501
|
Tsai HC, Baylin SB. Cancer epigenetics: linking basic biology to clinical medicine. Cell Res 2011; 21:502-17. [PMID: 21321605 DOI: 10.1038/cr.2011.24] [Citation(s) in RCA: 223] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Cancer evolution at all stages is driven by both epigenetic abnormalities as well as genetic alterations. Dysregulation of epigenetic control events may lead to abnormal patterns of DNA methylation and chromatin configurations, both of which are critical contributors to the pathogenesis of cancer. These epigenetic abnormalities are set and maintained by multiple protein complexes and the interplay between their individual components including DNA methylation machinery, histone modifiers, particularly, polycomb (PcG) proteins, and chromatin remodeling proteins. Recent advances in genome-wide technology have revealed that the involvement of these dysregulated epigenetic components appears to be extensive. Moreover, there is a growing connection between epigenetic abnormalities in cancer and concepts concerning stem-like cell subpopulations as a driving force for cancer. Emerging data suggest that aspects of the epigenetic landscape inherent to normal embryonic and adult stem/progenitor cells may help foster, under the stress of chronic inflammation or accumulating reactive oxygen species, evolution of malignant subpopulations. Finally, understanding molecular mechanisms involved in initiation and maintenance of epigenetic abnormalities in all types of cancer has great potential for translational purposes. This is already evident for epigenetic biomarker development, and for pharmacological targeting aimed at reversing cancer-specific epigenetic alterations.
Collapse
Affiliation(s)
- Hsing-Chen Tsai
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Bunting-Blaustein Cancer Research Building, Suite 541, 1650 Orleans Street, Baltimore, MD 21231, USA
| | | |
Collapse
|
502
|
Pavicic W, Perkiö E, Kaur S, Peltomäki P. Altered methylation at microRNA-associated CpG islands in hereditary and sporadic carcinomas: a methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA)-based approach. Mol Med 2011; 17:726-35. [PMID: 21327300 DOI: 10.2119/molmed.2010.00239] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Accepted: 02/08/2011] [Indexed: 11/06/2022] Open
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that contribute to tumorigenesis by acting as oncogenes or tumor suppressor genes and may be important in the diagnosis, prognosis and treatment of cancer. Many miRNA genes have associated CpG islands, suggesting epigenetic regulation of their expression. Compared with sporadic cancers, the role of miRNAs in hereditary or familial cancer is poorly understood. We investigated 96 colorectal carcinomas, 58 gastric carcinomas and 41 endometrial carcinomas, occurring as part of inherited DNA mismatch repair (MMR) deficiency (Lynch syndrome), familial colorectal carcinoma without MMR gene mutations or sporadically. Methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA) assays were developed for 11 miRNA loci that were chosen because all could be epigenetically regulated through the associated CpG islands and some could additionally modulate the epigenome by putatively targeting the DNA methyltransferases or their antagonist retinoblastoma-like 2 (RBL2). Compared with the respective normal tissues, the predominant alteration in tumor tissues was increased methylation for the miRNAs 1-1, 124a-1, 124a-2, 124a-3, 148a, 152 and 18b; decreased methylation for 200a and 208a; and no major change for 373 and let-7a-3. The frequencies with which the individual miRNA loci were affected in tumors showed statistically significant differences relative to the tissue of origin (colorectal versus gastric versus endometrial), MMR proficiency versus deficiency and sporadic versus hereditary disease. In particular, hypermethylation at miR-148a and miR-152 was associated with microsatellite-unstable (as opposed to stable) tumors and hypermethylation at miR-18b with sporadic disease (as opposed to Lynch syndrome). Hypermethylation at miRNA loci correlated with hypermethylation at classic tumor suppressor promoters in the same tumors. Our results highlight the importance of epigenetic events in hereditary and sporadic cancers and suggest that MS-MLPA is an excellent choice for quantitative analysis of methylation in archival formalin-fixed, paraffin-embedded samples, which pose challenges to many other techniques commonly used for methylation studies.
Collapse
Affiliation(s)
- Walter Pavicic
- Department of Medical Genetics, Haartman Institute, University of Helsinki, Helsinki, Finland
| | | | | | | |
Collapse
|
503
|
Jin W, Lee JJ, Kim MS, Son BH, Cho YK, Kim HP. DNA methylation-dependent regulation of TrkA, TrkB, and TrkC genes in human hepatocellular carcinoma. Biochem Biophys Res Commun 2011; 406:89-95. [PMID: 21295543 DOI: 10.1016/j.bbrc.2011.01.116] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Accepted: 01/29/2011] [Indexed: 01/20/2023]
Abstract
The tropomyosin-related kinase (Trk) family of neurotrophin receptors, TrkA, TrkB and TrkC, has been implicated in the growth and survival of human cancers. Here we report that Trks are frequently overexpressed in hepatocellular carcinoma (HCC) from patients and human liver cancer cell lines. To unravel the underlying molecular mechanism(s) for this phenomenon, DNA methylation patterns of CpG islands in TrkA, TrkB, and TrkC genes were examined in normal and cancer cell lines derived from liver. A good correlation was observed between promoter hypermethylation and lower expression of TrkA, TrkB, and TrkC genes, which was supported by the data that inhibiting DNA methylation with 5-azacytidine restored expression of those genes in normal liver cell lines. Furthermore, Trks promoted the proliferation of HepG2 and induced expression of the metastatic regulator, Twist. These results suggest that Trks may contribute to growth and metastasis of liver cancer.
Collapse
Affiliation(s)
- Wook Jin
- Laboratory of Molecular Disease and Cell Regulation, Lee Gil Ya Cancer and Diabetes Institute, Gachon University of Medicine and Science, Incheon, Republic of Korea
| | | | | | | | | | | |
Collapse
|
504
|
Yang IA, Relan V, Wright CM, Davidson MR, Sriram KB, Savarimuthu Francis SM, Clarke BE, Duhig EE, Bowman RV, Fong KM. Common pathogenic mechanisms and pathways in the development of COPD and lung cancer. Expert Opin Ther Targets 2011; 15:439-56. [PMID: 21284573 DOI: 10.1517/14728222.2011.555400] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Lung cancer and COPD commonly coexist in smokers, and the presence of COPD increases the risk of developing lung cancer. In addition to smoking cessation and preventing smoking initiation, understanding the shared mechanisms of these smoking-related lung diseases is critical, in order to develop new methods of prevention, diagnosis and treatment of lung cancer and COPD. AREAS COVERED This review discusses the common mechanisms for susceptibility to lung cancer and COPD, which in addition to cigarette smoke, may involve inflammation, epithelial-mesenchymal transition, abnormal repair, oxidative stress, and cell proliferation. Furthermore, we discuss the underlying genomic and epigenomic changes (single nucleotide polymorphisms (SNPs), copy number variation, promoter hypermethylation and microRNAs) that are likely to alter biological pathways, leading to susceptibility to lung cancer and COPD (e.g., altered nicotine receptor biology). EXPERT OPINION Strategies to study genomics, epigenomics and gene-environment interaction will yield greater insight into the shared pathogenesis of lung cancer and COPD, leading to new diagnostic and therapeutic modalities.
Collapse
Affiliation(s)
- Ian A Yang
- The Prince Charles Hospital, Department of Thoracic Medicine, Thoracic Research Laboratory, Brisbane, Australia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
505
|
Du L, Pertsemlidis A. Cancer and neurodegenerative disorders: pathogenic convergence through microRNA regulation. J Mol Cell Biol 2011; 3:176-80. [PMID: 21278200 DOI: 10.1093/jmcb/mjq058] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Although cancer and neurodegenerative disease are two distinct pathological disorders, emerging evidence indicates that these two types of disease share common mechanisms of genetic and molecular abnormalities. Recent studies show that individual microRNAs (miRNAs) could be involved in the pathology of both diseases, indicating that the mechanisms of these two seemingly dichotomous diseases converge in the dysregulation of gene expression at the post-transcriptional level. Given the increasing evidence showing that miRNA-based therapeutic strategies that modulate the activity of one or more miRNAs are potentially effective for a wide range of pathological conditions, the involvement of miRNAs in the common pathways of leading both diseases suggests a bright future for developing common therapeutic approaches for both diseases. Moreover, the miRNAs that are dysregulated in both diseases may hold promise as uniquely informative diagnostic markers. Here, we review recent studies on the miRNAs that have been implicated in both cancer and neurodegenerative diseases.
Collapse
Affiliation(s)
- Liqin Du
- Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390, USA
| | | |
Collapse
|
506
|
Abstract
Epigenetics is one of the most rapidly expanding fields in biology. The recent characterization of a human DNA methylome at single nucleotide resolution, the discovery of the CpG island shores, the finding of new histone variants and modifications, and the unveiling of genome-wide nucleosome positioning maps highlight the accelerating speed of discovery over the past two years. Increasing interest in epigenetics has been accompanied by technological breakthroughs that now make it possible to undertake large-scale epigenomic studies. These allow the mapping of epigenetic marks, such as DNA methylation, histone modifications and nucleosome positioning, which are critical for regulating gene and noncoding RNA expression. In turn, we are learning how aberrant placement of these epigenetic marks and mutations in the epigenetic machinery is involved in disease. Thus, a comprehensive understanding of epigenetic mechanisms, their interactions and alterations in health and disease, has become a priority in biomedical research.
Collapse
Affiliation(s)
- Anna Portela
- Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute, Barcelona, Catalonia, Spain
| | | |
Collapse
|
507
|
Sharma A, Heuck CJ, Fazzari MJ, Mehta J, Singhal S, Greally JM, Verma A. DNA methylation alterations in multiple myeloma as a model for epigenetic changes in cancer. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2011; 2:654-69. [PMID: 20890963 DOI: 10.1002/wsbm.89] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Epigenetics refers to heritable modifications of the genome that are not a result of changes in the DNA sequence and result in phenotypic changes. These changes can be stably transmitted through cell division and are potentially reversible. Epigenetic events are very important during normal development wherein a single progenitor cell proliferates and differentiates into various somatic cell types. This process occurs through modification of the genome without changing the genetic code. Because epigenetic control of gene expression is so important, aberrant epigenetic regulation can lead to disease and cancer. This article reviews epigenetic changes seen in cancer by examining epigenetic changes commonly found in multiple myeloma, a common hematologic malignancy of plasma cells. Epigenetic control of gene expression can be exerted by changes in DNA methylation, histone modifications, and expression of noncoding RNAs. Each of these regulatory mechanisms interacts with the others at different genomic locations and can be measured quantitatively within the cell, requiring that we consider these mechanisms not individually but as a biological system. DNA methylation was the earliest discovered epigenetic regulator and has been the focus of most investigations in cancer. We have thus focused on DNA methylation changes in the pathogenesis of multiple myeloma, which promises to become an excellent model for systems biological studies of epigenomic dysregulation in human disease.
Collapse
Affiliation(s)
- Amy Sharma
- Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | | | | | | | |
Collapse
|
508
|
Tsai KW, Hu LY, Wu CW, Li SC, Lai CH, Kao HW, Fang WL, Lin WC. Epigenetic regulation of miR-196b expression in gastric cancer. Genes Chromosomes Cancer 2011; 49:969-80. [PMID: 20662076 DOI: 10.1002/gcc.20804] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
MicroRNAs (miRNAs) are short noncoding RNAs that play important roles in cellular processes and disease pathogenesis via the control of specific targeted gene expression. The miR-196s miRNA is encoded at three paralogous loci in three HOX clusters and acts as an oncogenic miRNA in cancer progression. Recent studies have demonstrated that the expression of miR-196b increases cell proliferation and survival in leukemic cells. Here, we used a sequential methylation analysis to reveal that the methylation status correlated well with miR-196b expression in different cell lines. Treatment with the demethylating drug 5-Aza-dC reactivated miR-196b transcription in methylation-silenced cells. Using in vitro methylation approach, we further provide evidences that promoter hypermethylation represses miR-196b transcriptional activation tightly in human cancer cell lines. We also demonstrate that the expression of miR-196b is significantly elevated in gastric cancer and that hypomethylation status of miR-196b CpG islands frequently is observed in primary gastric tumors. Our results provide important information on miR-196s regulation and demonstrate that abnormal DNA hypomethylation induces overexpression of miR-196b in gastric cancer.
Collapse
Affiliation(s)
- Kuo-Wang Tsai
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
509
|
van Engeland M, Derks S, Smits KM, Meijer GA, Herman JG. Colorectal cancer epigenetics: complex simplicity. J Clin Oncol 2011; 29:1382-91. [PMID: 21220596 DOI: 10.1200/jco.2010.28.2319] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Colorectal cancer (CRC) has predominantly been considered a genetic disease, characterized by sequential accumulation of genetic alterations. Growing evidence indicates that epigenetic alterations add an additional layer of complexity to the pathogenesis of CRC, and characterize a subgroup of colorectal cancers with a distinct etiology and prognosis. Epigenetic dysregulation in colorectal cancer is organized at multiple levels, involving DNA methylation, histone modifications, nucleosomal occupancy and remodeling, chromatin looping, and noncoding RNAs. Interactions between these processes and complex associations with genetic alterations have recently been unraveled. It appears that CRC epigenetics will be the paradigm for multistep carcinogenesis, as CRC genetics has been for the past three decades. This review integrates recent data on epigenetic regulation of gene expression in CRC and describes how the understanding of these processes will alter the management of CRC.
Collapse
Affiliation(s)
- Manon van Engeland
- GROW-School for Oncology and Developmental Biology, PO Box 616, 6200 Maastricht, The Netherlands.
| | | | | | | | | |
Collapse
|
510
|
Chen C, Zhang Y, Zhang L, Weakley SM, Yao Q. MicroRNA-196: critical roles and clinical applications in development and cancer. J Cell Mol Med 2011; 15:14-23. [PMID: 21091634 PMCID: PMC3276076 DOI: 10.1111/j.1582-4934.2010.01219.x] [Citation(s) in RCA: 164] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Accepted: 11/08/2010] [Indexed: 12/28/2022] Open
Abstract
The discovery of microRNAs (miRNAs) represents one of the most significant advances in biological and medical sciences in the last decade. Hundreds of miRNAs have been identified in plants, viruses, animals and human beings, and these tiny, non-coding RNA transcripts have been found to play crucial roles in important biological processes involved in human health and disease. Recently, many studies have demonstrated that miR-196 plays critical roles in normal development and in the pathogenesis of human disease processes such as cancer. Several investigations have implemented cell culture and animal models to explore the potential molecular mechanisms of miR-196. This review provides updated information about the structure of the miR-196 gene and the roles of miR-196 in development, cancer and disease formation. Importantly, we discuss the possible molecular mechanisms whereby miR-196 regulates cellular functions including targeting molecules and gene regulation pathways; potential clinical applications are addressed, as well as future directions for investigation. miR-196a may prove to be a novel therapeutic target for several cancers.
Collapse
Affiliation(s)
- Changyi Chen
- Molecular Surgeon Research Center, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA.
| | | | | | | | | |
Collapse
|
511
|
Wong E, Wei CL. Genome-wide distribution of DNA methylation at single-nucleotide resolution. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 101:459-77. [PMID: 21507362 DOI: 10.1016/b978-0-12-387685-0.00015-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
DNA methylation, a well-known epigenetic modification in mammalian genomes, is important for development and health. Dysregulation of DNA methylation can cause abnormal gene regulation, leading to anomalous development and diseases. Until recently, the ability to understand the functions and dynamics of DNA methylation was limited by the availability of technologies for comprehensively characterizing methylation on a genome-wide scale. Rapid advances in high-throughput approaches (particularly next-generation sequencing), coupled with molecular techniques, have enabled unbiased genome-wide profiling of DNA modifications at single-base resolution and helped to elucidate their impact on gene regulation. Here, we discuss the development of genomic approaches to decipher the global methylome at single-base resolution, the challenges faced, and the emerging new insights. Our ability to decipher this important epigenetic modification and how it impacts gene expression will provide a framework for understanding numerous disease mechanisms, and suggest means to treat or prevent them in the future.
Collapse
Affiliation(s)
- Eleanor Wong
- Genome Technology and Biology, Genome Institute of Singapore, Singapore
| | | |
Collapse
|
512
|
Abstract
MicroRNAs are short non-coding RNA molecules that are involved in diverse physiological and developmental processes by controlling the gene expression of target mRNAs. They play important roles in almost all kinds of cancer where they modulate key processes during tumorigenesis such as metastasis, apoptosis, proliferation, or angiogenesis. Depending on the mRNA targets they regulate, they can act as oncogenes or as tumor suppressor genes. Multiple links between microRNA biogenesis and cancer highlight its significance for tumor diseases. However, mechanisms of their own regulation on the transcriptional and posttranscriptional level in health and disease are only beginning to emerge. Here, we review the microRNA-processing pathway as well as recent insights into posttranscriptional regulation of microRNA expression.
Collapse
|
513
|
When Cellular Networks Run Out of Control. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 102:165-242. [DOI: 10.1016/b978-0-12-415795-8.00006-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
514
|
Fowler A, Thomson D, Giles K, Maleki S, Mreich E, Wheeler H, Leedman P, Biggs M, Cook R, Little N, Robinson B, McDonald K. miR-124a is frequently down-regulated in glioblastoma and is involved in migration and invasion. Eur J Cancer 2010; 47:953-63. [PMID: 21196113 DOI: 10.1016/j.ejca.2010.11.026] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Revised: 11/24/2010] [Accepted: 11/26/2010] [Indexed: 12/19/2022]
Abstract
Glioblastoma (GBM) represents a formidable clinical challenge for both patients and treating physicians. Due to better local treatments and prolonged patient survival, remote recurrences are increasingly observed, underpinning the importance of targeting tumour migration and attachment. Aberrant expression of microRNA (miRNA) is commonly associated with cancer and loss of miR-124a has previously been implicated to function as a tumour suppressor. The assessment of miR-124a in clinical specimens has been limited and a potential role in migration and invasion has been unexplored until now. We measured the expression levels of mature miR-124a in a retrospective series of 119 cases of histologically confirmed GBM and found its expression was markedly lower in over 80% of the GBM clinical specimens compared to normal brain tissue. The level of reduction in the clinical cohort varied significantly and patients with lower than the average miR-124a expression levels displayed shorter survival times. Endogenous miR-124a expression and the protein expression of three of its targets; IQ motif containing GTPase activating protein 1 (IQGAP1), laminin γ1 (LAMC1) and integrin β1 (ITGB1) were significantly reciprocally associated in the majority of the clinical cases. We confirmed this association in our in vitro model. Functionally, the ectopic expression of mature miR-124a in a GBM cell line resulted in significant inhibition of migration and invasion, demonstrating a role for miR-124a in promoting tumour invasiveness. Our results suggest that miR-124a may play a role in GBM migration, and that targeted delivery of miR-124a may be a novel inhibitor of GBM invasion.
Collapse
Affiliation(s)
- Adam Fowler
- Cerebral Tumour Research Group, Hormones and Cancer, Kolling Institute of Medical Research, NSW, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
515
|
Berdasco M, Esteller M. Aberrant epigenetic landscape in cancer: how cellular identity goes awry. Dev Cell 2010; 19:698-711. [PMID: 21074720 DOI: 10.1016/j.devcel.2010.10.005] [Citation(s) in RCA: 428] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Appropriate patterns of DNA methylation and histone modifications are required to assure cell identity, and their deregulation can contribute to human diseases, such as cancer. Our aim here is to provide an overview of how epigenetic factors, including genomic DNA methylation, histone modifications, and microRNA regulation, contribute to normal development, paying special attention to their role in regulating tissue-specific genes. In addition, we summarize how these epigenetic patterns go awry during human cancer development. The possibility of "resetting" the abnormal cancer epigenome by applying pharmacological or genetic strategies is also discussed.
Collapse
Affiliation(s)
- María Berdasco
- Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet de Llobregat, 08907 Barcelona, Catalonia, Spain
| | | |
Collapse
|
516
|
Abstract
Epigenetics is defined as the heritable chances that affect gene expression without changing the DNA sequence. Epigenetic regulation of gene expression can be through different mechanisms such as DNA methylation, histone modifications and nucleosome positioning. MicroRNAs are short RNA molecules which do not code for a protein but have a role in post-transcriptional silencing of multiple target genes by binding to their 3' UTRs (untranslated regions). Both epigenetic mechanisms, such as DNA methylation and histone modifications, and the microRNAs are crucial for normal differentiation, development and maintenance of tissue-specific gene expression. These mechanisms also explain how cells with the same DNA content can differentiate into cells with different functions. Changes in epigenetic processes can lead to changes in gene function, cancer formation and progression, as well as other diseases. In the present chapter we will mainly focus on microRNAs and methylation and their implications in human disease, mainly in cancer.
Collapse
|
517
|
Slattery ML, Wolff E, Hoffman MD, Pellatt DF, Milash B, Wolff RK. MicroRNAs and colon and rectal cancer: differential expression by tumor location and subtype. Genes Chromosomes Cancer 2010. [PMID: 21213373 DOI: 10.1002/gcc.20844.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
MicroRNAs are thought to have an impact on cell proliferation, apoptosis, stress responses, maintenance of stem cell potency, and metabolism and are, therefore, important in the carcinogenic process. In this study, we examined 40 colon tumors, 30 rectal tumors, and 30 normal tissue samples (10 proximal colon, 10 distal colon, and 10 rectal paired with cancer cases) to examine miRNA expression profiles in colon and rectal tumors. MiRNA expression levels were adjusted for multiple comparisons; tumor tissue was compared with noncancerous tissue from the same site. A comparison of normal tissue showed 287 unique miRNAs that were significantly differentially expressed at the 1.5-fold level and 73 with over a two-fold difference in expression between colon and rectal tissue. Examination of miRNAs that were significantly differentially expressed at the 1.5-fold level by tumor phenotype showed 143 unique miRNAs differentially expression for microsatellite instability positive (MSI+) colon tumors; 129 unique miRNAs differentially expressed for CpG Island Methylator Phenotype positive (CIMP+) colon tumors; 135 miRNAs were differentially expressed for KRAS2-mutated colon tumors, and 139 miRNAs were differentially expressed for TP53-mutated colon tumors. Similar numbers of differentially expressed miRNAs were observed for rectal tumors, although the miRNAs differentially expressed differed. There were 129 unique miRNAs for CIMP+, 143 unique miRNAs for KRAS2-mutated, and 136 unique miRNAs for TP53-mutated rectal tumors. These results suggest the importance of miRNAs in colorectal cancer and the need for studies that can confirm these results and provide insight into the diet, lifestyle, and genetic factors that influence miRNA expression.
Collapse
Affiliation(s)
- Martha L Slattery
- Department of Internal Medicine, University of Utah Health Sciences Center, Salt Lake City, UT 84108, USA.
| | | | | | | | | | | |
Collapse
|
518
|
Slattery ML, Wolff E, Hoffman MD, Pellatt DF, Milash B, Wolff RK. MicroRNAs and colon and rectal cancer: differential expression by tumor location and subtype. Genes Chromosomes Cancer 2010; 50:196-206. [PMID: 21213373 DOI: 10.1002/gcc.20844] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Revised: 11/05/2010] [Accepted: 11/08/2010] [Indexed: 12/14/2022] Open
Abstract
MicroRNAs are thought to have an impact on cell proliferation, apoptosis, stress responses, maintenance of stem cell potency, and metabolism and are, therefore, important in the carcinogenic process. In this study, we examined 40 colon tumors, 30 rectal tumors, and 30 normal tissue samples (10 proximal colon, 10 distal colon, and 10 rectal paired with cancer cases) to examine miRNA expression profiles in colon and rectal tumors. MiRNA expression levels were adjusted for multiple comparisons; tumor tissue was compared with noncancerous tissue from the same site. A comparison of normal tissue showed 287 unique miRNAs that were significantly differentially expressed at the 1.5-fold level and 73 with over a two-fold difference in expression between colon and rectal tissue. Examination of miRNAs that were significantly differentially expressed at the 1.5-fold level by tumor phenotype showed 143 unique miRNAs differentially expression for microsatellite instability positive (MSI+) colon tumors; 129 unique miRNAs differentially expressed for CpG Island Methylator Phenotype positive (CIMP+) colon tumors; 135 miRNAs were differentially expressed for KRAS2-mutated colon tumors, and 139 miRNAs were differentially expressed for TP53-mutated colon tumors. Similar numbers of differentially expressed miRNAs were observed for rectal tumors, although the miRNAs differentially expressed differed. There were 129 unique miRNAs for CIMP+, 143 unique miRNAs for KRAS2-mutated, and 136 unique miRNAs for TP53-mutated rectal tumors. These results suggest the importance of miRNAs in colorectal cancer and the need for studies that can confirm these results and provide insight into the diet, lifestyle, and genetic factors that influence miRNA expression.
Collapse
Affiliation(s)
- Martha L Slattery
- Department of Internal Medicine, University of Utah Health Sciences Center, Salt Lake City, UT 84108, USA.
| | | | | | | | | | | |
Collapse
|
519
|
Bhatnagar N, Li X, Padi SKR, Zhang Q, Tang MS, Guo B. Downregulation of miR-205 and miR-31 confers resistance to chemotherapy-induced apoptosis in prostate cancer cells. Cell Death Dis 2010; 1:e105. [PMID: 21368878 PMCID: PMC3004480 DOI: 10.1038/cddis.2010.85] [Citation(s) in RCA: 165] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Revised: 10/19/2010] [Accepted: 10/28/2010] [Indexed: 12/18/2022]
Abstract
Advanced prostate cancers are known to acquire not only invasive capabilities but also significant resistance to chemotherapy-induced apoptosis. To understand how microRNAs (miRNAs) may contribute to prostate cancer resistance to apoptosis, we compared microRNA expression profiles of a benign prostate cancer cell line WPE1-NA22 and a highly malignant WPE1-NB26 cell line (derived from a common lineage). We found that miR-205 and miR-31 are significantly downregulated in WPE1-NB26 cells, as well as in other cell lines representing advanced-stage prostate cancers. Antiapoptotic genes BCL2L2 (encoding Bcl-w) and E2F6 are identified as the targets of miR-205 and miR-31, respectively. By downregulating Bcl-w and E2F6, miR-205 and miR-31 promote chemotherapeutic agents-induced apoptosis in prostate cancer cells. The promoter region of the miR-205 gene was cloned and was found to be hypermethylated in cell lines derived from advanced prostate cancers, contributing to the downregulation of the gene. Treatment with DNA methylation inhibitor 5-aza-2'-deoxycytidine induced miR-205 expression, downregulated Bcl-w, and sensitized prostate cancer cells to chemotherapy-induced apoptosis. Thus, downregulation of miR-205 and miR-31 has an important role in apoptosis resistance in advanced prostate cancer.
Collapse
Affiliation(s)
- N Bhatnagar
- Department of Pharmaceutical Sciences, College of Pharmacy, North Dakota State University, Fargo, ND, USA
| | - X Li
- Department of Pharmaceutical Sciences, College of Pharmacy, North Dakota State University, Fargo, ND, USA
| | - S K R Padi
- Department of Pharmaceutical Sciences, College of Pharmacy, North Dakota State University, Fargo, ND, USA
| | - Q Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy, North Dakota State University, Fargo, ND, USA
| | - M-s Tang
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, NY, USA
| | - B Guo
- Department of Pharmaceutical Sciences, College of Pharmacy, North Dakota State University, Fargo, ND, USA
| |
Collapse
|
520
|
Dudziec E, Miah S, Choudhry HMZ, Owen HC, Blizard S, Glover M, Hamdy FC, Catto JWF. Hypermethylation of CpG islands and shores around specific microRNAs and mirtrons is associated with the phenotype and presence of bladder cancer. Clin Cancer Res 2010; 17:1287-96. [PMID: 21138856 DOI: 10.1158/1078-0432.ccr-10-2017] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
PURPOSE To analyze the role and translational potential for hypermethylation of CpG islands and shores in the regulation of small RNAs within urothelial cell carcinoma (UCC). To examine microRNAs (miR) and mirtrons, a new class of RNA located within gene introns and processed in a Drosha-independent manner. EXPERIMENTAL DESIGN The methylation status of 865 small RNAs was evaluated in normal and malignant cell lines by using 5-azacytidine and microarrays. Bisulfite sequencing was used for CpG regions around selected RNAs. Prognostic and diagnostic associations for epigenetically regulated RNAs were examined by using material from 359 patients, including 216 tumors and 121 urinary samples (68 cases and 53 controls). Functional analyses examined the effect of silencing susceptible RNAs in normal urothelial cells. RESULTS Exonic/UTR-located miRs and mirtons are most susceptible to epigenetic regulation. We identified 4 mirtrons and 16 miRs with CpG hypermethylation across 35 regions in normal and malignant urothelium. For several miRs, hypermethylation was more frequent and dense in CpG shores than islands (e.g., miRs-9/149/210/212/328/503/1224/1227/1229), and was associated with tumor grade, stage, and prognosis (e.g., miR-1224 multivariate analysis OR = 2.5; 95% CI, 1.3-5.0; P = 0.006). The urinary expression of epigenetically silenced RNAs (miRs-152/328/1224) was associated with the presence of UCC (concordance index, 0.86; 95% CI, 0.80-0.93; ANOVA P < 0.016). CONCLUSIONS Hypermethylation of mirtrons and miRs is common in UCC. Mirtrons appear particularly susceptible to epigenetic regulation. Aberrant hypermethylation of small RNAs is associated with the presence and behavior of UCC, suggesting potential roles as diagnostic and prognostic biomarkers.
Collapse
Affiliation(s)
- Ewa Dudziec
- The Institute for Cancer Studies and The Academic Urology Unit, University of Sheffield, Sheffield, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
521
|
Zhang Y, Chen L. [DNA methylation and non-small cell lung cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2010; 13:821-6. [PMID: 20704826 PMCID: PMC6000552 DOI: 10.3779/j.issn.1009-3419.2010.08.14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
基因组DNA甲基化是目前发现的最主要的一种表观遗传修饰形式,高甲基化(hypermethylation)的DNA染色质构象发生改变,导致抑癌基因转录失活,在肿瘤发生发展中具有重要意义。近年来,DNA甲基化在肺癌,主要是非小细胞肺癌(non-small cell lung cancer, NSCLC)的研究中取得较大进展,为NSCLC早期诊断、风险评估、预后判断和干预治疗提供了新的靶点。
Collapse
Affiliation(s)
- Youwei Zhang
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | | |
Collapse
|
522
|
Shapira I, Sultan K, Mehrotra B, Budman DR. Emerging role of small ribonucleic acids in gastrointestinal tumors. Crit Rev Oncol Hematol 2010; 76:173-185. [PMID: 20144549 DOI: 10.1016/j.critrevonc.2010.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Revised: 01/06/2010] [Accepted: 01/27/2010] [Indexed: 10/19/2022] Open
Abstract
Small regulatory ribonucleic acids (RNAs) are recently recognized as being connected with a growing list of common diseases such as: cancer, heart disease, diabetes and inflammation and to date more than 5,000 publications are recorded on PubMed alone. Specific pathways generate each class of RNAs and their activities converge in the process of silence interference. In gastrointestinal malignancies microRNAs are deregulated, sometimes found in higher or lower levels depending on the type of malignancy and stage of the disease, functioning either as tumor suppressors or as oncogenes they interact forming regulatory loops with known transcription factors and signaling pathways. MiRNAs extracted from archived tissue biopsies can be used effectively as diagnostic, prognostic tools and molecular markers because they are stable over time and resistant to RNAse degradation. The distinct physiology of small RNAs may translate in more targeted cancer therapies in the near future.
Collapse
Affiliation(s)
- Iuliana Shapira
- Hematology Oncology, Hofstra University School of Medicine, Monter Cancer Center, 450 Lakeville Road, Lake Success, NY 11042, USA.
| | | | | | | |
Collapse
|
523
|
Wiklund ED, Kjems J, Clark SJ. Epigenetic architecture and miRNA: reciprocal regulators. Epigenomics 2010; 2:823-40. [DOI: 10.2217/epi.10.51] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Deregulation of epigenetic and miRNA pathways are emerging as key events in carcinogenesis. miRNA genes can be epigenetically regulated and miRNAs can themselves repress key enzymes that drive epigenetic remodeling. Epigenetic and miRNA functions are thus tightly interconnected and crucial for maintaining correct local and global genomic architecture as well as gene-expression patterns, yet the underlying molecular mechanisms and their widespread effects remain poorly understood. Owing to the tissue specificity, versatility and relative stability of miRNAs, these small ncRNAs are considered especially promising in clinical applications, and their biogenesis and function is subject of active research. In this article, the current status of epigenetic miRNA regulation is summarized and future therapeutic prospects in the field are discussed with a focus on cancer.
Collapse
Affiliation(s)
| | - Jørgen Kjems
- Department of Molecular Biology, Aarhus University, 8000 Aarhus C, Denmark
| | - Susan J Clark
- Cancer Research Program, Garvan Institute of Medical Research, 2010 Darlinghurst NSW, Australia
| |
Collapse
|
524
|
Deng G, Kakar S, Kim YS. MicroRNA-124a and microRNA-34b/c are frequently methylated in all histological types of colorectal cancer and polyps, and in the adjacent normal mucosa. Oncol Lett 2010; 2:175-180. [PMID: 22870149 DOI: 10.3892/ol.2010.222] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2010] [Accepted: 11/15/2010] [Indexed: 12/15/2022] Open
Abstract
MicroRNAs (miRs) are a class of small RNAs that regulate gene expression at the post-transcriptional and/or translational level by interacting with their target mRNAs. miRs are down-regulated or up-regulated in various cancer types, triggering abnormal cell differentiation, proliferation and apoptosis. miR-124a and miR-34b/c have been reported to be expressed at lower levels in colorectal cancer (CRC) due to methylation of these genes. The present study aimed to determine the methylation status of miR-124a and miR-34b/c in CRCs and polyps of various histological types, adjacent normal mucosa and ulcerative colitis. The colon cancer cell line study showed an association of the lower expression of miR-124a and miR-34b/c with the methylation of these genes and induction of the expression of these genes with the treatment by 5-aza-2'-deoxycytidine. Among nine different cancer types examined, CRC showed the highest frequency of methylation of miR-124a (cell lines 88% and tissues 99%) and miR-34b/c (cell lines 89% and tissues 93%). Mucinous and non-mucinous CRCs and all the histological types of colorectal polyps showed a high frequency of methylation of miR-124a and miR-34b/c. Notably, methylation of miR-124a (59%) and miR-34b/c (26%) was observed in the adjacent normal mucosa of CRC patients, but not in colonic mucosa from patients without cancer or with ulcerative colitis. The methylation of miR-124a in the adjacent normal mucosa was associated with the microsatellite instability of CRC, while the methylation of miR-34b/c was associated with an older age at diagnosis of CRC. The results showed that the methylation of miR-124a and miR-34b/c occured early in colorectal carcinogenesis and certain CRCs may arise from a field defect defined by the epigenetic inactivation of miRs.
Collapse
Affiliation(s)
- Guoren Deng
- Department of Medicine, Veterans Affairs Medical Center, University of California at San Francisco, San Francisco, CA 94121, USA
| | | | | |
Collapse
|
525
|
Wu WKK, Law PTY, Lee CW, Cho CH, Fan D, Wu K, Yu J, Sung JJY. MicroRNA in colorectal cancer: from benchtop to bedside. Carcinogenesis 2010; 32:247-53. [PMID: 21081475 DOI: 10.1093/carcin/bgq243] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Colon carcinogenesis represents a stepwise progression from benign polyps to invasive adenocarcinomas and distant metastasis. It is believed that these pathologic changes are contributed by aberrant activation or inactivation of protein-coding proto-oncogenes and tumor suppressor genes. However, recent discoveries in microRNA (miRNA) research have reshaped our understanding of the role of non-protein-coding genes in carcinogenesis. In this regard, a remarkable number of miRNAs exhibit differential expression in colon cancer tissues. These miRNAs alter cell proliferation, apoptosis and metastasis through their interactions with intracellular signaling networks. From a clinical perspective, polymorphisms within miRNA-binding sites are associated with the risk for colon cancer, whereas miRNAs isolated from feces or blood may serve as biomarkers for early diagnosis. Altered expression of miRNA or polymorphisms in miRNA-related genes have also been shown to correlate with patient survival or treatment outcome. With further insights into miRNA dysregulation in colon cancer and the advancement of RNA delivery technology, it is anticipated that novel miRNA-based therapeutics will emerge.
Collapse
Affiliation(s)
- William K K Wu
- Institute of Digestive Diseases, The Chinese University of Hong Kong, Hong Kong, China
| | | | | | | | | | | | | | | |
Collapse
|
526
|
|
527
|
Abstract
DNA methylation is one of the most intensely studied epigenetic modifications in mammals. In normal cells, it assures the proper regulation of gene expression and stable gene silencing. DNA methylation is associated with histone modifications and the interplay of these epigenetic modifications is crucial to regulate the functioning of the genome by changing chromatin architecture. The covalent addition of a methyl group occurs generally in cytosine within CpG dinucleotides which are concentrated in large clusters called CpG islands. DNA methyltransferases are responsible for establishing and maintenance of methylation pattern. It is commonly known that inactivation of certain tumor-suppressor genes occurs as a consequence of hypermethylation within the promoter regions and a numerous studies have demonstrated a broad range of genes silenced by DNA methylation in different cancer types. On the other hand, global hypomethylation, inducing genomic instability, also contributes to cell transformation. Apart from DNA methylation alterations in promoter regions and repetitive DNA sequences, this phenomenon is associated also with regulation of expression of noncoding RNAs such as microRNAs that may play role in tumor suppression. DNA methylation seems to be promising in putative translational use in patients and hypermethylated promoters may serve as biomarkers. Moreover, unlike genetic alterations, DNA methylation is reversible what makes it extremely interesting for therapy approaches. The importance of DNA methylation alterations in tumorigenesis encourages us to decode the human epigenome. Different DNA methylome mapping techniques are indispensable to realize this project in the future.
Collapse
Affiliation(s)
- Marta Kulis
- The Bellvitge Institute forBiomedical Research , L'Hospitalet de Llobregat, Barcelona,Catalonia, Spain
| | | |
Collapse
|
528
|
Abstract
After the first draft sequence of the human genome was announced by the International Human Genome Sequencing Consortium and Celera Genomics in February 2001, this and subsequent sequences have been instrumental for the systematic analysis of various human genomes, including the cancer genome. Now we are moving into an era in which comprehensive sequence-based information on vast numbers of tumors can be obtained. Such information can provide novel and detailed perspectives on how individual tumors develop. As a corollary, this information can be used to generate novel diagnostic and prognostic markers and to design novel therapeutic strategies. Because these advances are moving rapidly, any state-of-the-art overview is likely to be outdated before it reaches publication. Nevertheless, data presented at the 12th European Workshop on Cytogenetics and Molecular Genetics of Solid Tumors, held June 3-6, 2010, at Nijmegen in The Netherlands, and of which the abstracts are included in this special issue of Cancer Genetics and Cytogenetics, may provide a basis for such an overview. Although one nowadays hears talk of the post-genome era, we are in fact still very much within the genome era; indeed, most of the work presented at the workshop dealt with the cancer genome. Other emerging areas were also addressed, however, including the cancer epigenome, the cancer transcriptome, and the cancer fragilome.
Collapse
|
529
|
Abstract
MicroRNAs (miRNAs) are evolutionarily conserved small non-coding RNAs that regulate gene expression. Early studies have shown that miRNA expression is deregulated in cancer and experimental data indicate that cancer phenotypes can be modified by targeting miRNA expression. Based on these observations, miRNA-based anticancer therapies are being developed, either alone or in combination with current targeted therapies, with the goal to improve disease response and increase cure rates. The advantage of using miRNA approaches is based on its ability to concurrently target multiple effectors of pathways involved in cell differentiation, proliferation and survival. In this Review, we describe the role of miRNAs in tumorigenesis and critically discuss the rationale, the strategies and the challenges for the therapeutic targeting of miRNAs in cancer.
Collapse
|
530
|
Melo SA, Moutinho C, Ropero S, Calin GA, Rossi S, Spizzo R, Fernandez AF, Davalos V, Villanueva A, Montoya G, Yamamoto H, Schwartz S, Esteller M. A genetic defect in exportin-5 traps precursor microRNAs in the nucleus of cancer cells. Cancer Cell 2010; 18:303-15. [PMID: 20951941 DOI: 10.1016/j.ccr.2010.09.007] [Citation(s) in RCA: 249] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Revised: 05/28/2010] [Accepted: 08/18/2010] [Indexed: 12/13/2022]
Abstract
The global impairment of mature microRNAs (miRNAs) is emerging as a common feature of human tumors. One interesting scenario is that defects in the nuclear export of precursor miRNAs (pre-miRNAs) might occur in transformed cells. Exportin 5 (XPO5) mediates pre-miRNA nuclear export and herein we demonstrate the presence of XPO5-inactivating mutations in a subset of human tumors with microsatellite instability. The XPO5 genetic defect traps pre-miRNAs in the nucleus, reduces miRNA processing, and diminishes miRNA-target inhibition. The XPO5 mutant form lacks a C-terminal region that contributes to the formation of the pre-miRNA/XPO5/Ran-GTP ternary complex and pre-miRNAs accumulate in the nucleus. Most importantly, the restoration of XPO5 functions reverses the impaired export of pre-miRNAs and has tumor-suppressor features.
Collapse
Affiliation(s)
- Sonia A Melo
- Bellvitge Biomedical Research Institute, Barcelona, Catalonia, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
531
|
Abstract
The clinical benefits of curcumin as a single agent were demonstrated in patients with advanced pancreatic cancer in a phase 2 study despite pharmacokinetic analysis showing a much lower plasma concentration of curcumin in humans than in vitro. The diverse and broad biological activities of curcumin are mediated through direct interaction of curcumin with target proteins as well as epigenetic modulation of target genes, supported by evidence that curcumin modulates gene expression in a time- and concentration-dependent manner in human cancer cells. This review delineates the novel mechanisms of curcumin as an epigenetic agent through its interaction with histone deacetylases, histone acetyltransferases, DNA methyltransferase I, and microRNAs. Accumulating data support curcumin's functionality in modulating multiple biological processes at low concentrations through its activity as an epigenetic agent. The development of curcumin as an epigenetic agent warrants further preclinical and clinical studies to explore its diversity and efficacy in cancer treatment and in combination with other anticancer agents.
Collapse
Affiliation(s)
- Siqing Fu
- Department of Investigational Cancer Therapeutics, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA.
| | | |
Collapse
|
532
|
Suzuki H, Yamamoto E, Nojima M, Kai M, Yamano HO, Yoshikawa K, Kimura T, Kudo T, Harada E, Sugai T, Takamaru H, Niinuma T, Maruyama R, Yamamoto H, Tokino T, Imai K, Toyota M, Shinomura Y. Methylation-associated silencing of microRNA-34b/c in gastric cancer and its involvement in an epigenetic field defect. Carcinogenesis 2010; 31:2066-73. [PMID: 20924086 DOI: 10.1093/carcin/bgq203] [Citation(s) in RCA: 157] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Altered expression of microRNA (miRNA) is strongly implicated in cancer, and recent studies have shown that the silencing of some miRNAs is associated with CpG island hypermethylation. To identify epigenetically silenced miRNAs in gastric cancer (GC), we screened for miRNAs induced by treatment with 5-aza-2'-deoxycytidine and 4-phenylbutyrate. We found that miR-34b and miR-34c are epigenetically silenced in GC and that their downregulation is associated with hypermethylation of the neighboring CpG island. Methylation of the miR-34b/c CpG island was frequently observed in GC cell lines (13/13, 100%) but not in normal gastric mucosa from Helicobacter pylori-negative healthy individuals. Transfection of a precursor of miR-34b and miR-34c into GC cells induced growth suppression and dramatically changed the gene expression profile. Methylation of miR-34b/c was found in a majority of primary GC specimens (83/118, 70%). Notably, analysis of non-cancerous gastric mucosae from GC patients (n = 109) and healthy individuals (n = 85) revealed that methylation levels are higher in gastric mucosae from patients with multiple GC than in mucosae from patients with single GC (27.3 versus 20.8%; P < 0.001) or mucosae from H. pylori-positive healthy individuals (27.3 versus 20.7%; P < 0.001). These results suggest that miR-34b and miR-34c are novel tumor suppressors frequently silenced by DNA methylation in GC, that methylation of miR-34b/c is involved in an epigenetic field defect and that the methylation might be a predictive marker of GC risk.
Collapse
Affiliation(s)
- Hiromu Suzuki
- First Department of Internal Medicine, Sapporo Medical University, S1, W16, Chuo-Ku, Sapporo 064-8543, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
533
|
Urdinguio RG, Fernandez AF, Lopez-Nieva P, Rossi S, Huertas D, Kulis M, Liu CG, Croce CM, Calin GA, Esteller M. Disrupted microRNA expression caused by Mecp2 loss in a mouse model of Rett syndrome. Epigenetics 2010; 5:656-63. [PMID: 20716963 DOI: 10.4161/epi.5.7.13055] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
MicroRNAs (miRNAs) are short non-coding RNA molecules that regulate post-transcriptional gene expression. They influence a wide range of physiological functions, including neuronal processes, and are regulated by various mechanisms, such as DNA methylation. This epigenetic mark is recognized by transcriptional regulators such as the methyl CpG binding protein Mecp2. Rett syndrome is a complex neurological disorder that has been associated with mutations in the gene coding for Mecp2. Thus, we examined the possible miRNA misregulation caused by Mecp2 absence in a mouse model of Rett syndrome. Using miRNA expression microarrays, we observed that the brain of Rett syndrome mice undergoes a disruption of the expression profiles of miRNAs. Among the significantly altered miRNAs (26%, 65 of 245), overall downregulation of these transcripts was the most common feature (71%), whilst the remaining 30% were upregulated. Further validation by quantitative RT-PCR demonstrated that the most commonly disrupted miRNAs were miR-146a, miR-146b, miR-130, miR-122a, miR-342 and miR-409 (downregulated), and miR-29b, miR329, miR-199b, miR-382, miR-296, miR-221 and miR-92 (upregulated). Most importantly, transfection of miR-146a in a neuroblastoma cell line caused the downregulation of IL-1 receptor-associated kinase 1 (Irak1) levels, suggesting that the identified defect of miR-146a in Rett syndrome mice brains might be responsible for the observed upregulation of Irak1 in this model of the human disease. Overall, we provide another level of molecular deregulation occurring in Rett syndrome that might be useful for understanding the disease and for designing targeted therapies.
Collapse
Affiliation(s)
- Rocio G Urdinguio
- Cancer Epigenetics and Biology Program (PEBC); Bellvitge Biomedical Research Institute, L’Hospitalet, Barcelona, Catalonia, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
534
|
Garzon R, Marcucci G, Croce CM. Targeting microRNAs in cancer: rationale, strategies and challenges. Nat Rev Drug Discov 2010; 9:775-789. [PMID: 20885409 PMCID: PMC3904431 DOI: 10.1038/nrd3179] [Citation(s) in RCA: 1205] [Impact Index Per Article: 80.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
MicroRNAs (miRNAs) are evolutionarily conserved small non-coding RNAs that regulate gene expression. Early studies have shown that miRNA expression is deregulated in cancer and experimental data indicate that cancer phenotypes can be modified by targeting miRNA expression. Based on these observations, miRNA-based anticancer therapies are being developed, either alone or in combination with current targeted therapies, with the goal to improve disease response and increase cure rates. The advantage of using miRNA approaches is based on its ability to concurrently target multiple effectors of pathways involved in cell differentiation, proliferation and survival. In this Review, we describe the role of miRNAs in tumorigenesis and critically discuss the rationale, the strategies and the challenges for the therapeutic targeting of miRNAs in cancer.
Collapse
Affiliation(s)
- Ramiro Garzon
- Division of Hematology and Oncology, Department of Medicine and Comprehensive Cancer Center, The Ohio State University
| | - Guido Marcucci
- Division of Hematology and Oncology, Department of Medicine and Comprehensive Cancer Center, The Ohio State University
- Department of Molecular Virology, Immunology and Medical Genetics and Comprehensive Cancer Center, The Ohio State University
| | - Carlo M. Croce
- Department of Molecular Virology, Immunology and Medical Genetics and Comprehensive Cancer Center, The Ohio State University
| |
Collapse
|
535
|
Qiu X, Hother C, Ralfkiær UM, Søgaard A, Lu Q, Workman CT, Liang G, Jones PA, Grønbæk K. Equitoxic doses of 5-azacytidine and 5-aza-2'deoxycytidine induce diverse immediate and overlapping heritable changes in the transcriptome. PLoS One 2010; 5. [PMID: 20927380 PMCID: PMC2947512 DOI: 10.1371/journal.pone.0012994] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2010] [Accepted: 09/01/2010] [Indexed: 12/28/2022] Open
Abstract
Background The hypomethylating agent 5-Azacytidine (5-Aza-CR) is the first drug to prolong overall survival in patients with myelodysplastic syndrome (MDS). Surprisingly, the deoxyribonucleoside analog 5-Aza-2′deoxycytidine (5-Aza-CdR) did not have a similar effect on survival in a large clinical trial. Both drugs are thought to exert their effects after incorporation into DNA by covalent binding of DNA methyltransferase (DNMT). While 5-Aza-CdR is incorporated into only DNA, 5-Aza-CR is also incorporated into RNA. Here, we have analyzed whether this difference in nucleic acid incorporation may influence the capacities of these drugs to regulate the expression of mRNA and microRNAs (miRNA), which may potentially affect the activities of the drugs in patients. Methodology/Principal Findings A hematopoietic (HL-60; acute myeloid leukemia) and a solid (T24; transitional cell carcinoma) cancer cell line were treated with equitoxic doses of 5-Aza-CR and 5-Aza-CdR for 24 hrs, and the immediate (day 2) and lasting (day 8) effects on RNA expression examined. There was considerable overlap between the RNAs heritably upregulated by both drugs on day 8 but more RNAs were stably induced by the deoxy analog. Both drugs strongly induced expression of cancer testis antigens. On day 2 more RNAs were downregulated by 5-Aza-CR, particularly at higher doses. A remarkable downregulation of miRNAs and a significant upregulation of tRNA synthetases and other genes involved in amino acid metabolism was observed in T24 cells. Conclusions/Significance Overall, this suggests that significant differences exist in the immediate action of the two drugs, however the dominant pattern of the lasting, and possible heritable changes, is overlapping.
Collapse
Affiliation(s)
- Xiangning Qiu
- Department of Biochemistry and Molecular Biology, University of Southern California/Norris Comprehensive Cancer Center, Keck School of Medicine of the University of Southern California, Los Angeles, California, United States of America
- Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha, China
| | | | | | | | - Qianjin Lu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Christopher T. Workman
- Center for Biological Sequence Analysis, Technical University of Denmark, Lyngby, Denmark
| | - Gangning Liang
- Department of Biochemistry and Molecular Biology, University of Southern California/Norris Comprehensive Cancer Center, Keck School of Medicine of the University of Southern California, Los Angeles, California, United States of America
| | - Peter A. Jones
- Department of Biochemistry and Molecular Biology, University of Southern California/Norris Comprehensive Cancer Center, Keck School of Medicine of the University of Southern California, Los Angeles, California, United States of America
| | - Kirsten Grønbæk
- Department of Hematology, Rigshospitalet, Copenhagen, Denmark
- * E-mail:
| |
Collapse
|
536
|
Min H, Yoon S. Got target? Computational methods for microRNA target prediction and their extension. Exp Mol Med 2010; 42:233-44. [PMID: 20177143 DOI: 10.3858/emm.2010.42.4.032] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
MicroRNAs (miRNAs) are a class of small RNAs of 19-23 nucleotides that regulate gene expression through target mRNA degradation or translational gene silencing. The miRNAs are reported to be involved in many biological processes, and the discovery of miRNAs has been provided great impacts on computational biology as well as traditional biology. Most miRNA-associated computational methods comprise the prediction of miRNA genes and their targets, and increasing numbers of computational algorithms and web-based resources are being developed to fulfill the need of scientists performing miRNA research. Here we summarize the rules to predict miRNA targets and introduce some computational algorithms that have been developed for miRNA target prediction and the application of the methods. In addition, the issue of target gene validation in an experimental way will be discussed.
Collapse
Affiliation(s)
- Hyeyoung Min
- College of Pharmacy, Chung-Ang University, Seoul 156-756, Korea
| | | |
Collapse
|
537
|
Lu L, Katsaros D, Zhu Y, Hoffman A, Luca S, Marion CE, Mu L, Risch H, Yu H. Let-7a regulation of insulin-like growth factors in breast cancer. Breast Cancer Res Treat 2010; 126:687-94. [PMID: 20848182 DOI: 10.1007/s10549-010-1168-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Accepted: 09/04/2010] [Indexed: 12/01/2022]
Abstract
Expression of certain microRNA genes is regulated by DNA methylation, which in turn affects the activities of their downstream molecules. Our previous study showed that methylated let-7a-3 was associated with low IGF-II expression and favorable prognosis of ovarian cancer. The roles of let-7a-3 methylation in breast cancer and in regulation of IGF expression in the tumor are still unknown. Let-7a-3 methylation, IGF mRNAs, and peptides were analyzed in 348 breast cancer samples using quantitative methylation-specific PCR, qRT-PCR, and ELISA, respectively. The associations of let-7a-3 methylation with IGFs, disease features, and patient survivals were analyzed. In vitro experiments were performed using HeLa cells transfected with let-7a precursors to assess the effect of let-7a on IGF expression. Let-7a-3 methylation was detected frequently in breast cancer. An inverse correlation between let-7a-3 methylation and IGF expression was observed in breast cancer, which was similar to that seen in ovarian cancer. Our in vitro experiment showed that let-7a could increase IGF expression in cancer cells which had low endogenous let-7a. Let-7a-3 methylation was also found to be associated with high grade tumors and ER- or PR-negative cancer. However, let-7a-3 methylation was not associated with disease-free survival or overall survival of breast cancer patients. The study provides further evidence in support of the notion that epigenetic regulation of let-7a-3 may affect the actions of IGFs in cancer. Let-7a may up-regulate the expression of IGFs in cancer cells, which is different from its inhibitory effects on other oncogenes.
Collapse
Affiliation(s)
- Lingeng Lu
- Department of Epidemiology and Public Health, Yale Cancer Center, Yale University School of Medicine, 60 College Street, New Haven, CT 06520-8034, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
538
|
Cancer: evolutionary, genetic and epigenetic aspects. Clin Epigenetics 2010; 1:85-100. [PMID: 22704202 PMCID: PMC3365664 DOI: 10.1007/s13148-010-0010-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Accepted: 08/31/2010] [Indexed: 12/22/2022] Open
Abstract
There exist two paradigms about the nature of cancer. According to the generally accepted one, cancer is a by-product of design limitations of a multi-cellular organism (Greaves, Nat Rev Cancer 7:213–221, 2007). The essence of the second resides in the question “Does cancer kill the individual and save the species?” (Sommer, Hum Mutat 3:166–169, 1994). Recent data on genetic and epigenetic mechanisms of cell transformation summarized in this review support the latter point of view, namely that carcinogenesis is an evolutionary conserved phenomenon—a programmed death of an organism. It is assumed that cancer possesses an important function of altruistic nature: as a mediator of negative selection, it serves to preserve integrity of species gene pool and to mediate its evolutionary adjustment. Cancer fulfills its task due apparently to specific killer function, understanding mechanism of which may suggest new therapeutic strategy.
Collapse
|
539
|
CpG island hypermethylation-associated silencing of non-coding RNAs transcribed from ultraconserved regions in human cancer. Oncogene 2010; 29:6390-401. [PMID: 20802525 PMCID: PMC3007676 DOI: 10.1038/onc.2010.361] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Although only 1.5% of the human genome appears to code for proteins, much effort in cancer research has been devoted to this minimal fraction of our DNA. However, the last few years have witnessed the realization that a large class of non-coding RNAs (ncRNAs), named microRNAs, contribute to cancer development and progression by acting as oncogenes or tumor suppressor genes. Recent studies have also shown that epigenetic silencing of microRNAs with tumor suppressor features by CpG island hypermethylation is a common hallmark of human tumors. Thus, we wondered whether there were other ncRNAs undergoing aberrant DNA methylation-associated silencing in transformed cells. We focused on the transcribed-ultraconserved regions (T-UCRs), a subset of DNA sequences that are absolutely conserved between orthologous regions of the human, rat and mouse genomes and that are located in both intra- and intergenic regions. We used a pharmacological and genomic approach to reveal the possible existence of an aberrant epigenetic silencing pattern of T-UCRs by treating cancer cells with a DNA-demethylating agent followed by hybridization to an expression microarray containing these sequences. We observed that DNA hypomethylation induces release of T-UCR silencing in cancer cells. Among the T-UCRs that were reactivated upon drug treatment, Uc.160+, Uc283+A and Uc.346+ were found to undergo specific CpG island hypermethylation-associated silencing in cancer cells compared with normal tissues. The analysis of a large set of primary human tumors (n=283) demonstrated that hypermethylation of the described T-UCR CpG islands was a common event among the various tumor types. Our finding that, in addition to microRNAs, another class of ncRNAs (T-UCRs) undergoes DNA methylation-associated inactivation in transformed cells supports a model in which epigenetic and genetic alterations in coding and non-coding sequences cooperate in human tumorigenesis.
Collapse
|
540
|
Rauhala HE, Jalava SE, Isotalo J, Bracken H, Lehmusvaara S, Tammela TLJ, Oja H, Visakorpi T. miR-193b is an epigenetically regulated putative tumor suppressor in prostate cancer. Int J Cancer 2010; 127:1363-72. [PMID: 20073067 DOI: 10.1002/ijc.25162] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
miRNAs have proven to be key regulators of gene expression and are differentially expressed in various diseases, including cancer. Our aim was to identify epigenetically dysregulated genes in prostate cancer. We performed miRNA expression profiling after relieving epigenetic modifications in 6 prostate cancer cell lines and nonmalignant prostate epithelial cells. Thirty-eight miRNAs showed increased expression in any prostate cancer cell line after 5-aza-2'-deoxycytidine (5azadC) and trichostatin A (TSA) treatments. Six of these also had decreased expression in clinical prostate cancer samples compared to benign prostatic hyperplasia. Among these, miR-193b was methylated in 22Rv1 cell line at a CpG island approximately 1 kb upstream of the miRNA locus. Expressing miR-193b in 22Rv1 cells using pre-miR-193b oligonucleotides caused a significant growth reduction (p < 0.001) resulting from a decrease of cells in S-phase of the cell cycle (p < 0.01). In addition, the anchorage independent growth was partially inhibited in transiently miR-193b-expressing 22Rv1 cells (p < 0.01). Altogether, our data suggest that miR-193b is an epigenetically silenced putative tumor suppressor in prostate cancer.
Collapse
Affiliation(s)
- Hanna E Rauhala
- Institute of Medical Technology, University of Tampere and Tampere University Hospital, Tampere, Finland
| | | | | | | | | | | | | | | |
Collapse
|
541
|
Shookhoff JM, Gallicano GI. A new perspective on neural tube defects: folic acid and microRNA misexpression. Genesis 2010; 48:282-94. [PMID: 20229516 DOI: 10.1002/dvg.20623] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Neural tube defects (NTDs) are the second most common birth defects in the United States. It is well known that folic acid supplementation decreases about 70% of all NTDs, although the mechanism by which this occurs is still relatively unknown. The current theory is that folic acid deficiency ultimately leads to depletion of the methyl pool, leaving critical genes unmethylated, and, in turn, their improper expression leads to failure of normal neural tube development. Recently, new studies in human cell lines have shown that folic acid deficiency and DNA hypomethylation can lead to misexpression of microRNAs (miRNAs). Misexpression of critical miRNAs during neural development may lead to a subtle effect on neural gene regulation, causing the sometimes mild to severely debilitating range of phenotypes exhibited in NTDs. This review seeks to cohesively integrate current information regarding folic acid deficiency, methylation cycles, neural development, and miRNAs to propose a potential model of NTD formation. In addition, we have examined the relevant gene pathways and miRNAs that are predicted to affect them, and based on our investigation, we have devised a basic template of experiments for exploring the idea that miRNA misregulation may be linked to folic acid deficiency and NTDs.
Collapse
Affiliation(s)
- J M Shookhoff
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC 20057, USA
| | | |
Collapse
|
542
|
Balaguer F, Link A, Lozano JJ, Cuatrecasas M, Nagasaka T, Boland CR, Goel A. Epigenetic silencing of miR-137 is an early event in colorectal carcinogenesis. Cancer Res 2010; 70:6609-18. [PMID: 20682795 PMCID: PMC2922409 DOI: 10.1158/0008-5472.can-10-0622] [Citation(s) in RCA: 235] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Global downregulation of microRNAs (miRNA) is a common feature in colorectal cancer (CRC). Whereas CpG island hypermethylation constitutes a mechanism for miRNA silencing, this field largely remains unexplored. Herein, we describe the epigenetic regulation of miR-137 and its contribution to colorectal carcinogenesis. We determined the methylation status of miR-137 CpG island in a panel of six CRC cell lines and 409 colorectal tissues [21 normal colonic mucosa from healthy individuals (N-N), 160 primary CRC tissues and their corresponding normal mucosa (N-C), and 68 adenomas]. TaqMan reverse transcription-PCR and in situ hybridization were used to analyze miR-137 expression. In vitro functional analysis of miR-137 was performed. Gene targets of miR-137 were identified using a combination of bioinformatic and transcriptomic approaches. We experimentally validated the miRNA:mRNA interactions. Methylation of the miR-137 CpG island was a cancer-specific event and was frequently observed in CRC cell lines (100%), adenomas (82.3%), and CRC (81.4%), but not in N-C (14.4%; P < 0.0001 for CRC) and N-N (4.7%; P < 0.0001 for CRC). Expression of miR-137 was restricted to the colonocytes in normal mucosa and inversely correlated with the level of methylation. Transfection of miR-137 precursor in CRC cells significantly inhibited cell proliferation. Gene expression profiling after miR-137 transfection discovered novel potential mRNA targets. We validated the interaction between miR-137 and LSD-1. Our data indicate that miR-137 acts as a tumor suppressor in the colon and is frequently silenced by promoter hypermethylation. Methylation silencing of miR-137 in colorectal adenomas suggests it to be an early event, which has prognostic and therapeutic implications.
Collapse
Affiliation(s)
- Francesc Balaguer
- Department of Internal Medicine, Division of Gastroenterology, Charles A. Sammons Cancer Center and Baylor Research Institute, Baylor University Medical Center, Dallas, USA
- Department of Gastroenterology, Institut de Malalties Digestives i Metabòliques, Hospital Clínic, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), IDIBAPS, University of Barcelona, Barcelona, Catalonia, Spain
| | - Alexander Link
- Department of Internal Medicine, Division of Gastroenterology, Charles A. Sammons Cancer Center and Baylor Research Institute, Baylor University Medical Center, Dallas, USA
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University, Magdeburg, Germany
| | - Juan Jose Lozano
- Plataforma de Bioinformática, CIBEREHD, Barcelona, Catalonia, Spain
| | - Miriam Cuatrecasas
- Department of Pathology, Centre de Diagnòstic Biomèdic, Hospital Clínic, IDIBAPS, University of Barcelona, Barcelona, Catalonia, Spain
| | - Takeshi Nagasaka
- Department of Gastroenterological Surgery and Surgical Oncology, Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - C. Richard Boland
- Department of Internal Medicine, Division of Gastroenterology, Charles A. Sammons Cancer Center and Baylor Research Institute, Baylor University Medical Center, Dallas, USA
| | - Ajay Goel
- Department of Internal Medicine, Division of Gastroenterology, Charles A. Sammons Cancer Center and Baylor Research Institute, Baylor University Medical Center, Dallas, USA
| |
Collapse
|
543
|
Melo SA, Esteller M. Dysregulation of microRNAs in cancer: playing with fire. FEBS Lett 2010; 585:2087-99. [PMID: 20708002 DOI: 10.1016/j.febslet.2010.08.009] [Citation(s) in RCA: 228] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 08/03/2010] [Accepted: 08/05/2010] [Indexed: 12/13/2022]
Abstract
MicroRNAs have emerged as key post-transcriptional regulators of gene expression, involved in various physiological and pathological processes. It was found that several miRNAs are directly involved in human cancers, including lung, breast, brain, liver, colon cancer and leukemia. In addition, some miRNAs may function as oncogenes or tumor suppressors in tumor development. Furthermore, a widespread down-regulation of miRNAs is commonly observed in human cancers and promotes cellular transformation and tumorigenesis. More than 50% of miRNA genes are located in cancer-associated genomic regions or in fragile sites, frequently amplified or deleted in human cancer, suggesting an important role in malignant transformation. A better understanding of the miRNA regulation and misexpression in cancer may ultimately yield further insight into the molecular mechanisms of tumorigenesis and new therapeutic strategies may arise against cancer. Here, we discuss the occurrence of the deregulated expression of miRNAs in human cancers and their importance in the tumorigenic process.
Collapse
Affiliation(s)
- Sonia A Melo
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Catalonia, Spain
| | | |
Collapse
|
544
|
Huang THM, Esteller M. Chromatin remodeling in mammary gland differentiation and breast tumorigenesis. Cold Spring Harb Perspect Biol 2010; 2:a004515. [PMID: 20610549 DOI: 10.1101/cshperspect.a004515] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
DNA methylation and histone modifications have essential roles in remodeling chromatin structure of genes necessary for multi-lineage differentiation of mammary stem/progenitor cells. The role of this well-defined epigenetic programming is to heritably maintain transcriptional plasticity of these loci over multiple cell divisions in the differentiated progeny. Epigenetic events can be deregulated in progenitor cells chronically exposed to xenoestrogen or inflammatory microenvironment. In addition, epigenetically mediated silencing of genes associated with tumor suppression can take place, resulting in clonal proliferation of undifferentiated or semidifferentiated cells. Alternatively, microRNAs that negatively regulate the expression of their protein-coding targets may become epigenetically repressed, leading to oncogenic expression of these genes. Here we further discuss interactions between DNA methylation and histone modifications that have significant contributions to the differentiation of mammary stem/progenitor cells and to tumor initiation and progression.
Collapse
Affiliation(s)
- Tim H-M Huang
- Human Cancer Genetics Program, Department of Molecular Virology, Immunology, and Medical Genetics, The Ohio State University, Columbus, Ohio 43220, USA.
| | | |
Collapse
|
545
|
Hanoun N, Delpu Y, Suriawinata AA, Bournet B, Bureau C, Selves J, Tsongalis GJ, Dufresne M, Buscail L, Cordelier P, Torrisani J. The Silencing of MicroRNA 148a Production by DNA Hypermethylation Is an Early Event in Pancreatic Carcinogenesis. Clin Chem 2010; 56:1107-18. [PMID: 20431052 DOI: 10.1373/clinchem.2010.144709] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Abstract
Background: The poor prognosis of pancreatic ductal adenocarcinoma (PDAC) is accounted for by the absence of early diagnostic markers and effective treatments. MicroRNAs inhibit the translation of their target mRNAs. The production of microRNAs is strongly altered in cancers, but the causes of these alterations are only partially known. DNA hypermethylation is a major cause of gene inactivation in cancer. Our aims were to identify microRNAs whose gene expression is inactivated by hypermethylation in PDAC and to determine whether this hypermethylation-mediated repression is an early event during pancreatic carcinogenesis. We also sought to investigate whether these differentially methylated regions can serve as a diagnostic marker for PDAC.
Methods: MicroRNA production was measured by microarray hybridization and reverse-transcription quantitative PCR. The level of DNA methylation was measured by bisulfite mapping and semiquantitative methylation-specific PCR.
Results: We identified 29 microRNAs encoded by genes whose expression is potentially inactivated by DNA hypermethylation. We focused our study on microRNA 148a (miR-148a) and found its production to be repressed, not only in PDAC samples but also in preneoplastic pancreatic intraepithelial neoplasia (PanIN) lesions. More importantly, we found that hypermethylation of the DNA region encoding miR-148a is responsible for its repression, which occurs in PanIN preneoplastic lesions. Finally, we show that the hypermethylated DNA region encoding miR-148a can serve as an ancillary marker for the differential diagnosis of PDAC and chronic pancreatitis (CP).
Conclusions: We show that the hypermethylation of the DNA region encoding miR-148a is responsible for its repression in PDAC precursor lesions and can be a useful tool for the differential diagnosis of PDAC and CP.
Collapse
Affiliation(s)
- Naïma Hanoun
- INSERM, U858, Toulouse, France
- Université de Toulouse, Université Paul Sabatier, Institut de Médecine Moléculaire de Rangueil, IFR150, Toulouse, France
| | - Yannick Delpu
- INSERM, U858, Toulouse, France
- Université de Toulouse, Université Paul Sabatier, Institut de Médecine Moléculaire de Rangueil, IFR150, Toulouse, France
| | - Arief A Suriawinata
- Dartmouth Medical School, Dartmouth Hitchcock Medical Center and Norris Cotton Cancer Center, Lebanon, NH
| | - Barbara Bournet
- INSERM, U858, Toulouse, France
- CHU de Toulouse, Service de Gastroentérologie, Toulouse, France
| | - Christophe Bureau
- INSERM, U858, Toulouse, France
- Université de Toulouse, Université Paul Sabatier, Institut de Médecine Moléculaire de Rangueil, IFR150, Toulouse, France
- Service d’Hépato-Gastroentérologie, Fédération Digestive de Purpan, CHU Toulouse, Toulouse, France
| | - Janick Selves
- INSERM, U563, Centre de Physiopathologie de Toulouse-Purpan, Toulouse, France
- Université Paul Sabatier, Toulouse, France
- Laboratoire d’Anatomie Pathologique, CHU Purpan, Toulouse, France
| | - Gregory J Tsongalis
- Dartmouth Medical School, Dartmouth Hitchcock Medical Center and Norris Cotton Cancer Center, Lebanon, NH
| | - Marlène Dufresne
- INSERM, U858, Toulouse, France
- Université de Toulouse, Université Paul Sabatier, Institut de Médecine Moléculaire de Rangueil, IFR150, Toulouse, France
| | - Louis Buscail
- INSERM, U858, Toulouse, France
- Université de Toulouse, Université Paul Sabatier, Institut de Médecine Moléculaire de Rangueil, IFR150, Toulouse, France
- CHU de Toulouse, Service de Gastroentérologie, Toulouse, France
| | - Pierre Cordelier
- INSERM, U858, Toulouse, France
- Université de Toulouse, Université Paul Sabatier, Institut de Médecine Moléculaire de Rangueil, IFR150, Toulouse, France
| | - Jérôme Torrisani
- INSERM, U858, Toulouse, France
- Université de Toulouse, Université Paul Sabatier, Institut de Médecine Moléculaire de Rangueil, IFR150, Toulouse, France
| |
Collapse
|
546
|
Martinez R, Esteller M. The DNA methylome of glioblastoma multiforme. Neurobiol Dis 2010; 39:40-6. [DOI: 10.1016/j.nbd.2009.12.030] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Revised: 12/21/2009] [Accepted: 12/30/2009] [Indexed: 12/14/2022] Open
|
547
|
Li A, Omura N, Hong SM, Vincent A, Walter K, Griffith M, Borges M, Goggins M. Pancreatic cancers epigenetically silence SIP1 and hypomethylate and overexpress miR-200a/200b in association with elevated circulating miR-200a and miR-200b levels. Cancer Res 2010; 70:5226-37. [PMID: 20551052 PMCID: PMC3130565 DOI: 10.1158/0008-5472.can-09-4227] [Citation(s) in RCA: 240] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Aberrant DNA methylation and microRNA expression play important roles in the pathogenesis of pancreatic cancer. While interrogating differentially methylated CpG islands in pancreatic cancer, we identified two members of miR-200 family, miR-200a and miR-200b, that were hypomethylated and overexpressed in pancreatic cancer. We also identified prevalent hypermethylation and silencing of one of their downstream targets, SIP1 (ZFHX1B, ZEB2), whose protein product suppresses E-cadherin expression and contributes to epithelial mesenchymal transition. In a panel of 23 pancreatic cell lines, we observed a reciprocal correlation between miR-200, SIP1, and E-cadherin expression, with pancreatic cancer-associated fibroblasts showing the opposite expression pattern to most pancreatic cancers. In Panc-1 cells, which express SIP1, have low E-cadherin expression, and do not express miR-200a or miR-200b, treatment with miR-200a and miR-200b downregulated SIP1 mRNA and increased E-cadherin expression. However, most pancreatic cancers express miR-200a and miR-200b, but this expression does not affect SIP1 expression, as the SIP1 promoter is silenced by hypermethylation and in these cancers E-cadherin is generally expressed. Both miR-200a and miR-200b were significantly elevated in the sera of pancreatic cancer and chronic pancreatitis patients compared with healthy controls (P < 0.0001), yielding receiver operating characteristic curve areas of 0.861 and 0.85, respectively. In conclusion, most pancreatic cancers display hypomethylation and overexpression of miR-200a and miR-200b, silencing of SIP1 by promoter methylation, and retention of E-cadherin expression. The elevated serum levels of miR-200a and miR-200b in most patients with pancreatic cancer could have diagnostic utility.
Collapse
Affiliation(s)
- Ang Li
- Department of Pathology, the Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University, Baltimore, MD, USA
| | - Noriyuki Omura
- Department of Pathology, the Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University, Baltimore, MD, USA
| | - Seung-Mo Hong
- Department of Pathology, the Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University, Baltimore, MD, USA
| | - Audrey Vincent
- Department of Pathology, the Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University, Baltimore, MD, USA
| | - Kimberly Walter
- Department of Pathology, the Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University, Baltimore, MD, USA
| | - Margaret Griffith
- Department of Pathology, the Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University, Baltimore, MD, USA
| | - Michael Borges
- Department of Pathology, the Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University, Baltimore, MD, USA
| | - Michael Goggins
- Department of Pathology, the Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University, Baltimore, MD, USA
- Department of Oncology, the Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University, Baltimore, MD, USA
- Department of Medicine, the Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
548
|
Suzuki M, Yoshino I. Aberrant methylation in non-small cell lung cancer. Surg Today 2010; 40:602-7. [DOI: 10.1007/s00595-009-4094-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Accepted: 02/16/2009] [Indexed: 01/15/2023]
|
549
|
Wilting SM, van Boerdonk RAA, Henken FE, Meijer CJLM, Diosdado B, Meijer GA, le Sage C, Agami R, Snijders PJF, Steenbergen RDM. Methylation-mediated silencing and tumour suppressive function of hsa-miR-124 in cervical cancer. Mol Cancer 2010; 9:167. [PMID: 20579385 PMCID: PMC2917428 DOI: 10.1186/1476-4598-9-167] [Citation(s) in RCA: 200] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Accepted: 06/26/2010] [Indexed: 01/24/2023] Open
Abstract
Background A substantial number of microRNAs (miRNAs) is subject to epigenetic silencing in cancer. Although epigenetic silencing of tumour suppressor genes is an important feature of cervical cancer, little is known about epigenetic silencing of miRNAs. Since DNA methylation-based silencing of hsa-miR-124 occurs in various human cancers, we studied the frequency and functional effects of hsa-miR-124 methylation in cervical carcinogenesis. Results Quantitative MSP analysis of all 3 loci encoding the mature hsa-miR-124 (hsa-miR-124-1/-2/-3) showed methylation in cervical cancer cell lines SiHa, CaSki and HeLa as well as in late passages of human papillomavirus (HPV) type 16 or 18 immortalised keratinocytes. Treatment of SiHa cells with a demethylating agent reduced hsa-miR-124 methylation levels and induced hsa-miR-124 expression. In HPV-immortalised keratinocytes increased methylation levels were related to reduced hsa-miR-124 expression and higher mRNA expression of IGFBP7, a potential hsa-miR-124 target gene. Ectopic hsa-miR-124 expression in SiHa and CaSki cells decreased proliferation rates and migratory capacity. Combined hsa-miR-124-1 and/or hsa-miR-124-2 methylation analysis of 139 cervical tissue specimens showed an increasing methylation frequency from 0% in normal tissues up to 93% in cervical carcinomas. Increased methylation levels of hsa-miR-124-1 and hsa-miR-124-2 were significantly correlated with reduced hsa-miR-124 expression in cervical tissue specimens. Combined hsa-miR-124-1 and/or hsa-miR-124-2 methylation analysis of 43 cervical scrapes of high-risk HPV positive women was predictive of underlying high-grade lesions. Conclusions DNA methylation-based silencing of hsa-miR-124 is functionally involved in cervical carcinogenesis and may provide a valuable marker for improved detection of cervical cancer and its high-grade precursor lesions.
Collapse
Affiliation(s)
- Saskia M Wilting
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
550
|
Chira P, Vareli K, Sainis I, Papandreou C, Briasoulis E. Alterations of MicroRNAs in Solid Cancers and Their Prognostic Value. Cancers (Basel) 2010; 2:1328-53. [PMID: 24281118 PMCID: PMC3835132 DOI: 10.3390/cancers2021328] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Revised: 06/02/2010] [Accepted: 06/10/2010] [Indexed: 12/18/2022] Open
Abstract
MicroRNAs (miRNAs) are evolutionarily conserved, naturally abundant, small, regulatory non-coding RNAs that inhibit gene expression at the post-transcriptional level in a sequence-specific manner. Each miRNA represses the protein expression of several coding genes in a manner proportional to the sequence complementarity with the target transcripts. MicroRNAs play key regulatory roles in organismal development and homeostasis. They control fundamental biological processes, such as stem-cell regulation and cellular metabolism, proliferation, differentiation, stress resistance, and apoptosis. Differential miRNA expression is found in malignant tumors in comparison to normal tissue counterparts. This indicates that miRNA deregulation contributes to the initiation and progression of cancer. Currently, miRNA expression signatures are being rigorously investigated in various tumor types, with the aim of developing novel, efficient biomarkers that can improve clinical management of cancer patients. This review discusses deregulated miRNAs in solid tumors, and focuses on their emerging prognostic potential.
Collapse
Affiliation(s)
- Panagiota Chira
- Human Cancer Biobank Center, University of Ioannina, University Campus, Ioannina 45110, Greece; E-Mails: (P.C.); (K.V.); (I.S.)
- Biomedical Research Institute, Foundation for Research & Technology, University Campus, Ioannina 45110, Greece
| | - Katerina Vareli
- Human Cancer Biobank Center, University of Ioannina, University Campus, Ioannina 45110, Greece; E-Mails: (P.C.); (K.V.); (I.S.)
- Department of Biological Applications and Technologies, University of Ioannina, University Campus, Ioannina 45110, Greece
| | - Ioannis Sainis
- Human Cancer Biobank Center, University of Ioannina, University Campus, Ioannina 45110, Greece; E-Mails: (P.C.); (K.V.); (I.S.)
| | - Christos Papandreou
- School of Medicine, University of Thessaly, 22 Papakiriazi, Larissa 41222, Greece; E-Mail: (C.P.)
| | - Evangelos Briasoulis
- Human Cancer Biobank Center, University of Ioannina, University Campus, Ioannina 45110, Greece; E-Mails: (P.C.); (K.V.); (I.S.)
- School of Medicine, University of Ioannina, University Campus, Ioannina 45110, Greece
- Author to whom correspondence should be addressed; E-Mail: or ; Tel.: +30-265-100-7713; Fax: +30-265-100-8087
| |
Collapse
|