551
|
Yamashita H, Sugihara K, Yamada C, Tsutsumi S, Iwaki Y. Effect of estrogen on electroretinographic responses in streptozotocin-induced diabetic female rats. Exp Eye Res 2010; 90:591-7. [PMID: 20153747 DOI: 10.1016/j.exer.2010.02.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Revised: 02/02/2010] [Accepted: 02/06/2010] [Indexed: 10/19/2022]
Abstract
The aim of this study is to investigate the effects of estrogen on functional changes in the retinas of streptozotocin (STZ)-induced diabetic rats by using an electroretinography. Female rats were randomly divided into four treatment groups: (1) Control (sham operation and vehicle administration); (2) STZ (sham operation and STZ administration); (3) OVX (ovariectomy and vehicle administration); and (4) OVX + STZ (ovariectomy and STZ administration). Full-field electroretinograms (ERGs) were recorded before OVX and STZ administration and 4 and 12 weeks after STZ administration. At 4 weeks after STZ administration, although there were no differences in the STZ and OVX groups compared with the Control group, the amplitude of the cone-response was significantly lower in the OVX + STZ group than in the Control group (P = 0.013). At 12 weeks after STZ administration, this response showed a similar tendency in the STZ and the OVX + STZ groups. At 12 weeks after STZ administration, the implicit times of OP3 and OP4 and of the cone-response were significantly delayed in the STZ and OVX + STZ groups (OP3: P = 0.030 and 0.050, OP4: P = 0.0060 and 0.0053, cone-response: P = 0.014 and 0.039), compared with in the Control group. Thus, the retinal functions in STZ-induced diabetic female rats were aggravated by OVX. OVX-induced estrogen deficiency resulted in earlier changes in the amplitudes of cone-response, especially in the diabetes, although this is a transient effect and it is difficult to explain. Recognizing the early neurosensory change would enable a better understanding of the effect of estrogen in the retina.
Collapse
Affiliation(s)
- Haruhiro Yamashita
- Drug Safety Laboratory, Drug Safety and Pharmacokinetics Laboratories, Taisho Pharmaceutical Co., Ltd., 403 Yoshino-cho 1, Kita-ku, Saitama-shi, Saitama 331-9530, Japan.
| | | | | | | | | |
Collapse
|
552
|
Pereira TDOS, da Costa GNF, Santiago ARS, Ambrósio AF, dos Santos PFM. High glucose enhances intracellular Ca2+ responses triggered by purinergic stimulation in retinal neurons and microglia. Brain Res 2010; 1316:129-38. [DOI: 10.1016/j.brainres.2009.12.034] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Revised: 12/11/2009] [Accepted: 12/12/2009] [Indexed: 01/06/2023]
|
553
|
Quantitative measurements of the optokinetic response in adult fish. J Neurosci Methods 2010; 186:29-34. [DOI: 10.1016/j.jneumeth.2009.10.020] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2009] [Revised: 10/27/2009] [Accepted: 10/28/2009] [Indexed: 11/23/2022]
|
554
|
|
555
|
|
556
|
Blair NP, Wanek JM, Mori M, Shahidi M. Abnormal retinal vascular oxygen tension response to light flicker in diabetic rats. Invest Ophthalmol Vis Sci 2009; 50:5444-8. [PMID: 19553624 PMCID: PMC2879646 DOI: 10.1167/iovs.09-3465] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To test the hypothesis that the intravascular oxygen response to light flicker is abnormal in diabetes. METHODS Ten eyes of normal rats and 10 eyes of rats made diabetic with streptozotocin were examined. Oxygen tension (PO(2)) was measured noninvasively in the retinal arteries and veins on optical section retinal images. PO(2) was estimated based on the quenching by oxygen of the phosphorescence of an intravenously injected palladium porphyrin molecular probe. Measurements were conducted with and without light flicker at 10 Hz. Oxygen saturation (SO(2)) was calculated with adjustment for the arterial pH. RESULTS In the normal rats flicker induced an increase in arterial PO(2) and in the difference in arterial and venous (A-V difference) PO(2) from 51 +/- 5 (mean and SD) to 55 +/- 7 mm Hg and from 22 +/- 3 to 26 +/- 5 mm Hg, respectively (P < 0.002 and 0.015, respectively). Flicker induced an increase of arterial SO(2) and A-V SO(2) difference from 64% +/- 8% to 68% +/- 7% and from 34% +/- 4% to 38% +/- 6%, respectively (P < 0.002 and 0.035, respectively). No changes in PO(2) or SO(2) were observed with flicker in the veins. In the diabetic rats, no significant flicker-induced changes were seen in PO(2) or SO(2) in the retinal arteries, veins, or A-V differences. CONCLUSIONS The diabetic rats lacked the flicker induced increase in arterial PO(2) and SO(2) and also the A-V difference in PO(2) and SO(2) observed in the normal rats. The best explanation appeared to be that diabetes impairs the increase in oxygen consumption normally provoked by light flicker.
Collapse
Affiliation(s)
- Norman P Blair
- Department of Ophthalmology and Visual Sciences; University of Illinois at Chicago, Chicago, Illinois 60612, USA.
| | | | | | | |
Collapse
|
557
|
Burgess HA, Johnson SL, Granato M. Unidirectional startle responses and disrupted left-right co-ordination of motor behaviors in robo3 mutant zebrafish. GENES, BRAIN, AND BEHAVIOR 2009; 8:500-11. [PMID: 19496826 PMCID: PMC2752477 DOI: 10.1111/j.1601-183x.2009.00499.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The Roundabout (Robo) family of receptors and their Slit ligands play well-established roles in axonal guidance, including in humans where horizontal gaze palsy with progressive scoliosis (HGPPS) is caused by mutations in the robo3 gene. Although significant progress has been made toward understanding the mechanism by which Robo receptors establish commissural projections in the central nervous system, less is known about how these projections contribute to neural circuits mediating behavior. In this study, we report cloning of the zebrafish behavioral mutant twitch twice and show that twitch twice encodes robo3. We show that in mutant hindbrains the axons of an identified pair of neurons, the Mauthner cells, fail to cross the midline. The Mauthner neurons are essential for the startle response, and in twitch twice/robo3 mutants misguidance of the Mauthner axons results in a unidirectional startle response. Moreover, we show that twitch twice mutants exhibit normal visual acuity but display defects in horizontal eye movements, suggesting a specific and critical role for twitch twice/robo3 in sensory-guided behavior.
Collapse
Affiliation(s)
- Harold A. Burgess
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104−6058
| | - Stephen L. Johnson
- Department of Genetics, Box 9232, Washington University Medical School, St. Louis, MO 63110
| | - Michael Granato
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104−6058
| |
Collapse
|
558
|
Bui BV, Loeliger M, Thomas M, Vingrys AJ, Rees SM, Nguyen CTO, He Z, Tolcos M. Investigating structural and biochemical correlates of ganglion cell dysfunction in streptozotocin-induced diabetic rats. Exp Eye Res 2009; 88:1076-83. [PMID: 19450451 DOI: 10.1016/j.exer.2009.01.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2008] [Revised: 01/15/2009] [Accepted: 01/19/2009] [Indexed: 11/30/2022]
Abstract
The aim of this study was to determine whether inner retinal dysfunction in diabetic rats is correlated with structural and/or biochemical changes in the retina and optic nerve. Using the electroretinogram (ERG; -5.83 to 1.28 log cd.s.m(-2)) retinal function (photoreceptor, bipolar, amacrine and ganglion cell components) was measured in control (n=13; citrate buffer) and diabetic (n=13; streptozotocin, STZ, 50 mg kg(-1)) rats, 12 weeks following treatment. Retinae and optic nerves were analyzed for structural changes and retinae were assessed for alterations in growth factor/cytokine expression using quantitative real-time PCR. We found that phototransduction efficiency was reduced 12 weeks after STZ-induced diabetes (-30%), leading to reduced amplitude of ON-bipolar (-18%) and amacrine cell (-29%) dominated responses; ganglion cell dysfunction (-84%) was more profound. In the optic nerve, nerve fascicle area and myelin sheath thickness were reduced (p<0.05), whereas the ratio of blood vessels and connective tissue to total nerve cross-sectional area was increased (p<0.05) in diabetic compared to control rats. In the retina, connective tissue growth factor (CTGF), transforming growth factor beta, type 2 receptor (TGFbeta-r2) mRNA and platelet-derived growth factor B (PDGF-B) mRNA were increased (p<0.035). Reduced ganglion cell function was correlated with increased CTGF and TGFbeta-r2, but not PDGF-B mRNA. In summary, the ganglion cell component exhibited the greatest level of dysfunction within the ERG components examined after 12 weeks of STZ-induced diabetes; the level correlated with increased CTGF and TGFbeta-r2 mRNA, but not with gross morphological changes in the retina or optic nerve.
Collapse
Affiliation(s)
- Bang V Bui
- Department of Optometry & Vision Sciences, University of Melbourne, Parkville, Victoria 3010, Australia
| | | | | | | | | | | | | | | |
Collapse
|
559
|
Chebib M, Hinton T, Schmid KL, Brinkworth D, Qian H, Matos S, Kim HL, Abdel-Halim H, Kumar RJ, Johnston GAR, Hanrahan JR. Novel, potent, and selective GABAC antagonists inhibit myopia development and facilitate learning and memory. J Pharmacol Exp Ther 2009; 328:448-57. [PMID: 18984654 PMCID: PMC2630368 DOI: 10.1124/jpet.108.146464] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2008] [Accepted: 11/03/2008] [Indexed: 11/22/2022] Open
Abstract
This study reports pharmacological and physiological effects of cis- and trans-(3-aminocyclopentanyl)butylphosphinic acid (cis- and trans-3-ACPBPA). These compounds are conformationally restricted analogs of the orally active GABA(B/C) receptor antagonist (3-aminopropyl)-n-butylphosphinic acid (CGP36742 or SGS742). cis-[IC(50)(rho1) = 5.06 microM and IC(50)(rho2) = 11.08 microM; n = 4] and trans-3-ACPMPA [IC(50)(rho1) = 72.58 microM and IC(50)(rho2) = 189.7 microM; n = 4] seem competitive at GABA(C) receptors expressed in Xenopus laevis oocytes, having no effect as agonists (1 mM) but exerting weak antagonist (1 mM) effects on human GABA(A) and GABA(B) receptors. cis-3-ACPBPA was more potent and selective than the trans-compound, being more than 100 times more potent at GABA(C) than GABA(A) or GABA(B) receptors. cis-3-ACPBPA was further evaluated on dissociated rat retinal bipolar cells and dose-dependently inhibited the native GABA(C) receptor (IC(50) = 47 +/- 4.5 microM; n = 6). When applied to the eye as intravitreal injections, cis- and trans-3-ACPBPA prevented experimental myopia development and inhibited the associated vitreous chamber elongation, in a dose-dependent manner in the chick model. Doses only 10 times greater than required to inhibit recombinant GABA(C) receptors caused the antimyopia effects. Using intraperitoneal administration, cis- (30 mg/kg) and trans-3-ACPBPA (100 mg/kg) enhanced learning and memory in male Wistar rats; compared with vehicle there was a significant reduction in time for rats to find the platform in the Morris water maze task (p < 0.05; n = 10). As the physiological effects of cis- and trans-3-ACPBPA are similar to those reported for CGP36742, the memory and refractive effects of CGP36742 may be due in part to its GABA(C) activity.
Collapse
Affiliation(s)
- Mary Chebib
- Faculty of Pharmacy A15, The University of Sydney, Sydney, NSW 2006, Australia.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
560
|
VanGuilder HD, Brucklacher RM, Patel K, Ellis RW, Freeman WM, Barber AJ. Diabetes downregulates presynaptic proteins and reduces basal synapsin I phosphorylation in rat retina. Eur J Neurosci 2008; 28:1-11. [DOI: 10.1111/j.1460-9568.2008.06322.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
561
|
Qian H, Shah MR, Alexander KR, Ripps H. Two distinct processes are evident in rat cone flicker ERG responses at low and high temporal frequencies. Exp Eye Res 2008; 87:71-5. [PMID: 18555992 PMCID: PMC2556988 DOI: 10.1016/j.exer.2008.04.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2008] [Accepted: 04/22/2008] [Indexed: 10/22/2022]
Abstract
The electroretinogram (ERG) provides a noninvasive, objective measure of retinal function, and is one of the most widely used diagnostic tools in the study of visual disorders. Although rodents are often used in the study of retinal disease, the properties of the flicker ERG of the rodent retina have not been fully characterized. Here, we show that the fundamental response of the rat ERG to sine-wave flicker exhibited a low-pass pattern in the frequency range from 2 to 30 Hz, whereas the second harmonic (F2) showed a more complex frequency-response relation. The F2 component represented only a small fraction of the ERG response at low temporal frequencies (below 12 Hz), but it made a substantial contribution to responses at high frequencies. The contrast-response relation was linear when tested with a low-frequency (6 Hz) stimulus, but saturated in response to a high-frequency (20 Hz) stimulus. After intravitreal injection of L-AP4, a specific blocker of the retinal ON pathway, the flicker responses elicited by either 6- or 20-Hz stimuli were greatly reduced in amplitude, whereas only a very slight enhancement was seen after the application of PDA, a drug that blocks retinal OFF-pathway activity. Based on the observed differences in the degree of nonlinearity, and contrast-response properties of the rat flicker ERG at low and high frequencies, as well as the pharmacological results, we postulate that sustained and transient ON bipolar cells generate the flicker ERG responses elicited at low and high temporal frequencies, respectively.
Collapse
Affiliation(s)
- Haohua Qian
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA.
| | | | | | | |
Collapse
|
562
|
Abstract
Diabetic retinopathy has long been recognized as a vascular disease that develops in most patients, and it was believed that the visual dysfunction that develops in some diabetics was due to the vascular lesions used to characterize the disease. It is becoming increasingly clear that neuronal cells of the retina also are affected by diabetes, resulting in dysfunction and even degeneration of some neuronal cells. Retinal ganglion cells (RGCs) are the best studied of the retinal neurons with respect to the effect of diabetes. Although investigations are providing new information about RGCs in diabetes, including therapies to inhibit the neurodegeneration, critical information about the function, anatomy and response properties of these cells is yet needed to understand the relationship between RGC changes and visual dysfunction in diabetes.
Collapse
Affiliation(s)
- Timothy S Kern
- Center for Diabetes Research, Department of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA.
| | | |
Collapse
|
563
|
Decanini A, Karunadharma PP, Nordgaard CL, Feng X, Olsen TW, Ferrington DA. Human retinal pigment epithelium proteome changes in early diabetes. Diabetologia 2008; 51:1051-61. [PMID: 18414830 PMCID: PMC4397501 DOI: 10.1007/s00125-008-0991-2] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2007] [Accepted: 02/21/2008] [Indexed: 02/07/2023]
Abstract
AIMS/HYPOTHESIS Diabetic retinopathy is the most common complication of diabetes and a leading cause of blindness among working-age adults. Anatomical and functional changes occur in the retina and retinal pigment epithelium (RPE) prior to clinical symptoms of the disease. However, the molecular mechanisms responsible for these early changes, particularly in the RPE, remain unclear. To begin defining the molecular changes associated with pre-retinopathic diabetes, we conducted a comparative proteomics study of human donor RPE. METHODS The RPE was dissected from diabetic human donor eyes with no clinically apparent diabetic retinopathy (n=6) and from eyes of age-matched control donors (n=17). Soluble proteins were separated based upon their mass and charge using two-dimensional (2-D) gel electrophoresis. Protein spots were visualised with a fluorescent dye and spot densities were compared between diabetic and control gels. Proteins from spots with significant disease-related changes in density were identified using mass spectrometry. RESULTS Analysis of 325 spots on 2-D gels identified 31 spots that were either up- or downregulated relative to those from age-matched control donors. The protein identity of 18 spots was determined by mass spectrometry. A majority of altered proteins belonged to two major functional groups, metabolism and chaperones, while other affected categories included protein degradation, synthesis and transport, oxidoreductases, cytoskeletal structure and retinoid metabolism. CONCLUSIONS/INTERPRETATION Changes identified in the RPE proteome of pre-retinopathic diabetic donor eyes compared with age-matched controls suggest specific cellular alterations that may contribute to diabetic retinopathy. Defining the pre-retinopathic changes affecting the RPE could provide important insight into the molecular events that lead to this disease.
Collapse
Affiliation(s)
- A. Decanini
- Department of Ophthalmology, University of Minnesota Twin Cities, Minneapolis, MN 55455
| | - P. P. Karunadharma
- Department of Ophthalmology, University of Minnesota Twin Cities, Minneapolis, MN 55455
- Department of Graduate Program in Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Twin Cities, Minneapolis, MN 55455
| | - C. L. Nordgaard
- Department of Ophthalmology, University of Minnesota Twin Cities, Minneapolis, MN 55455
| | - X. Feng
- Department of Ophthalmology, University of Minnesota Twin Cities, Minneapolis, MN 55455
| | - T. W. Olsen
- Department of Ophthalmology, University of Minnesota Twin Cities, Minneapolis, MN 55455
| | - D. A. Ferrington
- Department of Ophthalmology, University of Minnesota Twin Cities, Minneapolis, MN 55455
- Department of Graduate Program in Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Twin Cities, Minneapolis, MN 55455
- Corresponding Author: University of Minnesota, 380 Lions Research Bldg., 2001 6 St SE, Minneapolis MN 55455 Telephone: (612) 624-8267. Fax (612) 626-0781,
| |
Collapse
|
564
|
Xie A, Song X, Ripps H, Qian H. Cyclothiazide: a subunit-specific inhibitor of GABAC receptors. J Physiol 2008; 586:2743-52. [PMID: 18420703 DOI: 10.1113/jphysiol.2008.153346] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
We tested the effects of cyclothiazide (CTZ), an agent used to block desensitization of AMPA-type glutamate receptors, on heterologously expressed GABA(C) receptors formed by homomeric rho subunits. CTZ inhibition of GABA(C) receptors was subunit specific; it produced a dose-dependent reduction of the GABA-elicited current on homomeric rho2 receptors with an IC(50) of about 12 microm, but had no significant effect on homomeric rho1 receptors. This differential sensitivity was attributable to a single amino acid located on the second transmembrane domain of the rho subunits. Mutating the residue at this position from serine to proline on the rho2 subunit eliminated CTZ sensitivity, whereas switching proline to serine on the rho1 subunit made the receptor CTZ sensitive. The inhibitory properties of CTZ were consistent with its action as a channel blocker on the receptors formed by rho2 subunits. The effect showed a small degree of voltage dependence, and was due mainly to a non-competitive mechanism that reduced the maximum response elicited by GABA. In addition, the prominent membrane current rebound when co-application of GABA and CTZ was terminated suggests that the binding site for CTZ on the GABA(C) receptor is distinct from that for GABA, and that CTZ acts as a non-competitive antagonist on the GABA(C) receptor. CTZ inhibited the open channel of the GABA(C) receptor with a time constant of about 0.4 s, but the kinetics were approximately 10-fold slower when GABA is absent. The ability of CTZ to interact with various types of neurotransmitter receptors indicates that the drug has multiple actions in the CNS.
Collapse
Affiliation(s)
- An Xie
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, 1855 W. Taylor Street, Chicago, IL 60612, USA
| | | | | | | |
Collapse
|
565
|
Ramsey DJ, Ripps H, Qian H. Streptozotocin-induced diabetes modulates GABA receptor activity of rat retinal neurons. Exp Eye Res 2007; 85:413-22. [PMID: 17662714 PMCID: PMC2001264 DOI: 10.1016/j.exer.2007.06.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2007] [Revised: 05/29/2007] [Accepted: 06/01/2007] [Indexed: 11/22/2022]
Abstract
Neural deficits suggestive of involvement of the GABA signaling pathway can often be detected early in the course of diabetic retinopathy, a leading cause of blindness in the United States. To examine in greater detail the nature of the neuronal changes associated with hyperglycemia, we investigated GABA receptor activity on retinal bipolar cells in streptozotocin-induced diabetic rats; cells from age-matched normal rats served as controls. Patch-clamp recordings from isolated rod-bipolar cells revealed that diabetes enhanced the whole cell currents elicited by GABA. Responses of the GABA(C) receptor, the predominant GABA receptor on rat rod bipolar cells, exhibited a greater sensitivity to GABA, larger maximum current responses, slower response kinetics, and a smaller single channel conductance among diabetic cells relative to those recorded from normal controls. Compared with the properties of homomeric rho1 and heteromeric rho1rho2 receptors formed in a heterologous expression system, these results suggested that there was a greater contribution from the rho1 subunit in the GABA(C) receptor-mediated response of diabetic cells. The levels of mRNA, measured with real-time RT-PCR, were consistent with this finding. There was a significant enhancement in the ratio of rho1/rho2 subunit expression in the retina of diabetic animals, although the levels of GABA rho1 subunit expression were comparable in diabetic and normal retinas. Taken together, the results suggest that diabetes modifies the subunit composition of the GABA(C) receptor on retinal neurons, most likely through its effect on the efficacy of gene transcription.
Collapse
Affiliation(s)
- David J. Ramsey
- Department of Ophthalmology and Visual Sciences, University of Illinois College of Medicine, 1855 West Taylor Street, Chicago, Illinois 60612, USA
- Department of Physiology and Biophysics, University of Illinois College of Medicine, 1855 West Taylor Street, Chicago, Illinois 60612, USA
- Department of Health Policy and Administration, University of Illinois College of Medicine, 1855 West Taylor Street, Chicago, Illinois 60612, USA
| | - Harris Ripps
- Department of Ophthalmology and Visual Sciences, University of Illinois College of Medicine, 1855 West Taylor Street, Chicago, Illinois 60612, USA
- Department of Physiology and Biophysics, University of Illinois College of Medicine, 1855 West Taylor Street, Chicago, Illinois 60612, USA
- Department of Anatomy and Cell Biology, University of Illinois College of Medicine, 1855 West Taylor Street, Chicago, Illinois 60612, USA
| | - Haohua Qian
- Department of Ophthalmology and Visual Sciences, University of Illinois College of Medicine, 1855 West Taylor Street, Chicago, Illinois 60612, USA
- Department of Physiology and Biophysics, University of Illinois College of Medicine, 1855 West Taylor Street, Chicago, Illinois 60612, USA
| |
Collapse
|
566
|
Zhang K, Yao G, Gao Y, Hofeldt KJ, Lei B. Frequency spectrum and amplitude analysis of dark- and light-adapted oscillatory potentials in albino mouse, rat and rabbit. Doc Ophthalmol 2007; 115:85-93. [PMID: 17541795 DOI: 10.1007/s10633-007-9061-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2006] [Revised: 04/26/2007] [Accepted: 04/28/2007] [Indexed: 11/29/2022]
Abstract
We studied frequency spectrum, implicit time and amplitude of oscillatory potentials (OPs) in albino mice, rats, and rabbits. Oscillatory potentials were extracted digitally from dark- and light-adapted electroretinograms (ERGs) recorded with a protocol commonly used in our laboratory. The frequency spectra of OPs were analyzed by using Fast Fourier Transform (FFT). Oscillatory potential amplitudes were calculated via numerically integrating the power spectrum. Oscillatory potential frequency spectra vary among species and are light-intensity dependent. In dark-adapted ERG, mouse and rat OPs have one major component with a frequency peak at approximately 100 Hz. Rabbits show multiple frequency peaks with a low frequency peak around 75 Hz. In all the three species, the implicit time of light-adapted OP is longer than that of the dark-adapted OPs. At a given intensity, mice have the highest OP responses. Our data suggest that the commonly used bandpass of 75 Hz (or even 100 Hz) to 300 Hz for OP extraction is insufficient in these animals. In order to acquire the complete OP responses from the ERG signals, it is necessary to determine the OP frequency spectrum. In this study, the lower end cutoff frequency was set at 40 Hz in mice, 65 Hz in rats and rabbits.
Collapse
Affiliation(s)
- Keqing Zhang
- Department of Veterinary and Surgery, University of Missouri-Columbia, Columbia, MO 65211, USA
| | | | | | | | | |
Collapse
|
567
|
Baroni T, Bellucci C, Lilli C, Pezzetti F, Carinci F, Becchetti E, Carinci P, Stabellini G, Calvitti M, Lumare E, Bodo M. Retinoic acid, GABA-ergic, and TGF-beta signaling systems are involved in human cleft palate fibroblast phenotype. MOLECULAR MEDICINE (CAMBRIDGE, MASS.) 2007; 12:237-45. [PMID: 17225872 PMCID: PMC1770008 DOI: 10.2119/2006–00026.baroni] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/28/2006] [Accepted: 07/31/2006] [Indexed: 11/06/2022]
Abstract
During embryogenesis, a complex interplay between extracellular matrix (ECM) molecules, regulatory molecules, and growth factors mediates morphogenetic processes involved in palatogenesis. Transforming growth factor-beta (TGF-beta), retinoic acid (RA), and gamma-aminobutyric acid (GABA)ergic signaling systems are also potentially involved. Using [3H]glucosamine and [35S]methionine incorporation, anion exchange chromatography, semiquantitative radioactive RT-PCR, and a TGF-beta binding assay, we aimed to verify the presence of phenotypic differences between primary cultures of secondary palate (SP) fibroblasts from 2-year-old subjects with familial nonsyndromic cleft lip and/or palate (CLP-SP fibroblasts) and age-matched normal SP (N-SP) fibroblasts. The effects of RA--which, at pharmacologic doses, induces cleft palate in newborns of many species--were also studied. We found an altered ECM production in CLP-SP fibroblasts that synthesized and secreted more glycosaminoglycans (GAGs) and fibronectin (FN) compared with N-SP cells. In CLP-SP cells, TGF-beta3 mRNA expression and TGF-beta receptor number were higher and RA receptor-alpha (RARA) gene expression was increased. Moreover, we demonstrated for the first time that GABA receptor (GABRB3) mRNA expression was upregulated in human CLP-SP fibroblasts. In N-SP and CLP-SP fibroblasts, RA decreased GAG and FN secretion and increased TGF-beta3 mRNA expression but reduced the number of TGF-beta receptors. TGF-beta receptor type I mRNA expression was decreased, TGF-beta receptor type II was increased, and TGF-beta receptor type III was not affected. RA treatment increased RARA gene expression in both cell populations but upregulated GABRB3 mRNA expression only in N-SP cells. These results show that CLP-SP fibroblasts compared with N-SP fibroblasts exhibit an abnormal phenotype in vitro and respond differently to RA treatment, and suggest that altered crosstalk between RA, GABAergic, and TGF-beta signaling systems could be involved in human cleft palate fibroblast phenotype.
Collapse
Affiliation(s)
- Tiziano Baroni
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
568
|
Baroni T, Bellucci C, Lilli C, Pezzetti F, Carinci F, Becchetti E, Carinci P, Stabellini G, Calvitti M, Lumare E, Bodo M. Retinoic acid, GABA-ergic, and TGF-beta signaling systems are involved in human cleft palate fibroblast phenotype. Mol Med 2007. [PMID: 17225872 DOI: 10.2119/2006-00026.baroni] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
During embryogenesis, a complex interplay between extracellular matrix (ECM) molecules, regulatory molecules, and growth factors mediates morphogenetic processes involved in palatogenesis. Transforming growth factor-beta (TGF-beta), retinoic acid (RA), and gamma-aminobutyric acid (GABA)ergic signaling systems are also potentially involved. Using [3H]glucosamine and [35S]methionine incorporation, anion exchange chromatography, semiquantitative radioactive RT-PCR, and a TGF-beta binding assay, we aimed to verify the presence of phenotypic differences between primary cultures of secondary palate (SP) fibroblasts from 2-year-old subjects with familial nonsyndromic cleft lip and/or palate (CLP-SP fibroblasts) and age-matched normal SP (N-SP) fibroblasts. The effects of RA--which, at pharmacologic doses, induces cleft palate in newborns of many species--were also studied. We found an altered ECM production in CLP-SP fibroblasts that synthesized and secreted more glycosaminoglycans (GAGs) and fibronectin (FN) compared with N-SP cells. In CLP-SP cells, TGF-beta3 mRNA expression and TGF-beta receptor number were higher and RA receptor-alpha (RARA) gene expression was increased. Moreover, we demonstrated for the first time that GABA receptor (GABRB3) mRNA expression was upregulated in human CLP-SP fibroblasts. In N-SP and CLP-SP fibroblasts, RA decreased GAG and FN secretion and increased TGF-beta3 mRNA expression but reduced the number of TGF-beta receptors. TGF-beta receptor type I mRNA expression was decreased, TGF-beta receptor type II was increased, and TGF-beta receptor type III was not affected. RA treatment increased RARA gene expression in both cell populations but upregulated GABRB3 mRNA expression only in N-SP cells. These results show that CLP-SP fibroblasts compared with N-SP fibroblasts exhibit an abnormal phenotype in vitro and respond differently to RA treatment, and suggest that altered crosstalk between RA, GABAergic, and TGF-beta signaling systems could be involved in human cleft palate fibroblast phenotype.
Collapse
Affiliation(s)
- Tiziano Baroni
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
569
|
Ulrich M, Seeber S, Becker CM, Enz R. Tax1-binding protein 1 is expressed in the retina and interacts with the GABA(C) receptor rho1 subunit. Biochem J 2007; 401:429-36. [PMID: 16999686 PMCID: PMC1820818 DOI: 10.1042/bj20061036] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Macromolecular signalling complexes that link neurotransmitter receptors to functionally and structurally associated proteins play an important role in the regulation of neurotransmission. Thus the identification of proteins binding to neurotransmitter receptors describes molecular mechanisms of synaptic signal transduction. To identify interacting proteins of GABA(C) (where GABA is gamma-aminobutyric acid) receptors in the retina, we used antibodies specific for GABA(C) receptor rho1-3 subunits. Analysis of immunoprecipitated proteins by MALDI-TOF MS (matrix-assisted laser-desorption ionization-time-of-flight MS) identified the liver regeneration-related protein 2 that is identical with amino acids 253-813 of the Tax1BP1 (Tax1-binding protein 1). A C-terminal region of Tax1BP1 bound to an intracellular domain of the rho1 subunit, but not to other subunits of GABA(C), GABA(A) or glycine receptors. Confocal laser-scanning microscopy demonstrated co-localization of Tax1BP1 and rho1 in clusters at the cell membrane of transfected cells. Furthermore, Tax1BP1 and GABA(C) receptors were co-expressed in both synaptic layers of the retina, indicating that Tax1BP1 is a component of GABA(C) receptor-containing signal complexes.
Collapse
Affiliation(s)
- Melanie Ulrich
- Emil-Fischer-Zentrum, Institut für Biochemie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Fahrstr. 17, 91054 Erlangen, Germany
| | - Silke Seeber
- Emil-Fischer-Zentrum, Institut für Biochemie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Fahrstr. 17, 91054 Erlangen, Germany
| | - Cord-Michael Becker
- Emil-Fischer-Zentrum, Institut für Biochemie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Fahrstr. 17, 91054 Erlangen, Germany
| | - Ralf Enz
- Emil-Fischer-Zentrum, Institut für Biochemie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Fahrstr. 17, 91054 Erlangen, Germany
- To whom correspondence should be addressed (email )
| |
Collapse
|
570
|
Malchow RP, Andersen KA. GABA transporter function in the horizontal cells of the skate. PROGRESS IN BRAIN RESEARCH 2001; 131:267-75. [PMID: 11420946 DOI: 10.1016/s0079-6123(01)31022-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Affiliation(s)
- R P Malchow
- Department of Biological Sciences, University of Illinois at Chicago, 840 West Taylor Street, Chicago, IL 60607, USA.
| | | |
Collapse
|