environment (the “nurture”), which may include the social environment. Colony founding in the fire ant Solenopsis invicta is a complex process that serves as a useful model for investigating how the interplay between genes and social environment shapes social behavior. Unrelated, newly mated S. invicta queens may start a new colony as a group, but ultimately only one queen will survive and gain full reproductive dominance. By uncovering the genetic basis for founding behavior in fire ants we therefore provide useful insights into how cooperative behavior evolved in a context that might be considered primitively eusocial, because newly mated queens in a founding association are morphologically, physiologically and genetically very similar and display no evident division of labor. Our results suggest that social environment (founding singly or in pairs, switching dominance rank vs. maintaining rank) is a much greater driver of gene expression changes than social rank itself, suggesting that social environment, and not reproductive state, is a key regulator of gene expression, physiology and ultimately, behavior.
Collapse
Affiliation(s)
- Fabio Manfredini
- Department of Entomology, Center for Pollinator Research, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA.
| | | | | | | | | | | |
Collapse
|
510
|
Hussain A, Li YF, Cheng Y, Liu Y, Chen CC, Wen SY. Immune-related transcriptome of Coptotermes formosanus Shiraki workers: the defense mechanism. PLoS One 2013; 8:e69543. [PMID: 23874972 PMCID: PMC3712931 DOI: 10.1371/journal.pone.0069543] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Accepted: 06/14/2013] [Indexed: 12/26/2022] Open
Abstract
Formosan subterranean termites, Coptotermes formosanus Shiraki, live socially in microbial-rich habitats. To understand the molecular mechanism by which termites combat pathogenic microbes, a full-length normalized cDNA library and four Suppression Subtractive Hybridization (SSH) libraries were constructed from termite workers infected with entomopathogenic fungi (Metarhizium anisopliae and Beauveria bassiana), Gram-positive Bacillus thuringiensis and Gram-negative Escherichia coli, and the libraries were analyzed. From the high quality normalized cDNA library, 439 immune-related sequences were identified. These sequences were categorized as pattern recognition receptors (47 sequences), signal modulators (52 sequences), signal transducers (137 sequences), effectors (39 sequences) and others (164 sequences). From the SSH libraries, 27, 17, 22 and 15 immune-related genes were identified from each SSH library treated with M. anisopliae, B. bassiana, B. thuringiensis and E. coli, respectively. When the normalized cDNA library was compared with the SSH libraries, 37 immune-related clusters were found in common; 56 clusters were identified in the SSH libraries, and 259 were identified in the normalized cDNA library. The immune-related gene expression pattern was further investigated using quantitative real time PCR (qPCR). Important immune-related genes were characterized, and their potential functions were discussed based on the integrated analysis of the results. We suggest that normalized cDNA and SSH libraries enable us to discover functional genes transcriptome. The results remarkably expand our knowledge about immune-inducible genes in C. formosanus Shiraki and enable the future development of novel control strategies for the management of Formosan subterranean termites.
Collapse
Affiliation(s)
- Abid Hussain
- Department of Entomology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, P. R. China
| | - Yi-Feng Li
- Department of Entomology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, P. R. China
| | - Yu Cheng
- Department of Entomology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, P. R. China
| | - Yang Liu
- Department of Entomology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, P. R. China
| | - Chuan-Cheng Chen
- Department of Entomology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, P. R. China
| | - Shuo-Yang Wen
- Department of Entomology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, P. R. China
- * E-mail:
| |
Collapse
|
511
|
Evison SEF, Fazio G, Chappell P, Foley K, Jensen AB, Hughes WOH. Host-parasite genotypic interactions in the honey bee: the dynamics of diversity. Ecol Evol 2013; 3:2214-22. [PMID: 23919163 PMCID: PMC3728958 DOI: 10.1002/ece3.599] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 04/04/2013] [Accepted: 04/09/2013] [Indexed: 11/08/2022] Open
Abstract
Parasites are thought to be a major driving force shaping genetic variation in their host, and are suggested to be a significant reason for the maintenance of sexual reproduction. A leading hypothesis for the occurrence of multiple mating (polyandry) in social insects is that the genetic diversity generated within-colonies through this behavior promotes disease resistance. This benefit is likely to be particularly significant when colonies are exposed to multiple species and strains of parasites, but host-parasite genotypic interactions in social insects are little known. We investigated this using honey bees, which are naturally polyandrous and consequently produce genetically diverse colonies containing multiple genotypes (patrilines), and which are also known to host multiple strains of various parasite species. We found that host genotypes differed significantly in their resistance to different strains of the obligate fungal parasite that causes chalkbrood disease, while genotypic variation in resistance to the facultative fungal parasite that causes stonebrood disease was less pronounced. Our results show that genetic variation in disease resistance depends in part on the parasite genotype, as well as species, with the latter most likely relating to differences in parasite life history and host-parasite coevolution. Our results suggest that the selection pressure from genetically diverse parasites might be an important driving force in the evolution of polyandry, a mechanism that generates significant genetic diversity in social insects.
Collapse
Affiliation(s)
- Sophie E F Evison
- School of Biology, Faculty of Biological Sciences, University of Leeds LS2 9JT, U.K
| | | | | | | | | | | |
Collapse
|
512
|
Schwarz RS, Evans JD. Single and mixed-species trypanosome and microsporidia infections elicit distinct, ephemeral cellular and humoral immune responses in honey bees. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2013; 40:300-310. [PMID: 23529010 DOI: 10.1016/j.dci.2013.03.010] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 03/11/2013] [Accepted: 03/16/2013] [Indexed: 06/02/2023]
Abstract
Frequently encountered parasite species impart strong selective pressures on host immune system evolution and are more apt to concurrently infect the same host, yet molecular impacts in light of this are often overlooked. We have contrasted immune responses in honey bees to two common eukaryotic endoparasites by establishing single and mixed-species infections using the long-associated parasite Crithidia mellificae and the emergent parasite Nosema ceranae. Quantitative polymerase chain reaction was used to screen host immune gene expression at 9 time points post inoculation. Systemic responses in abdomens during early stages of parasite establishment revealed conserved receptor (Down syndrome cell adhesion molecule, Dscam and nimrod C1, nimC1), signaling (MyD88 and Imd) and antimicrobial peptide (AMP) effector (Defensin 2) responses. Late, established infections were distinct with a refined 2 AMP response to C. mellificae that contrasted starkly with a 5 AMP response to N. ceranae. Mixed species infections induced a moderate 3 AMPs. Transcription in gut tissues highlighted important local roles for Dscam toward both parasites and Imd signaling toward N. ceranae. At both systemic and local levels Dscam, MyD88 and Imd transcription was consistently correlated based on clustering analysis. Significant gene suppression occurred in two cases from midgut to ileum tissue: Dscam was lowered during mixed infections compared to N. ceranae infections and both C. mellificae and mixed infections had reduced nimC1 transcription compared to uninfected controls. We show that honey bees rapidly mount complex immune responses to both Nosema and Crithidia that are dynamic over time and that mixed-species infections significantly alter local and systemic immune gene transcription.
Collapse
Affiliation(s)
- Ryan S Schwarz
- US Department of Agriculture, Agricultural Research Services, Bee Research Lab, BARC-East Bldg. 306, 10300 Baltimore Ave., Beltsville, MD 20705, USA.
| | | |
Collapse
|
513
|
Hwang J, Park Y, Kim Y, Hwang J, Lee D. An entomopathogenic bacterium, Xenorhabdus nematophila, suppresses expression of antimicrobial peptides controlled by Toll and Imd pathways by blocking eicosanoid biosynthesis. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2013; 83:151-169. [PMID: 23740621 DOI: 10.1002/arch.21103] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Immune-associated genes of the beet armyworm, Spodoptera exigua, were predicted from 454 pyrosequencing transcripts of hemocytes collected from fifth instar larvae challenged with bacteria. Out of 22,551 contigs and singletons, 36% of the transcripts had at least one significant hit (E-value cutoff of 1e-20) and used to predict immune-associated genes implicated in pattern recognition, prophenoloxidase activation, intracellular signaling, and antimicrobial peptides (AMPs). Immune signaling and AMP genes were further confirmed in their expression patterns in response to different types of microbial challenge. To discriminate the AMP expression signaling between Toll and Imd pathways, RNA interference was applied to specifically knockdown each signal pathway; the separate silencing treatments resulted in differential suppression of AMP genes. An entomopathogenic bacterium, Xenorhabdus nematophila, suppressed expression of most AMP genes controlled by Toll and Imd pathways, while challenge with heat-killed X. nematophila induced expression of all AMPs in experimental larvae. Benzylideneacetone (BZA), a metabolite of X. nematophila, suppressed the AMP gene inductions when it was co-injected with the heat-killed X. nematophila. However, arachidonic acid, a catalytic product of PLA2 , significantly reversed the inhibitory effect of BZA on the AMP gene expression. This study suggests that X. nematophila suppresses AMP production controlled by Toll and Imd pathways by inhibiting eicosanoid biosynthesis in S. exigua.
Collapse
Affiliation(s)
- Jihyun Hwang
- Department of Bioresource Sciences, Andong National University, Andong, Korea
| | | | | | | | | |
Collapse
|
514
|
Gätschenberger H, Azzami K, Tautz J, Beier H. Antibacterial immune competence of honey bees (Apis mellifera) is adapted to different life stages and environmental risks. PLoS One 2013; 8:e66415. [PMID: 23799099 PMCID: PMC3684586 DOI: 10.1371/journal.pone.0066415] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 05/03/2013] [Indexed: 12/02/2022] Open
Abstract
The development of all honey bee castes proceeds through three different life stages all of which encounter microbial infections to a various extent. We have examined the immune strength of honey bees across all developmental stages with emphasis on the temporal expression of cellular and humoral immune responses upon artificial challenge with viable Escherichia coli bacteria. We employed a broad array of methods to investigate defence strategies of infected individuals: (a) fate of bacteria in the haemocoel; (b) nodule formation and (c) induction of antimicrobial peptides (AMPs). Newly emerged adult worker bees and drones were able to activate efficiently all examined immune reactions. The number of viable bacteria circulating in the haemocoel of infected bees declined rapidly by more than two orders of magnitude within the first 4–6 h post-injection (p.i.), coinciding with the occurrence of melanised nodules. Antimicrobial activity, on the other hand, became detectable only after the initial bacterial clearance. These two temporal patterns of defence reactions very likely represent the constitutive cellular and the induced humoral immune response. A unique feature of honey bees is that a fraction of worker bees survives the winter season in a cluster mostly engaged in thermoregulation. We show here that the overall immune strength of winter bees matches that of young summer bees although nodulation reactions are not initiated at all. As expected, high doses of injected viable E.coli bacteria caused no mortality in larvae or adults of each age. However, drone and worker pupae succumbed to challenge with E.coli even at low doses, accompanied by a premature darkening of the pupal body. In contrast to larvae and adults, we observed no fast clearance of viable bacteria and no induction of AMPs but a rapid proliferation of E.coli bacteria in the haemocoel of bee pupae ultimately leading to their death.
Collapse
Affiliation(s)
| | - Klara Azzami
- BEEgroup, Biocentre, University of Würzburg, Würzburg, Germany
| | - Jürgen Tautz
- BEEgroup, Biocentre, University of Würzburg, Würzburg, Germany
| | - Hildburg Beier
- BEEgroup, Biocentre, University of Würzburg, Würzburg, Germany
- * E-mail:
| |
Collapse
|
515
|
Cornman RS, Lopez D, Evans JD. Transcriptional response of honey bee larvae infected with the bacterial pathogen Paenibacillus larvae. PLoS One 2013; 8:e65424. [PMID: 23762370 PMCID: PMC3675105 DOI: 10.1371/journal.pone.0065424] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2013] [Accepted: 04/23/2013] [Indexed: 01/06/2023] Open
Abstract
American foulbrood disease of honey bees is caused by the bacterium Paenibacillus larvae. Infection occurs per os in larvae and systemic infection requires a breaching of the host peritrophic matrix and midgut epithelium. Genetic variation exists for both bacterial virulence and host resistance, and a general immunity is achieved by larvae as they age, the basis of which has not been identified. To quickly identify a pool of candidate genes responsive to P. larvae infection, we sequenced transcripts from larvae inoculated with P. larvae at 12 hours post-emergence and incubated for 72 hours, and compared expression levels to a control cohort. We identified 75 genes with significantly higher expression and six genes with significantly lower expression. In addition to several antimicrobial peptides, two genes encoding peritrophic-matrix domains were also up-regulated. Extracellular matrix proteins, proteases/protease inhibitors, and members of the Osiris gene family were prevalent among differentially regulated genes. However, analysis of Drosophila homologs of differentially expressed genes revealed spatial and temporal patterns consistent with developmental asynchrony as a likely confounder of our results. We therefore used qPCR to measure the consistency of gene expression changes for a subset of differentially expressed genes. A replicate experiment sampled at both 48 and 72 hours post infection allowed further discrimination of genes likely to be involved in host response. The consistently responsive genes in our test set included a hymenopteran-specific protein tyrosine kinase, a hymenopteran specific serine endopeptidase, a cytochrome P450 (CYP9Q1), and a homolog of trynity, a zona pellucida domain protein. Of the known honey bee antimicrobial peptides, apidaecin was responsive at both time-points studied whereas hymenoptaecin was more consistent in its level of change between biological replicates and had the greatest increase in expression by RNA-seq analysis.
Collapse
Affiliation(s)
- Robert Scott Cornman
- Bee Research Laboratory, Agricultural Research Service of the United States Department of Agriculture, Beltsville, Maryland, United States of America.
| | | | | |
Collapse
|
516
|
Integrative approach reveals composition of endoparasitoid wasp venoms. PLoS One 2013; 8:e64125. [PMID: 23717546 PMCID: PMC3662768 DOI: 10.1371/journal.pone.0064125] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 04/10/2013] [Indexed: 11/24/2022] Open
Abstract
The fruit fly Drosophila melanogaster and its endoparasitoid wasps are a developing model system for interactions between host immune responses and parasite virulence mechanisms. In this system, wasps use diverse venom cocktails to suppress the conserved fly cellular encapsulation response. Although numerous genetic tools allow detailed characterization of fly immune genes, lack of wasp genomic information has hindered characterization of the parasite side of the interaction. Here, we use high-throughput nucleic acid and amino acid sequencing methods to describe the venoms of two related Drosophila endoparasitoids with distinct infection strategies, Leptopilina boulardi and L. heterotoma. Using RNA-seq, we assembled and quantified libraries of transcript sequences from female wasp abdomens. Next, we used mass spectrometry to sequence peptides derived from dissected venom gland lumens. We then mapped the peptide spectral data against the abdomen transcriptomes to identify a set of putative venom genes for each wasp species. Our approach captured the three venom genes previously characterized in L. boulardi by traditional cDNA cloning methods as well as numerous new venom genes that were subsequently validated by a combination of RT-PCR, blast comparisons, and secretion signal sequence search. Overall, 129 proteins were found to comprise L. boulardi venom and 176 proteins were found to comprise L. heterotoma venom. We found significant overlap in L. boulardi and L. heterotoma venom composition but also distinct differences that may underlie their unique infection strategies. Our joint transcriptomic-proteomic approach for endoparasitoid wasp venoms is generally applicable to identification of functional protein subsets from any non-genome sequenced organism.
Collapse
|
517
|
Lourenço AP, Guidugli-Lazzarini KR, Freitas FCP, Bitondi MMG, Simões ZLP. Bacterial infection activates the immune system response and dysregulates microRNA expression in honey bees. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2013; 43:474-482. [PMID: 23499934 DOI: 10.1016/j.ibmb.2013.03.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 02/16/2013] [Accepted: 03/04/2013] [Indexed: 06/01/2023]
Abstract
In insects, a rapid and massive synthesis of antimicrobial peptides (AMPs) is activated through signaling pathways (Toll and Imd) to combat invading microbial pathogens. However, it is still unclear whether different types of bacteria provoke specific responses. Immune response mechanisms and the activation of specific genes were investigated by challenging Apis mellifera workers with the Gram-negative bacterium Serratia marcescens or the Gram-positive bacterium Micrococcus luteus. The immune system responded by activating most genes of the Toll and Imd pathways, particularly AMP genes. However, genes specifically regulated by M. luteus or S. marcescens were not detected, suggesting an interaction between the signaling pathways that lead to immune effectors synthesis. Despite this finding, kappaB motifs in the 5'-UTRs of selected genes suggest a pathway-specific control of AMP and transferrin-1 gene expression. Regulation by miRNAs was also investigated and revealed a number of candidates for the post-transcriptional regulation of immune genes in bees.
Collapse
Affiliation(s)
- Anete P Lourenço
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, 14049-900 Ribeirão Preto, São Paulo, Brazil.
| | | | | | | | | |
Collapse
|
518
|
Affiliation(s)
- Martin Kaltenpoth
- Max Planck Institute for Chemical Ecology; Insect Symbiosis Research Group; Hans-Knoell-Str. 8 Jena 07745 Germany
| | - Tobias Engl
- Max Planck Institute for Chemical Ecology; Insect Symbiosis Research Group; Hans-Knoell-Str. 8 Jena 07745 Germany
| |
Collapse
|
519
|
Gunaratna RT, Jiang H. A comprehensive analysis of the Manduca sexta immunotranscriptome. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2013; 39. [PMID: 23178408 PMCID: PMC3595354 DOI: 10.1016/j.dci.2012.10.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
As a biochemical model, Manduca sexta has substantially contributed to our knowledge on insect innate immunity. The RNA-Seq approach was implemented in three studies to examine tissue immunotranscriptomes of this species. With the latest and largest focusing on highly regulated process- and tissue-specific genes, we further analyzed the same set of data using BLAST2GO to explore functional aspects of the larval fat body (F) and hemocyte (H) transcriptomes with (I) or without (C) immune challenge. Using immunity-related sequences from other insects, we found 383 homologous contigs and compared them with those discovered based on relative abundance changes. The major overlap of the two lists validated our previous research designed for gene discovery and transcript profiling in organisms lacking sequenced genomes. By concatenating the contigs, we established a repertoire of 232 immunity-related genes encoding proteins for pathogen recognition (16%), signal transduction (53%), microbe killing (13%) and others (18%). We examined their transcript levels along with attribute classifications and detected prominent differences in nine of the 30 level 2 gene ontology (GO) categories. The increase in extracellular proteins (155%) was consistent with the highly induced synthesis of defense molecules (e.g., antimicrobial peptides) in fat body after the immune challenge. We identified most members of the putative Toll, IMD, MAPK-JNK-p38 and JAK-STAT pathways and small changes in their mRNA levels. Together, these findings set the stage for on-going analysis of the M. sexta immunogenome.
Collapse
Affiliation(s)
- Ramesh T Gunaratna
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA
| | | |
Collapse
|
520
|
Van Vaerenbergh M, Cardoen D, Formesyn EM, Brunain M, Van Driessche G, Blank S, Spillner E, Verleyen P, Wenseleers T, Schoofs L, Devreese B, de Graaf DC. Extending the honey bee venome with the antimicrobial peptide apidaecin and a protein resembling wasp antigen 5. INSECT MOLECULAR BIOLOGY 2013; 22:199-210. [PMID: 23350689 DOI: 10.1111/imb.12013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Honey bee venom is a complex mixture of toxic proteins and peptides. In the present study we tried to extend our knowledge of the venom composition using two different approaches. First, worker venom was analysed by liquid chromatography-mass spectrometry and this revealed the antimicrobial peptide apidaecin for the first time in such samples. Its expression in the venom gland was confirmed by reverse transcription PCR and by a peptidomic analysis of the venom apparatus tissue. Second, genome mining revealed a list of proteins with resemblance to known insect allergens or venom toxins, one of which showed homology to proteins of the antigen 5 (Ag5)/Sol i 3 cluster. It was demonstrated that the honey bee Ag5-like gene is expressed by venom gland tissue of winter bees but not of summer bees. Besides this seasonal variation, it shows an interesting spatial expression pattern with additional production in the hypopharyngeal glands, the brains and the midgut. Finally, our immunoblot study revealed that both synthetic apidaecin and the Ag5-like recombinant from bacteria evoke no humoral activity in beekeepers. Also, no IgG4-based cross-reactivity was detected between the honey bee Ag5-like protein and its yellow jacket paralogue Ves v 5.
Collapse
|
521
|
Harpur BA, Zayed A. Accelerated evolution of innate immunity proteins in social insects: adaptive evolution or relaxed constraint? Mol Biol Evol 2013; 30:1665-74. [PMID: 23538736 DOI: 10.1093/molbev/mst061] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The genomes of eusocial insects have a reduced complement of immune genes-an unusual finding considering that sociality provides ideal conditions for disease transmission. The following three hypotheses have been invoked to explain this finding: 1) social insects are attacked by fewer pathogens, 2) social insects have effective behavioral or 3) novel molecular mechanisms for combating pathogens. At the molecular level, these hypotheses predict that canonical innate immune pathways experience a relaxation of selective constraint. A recent study of several innate immune genes in ants and bees showed a pattern of accelerated amino acid evolution, which is consistent with either positive selection or a relaxation of constraint. We studied the population genetics of innate immune genes in the honey bee Apis mellifera by partially sequencing 13 genes from the bee's Toll pathway (∼10.5 kb) and 20 randomly chosen genes (∼16.5 kb) sequenced in 43 diploid workers. Relative to the random gene set, Toll pathway genes had significantly higher levels of amino acid replacement mutations segregating within A. mellifera and fixed between A. mellifera and A. cerana. However, levels of diversity and divergence at synonymous sites did not differ between the two gene sets. Although we detect strong signs of balancing selection on the pathogen recognition gene pgrp-sa, many of the genes in the Toll pathway show signatures of relaxed selective constraint. These results are consistent with the reduced complement of innate immune genes found in social insects and support the hypothesis that some aspect of eusociality renders canonical innate immunity superfluous.
Collapse
Affiliation(s)
- Brock A Harpur
- Department of Biology, York University, Toronto, Ontario, Canada
| | | |
Collapse
|
522
|
Moreau SJM. "It stings a bit but it cleans well": venoms of Hymenoptera and their antimicrobial potential. JOURNAL OF INSECT PHYSIOLOGY 2013; 59:186-204. [PMID: 23073394 DOI: 10.1016/j.jinsphys.2012.10.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 10/01/2012] [Accepted: 10/04/2012] [Indexed: 06/01/2023]
Abstract
Venoms from Hymenoptera display a wide range of functions and biological roles. These notably include manipulation of the host, capture of prey and defense against competitors and predators thanks to endocrine and immune systems disruptors, neurotoxic, cytolytic and pain-inducing venom components. Recent works indicate that many hymenopteran species, whatever their life style, have also evolved a venom with properties which enable it to regulate microbial infections, both in stinging and stung animals. In contrast to biting insects and their salivary glands, stinging Hymenoptera seem to constitute an under-exploited ecological niche for agents of vector-borne disease. Few parasitic or mutualistic microorganisms have been reported to be hosted by venom-producing organs or to be transmitted to stung animals. This may result from the presence of potent antimicrobial molecules in venoms, histological features of venom apparatuses and selective effects of venoms on immune defenses of targeted organisms. The present paper reviews for the first time the venom antimicrobial potential of solitary and social Hymenoptera in molecular, ecological, and evolutionary perspectives.
Collapse
Affiliation(s)
- Sébastien J M Moreau
- Institut de Recherche sur la Biologie de l'Insecte, CNRS UMR 7261, Université François-Rabelais, UFR Sciences et Techniques, Parc Grandmont, 37200 Tours, France.
| |
Collapse
|
523
|
Vilcinskas A. Evolutionary plasticity of insect immunity. JOURNAL OF INSECT PHYSIOLOGY 2013; 59:123-129. [PMID: 22985862 DOI: 10.1016/j.jinsphys.2012.08.018] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Revised: 08/08/2012] [Accepted: 08/13/2012] [Indexed: 06/01/2023]
Abstract
Many insect genomes have been sequenced and the innate immune responses of several species have been studied by transcriptomics, inviting the comparative analysis of immunity-related genes. Such studies have demonstrated significant evolutionary plasticity, with the emergence of novel proteins and protein domains correlated with insects adapting to both abiotic and biotic environmental stresses. This review article focuses on effector molecules such as antimicrobial peptides (AMPs) and proteinase inhibitors, which display greater evolutionary dynamism than conserved components such as immunity-related signaling molecules. There is increasing evidence to support an extended role for insect AMPs beyond defense against pathogens, including the management of beneficial endosymbionts. The total number of AMPs varies among insects with completed genome sequences, providing intriguing examples of immunity gene expansion and loss. This plasticity is discussed in the context of recent developments in evolutionary ecology suggesting that the maintenance and deployment of immune responses reallocates resources from other fitness-related traits thus requiring fitness trade-offs. Based on our recent studies using both model and non-model insects, I propose that insect immunity genes can be lost when alternative defense strategies with a lower fitness penalty have evolved, such as the so-called social immunity in bees, the chemical sanitation of the microenvironment by some beetles, and the release of antimicrobial secondary metabolites in the hemolymph. Conversely, recent studies provide evidence for the expansion and functional diversification of insect AMPs and proteinase inhibitors to reflect coevolution with a changing pathosphere and/or adaptations to habitats or food associated with microbial contamination.
Collapse
Affiliation(s)
- Andreas Vilcinskas
- Institute of Phytopathology and Applied Zoology, Justus-Liebig-University of Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany.
| |
Collapse
|
524
|
Cotter SC, Littlefair JE, Grantham PJ, Kilner RM. A direct physiological trade-off between personal and social immunity. J Anim Ecol 2013; 82:846-53. [DOI: 10.1111/1365-2656.12047] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Accepted: 12/04/2012] [Indexed: 11/30/2022]
Affiliation(s)
| | - Joanne E. Littlefair
- Department of Zoology; University of Cambridge; Downing Street; Cambridge; CB2 3EJ; UK
| | - Peter J. Grantham
- Department of Zoology; University of Cambridge; Downing Street; Cambridge; CB2 3EJ; UK
| | - Rebecca M. Kilner
- Department of Zoology; University of Cambridge; Downing Street; Cambridge; CB2 3EJ; UK
| |
Collapse
|
525
|
Examining the “evolution of increased competitive ability” hypothesis in response to parasites and pathogens in the invasive paper wasp Polistes dominula. Naturwissenschaften 2013; 100:219-28. [DOI: 10.1007/s00114-013-1014-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 01/08/2013] [Accepted: 01/09/2013] [Indexed: 11/25/2022]
|
526
|
Zhu JY, Yang P, Zhang Z, Wu GX, Yang B. Transcriptomic immune response of Tenebrio molitor pupae to parasitization by Scleroderma guani. PLoS One 2013; 8:e54411. [PMID: 23342153 PMCID: PMC3544796 DOI: 10.1371/journal.pone.0054411] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 12/13/2012] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Host and parasitoid interaction is one of the most fascinating relationships of insects, which is currently receiving an increasing interest. Understanding the mechanisms evolved by the parasitoids to evade or suppress the host immune system is important for dissecting this interaction, while it was still poorly known. In order to gain insight into the immune response of Tenebrio molitor to parasitization by Scleroderma guani, the transcriptome of T. molitor pupae was sequenced with focus on immune-related gene, and the non-parasitized and parasitized T. molitor pupae were analyzed by digital gene expression (DGE) analysis with special emphasis on parasitoid-induced immune-related genes using Illumina sequencing. METHODOLOGY/PRINCIPAL FINDINGS In a single run, 264,698 raw reads were obtained. De novo assembly generated 71,514 unigenes with mean length of 424 bp. Of those unigenes, 37,373 (52.26%) showed similarity to the known proteins in the NCBI nr database. Via analysis of the transcriptome data in depth, 430 unigenes related to immunity were identified. DGE analysis revealed that parasitization by S. guani had considerable impacts on the transcriptome profile of T. molitor pupae, as indicated by the significant up- or down-regulation of 3,431 parasitism-responsive transcripts. The expression of a total of 74 unigenes involved in immune response of T. molitor was significantly altered after parasitization. CONCLUSIONS/SIGNIFICANCE obtained T. molitor transcriptome, in addition to establishing a fundamental resource for further research on functional genomics, has allowed the discovery of a large group of immune genes that might provide a meaningful framework to better understand the immune response in this species and other beetles. The DGE profiling data provides comprehensive T. molitor immune gene expression information at the transcriptional level following parasitization, and sheds valuable light on the molecular understanding of the host-parasitoid interaction.
Collapse
Affiliation(s)
- Jia-Ying Zhu
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China.
| | | | | | | | | |
Collapse
|
527
|
Altincicek B, Elashry A, Guz N, Grundler FMW, Vilcinskas A, Dehne HW. Next generation sequencing based transcriptome analysis of septic-injury responsive genes in the beetle Tribolium castaneum. PLoS One 2013; 8:e52004. [PMID: 23326321 PMCID: PMC3541394 DOI: 10.1371/journal.pone.0052004] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 11/07/2012] [Indexed: 12/20/2022] Open
Abstract
Beetles (Coleoptera) are the most diverse animal group on earth and interact with numerous symbiotic or pathogenic microbes in their environments. The red flour beetle Tribolium castaneum is a genetically tractable model beetle species and its whole genome sequence has recently been determined. To advance our understanding of the molecular basis of beetle immunity here we analyzed the whole transcriptome of T. castaneum by high-throughput next generation sequencing technology. Here, we demonstrate that the Illumina/Solexa sequencing approach of cDNA samples from T. castaneum including over 9.7 million reads with 72 base pairs (bp) length (approximately 700 million bp sequence information with about 30× transcriptome coverage) confirms the expression of most predicted genes and enabled subsequent qualitative and quantitative transcriptome analysis. This approach recapitulates our recent quantitative real-time PCR studies of immune-challenged and naïve T. castaneum beetles, validating our approach. Furthermore, this sequencing analysis resulted in the identification of 73 differentially expressed genes upon immune-challenge with statistical significance by comparing expression data to calculated values derived by fitting to generalized linear models. We identified up regulation of diverse immune-related genes (e.g. Toll receptor, serine proteinases, DOPA decarboxylase and thaumatin) and of numerous genes encoding proteins with yet unknown functions. Of note, septic-injury resulted also in the elevated expression of genes encoding heat-shock proteins or cytochrome P450s supporting the view that there is crosstalk between immune and stress responses in T. castaneum. The present study provides a first comprehensive overview of septic-injury responsive genes in T. castaneum beetles. Identified genes advance our understanding of T. castaneum specific gene expression alteration upon immune-challenge in particular and may help to understand beetle immunity in general.
Collapse
Affiliation(s)
- Boran Altincicek
- Rheinische Friedrich-Wilhelms-University of Bonn, INRES-Phytomedicine, Nussallee 9, Bonn, Germany.
| | | | | | | | | | | |
Collapse
|
528
|
Barrier immune effectors are maintained during transition from nurse to forager in the honey bee. PLoS One 2013; 8:e54097. [PMID: 23320121 PMCID: PMC3540063 DOI: 10.1371/journal.pone.0054097] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2012] [Accepted: 12/10/2012] [Indexed: 12/03/2022] Open
Abstract
Foragers facilitate horizontal pathogen transmission in honey bee colonies, yet their systemic immune function wanes during transition to this life stage. In general, the insect immune system can be categorized into mechanisms operating at both the barrier epithelial surfaces and at the systemic level. As proposed by the intergenerational transfer theory of aging, such immunosenescence may result from changes in group resource allocation. Yet, the relative influence of pathogen transmission and resource allocation on immune function in bees from different stages has not been examined in the context of barrier immunity. We find that expression levels of antimicrobial peptides (AMPs) in honey bee barrier epithelia of the digestive tract do not follow a life stage-dependent decrease. In addition, correlation of AMP transcript abundance with microbe levels reveals a number of microbe-associated changes in AMPs levels that are equivalent between nurses and foragers. These results favor a model in which barrier effectors are maintained in foragers as a first line of defense, while systemic immune effectors are dismantled to optimize hive-level resources. These findings have important implications for our understanding of immunosenescence in honey bees and other social insects.
Collapse
|
529
|
Nunes FMF, Aleixo AC, Barchuk AR, Bomtorin AD, Grozinger CM, Simões ZLP. Non-Target Effects of Green Fluorescent Protein (GFP)-Derived Double-Stranded RNA (dsRNA-GFP) Used in Honey Bee RNA Interference (RNAi) Assays. INSECTS 2013; 4:90-103. [PMID: 26466797 PMCID: PMC4553431 DOI: 10.3390/insects4010090] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 12/10/2012] [Accepted: 12/24/2012] [Indexed: 11/22/2022]
Abstract
RNA interference has been frequently applied to modulate gene function in organisms where the production and maintenance of mutants is challenging, as in our model of study, the honey bee, Apis mellifera. A green fluorescent protein (GFP)-derived double-stranded RNA (dsRNA-GFP) is currently commonly used as control in honey bee RNAi experiments, since its gene does not exist in the A. mellifera genome. Although dsRNA-GFP is not expected to trigger RNAi responses in treated bees, undesirable effects on gene expression, pigmentation or developmental timing are often observed. Here, we performed three independent experiments using microarrays to examine the effect of dsRNA-GFP treatment (introduced by feeding) on global gene expression patterns in developing worker bees. Our data revealed that the expression of nearly 1,400 genes was altered in response to dsRNA-GFP, representing around 10% of known honey bee genes. Expression changes appear to be the result of both direct off-target effects and indirect downstream secondary effects; indeed, there were several instances of sequence similarity between putative siRNAs generated from the dsRNA-GFP construct and genes whose expression levels were altered. In general, the affected genes are involved in important developmental and metabolic processes associated with RNA processing and transport, hormone metabolism, immunity, response to external stimulus and to stress. These results suggest that multiple dsRNA controls should be employed in RNAi studies in honey bees. Furthermore, any RNAi studies involving these genes affected by dsRNA-GFP in our studies should use a different dsRNA control.
Collapse
Affiliation(s)
- Francis M F Nunes
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, 14049-900, Brazil.
| | - Aline C Aleixo
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, 14049-900, Brazil.
| | - Angel R Barchuk
- Departamento de Biologia Celular, Tecidual e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Alfenas, Minas Gerais, 37130-000, Brazil.
| | - Ana D Bomtorin
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, 14049-900, Brazil.
| | - Christina M Grozinger
- Department of Entomology, Center for Pollinator Research, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, 16802, Pennsylvania, USA.
| | - Zilá L P Simões
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, 14040-901, Brazil.
| |
Collapse
|
530
|
|
531
|
d'Alençon E, Bierne N, Girard PA, Magdelenat G, Gimenez S, Seninet I, Escoubas JM. Evolutionary history of x-tox genes in three lepidopteran species: origin, evolution of primary and secondary structure and alternative splicing, generating a repertoire of immune-related proteins. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2013; 43:54-64. [PMID: 23142192 DOI: 10.1016/j.ibmb.2012.10.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Revised: 09/24/2012] [Accepted: 10/30/2012] [Indexed: 06/01/2023]
Abstract
The proteins of the X-tox family have imperfectly conserved tandem repeats of several defensin-like motifs known as cysteine-stabilized αβ (CS-αβ) motifs. These immune-related proteins are inducible and expressed principally in hemocytes, but they have lost the antimicrobial properties of the ancestral defensins from which they evolved. We compared x-tox gene structure and expression in three lepidopteran species (Spodoptera frugiperda, Helicoverpa armigera and Bombyx mori). Synteny and phylogenetic analyses showed that the x-tox exons encoding CS-αβ motifs were phylogenetically closely related to defensin genes mapping to chromosomal positions close to the x-tox genes. We were able to define two groups of paralogous x-tox exons (three in Noctuids) that each followed the expected species tree. These results suggest that the ancestor of the three species already possessed an x-tox gene with at least two proto-domains, and an additional duplication/fusion should have occurred in the ancestor of the two noctuid species. An expansion of the number of exons subsequently occurred in each lineage. Alternatively, the proto x-tox gene possessed more copy and each group of x-tox domains might undergo concerted evolution through gene conversion. Accelerated protein evolution was detected in x-tox domains when compared to related defensins, concomitantly to multiplication of exons and/or the possible activation of concerted evolution. The x-tox genes of the three species have similar structural organizations, with repeat motifs composed of CS-αβ-encoding exons flanked by introns in phase 1. Diverse mechanisms underlie this organization: (i) the acquisition of new repeat motifs, (ii) the duplication of preexisting repeat motifs and (iii) the duplication of modules. A comparison of gDNA and cDNA structures showed that alternative splicing results in the production of multiple X-tox protein isoforms from the x-tox genes. Differences in the number and sequence of CS-αβ motifs in these isoforms were found between species, but also between individuals of the same species. Thus, our analysis of the genetic organization and expression of x-tox genes in three lepidopteran species suggests a rapid evolution of the organization of these genes.
Collapse
Affiliation(s)
- Emmanuelle d'Alençon
- INRA, UMR 1333 Laboratoire Diversité, Génomes & Interactions Microorganismes - Insectes (DGIMI), CC54, 2 place E. Bataillon, 34095 Montpellier, France
| | | | | | | | | | | | | |
Collapse
|
532
|
Bull JC, Ryabov EV, Prince G, Mead A, Zhang C, Baxter LA, Pell JK, Osborne JL, Chandler D. A strong immune response in young adult honeybees masks their increased susceptibility to infection compared to older bees. PLoS Pathog 2012; 8:e1003083. [PMID: 23300441 PMCID: PMC3531495 DOI: 10.1371/journal.ppat.1003083] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 10/29/2012] [Indexed: 11/18/2022] Open
Abstract
Honeybees, Apis mellifera, show age-related division of labor in which young adults perform maintenance (“housekeeping”) tasks inside the colony before switching to outside foraging at approximately 23 days old. Disease resistance is an important feature of honeybee biology, but little is known about the interaction of pathogens and age-related division of labor. We tested a hypothesis that older forager bees and younger “house” bees differ in susceptibility to infection. We coupled an infection bioassay with a functional analysis of gene expression in individual bees using a whole genome microarray. Forager bees treated with the entomopathogenic fungus Metarhizium anisopliae s.l. survived for significantly longer than house bees. This was concomitant with substantial differences in gene expression including genes associated with immune function. In house bees, infection was associated with differential expression of 35 candidate immune genes contrasted with differential expression of only two candidate immune genes in forager bees. For control bees (i.e. not treated with M. anisopliae) the development from the house to the forager stage was associated with differential expression of 49 candidate immune genes, including up-regulation of the antimicrobial peptide gene abaecin, plus major components of the Toll pathway, serine proteases, and serpins. We infer that reduced pathogen susceptibility in forager bees was associated with age-related activation of specific immune system pathways. Our findings contrast with the view that the immunocompetence in social insects declines with the onset of foraging as a result of a trade-off in the allocation of resources for foraging. The up-regulation of immune-related genes in young adult bees in response to M. anisopliae infection was an indicator of disease susceptibility; this also challenges previous research in social insects, in which an elevated immune status has been used as a marker of increased disease resistance and fitness without considering the effects of age-related development. Honeybees have a highly developed form of social biology in which tasks are distributed among workers according to their age, with younger bees performing housekeeping tasks (“house bees”) before switching to foraging duties when they grow older. This division of labor is vital to colony function and survival. Pathogens are known to be partly responsible for the current decline in honeybee populations around the world, but we understand little about the responses of different types of worker bee to infection. In this study, we infected house and forager bees with an insect pathogen. We measured bee survival rate and the expression of genes that regulate the immune system. More immune genes were up regulated in house bees than foragers in response to infection, but foragers were more resistant to the pathogen than house bees. We found that development from the house to forager stages resulted in increased expression of genes that regulate the production of antimicrobial proteins. The inference is that parts of the immune system are activated during development, resulting in greater resistance to infectious disease in forager bees. Our study provides new insights into the functioning of the honeybee immune system and its interaction with social organisation.
Collapse
Affiliation(s)
- James C. Bull
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Eugene V. Ryabov
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Gill Prince
- School of Life Sciences and Warwick Crop Centre, University of Warwick, Wellesbourne Campus, Wellesbourne, Warwickshire, United Kingdom
| | - Andrew Mead
- School of Life Sciences and Warwick Crop Centre, University of Warwick, Wellesbourne Campus, Wellesbourne, Warwickshire, United Kingdom
| | - Cunjin Zhang
- School of Life Sciences and Warwick Crop Centre, University of Warwick, Wellesbourne Campus, Wellesbourne, Warwickshire, United Kingdom
| | - Laura A. Baxter
- Warwick Systems Biology Centre, University of Warwick, Coventry, United Kingdom
| | - Judith K. Pell
- Centre for Soils and Ecosystem Function, Department of Plant and Invertebrate Ecology, Rothamsted Research, Harpenden, Hertfordshire, United Kingdom
| | - Juliet L. Osborne
- Centre for Soils and Ecosystem Function, Department of Plant and Invertebrate Ecology, Rothamsted Research, Harpenden, Hertfordshire, United Kingdom
| | - Dave Chandler
- School of Life Sciences and Warwick Crop Centre, University of Warwick, Wellesbourne Campus, Wellesbourne, Warwickshire, United Kingdom
- * E-mail:
| |
Collapse
|
533
|
Effects of Flight on Gene Expression and Aging in the Honey Bee Brain and Flight Muscle. INSECTS 2012; 4:9-30. [PMID: 26466793 PMCID: PMC4553427 DOI: 10.3390/insects4010009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 11/12/2012] [Accepted: 12/04/2012] [Indexed: 01/13/2023]
Abstract
Honey bees move through a series of in-hive tasks (e.g., “nursing”) to outside tasks (e.g., “foraging”) that are coincident with physiological changes and higher levels of metabolic activity. Social context can cause worker bees to speed up or slow down this process, and foragers may revert back to their earlier in-hive tasks accompanied by reversion to earlier physiological states. To investigate the effects of flight, behavioral state and age on gene expression, we used whole-genome microarrays and real-time PCR. Brain tissue and flight muscle exhibited different patterns of expression during behavioral transitions, with expression patterns in the brain reflecting both age and behavior, and expression patterns in flight muscle being primarily determined by age. Our data suggest that the transition from behaviors requiring little to no flight (nursing) to those requiring prolonged flight bouts (foraging), rather than the amount of previous flight per se, has a major effect on gene expression. Following behavioral reversion there was a partial reversion in gene expression but some aspects of forager expression patterns, such as those for genes involved in immune function, remained. Combined with our real-time PCR data, these data suggest an epigenetic control and energy balance role in honey bee functional senescence.
Collapse
|
534
|
Baracchi D, Fadda A, Turillazzi S. Evidence for antiseptic behaviour towards sick adult bees in honey bee colonies. JOURNAL OF INSECT PHYSIOLOGY 2012; 58:1589-1596. [PMID: 23068993 DOI: 10.1016/j.jinsphys.2012.09.014] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 09/26/2012] [Accepted: 09/27/2012] [Indexed: 06/01/2023]
Abstract
Social life is generally associated with an increased risk of disease transmission, but at the same time it allows behavioural defence at both the individual and collective level. Bees infected with deformed-wing virus were introduced into observation hives; through behavioural observations and chemical analysis of cuticular hydrocarbons from healthy and infected bees, we offer the first evidence that honeybee colonies can detect and remove infected adult bees, probably by recognising the cuticular hydrocarbon profiles of sick individuals. We also found that health-compromised colonies were less efficient at defending themselves against infected bees, thus facing an ever increasing risk of epidemics. This work reveals a new antiseptic behaviour that can only be interpreted as an adaptation at colony level and one which should be considered an element of the social immunity system of the beehive, re-enforcing the view of a colony as an integrated organism.
Collapse
Affiliation(s)
- David Baracchi
- Università degli Studi di Firenze, Dipartimento di Biologia Evoluzionistica Leo Pardi, Via Romana 17, 50125 Firenze, Italy.
| | | | | |
Collapse
|
535
|
Fujita T, Kozuka-Hata H, Ao-Kondo H, Kunieda T, Oyama M, Kubo T. Proteomic Analysis of the Royal Jelly and Characterization of the Functions of its Derivation Glands in the Honeybee. J Proteome Res 2012; 12:404-11. [DOI: 10.1021/pr300700e] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Toshiyuki Fujita
- Department of Biological Sciences, Graduate
School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Hiroko Kozuka-Hata
- Medical Proteomics Laboratory, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Hiroko Ao-Kondo
- Medical Proteomics Laboratory, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Takekazu Kunieda
- Department of Biological Sciences, Graduate
School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Masaaki Oyama
- Medical Proteomics Laboratory, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Takeo Kubo
- Department of Biological Sciences, Graduate
School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
536
|
Pradeep ANR, Anitha J, Awasthi AK, Babu MA, Geetha MN, Arun HK, Chandrashekhar S, Rao GC, Vijayaprakash NB. Activation of autophagic programmed cell death and innate immune gene expression reveals immuno-competence of integumental epithelium in Bombyx mori infected by a dipteran parasitoid. Cell Tissue Res 2012; 352:371-85. [PMID: 23161099 DOI: 10.1007/s00441-012-1520-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Accepted: 08/27/2012] [Indexed: 01/22/2023]
Abstract
In insects, the integument forms the primary barrier between the environment and internal milieu, but cellular and immune responses of the integumental epithelium to infection by micro- and macro-parasites are mostly unknown. We elucidated cellular and immune responses of the epithelium induced through infection by a dipteran endoparasitoid, Exorista bombycis in the economically important silkworm Bombyx mori. Degradative autophagic vacuoles, lamella-like bodies, a network of cytoplasmic channels with cellular cargo, and an RER network that opened to vacuoles were observed sequentially with increase in age after infection. This temporal sequence culminated in apoptosis, accompanied by the upregulation of the caspase gene and fragmentation of DNA. The infection significantly enhanced the tyrosine level and phenol oxidase activity in the integument. Proteomic analysis revealed enhanced expression of innate immunity components of toll and melanization pathways, cytokines, signaling molecules, chaperones, and proteolytic enzymes demonstrating diverse host responses. qPCR analysis revealed the upregulation of spatzle, BmToll, and NF kappa B transcription factors Dorsal and BmRel. NF kappa B inhibitor cactus showed diminished expression when Dorsal and BmRel were upregulated, revealing a negative correlation (R = (-)0.612). During melanization, prophenol oxidase 2 was expressed, a novel finding in integumental epithelium. The integument showed a low level of melanin metabolism and localized melanism in order to prevent the spreading of cytotoxic quinones. The gene-encoding proteolytic enzyme, beta-N-acetylglucosaminidase, was activated at 24 h post-infection, whereas chitinase, was activated at 96 h post-infection; however, most of the immune genes enhanced their expression in the early stages of infection. Thus the integument contributes to humoral immune responses that enhance resistance against macroparasite invasion.
Collapse
Affiliation(s)
- Appukuttan Nair R Pradeep
- Proteomics Division, Seribiotech Research Laboratory, CSB-Kodathi Campus, Bangalore, Karnataka, India.
| | | | | | | | | | | | | | | | | |
Collapse
|
537
|
Richard FJ, Holt HL, Grozinger CM. Effects of immunostimulation on social behavior, chemical communication and genome-wide gene expression in honey bee workers (Apis mellifera). BMC Genomics 2012; 13:558. [PMID: 23072398 PMCID: PMC3483235 DOI: 10.1186/1471-2164-13-558] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Accepted: 10/08/2012] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Social insects, such as honey bees, use molecular, physiological and behavioral responses to combat pathogens and parasites. The honey bee genome contains all of the canonical insect immune response pathways, and several studies have demonstrated that pathogens can activate expression of immune effectors. Honey bees also use behavioral responses, termed social immunity, to collectively defend their hives from pathogens and parasites. These responses include hygienic behavior (where workers remove diseased brood) and allo-grooming (where workers remove ectoparasites from nestmates). We have previously demonstrated that immunostimulation causes changes in the cuticular hydrocarbon profiles of workers, which results in altered worker-worker social interactions. Thus, cuticular hydrocarbons may enable workers to identify sick nestmates, and adjust their behavior in response. Here, we test the specificity of behavioral, chemical and genomic responses to immunostimulation by challenging workers with a panel of different immune stimulants (saline, Sephadex beads and Gram-negative bacteria E. coli). RESULTS While only bacteria-injected bees elicited altered behavioral responses from healthy nestmates compared to controls, all treatments resulted in significant changes in cuticular hydrocarbon profiles. Immunostimulation caused significant changes in expression of hundreds of genes, the majority of which have not been identified as members of the canonical immune response pathways. Furthermore, several new candidate genes that may play a role in cuticular hydrocarbon biosynthesis were identified. Effects of immune challenge expression of several genes involved in immune response, cuticular hydrocarbon biosynthesis, and the Notch signaling pathway were confirmed using quantitative real-time PCR. Finally, we identified common genes regulated by pathogen challenge in honey bees and other insects. CONCLUSIONS These results demonstrate that honey bee genomic responses to immunostimulation are substantially broader than the previously identified canonical immune response pathways, and may mediate the behavioral changes associated with social immunity by orchestrating changes in chemical signaling. These studies lay the groundwork for future research into the genomic responses of honey bees to native honey bee parasites and pathogens.
Collapse
Affiliation(s)
- Freddie-Jeanne Richard
- Laboratoire Ecologie Evolution Symbiose, UMR CNRS 6556, University of Poitiers, Cedex, POITIERS, France.
| | | | | |
Collapse
|
538
|
Zhang Z, Zhu S. Comparative genomics analysis of five families of antimicrobial peptide-like genes in seven ant species. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2012; 38:262-274. [PMID: 22617650 DOI: 10.1016/j.dci.2012.05.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2012] [Revised: 05/02/2012] [Accepted: 05/09/2012] [Indexed: 06/01/2023]
Abstract
Ants, as eusocial insects, live in dense groups with high connectivity, increasing the risk of pathogen spread and possibly driving the evolution of their antimicrobial immune system. Draft genomes of seven ant species provide a new source to undertake comparative study of their antimicrobial peptides (AMPs), key components of insect innate immunity. By using computational approaches, we analyzed five AMP families that include abaecins, hymenoptaecins, insect defensins, tachystatins, and crustins in ants, which comprise 69 new members. Among them, a new type of proline-rich abaecins was recognized and they are exclusively present in ants. Hymenoptaecins, a family of glycine-rich AMPs from Hymenoptera and Diptera, exhibit variable numbers of intragenic tandem repeats in a lineage-specific manner and all hymenoptaecins in ants have evolved an acidic C-terminal propeptide. In some ant species, insect defensins with the cysteine-stabilized α-helical and β-sheet (CSαβ) fold and tachystatin-like AMPs with the inhibitor cysteine knot (ICK) fold have undergone gene expansion and differential gene loss. Moreover, extensive sequence diversity exists in the C-termini of the defensins and the ICK-type peptides and the n-loop of the defensins. Also, we identified for the first time a crustin-type AMP in ants, which are only known in crustaceans previously. These ant crustins evolutionarily gain an aromatic amino acid-rich insertion when compared with those of crustaceans. Our work not only enlarges the insect AMP resource, but also sheds light on the complexity and dynamic evolution of AMPs in ants.
Collapse
Affiliation(s)
- Zhenting Zhang
- Group of Animal Innate Immunity, State Key Laboratory of Integrated Management of Pest Insects & Rodents, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, PR China
| | | |
Collapse
|
539
|
Yoshiyama M, Wu M, Sugimura Y, Takaya N, Kimoto-Nira H, Suzuki C. Inhibition of Paenibacillus larvae by lactic acid bacteria isolated from fermented materials. J Invertebr Pathol 2012; 112:62-7. [PMID: 23000777 DOI: 10.1016/j.jip.2012.09.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Revised: 08/20/2012] [Accepted: 09/12/2012] [Indexed: 12/12/2022]
Abstract
We evaluated the potential application of lactic acid bacteria (LAB) isolated from fermented feeds and foods for use as probiotics against Paenibacillus larvae, the causal agent of American foulbrood (AFB) in vitro. We also assessed the ability of LAB to induce the expression of antimicrobial peptide genes in vivo. Screening of the 208 LAB isolated from fermented feeds and foods revealed that nine strains inhibited the in vitro growth of P. larvae. The LAB strains were identified by 16S rRNA gene sequencing as Enterococcus sp., Weissella sp. and Lactobacillus sp. These strains were screened for their abilities of immune activation in honeybees by real-time RT-PCR using antimicrobial peptide genes as markers. After oral administration of several of the screened LAB to larvae and adults, the transcription levels of antimicrobial peptide genes, such as abaecin, defensin and hymenoptaecin, were found to increase significantly. These findings suggested that selected LAB stimulate the innate immune response in honeybees, which may be useful for preventing bacterial diseases in honeybees. This is the first report to characterize the probiotic effects of LAB isolated from fermented feeds and foods in honeybees.
Collapse
Affiliation(s)
- Mikio Yoshiyama
- Honeybee Research Unit, Animal Breeding and Reproduction Research Division, NARO Institute of Livestock and Grassland Science, 2 Ikenodai, Tsukuba, Ibaraki 305-0901, Japan.
| | | | | | | | | | | |
Collapse
|
540
|
Brucker RM, Funkhouser LJ, Setia S, Pauly R, Bordenstein SR. Insect Innate Immunity Database (IIID): an annotation tool for identifying immune genes in insect genomes. PLoS One 2012; 7:e45125. [PMID: 22984621 PMCID: PMC3440344 DOI: 10.1371/journal.pone.0045125] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Accepted: 08/14/2012] [Indexed: 01/07/2023] Open
Abstract
The innate immune system is an ancient component of host defense. Since innate immunity pathways are well conserved throughout many eukaryotes, immune genes in model animals can be used to putatively identify homologous genes in newly sequenced genomes of non-model organisms. With the initiation of the “i5k” project, which aims to sequence 5,000 insect genomes by 2016, many novel insect genomes will soon become publicly available, yet few annotation resources are currently available for insects. Thus, we developed an online tool called the Insect Innate Immunity Database (IIID) to provide an open access resource for insect immunity and comparative biology research (http://www.vanderbilt.edu/IIID). The database provides users with simple exploratory tools to search the immune repertoires of five insect models (including Nasonia), spanning three orders, for specific immunity genes or genes within a particular immunity pathway. As a proof of principle, we used an initial database with only four insect models to annotate potential immune genes in the parasitoid wasp genus Nasonia. Results specify 306 putative immune genes in the genomes of N. vitripennis and its two sister species N. giraulti and N. longicornis. Of these genes, 146 were not found in previous annotations of Nasonia immunity genes. Combining these newly identified immune genes with those in previous annotations, Nasonia possess 489 putative immunity genes, the largest immune repertoire found in insects to date. While these computational predictions need to be complemented with functional studies, the IIID database can help initiate and augment annotations of the immune system in the plethora of insect genomes that will soon become available.
Collapse
Affiliation(s)
- Robert M Brucker
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America.
| | | | | | | | | |
Collapse
|
541
|
Diez L, Deneubourg JL, Detrain C. Social prophylaxis through distant corpse removal in ants. Naturwissenschaften 2012; 99:833-42. [PMID: 22955492 DOI: 10.1007/s00114-012-0965-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 08/21/2012] [Accepted: 08/23/2012] [Indexed: 10/27/2022]
Abstract
Living in groups raises important issues concerning waste management and related sanitary risks. Social insects such as ants live at high densities with genetically related individuals within confined and humid nests, all these factors being highly favorable for the spread of pathogens. Therefore, in addition to individual immunity, a social prophylaxis takes place, namely, by the removal of risky items such as corpses and their rejection at a distance from the ant nest. In this study, we investigate how Myrmica rubra workers manage to reduce encounters between potentially hazardous corpses and nestmates. Using both field and laboratory experiments, we describe how the spatial distribution and the removal distance of waste items vary as a function of their associated sanitary risks (inert item vs. corpse). In the field, corpse-carrying ants walked in a rather linear way away from the nest entrance and had an equal probability of choosing any direction. Therefore, they did not aggregate corpses in dedicated areas but scattered them in the environment. In both field and laboratory experiments, ants carrying corpses dropped their load in more remote-and less frequented-areas than workers carrying inert items. However, for equidistant areas, ants did not avoid dropping corpses at a location where they perceived area marking as a cue of high occupancy level by nestmates. Our results suggest that ants use distance to the nest rather than other occupancy cues to limit sanitary risks associated with dead nestmates.
Collapse
Affiliation(s)
- Lise Diez
- Unit of Social Ecology, Université Libre de Bruxelles, CP 231, Bd du Triomphe, 1050, Brussels, Belgium.
| | | | | |
Collapse
|
542
|
|
543
|
Fritsche S, Knappe D, Berthold N, von Buttlar H, Hoffmann R, Alber G. Absence ofin vitroinnate immunomodulation by insect-derived short proline-rich antimicrobial peptides points to direct antibacterial actionin vivo. J Pept Sci 2012; 18:599-608. [DOI: 10.1002/psc.2440] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 07/09/2012] [Accepted: 07/09/2012] [Indexed: 12/25/2022]
|
544
|
Strachecka A, Paleolog J, Olszewski K, Borsuk G. Influence of Amitraz and Oxalic Acid on the Cuticle Proteolytic System of Apis mellifera L. Workers. INSECTS 2012; 3:821-32. [PMID: 26466630 PMCID: PMC4553591 DOI: 10.3390/insects3030821] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 07/14/2012] [Accepted: 08/04/2012] [Indexed: 11/16/2022]
Abstract
This work verifies that amitraz and oxalic acid treatment affect honeybee cuticle proteolytic enzymes (CPE). Three bee groups were monitored: oxalic acid treatment, amitraz treatment, control. Electrophoresis of hydrophilic and hydrophobic CPE was performed. Protease and protease inhibitor activities (in vitro) and antifungal/antibacterial efficiencies (in vivo), were analyzed. Amitraz and oxalic acid treatment reduced hydrophobic, but did not affect hydrophilic, protein concentrations and reduced both hydrophilic and hydrophobic body surface asparagine and serine protease activities in relation to most substrates and independently of pH. The activities of natural cuticle inhibitors of acidic, neutral, and alkaline proteases were suppressed as a result of the treatments, corresponding with reduced antifungal and antibacterial activity. Electrophoretic patterns of low-, medium-, and high-molecular-weight proteases and protease inhibitors were also affected by the treatments.
Collapse
Affiliation(s)
- Aneta Strachecka
- Laboratory of Experimental and Environmental Biology, Department of Biological Basis of Animal Production, University of Life Sciences in Lublin, ul. Akademicka 13, PL-20-950 Lublin, Poland.
| | - Jerzy Paleolog
- Laboratory of Experimental and Environmental Biology, Department of Biological Basis of Animal Production, University of Life Sciences in Lublin, ul. Akademicka 13, PL-20-950 Lublin, Poland.
| | - Krzysztof Olszewski
- Laboratory of Experimental and Environmental Biology, Department of Biological Basis of Animal Production, University of Life Sciences in Lublin, ul. Akademicka 13, PL-20-950 Lublin, Poland.
| | - Grzegorz Borsuk
- Laboratory of Experimental and Environmental Biology, Department of Biological Basis of Animal Production, University of Life Sciences in Lublin, ul. Akademicka 13, PL-20-950 Lublin, Poland.
| |
Collapse
|
545
|
Morimoto T, Kojima Y, Toki T, Komeda Y, Yoshiyama M, Kimura K, Nirasawa K, Kadowaki T. The habitat disruption induces immune-suppression and oxidative stress in honey bees. Ecol Evol 2012; 1:201-17. [PMID: 22393496 PMCID: PMC3287300 DOI: 10.1002/ece3.21] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 07/23/2011] [Accepted: 07/28/2011] [Indexed: 11/13/2022] Open
Abstract
The honey bee is a major insect used for pollination of many commercial crops worldwide. Although the use of honey bees for pollination can disrupt the habitat, the effects on their physiology have never been determined. Recently, honey bee colonies have often collapsed when introduced in greenhouses for pollination in Japan. Thus, suppressing colony collapses and maintaining the number of worker bees in the colonies is essential for successful long-term pollination in greenhouses and recycling of honey bee colonies. To understand the physiological states of honey bees used for long-term pollination in greenhouses, we characterized their gene expression profiles by microarray. We found that the greenhouse environment changes the gene expression profiles and induces immune-suppression and oxidative stress in honey bees. In fact, the increase of the number of Nosema microsporidia and protein carbonyl content was observed in honey bees during pollination in greenhouses. Thus, honey bee colonies are likely to collapse during pollination in greenhouses when heavily infested with pathogens. Degradation of honey bee habitat by changing the outside environment of the colony, during pollination services for example, imposes negative impacts on honey bees. Thus, worldwide use of honey bees for crop pollination in general could be one of reasons for the decline of managed honey bee colonies.
Collapse
Affiliation(s)
- Tomomi Morimoto
- Graduate School of Bioagricultural Sciences, Nagoya UniversityChikusa, Nagoya, Japan
| | - Yuriko Kojima
- Graduate School of Bioagricultural Sciences, Nagoya UniversityChikusa, Nagoya, Japan
| | - Taku Toki
- Graduate School of Bioagricultural Sciences, Nagoya UniversityChikusa, Nagoya, Japan
| | - Yayoi Komeda
- Graduate School of Bioagricultural Sciences, Nagoya UniversityChikusa, Nagoya, Japan
| | - Mikio Yoshiyama
- Honey bee Research Unit, Animal Breeding Research Group, Animal and Reproduction Division, National Institute of Livestock and Grassland Science2 Ikenodai, Tsukuba, Ibaraki, Japan
| | - Kiyoshi Kimura
- Honey bee Research Unit, Animal Breeding Research Group, Animal and Reproduction Division, National Institute of Livestock and Grassland Science2 Ikenodai, Tsukuba, Ibaraki, Japan
| | - Keijiro Nirasawa
- Animal Breeding Research Group, Animal and Reproduction Division, National Institute of Livestock and Grassland ScienceTsukuba, Ibaraki, Japan
| | - Tatsuhiko Kadowaki
- Graduate School of Bioagricultural Sciences, Nagoya UniversityChikusa, Nagoya, Japan
| |
Collapse
|
546
|
Ellis JS, Turner LM, Knight ME. Patterns of selection and polymorphism of innate immunity genes in bumblebees (Hymenoptera: Apidae). Genetica 2012; 140:205-17. [PMID: 22899493 DOI: 10.1007/s10709-012-9672-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 08/07/2012] [Indexed: 01/22/2023]
|
547
|
de Roode JC, Lefèvre T. Behavioral Immunity in Insects. INSECTS 2012; 3:789-820. [PMID: 26466629 PMCID: PMC4553590 DOI: 10.3390/insects3030789] [Citation(s) in RCA: 133] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2012] [Revised: 07/03/2012] [Accepted: 07/10/2012] [Indexed: 12/29/2022]
Abstract
Parasites can dramatically reduce the fitness of their hosts, and natural selection should favor defense mechanisms that can protect hosts against disease. Much work has focused on understanding genetic and physiological immunity against parasites, but hosts can also use behaviors to avoid infection, reduce parasite growth or alleviate disease symptoms. It is increasingly recognized that such behaviors are common in insects, providing strong protection against parasites and parasitoids. We review the current evidence for behavioral immunity in insects, present a framework for investigating such behavior, and emphasize that behavioral immunity may act through indirect rather than direct fitness benefits. We also discuss the implications for host-parasite co-evolution, local adaptation, and the evolution of non-behavioral physiological immune systems. Finally, we argue that the study of behavioral immunity in insects has much to offer for investigations in vertebrates, in which this topic has traditionally been studied.
Collapse
Affiliation(s)
- Jacobus C de Roode
- Department of Biology, Emory University, 1510 Clifton Road, Atlanta, GA 30322, USA.
| | - Thierry Lefèvre
- MIVEGEC (UM1-UM2-CNRS 5290-IRD 224), Centre IRD, 911 Av. Agropolis-BP 64501, Montpellier 34394, France.
| |
Collapse
|
548
|
Ratzka C, Förster F, Liang C, Kupper M, Dandekar T, Feldhaar H, Gross R. Molecular characterization of antimicrobial peptide genes of the carpenter ant Camponotus floridanus. PLoS One 2012; 7:e43036. [PMID: 22912782 PMCID: PMC3415428 DOI: 10.1371/journal.pone.0043036] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 07/16/2012] [Indexed: 11/18/2022] Open
Abstract
The production of antimicrobial peptides (AMPs) is a major defense mechanism against pathogen infestation and of particular importance for insects relying exclusively on an innate immune system. Here, we report on the characterization of three AMPs from the carpenter ant Camponotus floridanus. Due to sequence similarities and amino acid composition these peptides can be classified into the cysteine-rich (e.g. defensin) and glycine-rich (e.g. hymenoptaecin) AMP groups, respectively. The gene and cDNA sequences of these AMPs were established and their expression was shown to be induced by microbial challenge. We characterized two different defensin genes. The defensin-2 gene has a single intron, whereas the defensin-1 gene has two introns. The deduced amino acid sequence of the C. floridanus defensins is very similar to other known ant defensins with the exception of a short C-terminal extension of defensin-1. The hymenoptaecin gene has a single intron and a very peculiar domain structure. The corresponding precursor protein consists of a signal- and a pro-sequence followed by a hymenoptaecin-like domain and six directly repeated hymenoptaecin domains. Each of the hymenoptaecin domains is flanked by an EAEP-spacer sequence and a RR-site known to be a proteolytic processing site. Thus, proteolytic processing of the multipeptide precursor may generate several mature AMPs leading to an amplification of the immune response. Bioinformatical analyses revealed the presence of hymenoptaecin genes with similar multipeptide precursor structure in genomes of other ant species suggesting an evolutionary conserved important role of this gene in ant immunity.
Collapse
Affiliation(s)
- Carolin Ratzka
- Department of Microbiology, Biocentre, University of Würzburg, Würzburg, Germany.
| | | | | | | | | | | | | |
Collapse
|
549
|
Chaimanee V, Chantawannakul P, Chen Y, Evans JD, Pettis JS. Differential expression of immune genes of adult honey bee (Apis mellifera) after inoculated by Nosema ceranae. JOURNAL OF INSECT PHYSIOLOGY 2012; 58:1090-1095. [PMID: 22609362 DOI: 10.1016/j.jinsphys.2012.04.016] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 04/25/2012] [Accepted: 04/27/2012] [Indexed: 05/27/2023]
Abstract
Nosema ceranae is a microsporidium parasite infecting adult honey bees (Apis mellifera) and is known to affects at both the individual and colony level. In this study, the expression levels were measured for four antimicrobial peptide encoding genes that are associated with bee humoral immunity (defensin, abaecin, apidaecin, and hymenoptaecin), eater gene which is a transmembrane protein involved cellular immunity and gene encoding female-specific protein (vitellogenin) in honey bees when inoculated by N. ceranae. The results showed that four of these genes, defensin, abaecin, apidaecin and hymenoptaecin were significantly down-regulated 3 and 6days after inoculations. Additionally, antimicrobial peptide expressions did not significantly differ between control and inoculated bees after 12days post inoculation. Moreover, our results revealed that the mRNA levels of eater and vitellogenin did not differ significantly following N. ceranae inoculation. Therefore, in this study we reaffirmed that N. ceranae infection induces host immunosuppression.
Collapse
Affiliation(s)
- Veeranan Chaimanee
- Bee Protection Center, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | | | | | | | | |
Collapse
|
550
|
Schmitz A, Anselme C, Ravallec M, Rebuf C, Simon JC, Gatti JL, Poirié M. The cellular immune response of the pea aphid to foreign intrusion and symbiotic challenge. PLoS One 2012; 7:e42114. [PMID: 22848726 PMCID: PMC3407134 DOI: 10.1371/journal.pone.0042114] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Accepted: 07/02/2012] [Indexed: 12/11/2022] Open
Abstract
Recent studies suggest that the pea aphid (Acyrthosiphon pisum) has low immune defenses. However, its immune components are largely undescribed, and notably, extensive characterization of circulating cells has been missing. Here, we report characterization of five cell categories in hemolymph of adults of the LL01 pea aphid clone, devoid of secondary symbionts (SS): prohemocytes, plasmatocytes, granulocytes, spherulocytes and wax cells. Circulating lipid-filed wax cells are rare; they otherwise localize at the basis of the cornicles. Spherulocytes, that are likely sub-cuticular sessile cells, are involved in the coagulation process. Prohemocytes have features of precursor cells. Plasmatocytes and granulocytes, the only adherent cells, can form a layer in vivo around inserted foreign objects and phagocytize latex beads or Escherichia coli bacteria injected into aphid hemolymph. Using digital image analysis, we estimated that the hemolymph from one LL01 aphid contains about 600 adherent cells, 35% being granulocytes. Among aphid YR2 lines differing only in their SS content, similar results to LL01 were observed for YR2-Amp (without SS) and YR2-Ss (with Serratia symbiotica), while YR2-Hd (with Hamiltonella defensa) and YR2(Ri) (with Regiella insecticola) had strikingly lower adherent hemocyte numbers and granulocyte proportions. The effect of the presence of SS on A. pisum cellular immunity is thus symbiont-dependent. Interestingly, Buchnera aphidicola (the aphid primary symbiont) and all SS, whether naturally present, released during hemolymph collection, or artificially injected, were internalized by adherent hemocytes. Inside hemocytes, SS were observed in phagocytic vesicles, most often in phagolysosomes. Our results thus raise the question whether aphid symbionts in hemolymph are taken up and destroyed by hemocytes, or actively promote their own internalization, for instance as a way of being transmitted to the next generation. Altogether, we demonstrate here a strong interaction between aphid symbionts and immune cells, depending upon the symbiont, highlighting the link between immunity and symbiosis.
Collapse
Affiliation(s)
- Antonin Schmitz
- Institut National de la Recherche Agronomique (INRA), Unité Mixte de Recherches 1355 “Institut Sophia Agrobiotech” (ISA), Sophia Antipolis, France
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherches 7254, Sophia Antipolis, France
- Université Nice Sophia Antipolis, Nice, France
| | - Caroline Anselme
- Institut National de la Recherche Agronomique (INRA), Unité Mixte de Recherches 1355 “Institut Sophia Agrobiotech” (ISA), Sophia Antipolis, France
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherches 7254, Sophia Antipolis, France
- Université Nice Sophia Antipolis, Nice, France
| | - Marc Ravallec
- Institut National de la Recherche Agronomique (INRA) - Université Montpellier 2, Unité Mixte de Recherches 1333 “Diversité, Génomes et Interactions Microorganismes-Insectes”, Montpellier, France
| | - Christian Rebuf
- Institut National de la Recherche Agronomique (INRA), Unité Mixte de Recherches 1355 “Institut Sophia Agrobiotech” (ISA), Sophia Antipolis, France
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherches 7254, Sophia Antipolis, France
- Université Nice Sophia Antipolis, Nice, France
| | - Jean-Christophe Simon
- Institut National de la Recherche Agronomique (INRA), UMR 1349, Institut de Génétique, Environnement et Protection des Plantes, Le Rheu, France
| | - Jean-Luc Gatti
- Institut National de la Recherche Agronomique (INRA), Unité Mixte de Recherches 1355 “Institut Sophia Agrobiotech” (ISA), Sophia Antipolis, France
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherches 7254, Sophia Antipolis, France
- Université Nice Sophia Antipolis, Nice, France
| | - Marylène Poirié
- Institut National de la Recherche Agronomique (INRA), Unité Mixte de Recherches 1355 “Institut Sophia Agrobiotech” (ISA), Sophia Antipolis, France
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherches 7254, Sophia Antipolis, France
- Université Nice Sophia Antipolis, Nice, France
- * E-mail:
| |
Collapse
|