501
|
Hu J, Wang F, Yuan Y, Zhu X, Wang Y, Zhang Y, Kou Z, Wang S, Gao S. Novel importin-alpha family member Kpna7 is required for normal fertility and fecundity in the mouse. J Biol Chem 2010; 285:33113-33122. [PMID: 20699224 DOI: 10.1074/jbc.m110.117044] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Nuclear importing system and nuclear factors play important roles in mediating nuclear reprogramming and zygotic gene activation. However, the components and mechanisms that mediate nuclearly specific targeting of the nuclear proteins during nuclear reprogramming and zygotic gene activation remain largely unknown. Here, we identified a novel member of the importin-α family, AW146299(KPNA7), which is predominantly expressed in mouse oocytes and zygotes and localizes to the nucleus or spindle. Mutation of Kpna7 gene caused reproductivity reduction and sex imbalance by inducing preferential fetal lethality in females. Parthenogenesis analysis showed that the cell cycle of activated one-cell embryos is loss of control and ahead of schedule but finally failed to develop into blastocyst stage. Further RT-PCR and epigenetic modification analysis showed that knocking out of Kpna7 induced abnormalities of gene expression (dppa2, dppa4, and piwil2) and epigenetic modifications (down-regulation of histone H3K27me3). Biochemical analysis showed that KPNA7 interacts with KPNB1 (importin-β1). In summary, we identified a novel Kpna7 gene that is required for normal fertility and fecundity.
Collapse
Affiliation(s)
- Jianjun Hu
- From the National Institute of Biological Sciences, Beijing 102206, China
| | - Fengchao Wang
- From the National Institute of Biological Sciences, Beijing 102206, China
| | - Ye Yuan
- From the National Institute of Biological Sciences, Beijing 102206, China
| | - Xiaoquan Zhu
- From the National Institute of Biological Sciences, Beijing 102206, China
| | - Yixuan Wang
- From the National Institute of Biological Sciences, Beijing 102206, China
| | - Yu Zhang
- From the National Institute of Biological Sciences, Beijing 102206, China
| | - Zhaohui Kou
- From the National Institute of Biological Sciences, Beijing 102206, China
| | - Shufang Wang
- From the National Institute of Biological Sciences, Beijing 102206, China
| | - Shaorong Gao
- From the National Institute of Biological Sciences, Beijing 102206, China.
| |
Collapse
|
502
|
Rozhkov NV, Aravin AA, Zelentsova ES, Schostak NG, Sachidanandam R, McCombie WR, Hannon GJ, Evgen'ev MB. Small RNA-based silencing strategies for transposons in the process of invading Drosophila species. RNA (NEW YORK, N.Y.) 2010; 16:1634-45. [PMID: 20581131 PMCID: PMC2905761 DOI: 10.1261/rna.2217810] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Colonization of a host by an active transposon can increase mutation rates or cause sterility, a phenotype termed hybrid dysgenesis. As an example, intercrosses of certain Drosophila virilis strains can produce dysgenic progeny. The Penelope element is present only in a subset of laboratory strains and has been implicated as a causative agent of the dysgenic phenotype. We have also introduced Penelope into Drosophila melanogaster, which are otherwise naive to the element. We have taken advantage of these natural and experimentally induced colonization processes to probe the evolution of small RNA pathways in response to transposon challenge. In both species, Penelope was predominantly targeted by endo-small-interfering RNAs (siRNAs) rather than by piwi-interacting RNAs (piRNAs). Although we do observe correlations between Penelope transcription and dysgenesis, we could not correlate differences in maternally deposited Penelope piRNAs with the sterility of progeny. Instead, we found that strains that produced dysgenic progeny differed in their production of piRNAs from clusters in subtelomeric regions, possibly indicating that changes in the overall piRNA repertoire underlie dysgenesis. Considered together, our data reveal unexpected plasticity in small RNA pathways in germ cells, both in the character of their responses to invading transposons and in the piRNA clusters that define their ability to respond to mobile elements.
Collapse
|
503
|
Lee YCG, Langley CH. Transposable elements in natural populations of Drosophila melanogaster. Philos Trans R Soc Lond B Biol Sci 2010; 365:1219-28. [PMID: 20308097 DOI: 10.1098/rstb.2009.0318] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Transposable elements (TEs) are families of small DNA sequences found in the genomes of virtually all organisms. The sequences typically encode essential components for the replicative transposition sequences of that TE family. Thus, TEs are simply genomic parasites that inflict detrimental mutations on the fitness of their hosts. Several models have been proposed for the containment of TE copy number in outbreeding host populations such as Drosophila. Surveys of the TEs in genomes from natural populations of Drosophila have played a central role in the investigation of TE dynamics. The early surveys indicated that a typical TE insertion is rare in a population, which has been interpreted as evidence that each TE is selected against. The proposed mechanisms of this natural selection are reviewed here. Subsequent and more targeted surveys identify heterogeneity among types of TEs and also highlight the large role of homologous and possibly ectopic crossing over in the dynamics of the Drosophila TEs. The recent discovery of germline-specific RNA interference via the piwi-interacting RNA pathway opens yet another interesting mechanism that may be critical in containing the copy number of TEs in natural populations of Drosophila. The expected flood of Drosophila population genomics is expected to rapidly advance understanding of the dynamics of TEs.
Collapse
Affiliation(s)
- Yuh Chwen G Lee
- Department of Evolution and Ecology, University of California - Davis, , Davis, CA 95616, USA
| | | |
Collapse
|
504
|
Todeschini AL, Teysset L, Delmarre V, Ronsseray S. The epigenetic trans-silencing effect in Drosophila involves maternally-transmitted small RNAs whose production depends on the piRNA pathway and HP1. PLoS One 2010; 5:e11032. [PMID: 20559422 PMCID: PMC2885412 DOI: 10.1371/journal.pone.0011032] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Accepted: 05/21/2010] [Indexed: 11/18/2022] Open
Abstract
Background The study of P transposable element repression in Drosophila melanogaster led to the discovery of the Trans-Silencing Effect (TSE), a homology-dependent repression mechanism by which a P-transgene inserted in subtelomeric heterochromatin (Telomeric Associated Sequences, “TAS”) has the capacity to repress in trans, in the female germline, a homologous P-lacZ transgene located in euchromatin. Phenotypic and genetic analysis have shown that TSE exhibits variegation in ovaries, displays a maternal effect as well as epigenetic transmission through meiosis and involves heterochromatin (including HP1) and RNA silencing. Principal Findings Here, we show that mutations in squash and zucchini, which are involved in the piwi-interacting RNA (piRNA) silencing pathway, strongly affect TSE. In addition, we carried out a molecular analysis of TSE and show that silencing is correlated to the accumulation of lacZ small RNAs in ovaries. Finally, we show that the production of these small RNAs is sensitive to mutations affecting squash and zucchini, as well as to the dose of HP1. Conclusions and Significance Thus, our results indicate that the TSE represents a bona fide piRNA-based repression. In addition, the sensitivity of TSE to HP1 dose suggests that in Drosophila, as previously shown in Schizosaccharomyces pombe, a RNA silencing pathway can depend on heterochromatin components.
Collapse
Affiliation(s)
- Anne-Laure Todeschini
- Laboratoire Biologie du Développement, UMR7622, CNRS-Université Pierre et Marie Curie, Paris, France
| | | | | | | |
Collapse
|
505
|
Liao Z, Jia Q, Li F, Han Z. Identification of two piwi genes and their expression profile in honeybee, Apis mellifera. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2010; 74:91-102. [PMID: 20513057 DOI: 10.1002/arch.20362] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Piwi genes play an important role in regulating spermatogenesis and oogenesis because they participate in the biogenesis of piRNAs, a new class of noncoding RNAs. However, these genes are not well understood in most insects. To understand the function of piwi genes in honeybee reproduction, we amplified two full-length piwi-like genes, Am-aub and Am-ago3. Both the cloned Am-aub and Am-ago3 genes contained typical PAZ and PIWI domains and active catalytic motifs "Asp-Asp-Asp/His/Glu/Lys," suggesting that the two piwi-like genes possessed slicer activity. We examined the expression levels of Am-aub and Am-ago3 in workers, queens, drones, and female larvae by quantitative PCR. Am-aub was more abundant than Am-ago3 in all the tested samples. Both Am-aub and Am-ago3 were highly expressed in drones but not in workers and queens. The significant finding was that the larval food stream influenced the expression of Piwi genes in adult honeybees. This helps to understand the nutritional control of reproductive status in honeybees at the molecular level.
Collapse
Affiliation(s)
- Zhen Liao
- Department of Entomology, Nanjing Agricultural University/Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture, Nanjing, China
| | | | | | | |
Collapse
|
506
|
Richardson CR, Luo QJ, Gontcharova V, Jiang YW, Samanta M, Youn E, Rock CD. Analysis of antisense expression by whole genome tiling microarrays and siRNAs suggests mis-annotation of Arabidopsis orphan protein-coding genes. PLoS One 2010; 5:e10710. [PMID: 20520764 PMCID: PMC2877095 DOI: 10.1371/journal.pone.0010710] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2009] [Accepted: 04/26/2010] [Indexed: 11/22/2022] Open
Abstract
Background MicroRNAs (miRNAs) and trans-acting small-interfering RNAs (tasi-RNAs) are small (20–22 nt long) RNAs (smRNAs) generated from hairpin secondary structures or antisense transcripts, respectively, that regulate gene expression by Watson-Crick pairing to a target mRNA and altering expression by mechanisms related to RNA interference. The high sequence homology of plant miRNAs to their targets has been the mainstay of miRNA prediction algorithms, which are limited in their predictive power for other kingdoms because miRNA complementarity is less conserved yet transitive processes (production of antisense smRNAs) are active in eukaryotes. We hypothesize that antisense transcription and associated smRNAs are biomarkers which can be computationally modeled for gene discovery. Principal Findings We explored rice (Oryza sativa) sense and antisense gene expression in publicly available whole genome tiling array transcriptome data and sequenced smRNA libraries (as well as C. elegans) and found evidence of transitivity of MIRNA genes similar to that found in Arabidopsis. Statistical analysis of antisense transcript abundances, presence of antisense ESTs, and association with smRNAs suggests several hundred Arabidopsis ‘orphan’ hypothetical genes are non-coding RNAs. Consistent with this hypothesis, we found novel Arabidopsis homologues of some MIRNA genes on the antisense strand of previously annotated protein-coding genes. A Support Vector Machine (SVM) was applied using thermodynamic energy of binding plus novel expression features of sense/antisense transcription topology and siRNA abundances to build a prediction model of miRNA targets. The SVM when trained on targets could predict the “ancient” (deeply conserved) class of validated Arabidopsis MIRNA genes with an accuracy of 84%, and 76% for “new” rapidly-evolving MIRNA genes. Conclusions Antisense and smRNA expression features and computational methods may identify novel MIRNA genes and other non-coding RNAs in plants and potentially other kingdoms, which can provide insight into antisense transcription, miRNA evolution, and post-transcriptional gene regulation.
Collapse
Affiliation(s)
- Casey R. Richardson
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, United States of America
| | - Qing-Jun Luo
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, United States of America
| | - Viktoria Gontcharova
- Department of Computer Science, Texas Tech University, Lubbock, Texas, United States of America
| | - Ying-Wen Jiang
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, United States of America
| | - Manoj Samanta
- Systemix Institute, Redmond, Washington, United States of America
| | - Eunseog Youn
- Department of Computer Science, Texas Tech University, Lubbock, Texas, United States of America
| | - Christopher D. Rock
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, United States of America
- * E-mail:
| |
Collapse
|
507
|
Malone CD, Hannon GJ. Molecular evolution of piRNA and transposon control pathways in Drosophila. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2010; 74:225-34. [PMID: 20453205 DOI: 10.1101/sqb.2009.74.052] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The mere prevalence and potential mobilization of transposable elements in eukaryotic genomes present challenges at both the organismal and population levels. Not only is transposition able to alter gene function and chromosomal structure, but loss of control over even a single active element in the germline can create an evolutionary dead end. Despite the dangers of coexistence, transposons and their activity have been shown to drive the evolution of gene function, chromosomal organization, and even population dynamics (Kazazian 2004). This implies that organisms have adopted elaborate means to balance both the positive and detrimental consequences of transposon activity. In this chapter, we focus on the fruit fly to explore some of the molecular clues into the long- and short-term adaptation to transposon colonization and persistence within eukaryotic genomes.
Collapse
Affiliation(s)
- C D Malone
- Watson School of Biological Sciences, Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | | |
Collapse
|
508
|
Robine N, Lau NC, Balla S, Jin Z, Okamura K, Kuramochi-Miyagawa S, Blower MD, Lai EC. A broadly conserved pathway generates 3'UTR-directed primary piRNAs. Curr Biol 2010; 19:2066-76. [PMID: 20022248 DOI: 10.1016/j.cub.2009.11.064] [Citation(s) in RCA: 265] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Revised: 11/13/2009] [Accepted: 11/25/2009] [Indexed: 12/26/2022]
Abstract
BACKGROUND Piwi-interacting RNAs (piRNAs) are approximately 24-30 nucleotide regulatory RNAs that are abundant in animal gonads and early embryos. The best-characterized piRNAs mediate a conserved pathway that restricts transposable elements, and these frequently engage a "ping-pong" amplification loop. Certain stages of mammalian testis also accumulate abundant piRNAs of unknown function, which derive from noncoding RNAs that are depleted in transposable element content and do not engage in ping-pong. RESULTS We report that the 3' untranslated regions (3'UTRs) of an extensive set of messenger RNAs (mRNAs) are processed into piRNAs in Drosophila ovaries, murine testes, and Xenopus eggs. Analysis of different mutants and Piwi-class immunoprecipitates indicates that their biogenesis depends on primary piRNA components, but not most ping-pong components. Several observations suggest that mRNAs are actively selected for piRNA production for regulatory purposes. First, genic piRNAs do not accumulate in proportion to the level of their host transcripts, and many highly expressed transcripts lack piRNAs. Second, piRNA-producing mRNAs in Drosophila and mouse are enriched for specific gene ontology categories distinct from those of simply abundant transcripts. Third, the protein output of traffic jam, whose 3'UTR generates abundant piRNAs, is increased in piwi mutant follicle clones. CONCLUSIONS We reveal a conserved primary piRNA pathway that selects and metabolizes the 3'UTRs of a broad set of cellular transcripts, probably for regulatory purposes. These findings strongly increase the breadth of Argonaute-mediated small RNA systems in metazoans.
Collapse
Affiliation(s)
- Nicolas Robine
- Department of Developmental Biology, Sloan-Kettering Institute, New York, NY 10065, USA
| | | | | | | | | | | | | | | |
Collapse
|
509
|
Rebollo R, Horard B, Hubert B, Vieira C. Jumping genes and epigenetics: Towards new species. Gene 2010; 454:1-7. [DOI: 10.1016/j.gene.2010.01.003] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Revised: 01/06/2010] [Accepted: 01/19/2010] [Indexed: 01/13/2023]
|
510
|
Martienssen RA. Heterochromatin, small RNA and post-fertilization dysgenesis in allopolyploid and interploid hybrids of Arabidopsis. THE NEW PHYTOLOGIST 2010; 186:46-53. [PMID: 20409176 PMCID: PMC3756494 DOI: 10.1111/j.1469-8137.2010.03193.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
In many plants, including Arabidopsis, hybrids between species and subspecies encounter postfertilization barriers in which hybrid seed fail to develop, or else give rise to infertile progeny. In Arabidopsis, some of these barriers are sensitive to ploidy and to the epigenetic status of donor and recipient genomes. Recently, a role has been proposed for heterochromatin in reprogramming events that occur in reproductive cells, as well as in the embryo and endosperm after fertilization. 21 nt small interfering RNA (siRNA) from activated transposable elements accumulate in pollen, and are translocated from companion vegetative cells into the sperm, while in the maturing seed 24 nt siRNA are primarily maternal in origin. Thus maternal and paternal genomes likely contribute differing small RNA to the zygote and to the endosperm. As heterochromatic sequences also differ radically between, and within, species, small RNA sequences will diverge in hybrids. If transposable elements in the seed are not targeted by small RNA from the pollen, or vice versa, this could lead to hybrid seed failure, in a mechanism reminiscent of hybrid dysgenesis in Drosophila. Heterochromatin also plays a role in apomixis and nucleolar dominance, and may utilize a similar mechanism.
Collapse
|
511
|
Lau NC. Small RNAs in the animal gonad: guarding genomes and guiding development. Int J Biochem Cell Biol 2010; 42:1334-47. [PMID: 20227517 DOI: 10.1016/j.biocel.2010.03.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Accepted: 03/08/2010] [Indexed: 10/19/2022]
Abstract
Germ cells must safeguard, apportion, package, and deliver their genomes with exquisite precision to ensure proper reproduction and embryonic development. Classical genetic approaches have identified many genes controlling animal germ cell development, but only recently have some of these genes been linked to the RNA interference (RNAi) pathway, a gene silencing mechanism centered on small regulatory RNAs. Germ cells contain microRNAs (miRNAs), endogenous siRNAs (endo-siRNAs), and Piwi-interacting RNAs (piRNAs); these are bound by members of the Piwi/Argonaute protein family. piwi genes were known to specify germ cell development, but we now understand that mutations disrupting germline development can also affect small RNA accumulation. Small RNA studies in germ cells have revealed a surprising diversity of regulatory mechanisms and a unifying function for germline genes in controlling the spread of transposable elements. Future challenges will be to understand the production of germline small RNAs and to identify the full breadth of gene regulation by these RNAs. Progress in this area will likely impact biomedical goals of manipulating stem cells and preventing diseases caused by the transposition of mobile DNA elements.
Collapse
Affiliation(s)
- Nelson C Lau
- Department of Biology, Brandeis University, 415 South Street, Waltham, MA 02454, USA.
| |
Collapse
|
512
|
Taft RJ, Pang KC, Mercer TR, Dinger M, Mattick JS. Non-coding RNAs: regulators of disease. J Pathol 2010; 220:126-39. [PMID: 19882673 DOI: 10.1002/path.2638] [Citation(s) in RCA: 763] [Impact Index Per Article: 50.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
For 50 years the term 'gene' has been synonymous with regions of the genome encoding mRNAs that are translated into protein. However, recent genome-wide studies have shown that the human genome is pervasively transcribed and produces many thousands of regulatory non-protein-coding RNAs (ncRNAs), including microRNAs, small interfering RNAs, PIWI-interacting RNAs and various classes of long ncRNAs. It is now clear that these RNAs fulfil critical roles as transcriptional and post-transcriptional regulators and as guides of chromatin-modifying complexes. Here we review the biology of ncRNAs, focusing on the fundamental mechanisms by which ncRNAs facilitate normal development and physiology and, when dysfunctional, underpin disease. We also discuss evidence that intergenic regions associated with complex diseases express ncRNAs, as well as the potential use of ncRNAs as diagnostic markers and therapeutic targets. Taken together, these observations emphasize the need to move beyond the confines of protein-coding genes and highlight the fact that continued investigation of ncRNA biogenesis and function will be necessary for a comprehensive understanding of human disease.
Collapse
Affiliation(s)
- Ryan J Taft
- Institute for Molecular Bioscience, University of Queensland, Brisbane QLD 4072, Australia
| | | | | | | | | |
Collapse
|
513
|
Cytotype regulation by telomeric P elements in Drosophila melanogaster: variation in regulatory strength and maternal effects. Genet Res (Camb) 2010; 91:327-36. [PMID: 19922696 DOI: 10.1017/s001667230999022x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Strains carrying the X-linked telomeric P elements TP5 or TP6 varied in their ability to repress hybrid dysgenesis. The rank ordering of these strains was consistent across different genetic assays and was not related to the type of telomeric P element (TP5 or TP6) present. Strong repression of dysgenesis was associated with weak expression of mRNA from the telomeric P element and also with a reduced amount of mRNA from a transposase-producing P element contained within a transgene inserted on an autosome. A strictly maternal component of repression, transmitted independently of the telomeric P element, was detected in the daughters but not the sons of females from the strongest repressing strains. However, this effect was seen only when dysgenesis was induced by crossing these females to males from a P strain, not when it was induced by crossing them to males homozygous for a single transposase-producing P element contained within a transgene. These findings are consistent with the hypothesis that the P cytotype, the condition that regulates P elements, involves an RNA interference mechanism mediated by piRNAs produced by telomeric P elements such as TP5 and TP6 and amplified by RNAs produced by other P elements.
Collapse
|
514
|
Chen ZJ. Molecular mechanisms of polyploidy and hybrid vigor. TRENDS IN PLANT SCIENCE 2010; 15:57-71. [PMID: 20080432 PMCID: PMC2821985 DOI: 10.1016/j.tplants.2009.12.003] [Citation(s) in RCA: 340] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Revised: 12/09/2009] [Accepted: 12/14/2009] [Indexed: 05/18/2023]
Abstract
Hybrids such as maize (Zea mays) or domestic dog (Canis lupus familiaris) grow bigger and stronger than their parents. This is also true for allopolyploids such as wheat (Triticum spp.) or frog (i.e. Xenopus and Silurana) that contain two or more sets of chromosomes from different species. The phenomenon, known as hybrid vigor or heterosis, was systematically characterized by Charles Darwin (1876). The rediscovery of heterosis in maize a century ago has revolutionized plant and animal breeding and production. Although genetic models for heterosis have been rigorously tested, the molecular bases remain elusive. Recent studies have determined the roles of nonadditive gene expression, small RNAs, and epigenetic regulation, including circadian-mediated metabolic pathways, in hybrid vigor, which could lead to better use and exploitation of the increased biomass and yield in hybrids and allopolyploids for food, feed, and biofuels.
Collapse
Affiliation(s)
- Z Jeffrey Chen
- Section of Molecular Cell and Developmental Biology, Center for Computational Biology and Bioinformatics, and Institute for Cellular and Molecular Biology, The University of Texas at Austin, One University Station A4800, Austin, TX 78712, USA.
| |
Collapse
|
515
|
Pillot M, Baroux C, Vazquez MA, Autran D, Leblanc O, Vielle-Calzada JP, Grossniklaus U, Grimanelli D. Embryo and endosperm inherit distinct chromatin and transcriptional states from the female gametes in Arabidopsis. THE PLANT CELL 2010; 22:307-20. [PMID: 20139161 PMCID: PMC2845419 DOI: 10.1105/tpc.109.071647] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2009] [Revised: 01/06/2010] [Accepted: 01/15/2010] [Indexed: 05/18/2023]
Abstract
Whether deposited maternal products are important during early seed development in flowering plants remains controversial. Here, we show that RNA interference-mediated downregulation of transcription is deleterious to endosperm development but does not block zygotic divisions. Furthermore, we show that RNA POLYMERASE II is less active in the embryo than in the endosperm. This dimorphic pattern is established late during female gametogenesis and is inherited by the two products of fertilization. This juxtaposition of distinct transcriptional activities correlates with differential patterns of histone H3 lysine 9 dimethylation, LIKE HETEROCHROMATIN PROTEIN1 localization, and Histone H2B turnover in the egg cell versus the central cell. Thus, distinct epigenetic and transcriptional patterns in the embryo and endosperm are already established in their gametic progenitors. We further demonstrate that the non-CG DNA methyltransferase CHROMOMETHYLASE3 (CMT3) and DEMETER-LIKE DNA glycosylases are required for the correct distribution of H3K9 dimethylation in the egg and central cells, respectively, and that plants defective for CMT3 activity show abnormal embryo development. Our results provide evidence that cell-specific mechanisms lead to the differentiation of epigenetically distinct female gametes in Arabidopsis thaliana. They also suggest that the establishment of a quiescent state in the zygote may play a role in the reprogramming of the young plant embryo.
Collapse
Affiliation(s)
- Marion Pillot
- Institut de Recherche pour le Développement, Plant Genome and Development Laboratory, UMR 5096, 34394 Montpellier, France
| | - Célia Baroux
- Institute of Plant Biology and Zürich-Basel Plant Science Center, University of Zurich, 8008 Zurich, Switzerland
| | - Mario Arteaga Vazquez
- Laboratory of Reproductive Development and Apomixis, CINVESTAV-LANGEBIO, 36822 Irapuato, Mexico
| | - Daphné Autran
- Institut de Recherche pour le Développement, Plant Genome and Development Laboratory, UMR 5096, 34394 Montpellier, France
| | - Olivier Leblanc
- Institut de Recherche pour le Développement, Plant Genome and Development Laboratory, UMR 5096, 34394 Montpellier, France
| | | | - Ueli Grossniklaus
- Institute of Plant Biology and Zürich-Basel Plant Science Center, University of Zurich, 8008 Zurich, Switzerland
| | - Daniel Grimanelli
- Institut de Recherche pour le Développement, Plant Genome and Development Laboratory, UMR 5096, 34394 Montpellier, France
| |
Collapse
|
516
|
Cytotype regulation inDrosophila melanogaster: synergism between telomeric and non-telomericPelements. Genet Res (Camb) 2010; 91:383-94. [PMID: 20122295 DOI: 10.1017/s0016672309990322] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
SummaryThe X-linked telomericPelementsTP5andTP6interact synergistically with non-telomericPelements to repress hybrid dysgenesis. In this repression, the telomericPelements exert maternal effects, which, however, are not sufficient to establish synergism with the non-telomericPelements. Once synergism is established, the capacity to repress dysgenesis in the offspring of a cross persists for at least two generations after removing the telomericPelement from the genotype. At the molecular level, synergism between telomeric and non-telomericPelements is correlated with effective elimination ofP-element mRNA in the germ line. Maternally transmitted mutations in the genesaubergine,piwiandSuppressor of variegation 205[Su(var)205] block the establishment of synergism between telomeric and non-telomericPelements, and paternally transmitted mutations inpiwiandSu(var)205disrupt synergism that has already been established. These findings are discussed in terms of a model of cytotype regulation ofPelements based on Piwi-interacting RNAs (piRNAs) that are amplified by cycling between sense and antisense species.
Collapse
|
517
|
Thomson T, Lin H. The biogenesis and function of PIWI proteins and piRNAs: progress and prospect. Annu Rev Cell Dev Biol 2010; 25:355-76. [PMID: 19575643 DOI: 10.1146/annurev.cellbio.24.110707.175327] [Citation(s) in RCA: 398] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The evolutionarily conserved Argonaute/PIWI (AGO/PIWI, also known as PAZ-PIWI domain or PPD) family of proteins is crucial for the biogenesis and function of small noncoding RNAs (ncRNAs). This family can be divided into AGO and PIWI subfamilies. The AGO proteins are ubiquitously present in diverse tissues. They bind to small interfering RNAs (siRNAs) and microRNAs (miRNAs). In contrast, the PIWI proteins are predominantly present in the germline and associate with a novel class of small RNAs known as PIWI-interacting RNAs (piRNAs). Tens of thousands of piRNA species, typically 24-32 nucleotide (nt) long, have been found in mammals, zebrafish, and Drosophila. Most piRNAs appear to be generated from a small number of long single-stranded RNA precursors that are often encoded by repetitive intergenic sequences in the genome. PIWI proteins play crucial roles during germline development and gametogenesis of many metazoan species, from germline determination and germline stem cell (GSC) maintenance to meiosis, spermiogenesis, and transposon silencing. These diverse functions may involve piRNAs and may be achieved via novel mechanisms of epigenetic and posttranscriptional regulation.
Collapse
Affiliation(s)
- Travis Thomson
- Yale Stem Cell Center, Yale University School of Medicine, New Haven, Connecticut 06511, USA
| | | |
Collapse
|
518
|
Baubec T, Dinh HQ, Pecinka A, Rakic B, Rozhon W, Wohlrab B, von Haeseler A, Scheid OM. Cooperation of multiple chromatin modifications can generate unanticipated stability of epigenetic States in Arabidopsis. THE PLANT CELL 2010; 22:34-47. [PMID: 20097869 PMCID: PMC2828703 DOI: 10.1105/tpc.109.072819] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2009] [Revised: 12/15/2009] [Accepted: 12/29/2009] [Indexed: 05/18/2023]
Abstract
Epigenetic changes of gene expression can potentially be reversed by developmental programs, genetic manipulation, or pharmacological interference. However, a case of transcriptional gene silencing, originally observed in tetraploid Arabidopsis thaliana plants, created an epiallele resistant to many mutations or inhibitor treatments that activate many other suppressed genes. This raised the question about the molecular basis of this extreme stability. A combination of forward and reverse genetics and drug application provides evidence for an epigenetic double lock that is only alleviated upon the simultaneous removal of both DNA methylation and histone methylation. Therefore, the cooperation of multiple chromatin modifications can generate unanticipated stability of epigenetic states and contributes to heritable diversity of gene expression patterns.
Collapse
Affiliation(s)
- Tuncay Baubec
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, 1030 Vienna, Austria
| | - Huy Q. Dinh
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, 1030 Vienna, Austria
- Center for Integrative Bioinformatics Vienna, Max F. Perutz Laboratories, University of Vienna, 1030 Vienna, Austria
| | - Ales Pecinka
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, 1030 Vienna, Austria
| | - Branislava Rakic
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, 1030 Vienna, Austria
| | - Wilfried Rozhon
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, 1030 Vienna, Austria
| | - Bonnie Wohlrab
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, 1030 Vienna, Austria
| | - Arndt von Haeseler
- Center for Integrative Bioinformatics Vienna, Max F. Perutz Laboratories, University of Vienna, 1030 Vienna, Austria
| | - Ortrun Mittelsten Scheid
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, 1030 Vienna, Austria
- Address correspondence to
| |
Collapse
|
519
|
Suter CM, Martin DIK. Paramutation: the tip of an epigenetic iceberg? Trends Genet 2010; 26:9-14. [PMID: 19945764 PMCID: PMC3137459 DOI: 10.1016/j.tig.2009.11.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2009] [Revised: 11/04/2009] [Accepted: 11/04/2009] [Indexed: 11/21/2022]
Abstract
Paramutation describes the transfer of an acquired epigenetic state to an unlinked homologous locus, resulting in a meiotically heritable alteration in gene expression. Early investigations of paramutation characterized a mode of change and inheritance distinct from mendelian genetics, catalyzing the concept of the epigenome. Numerous examples of paramutation and paramutation-like phenomena have now emerged, with evidence that implicates small RNAs in the transfer and maintenance of epigenetic states. In animals Piwi-interacting RNA (piRNA)-mediated retrotransposon suppression seems to drive a vast system of epigenetic inheritance with paramutation-like characteristics. The classic examples of paramutation might be merely informative aberrations of pervasive and broadly conserved mechanisms that use RNA to sense homology and target epigenetic modification. When viewed in this context, paramutation is only one aspect of a common and broadly distributed form of inheritance based on epigenetic states.
Collapse
Affiliation(s)
- Catherine M Suter
- Victor Chang Cardiac Research Institute, 405 Liverpool St, Darlinghurst, Sydney, NSW 2010, Australia.
| | | |
Collapse
|
520
|
Hu J, Wang F, Zhu X, Yuan Y, Ding M, Gao S. Mouse ZAR1-like (XM_359149) colocalizes with mRNA processing components and its dominant-negative mutant caused two-cell-stage embryonic arrest. Dev Dyn 2009; 239:407-24. [DOI: 10.1002/dvdy.22170] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
521
|
Aravin AA, van der Heijden GW, Castañeda J, Vagin VV, Hannon GJ, Bortvin A. Cytoplasmic compartmentalization of the fetal piRNA pathway in mice. PLoS Genet 2009; 5:e1000764. [PMID: 20011505 PMCID: PMC2785470 DOI: 10.1371/journal.pgen.1000764] [Citation(s) in RCA: 234] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Accepted: 11/11/2009] [Indexed: 01/18/2023] Open
Abstract
Derepression of transposable elements (TEs) in the course of epigenetic reprogramming of the mouse embryonic germline necessitates the existence of a robust defense that is comprised of PIWI/piRNA pathway and de novo DNA methylation machinery. To gain further insight into biogenesis and function of piRNAs, we studied the intracellular localization of piRNA pathway components and used the combination of genetic, molecular, and cell biological approaches to examine the performance of the piRNA pathway in germ cells of mice lacking Maelstrom (MAEL), an evolutionarily conserved protein implicated in transposon silencing in fruit flies and mice. Here we show that principal components of the fetal piRNA pathway, MILI and MIWI2 proteins, localize to two distinct types of germinal cytoplasmic granules and exhibit differential association with components of the mRNA degradation/translational repression machinery. The first type of granules, pi-bodies, contains the MILI-TDRD1 module of the piRNA pathway and is likely equivalent to the enigmatic “cementing material” first described in electron micrographs of rat gonocytes over 35 years ago. The second type of granules, piP-bodies, harbors the MIWI2-TDRD9-MAEL module of the piRNA pathway and signature components of P-bodies, GW182, DCP1a, DDX6/p54, and XRN1 proteins. piP-bodies are found predominantly in the proximity of pi-bodies and the two frequently share mouse VASA homolog (MVH) protein, an RNA helicase. In Mael-mutant gonocytes, MIWI2, TDRD9, and MVH are lost from piP-bodies, whereas no effects on pi-body composition are observed. Further analysis revealed that MAEL appears to specifically facilitate MIWI2-dependent aspects of the piRNA pathway including biogenesis of secondary piRNAs, de novo DNA methylation, and efficient downregulation of TEs. Cumulatively, our data reveal elaborate cytoplasmic compartmentalization of the fetal piRNA pathway that relies on MAEL function. Vast territories of animal genomes are populated by numerous types of mobile genetic elements (or transposons) that act predominantly as selfish parasites unconcerned with the impact of their activity on the well-being of the host. In response to the danger posed by transposons, organisms have evolved a defensive mechanism that employs a particular class of small RNAs known as piRNAs to identify and selectively silence transposons. We have studied the subcellular organization of such a defensive mechanism, the piRNA pathway, in germ cells of mouse male embryos. We discovered that key proteins involved in the genesis of small RNAs, MILI and MIWI2, occupy specific domains within the cytoplasm of germ cells. Surprisingly, MIWI2 shares its domain with proteins known to degrade RNAs and repress synthesis of cellular proteins, thus raising a possibility of cooperation of the two mechanisms in transposon defense. Genetic ablation of MAEL, a protein also found within the MIWI2 domain, disrupts normal MIWI2 localization and piRNA production leading to transposon activation. This study demonstrates that an elaborate compartmentalization of the defensive mechanism is required for the efficient recognition and destruction of active transposons in germ cells of mice.
Collapse
Affiliation(s)
- Alexei A. Aravin
- Watson School of Biological Sciences, Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | | | - Julio Castañeda
- Department of Embryology, Carnegie Institution of Washington, Baltimore, Maryland, United States of America
| | - Vasily V. Vagin
- Watson School of Biological Sciences, Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Gregory J. Hannon
- Watson School of Biological Sciences, Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
- * E-mail: (GJH); (AB)
| | - Alex Bortvin
- Department of Embryology, Carnegie Institution of Washington, Baltimore, Maryland, United States of America
- * E-mail: (GJH); (AB)
| |
Collapse
|
522
|
Lu J, Clark AG. Population dynamics of PIWI-interacting RNAs (piRNAs) and their targets in Drosophila. Genome Res 2009; 20:212-27. [PMID: 19948818 DOI: 10.1101/gr.095406.109] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Transposable elements (TEs) are mobile DNA sequences that make up a large fraction of eukaryotic genomes. Recently it was discovered that PIWI-interacting RNAs (piRNAs), a class of small RNA molecules that are mainly generated from transposable elements, are crucial repressors of active TEs in the germline of fruit flies. By quantifying expression levels of 32 TE families in piRNA pathway mutants relative to wild-type fruit flies, we provide evidence that piRNAs can severely silence the activities of retrotransposons. We incorporate piRNAs into a population genetic framework for retrotransposons and perform forward simulations to model the population dynamics of piRNA loci and their targets. Using parameters optimized for Drosophila melanogaster, our simulation results indicate that (1) piRNAs can significantly reduce the fitness cost of retrotransposons; (2) retrotransposons that generate piRNAs (piRTs) are selectively more advantageous, and such retrotransposon insertions more easily attain high frequency or fixation; (3) retrotransposons that are repressed by piRNAs (targetRTs), however, also have an elevated probability of reaching high frequency or fixation in the population because their deleterious effects are attenuated. By surveying the polymorphisms of piRT and targetRT insertions across nine strains of D. melanogaster, we verified these theoretical predictions with population genomic data. Our theoretical and empirical analysis suggests that piRNAs can significantly increase the fitness of individuals that bear them; however, piRNAs may provide a shelter or Trojan horse for retrotransposons, allowing them to increase in frequency in a population by shielding the host from the deleterious consequences of retrotransposition.
Collapse
Affiliation(s)
- Jian Lu
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| | | |
Collapse
|
523
|
The endogenous siRNA pathway is involved in heterochromatin formation in Drosophila. Proc Natl Acad Sci U S A 2009; 106:21258-63. [PMID: 19948966 DOI: 10.1073/pnas.0809208105] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
A new class of small RNAs (endo-siRNAs) produced from endogenous double-stranded RNA (dsRNA) precursors was recently shown to mediate transposable element (TE) silencing in the Drosophila soma. These endo-siRNAs might play a role in heterochromatin formation, as has been shown in S. pombe for siRNAs derived from repetitive sequences in chromosome pericentromeres. To address this possibility, we used the viral suppressors of RNA silencing B2 and P19. These proteins normally counteract the RNAi host defense by blocking the biogenesis or activity of virus-derived siRNAs. We hypothesized that both proteins would similarly block endo-siRNA processing or function, thereby revealing the contribution of endo-siRNA to heterochromatin formation. Accordingly, P19 as well as a nuclear form of P19 expressed in Drosophila somatic cells were found to sequester TE-derived siRNAs whereas B2 predominantly bound their longer precursors. Strikingly, B2 or the nuclear form of P19, but not P19, suppressed silencing of heterochromatin gene markers in adult flies, and altered histone H3-K9 methylation as well as chromosomal distribution of histone methyl transferase Su(var)3-9 and Heterochromatin Protein 1 in larvae. Similar effects were observed in dcr2, r2d2, and ago2 mutants. Our findings provide evidence that a nuclear pool of TE-derived endo-siRNAs is involved in heterochromatin formation in somatic tissues in Drosophila.
Collapse
|
524
|
Swanson-Wagner RA, DeCook R, Jia Y, Bancroft T, Ji T, Zhao X, Nettleton D, Schnable PS. Paternal Dominance of Trans-eQTL Influences Gene Expression Patterns in Maize Hybrids. Science 2009; 326:1118-20. [DOI: 10.1126/science.1178294] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
525
|
Grandjean V, Gounon P, Wagner N, Martin L, Wagner KD, Bernex F, Cuzin F, Rassoulzadegan M. The miR-124-Sox9 paramutation: RNA-mediated epigenetic control of embryonic and adult growth. Development 2009; 136:3647-55. [PMID: 19820183 DOI: 10.1242/dev.041061] [Citation(s) in RCA: 139] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The size of the mammalian body is determined by genetic and environmental factors differentially modulating pre- and postnatal growth. We now report a control of growth acting in the mouse from the first cleavages to the postnatal stages. It was evidenced by a hereditary epigenetic modification (paramutation) created by injection of a miR-124 microRNA into fertilized eggs. From the blastocyst to the adult, mouse pups born after microinjection of this miRNA showed a 30% increase in size. At the blastocyst stage, frequent duplication of the inner cell mass resulted in twin pregnancies. A role of sperm RNA as a transgenerational signal was confirmed by the giant phenotype of the progeny of transgenic males expressing miR-124 during spermiogenesis. In E2.5 to E8.5 embryos, increased levels of several transcripts with sequence homology to the microRNA were noted, including those of Sox9, a gene known for its crucial role in the progenitors of several adult tissues. A role in embryonic growth was confirmed by the large size of embryos expressing a Sox9 DNA transgene. Increased expression in the paramutants was not related to a change in miR-124 expression, but to the establishment of a distinct, heritable chromatin structure in the promoter region of Sox9. While the heritability of body size is not readily accounted for by Mendelian genetics, our results suggest the alternate model of RNA-mediated heritable epigenetic modifications.
Collapse
|
526
|
26G endo-siRNAs regulate spermatogenic and zygotic gene expression in Caenorhabditis elegans. Proc Natl Acad Sci U S A 2009; 106:18674-9. [PMID: 19846761 DOI: 10.1073/pnas.0906378106] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Endogenous small interfering RNAs (endo-siRNAs) regulate diverse gene expression programs in eukaryotes by either binding and cleaving mRNA targets or mediating heterochromatin formation; however, the mechanisms of endo-siRNA biogenesis, sorting, and target regulation remain poorly understood. Here we report the identification and function of a specific class of germline-generated endo-siRNAs in Caenorhabditis elegans that are 26 nt in length and contain a guanine at the first nucleotide position (i.e., 26G RNAs). 26G RNAs regulate gene expression during spermatogenesis and zygotic development, and their biogenesis requires the ERI-1 exonuclease and the RRF-3 RNA-dependent RNA polymerase (RdRP). Remarkably, we identified two nonoverlapping subclasses of 26G RNAs that sort into specific RNA-induced silencing complexes (RISCs) and differentially regulate distinct mRNA targets. Class I 26G RNAs target genes are expressed during spermatogenesis, whereas class II 26G RNAs are maternally inherited and silence gene expression during zygotic development. These findings implicate a class of endo-siRNAs in the global regulation of transcriptional programs required for fertility and development.
Collapse
|
527
|
Small RNAs serve as a genetic buffer against genomic shock in Arabidopsis interspecific hybrids and allopolyploids. Proc Natl Acad Sci U S A 2009; 106:17835-40. [PMID: 19805056 DOI: 10.1073/pnas.0907003106] [Citation(s) in RCA: 225] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Small RNAs, including microRNAs (miRNAs), small interfering RNAs (siRNAs), and trans-acting siRNAs (tasiRNAs), control gene expression and epigenetic regulation. Although the roles of miRNAs and siRNAs have been extensively studied, their expression diversity and evolution in closely related species and interspecific hybrids are poorly understood. Here, we show comprehensive analyses of miRNA expression and siRNA distributions in two closely related species Arabidopsis thaliana and Arabidopsis arenosa, a natural allotetraploid Arabidopsis suecica, and two resynthesized allotetraploid lines (F(1) and F(7)) derived from A. thaliana and A. arenosa. We found that repeat- and transposon-associated siRNAs were highly divergent between A. thaliana and A. arenosa. A. thaliana siRNA populations underwent rapid changes in F(1) but were stably maintained in F(7) and A. suecica. The correlation between siRNAs and nonadditive gene expression in allopolyploids is insignificant. In contrast, miRNA and tasiRNA sequences were conserved between species, but their expression patterns were highly variable between the allotetraploids and their progenitors. Many miRNAs tested were nonadditively expressed (deviating from the mid-parent value, MPV) in the allotetraploids and triggered unequal degradation of A. thaliana or A. arenosa targets. The data suggest that small RNAs produced during interspecific hybridization or polyploidization serve as a buffer against the genomic shock in interspecific hybrids and allopolyploids: Stable inheritance of repeat-associated siRNAs maintains chromatin and genome stability, whereas expression variation of miRNAs leads to changes in gene expression, growth vigor, and adaptation.
Collapse
|
528
|
Distinct argonaute-mediated 22G-RNA pathways direct genome surveillance in the C. elegans germline. Mol Cell 2009; 36:231-44. [PMID: 19800275 DOI: 10.1016/j.molcel.2009.09.020] [Citation(s) in RCA: 378] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2009] [Revised: 08/29/2009] [Accepted: 09/15/2009] [Indexed: 01/01/2023]
Abstract
Endogenous small RNAs (endo-siRNAs) interact with Argonaute (AGO) proteins to mediate sequence-specific regulation of diverse biological processes. Here, we combine deep-sequencing and genetic approaches to explore the biogenesis and function of endo-siRNAs in C. elegans. We describe conditional alleles of the Dicer-related helicase, drh-3, that abrogate both RNA interference and the biogenesis of endo-siRNAs, called 22G-RNAs. DRH-3 is a core component of RNA-dependent RNA polymerase (RdRP) complexes essential for several distinct 22G-RNA systems. We show that, in the germline, one system is dependent on worm-specific AGOs, including WAGO-1, which localizes to germline nuage structures called P granules. WAGO-1 silences certain genes, transposons, pseudogenes, and cryptic loci. Finally, we demonstrate that components of the nonsense-mediated decay pathway function in at least one WAGO-mediated surveillance pathway. These findings broaden our understanding of the biogenesis and diversity of 22G-RNAs and suggest additional regulatory functions for small RNAs.
Collapse
|
529
|
Dinger ME, Amaral PP, Mercer TR, Mattick JS. Pervasive transcription of the eukaryotic genome: functional indices and conceptual implications. BRIEFINGS IN FUNCTIONAL GENOMICS AND PROTEOMICS 2009; 8:407-23. [PMID: 19770204 DOI: 10.1093/bfgp/elp038] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Genome-wide analyses of the eukaryotic transcriptome have revealed that the majority of the genome is transcribed, producing large numbers of non-protein-coding RNAs (ncRNAs). This surprising observation challenges many assumptions about the genetic programming of higher organisms and how information is stored and organized within the genome. Moreover, the rapid advances in genomics have given little opportunity for biologists to integrate these emerging findings into their intellectual and experimental frameworks. This problem has been compounded by the perception that genome-wide studies often generate more questions than answers, which in turn has led to confusion and controversy. In this article, we address common questions associated with the phenomenon of pervasive transcription and consider the indices that can be used to evaluate the function (or lack thereof) of the resulting ncRNAs. We suggest that many lines of evidence, including expression profiles, conservation signatures, chromatin modification patterns and examination of increasing numbers of individual cases, argue in favour of the widespread functionality of non-coding transcription. We also discuss how informatic and experimental approaches used to analyse protein-coding genes may not be applicable to ncRNAs and how the general perception that protein-coding genes form the main informational output of the genome has resulted in much of the misunderstanding surrounding pervasive transcription and its potential significance. Finally, we present the conceptual implications of the majority of the eukaryotic genome being functional and describe how appreciating this perspective will provide considerable opportunity to further understand the molecular basis of development and complex diseases.
Collapse
Affiliation(s)
- Marcel E Dinger
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD 4072, Australia
| | | | | | | |
Collapse
|
530
|
The Drosophila HP1 homolog Rhino is required for transposon silencing and piRNA production by dual-strand clusters. Cell 2009; 138:1137-49. [PMID: 19732946 DOI: 10.1016/j.cell.2009.07.014] [Citation(s) in RCA: 332] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Revised: 05/07/2009] [Accepted: 07/02/2009] [Indexed: 01/06/2023]
Abstract
Piwi-interacting RNAs (piRNAs) silence transposons and maintain genome integrity during germline development. In Drosophila, transposon-rich heterochromatic clusters encode piRNAs either on both genomic strands (dual-strand clusters) or predominantly one genomic strand (uni-strand clusters). Primary piRNAs derived from these clusters are proposed to drive a ping-pong amplification cycle catalyzed by proteins that localize to the perinuclear nuage. We show that the HP1 homolog Rhino is required for nuage organization, transposon silencing, and ping-pong amplification of piRNAs. rhi mutations virtually eliminate piRNAs from the dual-strand clusters and block production of putative precursor RNAs from both strands of the major 42AB dual-strand cluster, but not of transcripts or piRNAs from the uni-strand clusters. Furthermore, Rhino protein associates with the 42AB dual-strand cluster,but does not bind to uni-strand cluster 2 or flamenco. Rhino thus appears to promote transcription of dual-strand clusters, leading to production of piRNAs that drive the ping-pong amplification cycle.
Collapse
|
531
|
Mourier T, Willerslev E. Retrotransposons and non-protein coding RNAs. BRIEFINGS IN FUNCTIONAL GENOMICS AND PROTEOMICS 2009; 8:493-501. [PMID: 19729447 DOI: 10.1093/bfgp/elp036] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Retrotransposons constitute a significant fraction of mammalian genomes. Considering the finding of widespread transcriptional activity across entire genomes, it is not surprising that retrotransposons contribute to the collective RNA pool. However, the transcriptional output from retrotransposons does not merely represent spurious transcription. We review examples of functional RNAs transcribed from retrotransposons, and address the collection of non-protein coding RNAs derived from transposable element sequences, including numerous human microRNAs and the neuronal BC RNAs. Finally, we review the emerging understanding of how retrotransposons themselves are regulated by small RNAs.
Collapse
Affiliation(s)
- Tobias Mourier
- Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark.
| | | |
Collapse
|
532
|
Yeung ML, Bennasser Y, Watashi K, Le SY, Houzet L, Jeang KT. Pyrosequencing of small non-coding RNAs in HIV-1 infected cells: evidence for the processing of a viral-cellular double-stranded RNA hybrid. Nucleic Acids Res 2009; 37:6575-86. [PMID: 19729508 PMCID: PMC2770672 DOI: 10.1093/nar/gkp707] [Citation(s) in RCA: 197] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Small non-coding RNAs of 18-25 nt in length can regulate gene expression through the RNA interference (RNAi) pathway. To characterize small RNAs in HIV-1-infected cells, we performed linker-ligated cloning followed by high-throughput pyrosequencing. Here, we report the composition of small RNAs in HIV-1 productively infected MT4 T-cells. We identified several HIV-1 small RNA clones and a highly abundant small 18-nt RNA that is antisense to the HIV-1 primer-binding site (PBS). This 18-nt RNA apparently originated from the dsRNA hybrid formed by the HIV-1 PBS and the 3' end of the human cellular tRNAlys3. It was found to associate with the Ago2 protein, suggesting its possible function in the cellular RNAi machinery for targeting HIV-1.
Collapse
Affiliation(s)
- Man Lung Yeung
- Molecular Virology Section, Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-0460, USA
| | | | | | | | | | | |
Collapse
|
533
|
Systematic and single cell analysis of Xenopus Piwi-interacting RNAs and Xiwi. EMBO J 2009; 28:2945-58. [PMID: 19713941 DOI: 10.1038/emboj.2009.237] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Accepted: 07/22/2009] [Indexed: 12/25/2022] Open
Abstract
Piwi proteins and Piwi-interacting RNAs (piRNAs) are essential for germ cell development, but analysis of the molecular mechanisms of these ribonucleoproteins remains challenging in most animal germ cells. To address this challenge, we systematically characterized Xiwi, a Xenopus Piwi homologue, and piRNAs from Xenopus eggs and oocytes. We used the large size of Xenopus eggs to analyze small RNAs at the single cell level, and find abundant piRNAs and large piRNA clusters in the Xenopus tropicalis genome, some of which resemble the Drosophila piRNA-generating flamenco locus. Although most piRNA clusters are expressed simultaneously in an egg, individual frogs show distinct profiles of cluster expression. Xiwi is associated with microtubules and the meiotic spindle, and is localized to the germ plasm--a cytoplasmic determinant of germ cell formation. Xiwi associates with translational regulators in an RNA-dependent manner, but Xenopus tudor interacts with Xiwi independently of RNA. Our study adds insight to piRNA transcription regulation by showing that individual animals can have differential piRNA expression profiles. We suggest that in addition to regulating transposable elements, Xiwi may function in specifying RNA localization in vertebrate oocytes.
Collapse
|
534
|
Anderson P, Kedersha N. RNA granules: post-transcriptional and epigenetic modulators of gene expression. Nat Rev Mol Cell Biol 2009; 10:430-6. [PMID: 19461665 DOI: 10.1038/nrm2694] [Citation(s) in RCA: 685] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The composition of cytoplasmic messenger ribonucleoproteins (mRNPs) is determined by their nuclear and cytoplasmic histories and reflects past functions and future fates. The protein components of selected mRNP complexes promote their assembly into microscopically visible cytoplasmic RNA granules, including stress granules, processing bodies and germ cell (or polar) granules. We propose that RNA granules can be both a cause and a consequence of altered mRNA translation, decay or editing. In this capacity, RNA granules serve as key modulators of post-transcriptional and epigenetic gene expression.
Collapse
Affiliation(s)
- Paul Anderson
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | |
Collapse
|
535
|
Hartig JV, Esslinger S, Böttcher R, Saito K, Förstemann K. Endo-siRNAs depend on a new isoform of loquacious and target artificially introduced, high-copy sequences. EMBO J 2009; 28:2932-44. [PMID: 19644447 DOI: 10.1038/emboj.2009.220] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Accepted: 07/09/2009] [Indexed: 12/20/2022] Open
Abstract
Colonization of genomes by a new selfish genetic element is detrimental to the host species and must lead to an efficient, repressive response. In vertebrates as well as in Drosophila, piRNAs repress transposons in the germ line, whereas endogenous siRNAs take on this role in somatic cells. We show that their biogenesis depends on a new isoform of the Drosophila TRBP homologue loquacious, which arises by alternative polyadenylation and is distinct from the one that functions during the biogenesis of miRNAs. For endo-siRNAs and piRNAs, it is unclear how an efficient response can be initiated de novo. Our experiments establish that the endo-siRNA pathway will target artificially introduced sequences without the need for a pre-existing template in the genome. This response is also triggered in transiently transfected cells, thus genomic integration is not essential. Deep sequencing showed that corresponding endo-siRNAs are generated throughout the sequence, but preferentially from transcribed regions. One strand of the dsRNA precursor can come from spliced mRNA, whereas the opposite strand derives from independent transcripts in antisense orientation.
Collapse
Affiliation(s)
- Julia Verena Hartig
- Department of Chemistry and Biochemistry, Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany
| | | | | | | | | |
Collapse
|
536
|
De Mulder K, Pfister D, Kuales G, Egger B, Salvenmoser W, Willems M, Steger J, Fauster K, Micura R, Borgonie G, Ladurner P. Stem cells are differentially regulated during development, regeneration and homeostasis in flatworms. Dev Biol 2009; 334:198-212. [PMID: 19631639 DOI: 10.1016/j.ydbio.2009.07.019] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2009] [Revised: 07/15/2009] [Accepted: 07/15/2009] [Indexed: 01/18/2023]
Abstract
The flatworm stem cell system is exceptional within the animal kingdom, as totipotent stem cells (neoblasts) are the only dividing cells within the organism. In contrast to most organisms, piwi-like gene expression in flatworms is extended from germ cells to somatic stem cells. We describe the isolation and characterization of the piwi homologue macpiwi in the flatworm Macrostomum lignano. We use in situ hybridization, antibody staining and RNA interference to study macpiwi expression and function in adults, during postembryonic development, regeneration and upon starvation. We found novelties regarding piwi function and observed differences to current piwi functions in flatworms. First, macpiwi was essential for the maintenance of somatic stem cells in adult animals. A knock-down of macpiwi led to a complete elimination of stem cells and death of the animals. Second, the regulation of stem cells was different in adults and regenerates compared to postembryonic development. Third, sexual reproduction of M. lignano allowed to follow germline formation during postembryonic development, regeneration, and starvation. Fourth, piwi expression in hatchlings further supports an embryonic formation of the germline in M. lignano. Our findings address new questions in flatworm stem cell research and provide a basis for comparison with higher organisms.
Collapse
Affiliation(s)
- Katrien De Mulder
- University of Innsbruck, Institute of Zoology and CMBI, Technikerstrasse 25, A-6020 Innsbruck, Austria
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
537
|
Abstract
Two recent reports, including one by Reinders and colleagues (pp. 939-950) in the April 15, 2009, issue of Genes & Development, describe the construction of Arabidopsis recombinant inbred populations that maximize epigenetic rather than genetic variation. The distribution and behavior of phenotypic variation in these populations suggest that stable epialleles can control complex quantitative traits. However, stochastic epimutation and transposon movement in these populations present some unexpected technical hurdles to implementing quantitative epigenetic analysis.
Collapse
|
538
|
Duharcourt S, Lepère G, Meyer E. Developmental genome rearrangements in ciliates: a natural genomic subtraction mediated by non-coding transcripts. Trends Genet 2009; 25:344-50. [PMID: 19596481 DOI: 10.1016/j.tig.2009.05.007] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2009] [Revised: 05/29/2009] [Accepted: 05/29/2009] [Indexed: 11/24/2022]
Abstract
Several classes of non-protein-coding RNAs have recently been identified as epigenetic regulators of developmental genome rearrangements in ciliates, providing an interesting insight into the role of genome-wide transcription. In these unicellular eukaryotes, extensive rearrangements of the germline genome occur during the development of a new somatic macronucleus from the germline micronucleus. Rearrangement patterns are not dictated by the germline sequence, but reproduce the pre-existing rearrangements of the maternal somatic genome, implying a homology-dependent global comparison of germline and somatic genomes. We review recent evidence showing that this is achieved by a natural genomic subtraction, computed by pairing interactions between meiosis-specific, germline scnRNAs (small RNAs that resemble metazoan piRNAs) and longer non-coding transcripts from the somatic genome. We focus on current models for the RNA-based mechanisms enabling the cell to recognize the germline sequences to be eliminated from the somatic genome and to maintain an epigenetic memory of rearrangement patterns across sexual generations.
Collapse
Affiliation(s)
- Sandra Duharcourt
- Ecole Normale Supérieure, Laboratoire de Génétique Moléculaire, 75005 Paris, France.
| | | | | |
Collapse
|
539
|
Vagin VV, Wohlschlegel J, Qu J, Jonsson Z, Huang X, Chuma S, Girard A, Sachidanandam R, Hannon GJ, Aravin AA. Proteomic analysis of murine Piwi proteins reveals a role for arginine methylation in specifying interaction with Tudor family members. Genes Dev 2009; 23:1749-62. [PMID: 19584108 DOI: 10.1101/gad.1814809] [Citation(s) in RCA: 254] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In germ cells, Piwi proteins interact with a specific class of small noncoding RNAs, piwi-interacting RNAs (piRNAs). Together, these form a pathway that represses transposable elements, thus safeguarding germ cell genomes. Basic models describe the overall operation of piRNA pathways. However, the protein compositions of Piwi complexes, the critical protein-protein interactions that drive small RNA production and target recognition, and the precise molecular consequences of conserved localization to germline structures, call nuage, remains poorly understood. We purified the three murine Piwi family proteins, MILI, MIWI, and MIWI2, from mouse germ cells and characterized their interacting protein partners. Piwi proteins were found in complex with PRMT5/WDR77, an enzyme that dimethylates arginine residues. By immunoprecipitation with specific antibodies and by mass spectrometry, we found that Piwi proteins are arginine methylated at conserved positions in their N termini. These modifications are essential to direct complex formation with specific members of the Tudor protein family. Recognition of methylarginine marks by Tudor proteins can drive the localization of Piwi proteins to cytoplasmic foci in an artificial setting, supporting a role for this interaction in Piwi localization to nuage, a characteristic that correlates with proper operation of the piRNA pathway and transposon silencing in multiple organisms.
Collapse
Affiliation(s)
- Vasily V Vagin
- Watson School of Biological Sciences, Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
540
|
Ishikawa R, Kinoshita T. Epigenetic programming: the challenge to species hybridization. MOLECULAR PLANT 2009; 2:589-599. [PMID: 19825641 DOI: 10.1093/mp/ssp028] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
In many organisms, the genomes of individual species are isolated by a range of reproductive barriers that act before or after fertilization. Successful mating between species results in the presence of different genomes within a cell (hybridization), which can lead to incompatibility in cellular events due to adverse genetic interactions. In addition to such genetic interactions, recent studies have shown that the epigenetic control of the genome, silencing of transposons, control of non-additive gene expression and genomic imprinting might also contribute to reproductive barriers in plant and animal species. These genetic and epigenetic mechanisms play a significant role in the prevention of gene flow between species. In this review, we focus on aspects of epigenetic control related to hybrid incompatibility during species hybridization, and also consider key mechanism(s) in the interaction between different genomes.
Collapse
Affiliation(s)
- Ryo Ishikawa
- Plant Reproductive Genetics, GCOE Research Group, Graduate School of Biological Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192, Japan
| | - Tetsu Kinoshita
- Plant Reproductive Genetics, GCOE Research Group, Graduate School of Biological Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192, Japan.
| |
Collapse
|
541
|
Lau NC, Robine N, Martin R, Chung WJ, Niki Y, Berezikov E, Lai EC. Abundant primary piRNAs, endo-siRNAs, and microRNAs in a Drosophila ovary cell line. Genome Res 2009; 19:1776-85. [PMID: 19541914 DOI: 10.1101/gr.094896.109] [Citation(s) in RCA: 150] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Piwi proteins, a subclass of Argonaute-family proteins, carry approximately 24-30-nt Piwi-interacting RNAs (piRNAs) that mediate gonadal defense against transposable elements (TEs). We analyzed the Drosophila ovary somatic sheet (OSS) cell line and found that it expresses miRNAs, endogenous small interfering RNAs (endo-siRNAs), and piRNAs in abundance. In contrast to intact gonads, which contain mixtures of germline and somatic cell types that express different Piwi-class proteins, OSS cells are a homogenous somatic cell population that expresses only PIWI and primary piRNAs. Detailed examination of its TE-derived piRNAs and endo-siRNAs revealed aspects of TE defense that do not rely upon ping-pong amplification. In particular, we provide evidence that a subset of piRNA master clusters, including flamenco, are specifically expressed in OSS and ovarian follicle cells. These data indicate that the restriction of certain TEs in somatic gonadal cells is largely mediated by a primary piRNA pathway.
Collapse
Affiliation(s)
- Nelson C Lau
- Department of Molecular Biology, Massachusetts General Hospital, Boston, 02114, USA.
| | | | | | | | | | | | | |
Collapse
|
542
|
Abstract
A transposon in the germline genome of the ciliate Oxytricha uses its transposase to remove itself, as well as other germline-limited DNA, from the differentiating somatic genome during development.
Collapse
Affiliation(s)
- Douglas L Chalker
- Biology Department, Washington University in St, Louis, One Brookings Drive, St, Louis, MO 63130, USA.
| |
Collapse
|
543
|
Nowotny M, Yang W. Structural and functional modules in RNA interference. Curr Opin Struct Biol 2009; 19:286-93. [PMID: 19477631 DOI: 10.1016/j.sbi.2009.04.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2009] [Revised: 04/16/2009] [Accepted: 04/20/2009] [Indexed: 01/01/2023]
Abstract
RNA interference (RNAi) uses small RNA molecules to regulate transcriptional and post-transcriptional gene expression. In recent years, a number of structural studies provided insights into the molecular architecture and mechanism of functional modules of RNAi. Mechanisms of nucleic acid recognition and cleavage have been revealed by structural studies of proteins and their nucleic acid complexes involved in RNA biogenesis, for example, Argonaute, PIWI, RNase III, Dicer, Drosha, and DGCR8. While quite a few questions remain, an excellent structural and mechanistic overview of RNAi processes has already emerged. In this review, we examine functional modules and their assemblies in RNAi processes.
Collapse
Affiliation(s)
- Marcin Nowotny
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, 4 Ks. Trojdena Street, 02-109 Warsaw, Poland.
| | | |
Collapse
|
544
|
Brosnan CA, Voinnet O. The long and the short of noncoding RNAs. Curr Opin Cell Biol 2009; 21:416-25. [PMID: 19447594 DOI: 10.1016/j.ceb.2009.04.001] [Citation(s) in RCA: 275] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Accepted: 04/06/2009] [Indexed: 12/27/2022]
Abstract
Controlling protein-coding gene expression can no longer be attributed purely to proteins involved in transcription, RNA processing, and translation. The role that noncoding RNAs (ncRNAs) play as potent and specific regulators of gene expression is now widely recognized in almost all species studied to date. Long ncRNAs can both upregulate and downregulate gene expression in both eukaryotes and prokaryotes and are essential in processes such as dosage compensation, genomic imprinting, developmental patterning and differentiation, and stress response. Small ncRNAs also play essential roles in diverse organisms, although are limited to eukaryotes. Different small RNA classes regulate diverse processes such as transposon and virus suppression, as well as many key developmental processes.
Collapse
Affiliation(s)
- Christopher A Brosnan
- Institut de Biologie Moléculaire des Plantes, CNRS UPR2357-Université de Strasbourg, Strasbourg, France
| | | |
Collapse
|
545
|
Dimitri P, Caizzi R, Giordano E, Carmela Accardo M, Lattanzi G, Biamonti G. Constitutive heterochromatin: a surprising variety of expressed sequences. Chromosoma 2009; 118:419-35. [PMID: 19412619 DOI: 10.1007/s00412-009-0211-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Revised: 03/30/2009] [Accepted: 04/01/2009] [Indexed: 10/20/2022]
Abstract
The organization of chromosomes into euchromatin and heterochromatin is amongst the most important and enigmatic aspects of genome evolution. Constitutive heterochromatin is a basic yet still poorly understood component of eukaryotic chromosomes, and its molecular characterization by means of standard genomic approaches is intrinsically difficult. Although recent evidence indicates that the presence of transcribed genes in constitutive heterochromatin is a conserved trait that accompanies the evolution of eukaryotic genomes, the term heterochromatin is still considered by many as synonymous of gene silencing. In this paper, we comprehensively review data that provide a clearer picture of transcribed sequences within constitutive heterochromatin, with a special emphasis on Drosophila and humans.
Collapse
Affiliation(s)
- Patrizio Dimitri
- Laboratorio di Genomica Funzionale e Proteomica di Sistemi modello and Istituto Pasteur-Fondazione Bolognetti, Dipartimento di Genetica e Biologia Molecolare Charles Darwin, Università La Sapienza, 00185, Italy.
| | | | | | | | | | | |
Collapse
|
546
|
Malone CD, Brennecke J, Dus M, Stark A, McCombie WR, Sachidanandam R, Hannon GJ. Specialized piRNA pathways act in germline and somatic tissues of the Drosophila ovary. Cell 2009; 137:522-35. [PMID: 19395010 PMCID: PMC2882632 DOI: 10.1016/j.cell.2009.03.040] [Citation(s) in RCA: 655] [Impact Index Per Article: 40.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Revised: 03/03/2009] [Accepted: 03/24/2009] [Indexed: 01/29/2023]
Abstract
In Drosophila gonads, Piwi proteins and associated piRNAs collaborate with additional factors to form a small RNA-based immune system that silences mobile elements. Here, we analyzed nine Drosophila piRNA pathway mutants for their impacts on both small RNA populations and the subcellular localization patterns of Piwi proteins. We find that distinct piRNA pathways with differing components function in ovarian germ and somatic cells. In the soma, Piwi acts singularly with the conserved flamenco piRNA cluster to enforce silencing of retroviral elements that may propagate by infecting neighboring germ cells. In the germline, silencing programs encoded within piRNA clusters are optimized via a slicer-dependent amplification loop to suppress a broad spectrum of elements. The classes of transposons targeted by germline and somatic piRNA clusters, though not the precise elements, are conserved among Drosophilids, demonstrating that the architecture of piRNA clusters has coevolved with the transposons that they are tasked to control.
Collapse
Affiliation(s)
- Colin D. Malone
- Watson School of Biological Sciences, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Julius Brennecke
- Watson School of Biological Sciences, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Monica Dus
- Watson School of Biological Sciences, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Alexander Stark
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02141, USA
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - W. Richard McCombie
- Watson School of Biological Sciences, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Ravi Sachidanandam
- Watson School of Biological Sciences, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Gregory J. Hannon
- Watson School of Biological Sciences, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| |
Collapse
|
547
|
Abstract
The recently discovered piRNA pathway serves to protect the genome from transposon activity in the germline. Now Li et al. and Malone et al. in a recent issue of Cell show that the piRNAs are made by more than one means and that their defensive function extends into the germline's circumjacent soma.
Collapse
Affiliation(s)
- Steven H. Reynolds
- Department of Biochemistry, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98195, USA
| | - Hannele Ruohola-Baker
- Department of Biochemistry, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
548
|
Abstract
The majority of the genome in animals and plants is transcribed in a developmentally regulated manner to produce large numbers of non-protein-coding RNAs (ncRNAs), whose incidence increases with developmental complexity. There is growing evidence that these transcripts are functional, particularly in the regulation of epigenetic processes, leading to the suggestion that they compose a hitherto hidden layer of genomic programming in humans and other complex organisms. However, to date, very few have been identified in genetic screens. Here I show that this is explicable by an historic emphasis, both phenotypically and technically, on mutations in protein-coding sequences, and by presumptions about the nature of regulatory mutations. Most variations in regulatory sequences produce relatively subtle phenotypic changes, in contrast to mutations in protein-coding sequences that frequently cause catastrophic component failure. Until recently, most mapping projects have focused on protein-coding sequences, and the limited number of identified regulatory mutations have been interpreted as affecting conventional cis-acting promoter and enhancer elements, although these regions are often themselves transcribed. Moreover, ncRNA-directed regulatory circuits underpin most, if not all, complex genetic phenomena in eukaryotes, including RNA interference-related processes such as transcriptional and post-transcriptional gene silencing, position effect variegation, hybrid dysgenesis, chromosome dosage compensation, parental imprinting and allelic exclusion, paramutation, and possibly transvection and transinduction. The next frontier is the identification and functional characterization of the myriad sequence variations that influence quantitative traits, disease susceptibility, and other complex characteristics, which are being shown by genome-wide association studies to lie mostly in noncoding, presumably regulatory, regions. There is every possibility that many of these variations will alter the interactions between regulatory RNAs and their targets, a prospect that should be borne in mind in future functional analyses.
Collapse
Affiliation(s)
- John S Mattick
- Australian Research Council Special Research Centre for Functional and Applied Genomics, Institute for Molecular Bioscience, University of Queensland, St Lucia, Australia.
| |
Collapse
|
549
|
Chang S, Wen S, Chen D, Jin P. Small regulatory RNAs in neurodevelopmental disorders. Hum Mol Genet 2009; 18:R18-26. [PMID: 19297398 DOI: 10.1093/hmg/ddp072] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Increasingly complex networks of small RNAs act through RNA interference pathway to regulate gene expression. Recent evidence suggests that both development and proper function of central nervous system require intricate spatiotemporal expression of a wide repertoire of small regulatory RNAs. Misregulation of these small regulatory RNAs could contribute to the abnormalities in brain development that are associated with neurodevelopmental disorders. Here, we will review recent progress made toward understanding roles of small regulatory RNAs in neurodevelopmental disorders and discuss the potential involvement of newly discovered classes of small RNAs in these disorders.
Collapse
Affiliation(s)
- Shuang Chang
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | |
Collapse
|
550
|
Pratt AJ, MacRae IJ. The RNA-induced silencing complex: a versatile gene-silencing machine. J Biol Chem 2009; 284:17897-901. [PMID: 19342379 DOI: 10.1074/jbc.r900012200] [Citation(s) in RCA: 386] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
RNA interference is a powerful mechanism of gene silencing that underlies many aspects of eukaryotic biology. On the molecular level, RNA interference is mediated by a family of ribonucleoprotein complexes called RNA-induced silencing complexes (RISCs), which can be programmed to target virtually any nucleic acid sequence for silencing. The ability of RISC to locate target RNAs has been co-opted by evolution many times to generate a broad spectrum of gene-silencing pathways. Here, we review the fundamental biochemical and biophysical properties of RISC that facilitate gene targeting and describe the various mechanisms of gene silencing known to exploit RISC activity.
Collapse
Affiliation(s)
- Ashley J Pratt
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | |
Collapse
|