551
|
Fullone MR, Paiardini A, Miele R, Marsango S, Gross DC, Omura S, Ros-Herrera E, Bonaccorsi di Patti MC, Laganà A, Pascarella S, Grgurina I. Insight into the structure-function relationship of the nonheme iron halogenases involved in the biosynthesis of 4-chlorothreonine - Thr3 fromStreptomycessp. OH-5093 and SyrB2 fromPseudomonas syringaepv.syringaeB301DR. FEBS J 2012; 279:4269-82. [DOI: 10.1111/febs.12017] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 09/15/2012] [Accepted: 09/19/2012] [Indexed: 11/28/2022]
Affiliation(s)
- Maria Rosaria Fullone
- Department of Biochemical Sciences ‘A. Rossi Fanelli’; Sapienza University of Rome; Italy
| | - Alessandro Paiardini
- Department of Biochemical Sciences ‘A. Rossi Fanelli’; Sapienza University of Rome; Italy
| | - Rossella Miele
- Department of Biochemical Sciences ‘A. Rossi Fanelli’; Sapienza University of Rome; Italy
| | - Sara Marsango
- Department of Biochemical Sciences ‘A. Rossi Fanelli’; Sapienza University of Rome; Italy
| | - Dennis C. Gross
- Department of Plant Pathology & Microbiology; Texas A&M University; College Station; TX; USA
| | - Satoshi Omura
- Kitasato Institute for Life Sciences; Kitasato University; Tokyo; Japan
| | - Enric Ros-Herrera
- Department of Biochemical Sciences ‘A. Rossi Fanelli’; Sapienza University of Rome; Italy
| | | | - Aldo Laganà
- Department of Chemistry; Sapienza University of Rome; Italy
| | - Stefano Pascarella
- Department of Biochemical Sciences ‘A. Rossi Fanelli’; Sapienza University of Rome; Italy
| | - Ingeborg Grgurina
- Department of Biochemical Sciences ‘A. Rossi Fanelli’; Sapienza University of Rome; Italy
| |
Collapse
|
552
|
Zhang J, Zhang X, Zhang R, Wu C, Guo Y, Mao X, Guo G, Zhang Y, Wang DC, Li D, Zou Q. Modeling studies with Helicobacter pylori octaprenyl pyrophosphate synthase reveal the enzymatic mechanism of trans-prenyltransferases. Int J Biochem Cell Biol 2012; 44:2116-23. [PMID: 22982238 DOI: 10.1016/j.biocel.2012.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 08/31/2012] [Accepted: 09/04/2012] [Indexed: 11/25/2022]
Abstract
Octaprenyl pyrophosphate synthase (OPPs), an enzyme belonging to the trans-prenyltransferases family, is involved in the synthesis of C40 octaprenyl pyrophosphate (OPP) by reacting farnesyl pyrophosphate (FPP) with five isopentenyl pyrophosphates (IPP). It has been reported that OPPs is essential for bacteria's normal growth and is a potential target for novel antibacterial drug design. Here we report the crystal structure of OPPs from Helicobacter pylori, determined by MAD method at 2.8 Å resolution and refined to 2.0 Å resolution. The substrate IPP was docked into HpOPPs structure and residues involved in IPP recognition were identified. The other substrate FPP, the intermediate GGPP and a nitrogen-containing bisphosphonate drug were also modeled into the structure. The resulting model shed some lights on the enzymatic mechanism, including (1) residues Arg87, Lys36 and Arg39 are essential for IPP binding; (2) residues Lys162, Lys224 and Gln197 are involved in FPP binding; (3) the second DDXXD motif may involve in FPP binding by Mg(2+) mediated interactions; (4) Leu127 is probably involved in product chain length determination in HpOPPs and (5) the intermediate products such as GGPP need a rearrange to occupy the binding site of FPP and then IPP is reloaded. Our results also indicate that the nitrogen-containing bisphosphonate drugs are potential inhibitors of FPPs and other trans-prenyltransferases aiming at blocking the binding of FPP.
Collapse
Affiliation(s)
- Jinyong Zhang
- Department of Clinical Microbiology and Immunology, College of Medical Laboratory, Third Military Medical University, Chongqing, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
553
|
Le H, Ford KA, Khojasteh SC, Fan PW. Elucidation of the mechanism of ribose conjugation in a pyrazole-containing compound in rodent liver. Xenobiotica 2012; 43:236-45. [PMID: 22931212 DOI: 10.3109/00498254.2012.715211] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
1. Here we report on the mechanism of ribose conjugation, through NADH as a cofactor, of a pyrazole-containing compound (PT). Incubation of PT in rat liver microsomes supplemented with NADP⁺/H, NAD⁺/H, and β-nicotinamide mononucleotide (NMN) resulted in complete conjugation to the adenine dinucleotide phosphate conjugate (ADP-C), adenine dinucleotide conjugate (AD-C), and 5-phosphoribose conjugate (Rib-C1), respectively. In hepatocytes, PT predominantly formed three ribose conjugates: Rib-C1, the ribose conjugate (Rib-C2), and the carboxylic acid of Rib-C2 (Rib-C3). 2. Phosphatase inhibitors were added to hepatocyte incubations. AD-C was detected in this reaction, which suggests that one of the major pathways for the formation of the ribose conjugates is through NAD⁺/H. When AD-C was incubated with phosphatase, Rib-C1 and Rib-C2 formed. 3. To understand the in vivo relevance of this metabolic pathway, rats were dosed with PT and Rib-C2 was found in the urine. 4. Structure-activity relationship shows that replacement of the distal thiazole group in the PT to a phenyl group abolishes this conjugation. Three amino acid residues in the active site preferentially interact with the sulfur atom in the thiazole of PT. 5. In summary, PT forms direct AD-C in hepatocytes, which is further hydrolyzed by phosphatase to give ribose conjugates.
Collapse
Affiliation(s)
- Hoa Le
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, CA, USA
| | | | | | | |
Collapse
|
554
|
Rogers KE, Keränen H, Durrant JD, Ratnam J, Doak A, Arkin MR, McCammon JA. Novel cruzain inhibitors for the treatment of Chagas' disease. Chem Biol Drug Des 2012; 80:398-405. [PMID: 22613098 PMCID: PMC3503458 DOI: 10.1111/j.1747-0285.2012.01416.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The protozoan parasite Trypanosoma cruzi, the etiological agent of Chagas’ disease, affects millions of individuals and continues to be an important global health concern. The poor efficacy and unfavorable side effects of current treatments necessitate novel therapeutics. Cruzain, the major cysteine protease of T. cruzi, is one potential novel target. Recent advances in a class of vinyl sulfone inhibitors are encouraging; however, as most potential therapeutics fail in clinical trials and both disease progression and resistance call for combination therapy with several drugs, the identification of additional classes of inhibitory molecules is essential. Using an exhaustive virtual-screening and experimental validation approach, we identify several additional small-molecule cruzain inhibitors. Further optimization of these chemical scaffolds could lead to the development of novel drugs useful in the treatment of Chagas’ disease.
Collapse
Affiliation(s)
- Kathleen E Rogers
- Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, 92093, USA.
| | | | | | | | | | | | | |
Collapse
|
555
|
Xie L, Kinnings SL, Xie L, Bourne PE. Predicting the Polypharmacology of Drugs: Identifying New Uses through Chemoinformatics, Structural Informatics, and Molecular Modeling‐Based Approaches. DRUG REPOSITIONING 2012:163-205. [DOI: 10.1002/9781118274408.ch7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
556
|
Shoichet BK, Kobilka BK. Structure-based drug screening for G-protein-coupled receptors. Trends Pharmacol Sci 2012; 33:268-72. [PMID: 22503476 DOI: 10.1016/j.tips.2012.03.007] [Citation(s) in RCA: 219] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 03/12/2012] [Accepted: 03/12/2012] [Indexed: 11/16/2022]
Abstract
G-protein-coupled receptors (GPCRs) represent a large family of signaling proteins that includes many therapeutic targets; however, progress in identifying new small molecule drugs has been disappointing. The past 4 years have seen remarkable progress in the structural biology of GPCRs, raising the possibility of applying structure-based approaches to GPCR drug discovery efforts. Of the various structure-based approaches that have been applied to soluble protein targets, such as proteases and kinases, in silico docking is among the most ready applicable to GPCRs. Early studies suggest that GPCR binding pockets are well suited to docking, and docking screens have identified potent and novel compounds for these targets. This review will focus on the current state of in silico docking for GPCRs.
Collapse
Affiliation(s)
- Brian K Shoichet
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
| | | |
Collapse
|
557
|
Daidone F, Montioli R, Paiardini A, Cellini B, Macchiarulo A, Giardina G, Bossa F, Borri Voltattorni C. Identification by virtual screening and in vitro testing of human DOPA decarboxylase inhibitors. PLoS One 2012; 7:e31610. [PMID: 22384042 PMCID: PMC3285636 DOI: 10.1371/journal.pone.0031610] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Accepted: 01/16/2012] [Indexed: 11/19/2022] Open
Abstract
Dopa decarboxylase (DDC), a pyridoxal 5'-phosphate (PLP) enzyme responsible for the biosynthesis of dopamine and serotonin, is involved in Parkinson's disease (PD). PD is a neurodegenerative disease mainly due to a progressive loss of dopamine-producing cells in the midbrain. Co-administration of L-Dopa with peripheral DDC inhibitors (carbidopa or benserazide) is the most effective symptomatic treatment for PD. Although carbidopa and trihydroxybenzylhydrazine (the in vivo hydrolysis product of benserazide) are both powerful irreversible DDC inhibitors, they are not selective because they irreversibly bind to free PLP and PLP-enzymes, thus inducing diverse side effects. Therefore, the main goals of this study were (a) to use virtual screening to identify potential human DDC inhibitors and (b) to evaluate the reliability of our virtual-screening (VS) protocol by experimentally testing the "in vitro" activity of selected molecules. Starting from the crystal structure of the DDC-carbidopa complex, a new VS protocol, integrating pharmacophore searches and molecular docking, was developed. Analysis of 15 selected compounds, obtained by filtering the public ZINC database, yielded two molecules that bind to the active site of human DDC and behave as competitive inhibitors with K(i) values ≥10 µM. By performing in silico similarity search on the latter compounds followed by a substructure search using the core of the most active compound we identified several competitive inhibitors of human DDC with K(i) values in the low micromolar range, unable to bind free PLP, and predicted to not cross the blood-brain barrier. The most potent inhibitor with a K(i) value of 500 nM represents a new lead compound, targeting human DDC, that may be the basis for lead optimization in the development of new DDC inhibitors. To our knowledge, a similar approach has not been reported yet in the field of DDC inhibitors discovery.
Collapse
Affiliation(s)
- Frederick Daidone
- Department of Biochemical Sciences “A. Rossi Fanelli”, University of Rome “La Sapienza”, Rome, Italy
| | - Riccardo Montioli
- Department of Life Sciences and Reproduction, University of Verona, Verona, Italy
| | - Alessandro Paiardini
- Department of Biochemical Sciences “A. Rossi Fanelli”, University of Rome “La Sapienza”, Rome, Italy
| | - Barbara Cellini
- Department of Life Sciences and Reproduction, University of Verona, Verona, Italy
| | - Antonio Macchiarulo
- Department of Chemistry and Drug Technology, University of Perugia, Perugia, Italy
| | - Giorgio Giardina
- Department of Biochemical Sciences “A. Rossi Fanelli”, University of Rome “La Sapienza”, Rome, Italy
| | - Francesco Bossa
- Department of Biochemical Sciences “A. Rossi Fanelli”, University of Rome “La Sapienza”, Rome, Italy
| | | |
Collapse
|
558
|
Zhang Q, Zeng SX, Zhang Y, Zhang Y, Ding D, Ye Q, Meroueh SO, Lu H. A small molecule Inauhzin inhibits SIRT1 activity and suppresses tumour growth through activation of p53. EMBO Mol Med 2012; 4:298-312. [PMID: 22331558 PMCID: PMC3376857 DOI: 10.1002/emmm.201100211] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Revised: 12/20/2011] [Accepted: 12/22/2011] [Indexed: 12/25/2022] Open
Abstract
Although ∼50% of all types of human cancers harbour wild-type TP53, this p53 tumour suppressor is often deactivated through a concerted action by its abnormally elevated suppressors, MDM2, MDMX or SIRT1. Here, we report a novel small molecule Inauhzin (INZ) that effectively reactivates p53 by inhibiting SIRT1 activity, promotes p53-dependent apoptosis of human cancer cells without causing apparently genotoxic stress. Moreover, INZ stabilizes p53 by increasing p53 acetylation and preventing MDM2-mediated ubiquitylation of p53 in cells, though not directly in vitro. Remarkably, INZ inhibits cell proliferation, induces senescence and tumour-specific apoptosis, and represses the growth of xenograft tumours derived from p53-harbouring H460 and HCT116 cells without causing apparent toxicity to normal tissues and the tumour-bearing SCID mice. Hence, our study unearths INZ as a novel anti-cancer therapeutic candidate that inhibits SIRT1 activity and activates p53.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Biochemistry & Molecular Biology and Cancer Center, Tulane University School of Medicine, Louisiana, LA, USA
| | | | | | | | | | | | | | | |
Collapse
|
559
|
Biesiada J, Porollo A, Meller J. On setting up and assessing docking simulations for virtual screening. Methods Mol Biol 2012; 928:1-16. [PMID: 22956129 DOI: 10.1007/978-1-62703-008-3_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Small molecule docking and virtual screening of candidate compounds have become an integral part of drug discovery pipelines, complementing and streamlining experimental efforts in that regard. In this chapter, we describe specific software packages and protocols that can be used to efficiently set up a computational screening using a library of compounds and a docking program. We also discuss consensus- and clustering-based approaches that can be used to assess the results, and potentially re-rank the hits. While docking programs share many common features, they may require tailored implementation of virtual screening pipelines for specific computing platforms. Here, we primarily focus on solutions for several public domain packages that are widely used in the context of drug development.
Collapse
Affiliation(s)
- Jacek Biesiada
- Biomedical Informatics, Children's Hospital Research Foundation, Cincinnati, OH, USA
| | | | | |
Collapse
|
560
|
Lim SV, Rahman MBA, Tejo BA. Structure-based and ligand-based virtual screening of novel methyltransferase inhibitors of the dengue virus. BMC Bioinformatics 2011; 12 Suppl 13:S24. [PMID: 22373153 PMCID: PMC3278841 DOI: 10.1186/1471-2105-12-s13-s24] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Background The dengue virus is the most significant arthropod-borne human pathogen, and an increasing number of cases have been reported over the last few decades. Currently neither vaccines nor drugs against the dengue virus are available. NS5 methyltransferase (MTase), which is located on the surface of the dengue virus and assists in viral attachment to the host cell, is a promising antiviral target. In order to search for novel inhibitors of NS5 MTase, we performed a computer-aided virtual screening of more than 5 million commercially available chemical compounds using two approaches: i) structure-based screening using the crystal structure of NS5 MTase and ii) ligand-based screening using active ligands of NS5 MTase. Structure-based screening was performed using the LIDAEUS (LIgand Discovery At Edinburgh UniverSity) program. The ligand-based screening was carried out using the EDULISS (EDinburgh University LIgand Selection System) program. Results The selection of potential inhibitors of dengue NS5 MTase was based on two criteria: the compounds must bind to NS5 MTase with a higher affinity than that of active NS5 MTase ligands, such as ribavirin triphosphate (RTP) and S-adenosyl-L-homocysteine (SAH); and the compounds must interact with residues that are catalytically important for the function of NS5 MTase. We found several compounds that bind strongly to the RNA cap site and the S-adenosyl-L-methionine (SAM) binding site of NS5 MTase with better binding affinities than that of RTP and SAH. We analyzed the mode of binding for each compound to its binding site, and our results suggest that all compounds bind to their respective binding sites by interacting with, and thus blocking, residues that are vital for maintaining the catalytic activity of NS5 MTase. Conclusions We discovered several potential compounds that are active against dengue virus NS5 MTase through virtual screening using structure-based and ligand-based methods. These compounds were predicted to bind into the SAM binding site and the RNA cap site with higher affinities than SAH and RTP. These compounds are commercially available and can be purchased for further biological activity tests.
Collapse
Affiliation(s)
- See Ven Lim
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Malaysia
| | | | | |
Collapse
|
561
|
Atkinson J, Kapralov AA, Yanamala N, Tyurina YY, Amoscato AA, Pearce L, Peterson J, Huang Z, Jiang J, Samhan-Arias AK, Maeda A, Feng W, Wasserloos K, Belikova NA, Tyurin VA, Wang H, Fletcher J, Wang Y, Vlasova II, Klein-Seetharaman J, Stoyanovsky DA, Bayîr H, Pitt BR, Epperly MW, Greenberger JS, Kagan VE. A mitochondria-targeted inhibitor of cytochrome c peroxidase mitigates radiation-induced death. Nat Commun 2011; 2:497. [PMID: 21800898 PMCID: PMC3557495 DOI: 10.1038/ncomms1499] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 09/06/2011] [Indexed: 12/20/2022] Open
Abstract
The risk of radionuclide release in terrorist acts or exposure of healthy tissue during radiotherapy demand potent radioprotectants/radiomitigators. Ionizing radiation induces cell death by initiating the selective peroxidation of cardiolipin in mitochondria by the peroxidase activity of its complex with cytochrome c leading to release of haemoprotein into the cytosol and commitment to the apoptotic program. Here we design and synthesize mitochondria-targeted triphenylphosphonium-conjugated imidazole-substituted oleic and stearic acids that blocked peroxidase activity of cytochrome c/cardiolipin complex by specifically binding to its haem-iron. We show that both compounds inhibit pro-apoptotic oxidative events, suppress cyt c release, prevent cell death, and protect mice against lethal doses of irradiation. Significant radioprotective/radiomitigative effects of imidazole-substituted oleic acid are observed after pretreatment of mice from 1 h before through 24 h after the irradiation.
Collapse
Affiliation(s)
- Jeffrey Atkinson
- Center for Free Radical and Antioxidant Health and Center for Medical Countermeasures against Radiation, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Department of Chemistry & Centre for Biotechnology Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Alexandr A. Kapralov
- Center for Free Radical and Antioxidant Health and Center for Medical Countermeasures against Radiation, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Naveena Yanamala
- Center for Free Radical and Antioxidant Health and Center for Medical Countermeasures against Radiation, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Department of Structural Biology, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Yulia Y. Tyurina
- Center for Free Radical and Antioxidant Health and Center for Medical Countermeasures against Radiation, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Andrew A. Amoscato
- Center for Free Radical and Antioxidant Health and Center for Medical Countermeasures against Radiation, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Linda Pearce
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Jim Peterson
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Zhentai Huang
- Center for Free Radical and Antioxidant Health and Center for Medical Countermeasures against Radiation, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Jianfei Jiang
- Center for Free Radical and Antioxidant Health and Center for Medical Countermeasures against Radiation, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Alejandro K. Samhan-Arias
- Center for Free Radical and Antioxidant Health and Center for Medical Countermeasures against Radiation, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Akihiro Maeda
- Center for Free Radical and Antioxidant Health and Center for Medical Countermeasures against Radiation, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Weihong Feng
- Center for Free Radical and Antioxidant Health and Center for Medical Countermeasures against Radiation, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Karla Wasserloos
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Natalia A. Belikova
- Center for Free Radical and Antioxidant Health and Center for Medical Countermeasures against Radiation, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Vladimir A. Tyurin
- Center for Free Radical and Antioxidant Health and Center for Medical Countermeasures against Radiation, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Hong Wang
- Center for Free Radical and Antioxidant Health and Center for Medical Countermeasures against Radiation, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Jackie Fletcher
- Center for Free Radical and Antioxidant Health and Center for Medical Countermeasures against Radiation, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Department of Chemistry & Centre for Biotechnology Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Yongsheng Wang
- Center for Free Radical and Antioxidant Health and Center for Medical Countermeasures against Radiation, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Department of Chemistry & Centre for Biotechnology Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Irina I. Vlasova
- Center for Free Radical and Antioxidant Health and Center for Medical Countermeasures against Radiation, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | | | - Detcho A. Stoyanovsky
- Center for Free Radical and Antioxidant Health and Center for Medical Countermeasures against Radiation, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Hülya Bayîr
- Center for Free Radical and Antioxidant Health and Center for Medical Countermeasures against Radiation, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Department of Critical Care Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Bruce R. Pitt
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Michael W. Epperly
- Center for Free Radical and Antioxidant Health and Center for Medical Countermeasures against Radiation, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Department of Radiation Oncology, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Joel S. Greenberger
- Center for Free Radical and Antioxidant Health and Center for Medical Countermeasures against Radiation, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Department of Radiation Oncology, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Valerian E. Kagan
- Center for Free Radical and Antioxidant Health and Center for Medical Countermeasures against Radiation, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15219, USA
| |
Collapse
|
562
|
Zhou G, Wu D, Snyder B, Ptak RG, Kaur H, Gochin M. Development of indole compounds as small molecule fusion inhibitors targeting HIV-1 glycoprotein-41. J Med Chem 2011; 54:7220-31. [PMID: 21928824 DOI: 10.1021/jm200791z] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Nonpeptide inhibition of fusion remains an important goal in anti-HIV research, due to its potential for low cost prophylaxis or prevention of cell-cell transmission of the virus. We report here on a series of indole compounds that have been identified as fusion inhibitors of gp41 through a structure-based drug design approach. Experimental binding affinities of the compounds for the hydrophobic pocket were strongly correlated to fusion inhibitory data (R(2) = 0.91), and corresponding inhibition of viral replication confirmed the hydrophobic pocket as a valid target for low molecular weight fusion inhibitors. The most active compound bound to the hydrophobic pocket and inhibited cell-cell fusion and viral replication at submicromolar levels. A common binding mode for the inhibitors in this series was established by carrying out docking studies using structures of gp41 in the Protein Data Bank. The molecules were flexible enough to conform to the contours of the pocket, and the most active compound was able to adopt a structure mimicking the hydrophobic contacts of the D-peptide PIE7. The results enhance our understanding of indole compounds as inhibitors of gp41.
Collapse
Affiliation(s)
- Guangyan Zhou
- Department of Basic Sciences, Touro University-California, 1310 Club Drive, Mare Island, Vallejo, California 94592, United States.
| | | | | | | | | | | |
Collapse
|
563
|
Urbina P, Collado MI, Alonso A, Goñi FM, Flores-Díaz M, Alape-Girón A, Ruysschaert JM, Lensink MF. Unexpected wide substrate specificity of C. perfringens α-toxin phospholipase C. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:2618-27. [DOI: 10.1016/j.bbamem.2011.06.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Revised: 06/09/2011] [Accepted: 06/13/2011] [Indexed: 02/05/2023]
|
564
|
Ragno R, Gioia U, Laneve P, Bozzoni I, Mai A, Caffarelli E. Identification of small-molecule inhibitors of the XendoU endoribonucleases family. ChemMedChem 2011; 6:1797-805. [PMID: 21805647 PMCID: PMC7162399 DOI: 10.1002/cmdc.201100281] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2011] [Indexed: 01/12/2023]
Abstract
The XendoU family of enzymes includes several proteins displaying high sequence homology. The members characterized so far are endoribonucleases sharing similar biochemical properties and a common architecture in their active sites. Despite their similarities, these proteins are involved in distinct RNA‐processing pathways in different organisms. The amphibian XendoU participates in the biosynthesis of small nucleolar RNAs, the human PP11 is supposed to play specialized roles in placental tissue, and NendoU has critical function in coronavirus replication. Notably, XendoU family members have been implicated in human pathologies such as cancer and respiratory diseases: PP11 is aberrantly expressed in various tumors, while NendoU activity has been associated with respiratory infections by pathogenic coronaviruses. The present study is aimed at identifying small molecules that may selectively interfere with these enzymatic activities. Combining structure‐based virtual screening and experimental approaches, we identified four molecules that specifically inhibited the catalytic activity of XendoU and PP11 in the low micromolar range. Moreover, docking experiments strongly suggested that these compounds might also bind to the active site of NendoU, thus impairing the catalytic activity essential for the coronavirus life cycle. The identified compounds, while allowing deep investigation of the molecular functions of this enzyme family, may also represent leads for the development of new therapeutic tools.
Collapse
Affiliation(s)
- Rino Ragno
- Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza Università di Roma, P.le A. Moro 5, 00185 Roma, Italy
| | | | | | | | | | | |
Collapse
|
565
|
Latha RS, Vijayaraj R, Singam ERA, Chitra K, Subramanian V. 3D-QSAR and docking studies on the HEPT derivatives of HIV-1 reverse transcriptase. Chem Biol Drug Des 2011; 78:418-26. [PMID: 21689378 DOI: 10.1111/j.1747-0285.2011.01162.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Three-dimensional Quantitative Structure Activity Relationship (3D-QSAR) has been derived for a set of HEPT derivatives of HIV-1 reverse transcriptase (RT) using Comparative Molecular Field Analysis (CoMFA). The CoMFA models have been developed using two different alignment procedures such as common substructure and bioactive conformation. The CoMFA model I is derived from a common substructure procedure that includes steric and electrostatic fields with the cross-validated q(2) and the non-cross-validated r(2) value of 0.86 and 0.97, respectively. The same for the CoMFA model II that is derived based on the bioactive conformation are 0.19 and 0.77, respectively. It is evident from the results that the common substructure-based alignment model has good statistical significance when compared with that of bioactive conformation for the selected systems in this study. The docking study revealed that the conformational flexibility observed at the R3 position favors different orientations of the substitution at the active site of HIV-1 RT and thereby leads to inconsistency in the CoMFA alignment based on bioactive conformation.
Collapse
|
566
|
Characterization of human nicotinate phosphoribosyltransferase: Kinetic studies, structure prediction and functional analysis by site-directed mutagenesis. Biochimie 2011; 94:300-9. [PMID: 21742010 DOI: 10.1016/j.biochi.2011.06.033] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Accepted: 06/24/2011] [Indexed: 11/20/2022]
Abstract
Nicotinate phosphoribosyltransferase (NaPRT, EC 2.4.2.11) catalyzes the conversion of nicotinate (Na) to nicotinate mononucleotide, the first reaction of the Preiss-Handler pathway for the biosynthesis of NAD(+). Even though NaPRT activity has been described to be responsible for the ability of Na to increase NAD(+) levels in human cells more effectively than nicotinamide (Nam), so far a limited number of studies on the human NaPRT have appeared. Here, extensive characterization of a recombinant human NaPRT is reported. We determined its major kinetic parameters and assayed the influence of different compounds on its enzymatic activity. In particular, ATP showed an apparent dual stimulation/inhibition effect at low/high substrates saturation, respectively, consistent with a negative cooperativity model, whereas inorganic phosphate was found to act as an activator. Among other metabolites assayed, including nucleotides, nucleosides, and intermediates of carbohydrates metabolism, some showed inhibitory properties, i.e. CoA, several acyl-CoAs, glyceraldehyde 3-phosphate, phosphoenolpyruvate, and fructose 1,6-bisphosphate, whereas dihydroxyacetone phosphate and pyruvate exerted a stimulatory effect. Furthermore, in light of the absence of crystallographic data, we performed homology modeling to predict the protein three-dimensional structure, and molecular docking simulations to identify residues involved in the recognition and stabilization of several ligands. Most of these residues resulted universally conserved among NaPRTs, and, in this study, their importance for enzyme activity was validated through site-directed mutagenesis.
Collapse
|
567
|
Ou L, Ferreira AM, Otieno S, Xiao L, Bashford D, Kriwacki RW. Incomplete folding upon binding mediates Cdk4/cyclin D complex activation by tyrosine phosphorylation of inhibitor p27 protein. J Biol Chem 2011; 286:30142-51. [PMID: 21715330 DOI: 10.1074/jbc.m111.244095] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
p27(Kip1) (p27), an intrinsically disordered protein, regulates the various Cdk/cyclin complexes that control cell cycle progression. The kinase inhibitory domain of p27 contains a cyclin-binding subdomain (D1), a Cdk-binding subdomain (D2), and a linker helix subdomain that connects D1 and D2. Here, we report that, despite extensive sequence conservation between Cdk4/cyclin D1 (hereafter Cdk4/cyclin D) and Cdk2/cyclin A, the thermodynamic details describing how the individual p27 subdomains contribute to equally high affinity binding to these two Cdk/cyclin complexes are strikingly different. Differences in enthalpy/entropy compensation revealed that the D2 subdomain of p27 folds incompletely when binding Cdk4/cyclin D versus Cdk2/cyclin A. Incomplete binding-induced folding exposes tyrosine 88 of p27 for phosphorylation by the nonreceptor tyrosine kinase Abl. Importantly, tyrosine phosphorylation (of p27) relieves Cdk inhibition by p27, enabling cell cycle entry. Furthermore, the interaction between a conserved hydrophobic patch on cyclin D and subdomain D1 is much weaker than that with cyclin A; consequently, a construct containing subdomains D1 and LH (p27-D1LH) does not inhibit substrate binding to Cdk4/cyclin D as it does to Cdk2/cyclin A. Our results provide a mechanism by which Cdk4 (within the p27/Cdk4/cyclin D complex) is poised to be activated by extrinsic mitogenic signals that impinge upon p27 at the earliest stage of cell division. More broadly, our results further illustrate the regulatory versatility of intrinsically disordered proteins.
Collapse
Affiliation(s)
- Li Ou
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | | | | | | | | | | |
Collapse
|
568
|
Peterson MW, Fairchild SZ, Otto TC, Mohtashemi M, Cerasoli DM, Chang WE. VX hydrolysis by human serum paraoxonase 1: a comparison of experimental and computational results. PLoS One 2011; 6:e20335. [PMID: 21655255 PMCID: PMC3105050 DOI: 10.1371/journal.pone.0020335] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Accepted: 04/19/2011] [Indexed: 11/17/2022] Open
Abstract
Human Serum paraoxonase 1 (HuPON1) is an enzyme that has been shown to hydrolyze a variety of chemicals including the nerve agent VX. While wildtype HuPON1 does not exhibit sufficient activity against VX to be used as an in vivo countermeasure, it has been suggested that increasing HuPON1's organophosphorous hydrolase activity by one or two orders of magnitude would make the enzyme suitable for this purpose. The binding interaction between HuPON1 and VX has recently been modeled, but the mechanism for VX hydrolysis is still unknown. In this study, we created a transition state model for VX hydrolysis (VX(ts)) in water using quantum mechanical/molecular mechanical simulations, and docked the transition state model to 22 experimentally characterized HuPON1 variants using AutoDock Vina. The HuPON1-VX(ts) complexes were grouped by reaction mechanism using a novel clustering procedure. The average Vina interaction energies for different clusters were compared to the experimentally determined activities of HuPON1 variants to determine which computational procedures best predict how well HuPON1 variants will hydrolyze VX. The analysis showed that only conformations which have the attacking hydroxyl group of VX(ts) coordinated by the sidechain oxygen of D269 have a significant correlation with experimental results. The results from this study can be used for further characterization of how HuPON1 hydrolyzes VX and design of HuPON1 variants with increased activity against VX.
Collapse
Affiliation(s)
- Matthew W. Peterson
- The MITRE Corporation, Bedford, Massachusetts, United States of America
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, United States of America
| | | | - Tamara C. Otto
- Physiology and Immunology Branch, Research Division, U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Maryland, United States of America
| | - Mojdeh Mohtashemi
- The MITRE Corporation, Bedford, Massachusetts, United States of America
- MIT Computer Science and AI Laboratory, Cambridge, Massachusetts, United States of America
| | - Douglas M. Cerasoli
- Physiology and Immunology Branch, Research Division, U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Maryland, United States of America
| | - Wenling E. Chang
- The MITRE Corporation, Bedford, Massachusetts, United States of America
- School of Systems Biology, George Mason University, Manassas, Virginia, United States of America
- * E-mail:
| |
Collapse
|
569
|
Gaur R, Khan RA, Tabassum S, Shah P, Siddiqi MI, Mishra L. Interaction of a ruthenium(II)–chalcone complex with double stranded DNA: Spectroscopic, molecular docking and nuclease properties. J Photochem Photobiol A Chem 2011. [DOI: 10.1016/j.jphotochem.2011.04.005] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
570
|
Nocca G, Ragno R, Carbone V, Martorana GE, Rossetti DV, Gambarini G, Giardina B, Lupi A. Identification of glutathione-methacrylates adducts in gingival fibroblasts and erythrocytes by HPLC–MS and capillary electrophoresis. Dent Mater 2011; 27:e87-98. [DOI: 10.1016/j.dental.2011.01.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Revised: 12/07/2010] [Accepted: 01/24/2011] [Indexed: 01/30/2023]
|
571
|
Abstract
Aromatase is an enzyme that plays a critical role in the development of estrogen receptor positive breast cancer. As aromatase catalyzes the aromatization of androstenedione to estrone, a naturally occurring estrogen, it is a promising drug target for therapeutic management. The undesirable effects found in aromatase inhibitors (AIs) that are in clinical use necessitate the discovery of novel AIs with higher selectivity, less toxicity and improving potency. In this study, we elucidate the binding mode of all three generations of AI drugs to the crystal structure of aromatase by means of molecular docking. It was demonstrated that the docking protocol could reliably reproduce the interaction of aromatase with its substrate with an RMSD of 1.350 Å. The docking study revealed that polar (D309, T310, S478 and M374), aromatic (F134, F221 and W224) and non-polar (A306, A307, V370, L372 and L477) residues were important for interacting with the AIs. The insights gained from the study herein have great potential for the design of novel AIs.
Collapse
|
572
|
Abstract
The active sites of enzymes are lined with side chains whose dynamic, geometric, and chemical properties have been finely tuned relative to the corresponding residues in water. For example, the carboxylates of glutamate and aspartate are weakly basic in water but become strongly basic when dehydrated in enzymatic sites. The dehydration of the carboxylate, although intrinsically thermodynamically unfavorable, is achieved by harnessing the free energy of folding and substrate binding to reach the required basicity. Allosterically regulated enzymes additionally rely on the free energy of ligand binding to stabilize the protein in a catalytically competent state. We demonstrate the interplay of protein folding energetics and functional group tuning to convert calmodulin (CaM), a regulatory binding protein, into AlleyCat, an allosterically controlled eliminase. Upon binding Ca(II), native CaM opens a hydrophobic pocket on each of its domains. We computationally identified a mutant that (i) accommodates carboxylate as a general base within these pockets, (ii) interacts productively in the Michaelis complex with the substrate, and (iii) stabilizes the transition state for the reaction. Remarkably, a single mutation of an apolar residue at the bottom of an otherwise hydrophobic cavity confers catalytic activity on calmodulin. AlleyCat showed the expected pH-rate profile, and it was inactivated by mutation of its active site Glu to Gln. A variety of control mutants demonstrated the specificity of the design. The activity of this minimal 75-residue allosterically regulated catalyst is similar to that obtained using more elaborate computational approaches to redesign complex enzymes to catalyze the Kemp elimination reaction.
Collapse
|
573
|
Daidone F, Florio R, Rinaldo S, Contestabile R, di Salvo ML, Cutruzzolà F, Bossa F, Paiardini A. In silico and in vitro validation of serine hydroxymethyltransferase as a chemotherapeutic target of the antifolate drug pemetrexed. Eur J Med Chem 2011; 46:1616-21. [PMID: 21371789 DOI: 10.1016/j.ejmech.2011.02.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Revised: 01/27/2011] [Accepted: 02/04/2011] [Indexed: 10/18/2022]
Abstract
Serine hydroxymethyltransferase (SHMT), a ubiquitous representative of the family of fold-type I, pyridoxal 5'-phosphate (PLP) dependent enzymes, catalyzes the reversible conversion of tetrahydrofolate (H4PteGlu) and serine to 5,10-CH2-H4PteGlu and glycine. Together with thymidylate synthase (TS) and dihydrofolate reductase (DHFR), SHMT participates to the thymidylate (dTMP) biosynthetic process. Elevated SHMT activity has been coupled to the increased demand for DNA synthesis in tumour cells. However, SHMT is the only enzyme of the thymidylate cycle yet to be targeted by chemotherapeutics. In this study, the interaction mode of SHMT with pemetrexed, an antifolate drug inhibiting several enzymes involved in folate-dependent biosynthetic pathways, was assessed. The mechanism of SHMT inhibition by pemetrexed was investigated in vitro using the human recombinant protein. The results of this study showed that pemetrexed competitively inhibits SHMT with respect to H4PteGlu with a measured Ki of 19.1±3.1 μM; this value was consistent with a Kd of 16.9±5.0 μM, measured by isothermal titration calorimetry. The binding mode of pemetrexed to SHMT was further investigated by molecular docking. The calculated interaction energy of pemetrexed in the active site of SHMT was -7.48 kcal/mol, and the corresponding predicted binding affinity was 36.3 μM, in good agreement with Kd and Ki values determined experimentally. The results thus provide insights into the mechanism of action of this antifolate drug and constitute the basis for the rational design of more selective inhibitors of SHMT.
Collapse
Affiliation(s)
- Frederick Daidone
- Dipartimento di Scienze Biochimiche A. Rossi Fanelli, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Roma, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
574
|
Katsuyama Y, Miyazono KI, Tanokura M, Ohnishi Y, Horinouchi S. Structural and biochemical elucidation of mechanism for decarboxylative condensation of beta-keto acid by curcumin synthase. J Biol Chem 2011; 286:6659-68. [PMID: 21148316 PMCID: PMC3057783 DOI: 10.1074/jbc.m110.196279] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Revised: 11/24/2010] [Indexed: 11/06/2022] Open
Abstract
The typical reaction catalyzed by type III polyketide synthases (PKSs) is a decarboxylative condensation between acyl-CoA (starter substrate) and malonyl-CoA (extender substrate). In contrast, curcumin synthase 1 (CURS1), which catalyzes curcumin synthesis by condensing feruloyl-CoA with a diketide-CoA, uses a β-keto acid (which is derived from diketide-CoA) as an extender substrate. Here, we determined the crystal structure of CURS1 at 2.32 Å resolution. The overall structure of CURS1 was very similar to the reported structures of type III PKSs and exhibited the αβαβα fold. However, CURS1 had a unique hydrophobic cavity in the CoA-binding tunnel. Replacement of Gly-211 with Phe greatly reduced the enzyme activity. The crystal structure of the G211F mutant (at 2.5 Å resolution) revealed that the side chain of Phe-211 occupied the hydrophobic cavity. Biochemical studies demonstrated that CURS1 catalyzes the decarboxylative condensation of a β-keto acid using a mechanism identical to that for normal decarboxylative condensation of malonyl-CoA by typical type III PKSs. Furthermore, the extender substrate specificity of CURS1 suggested that hydrophobic interaction between CURS1 and a β-keto acid may be important for CURS1 to use an extender substrate lacking the CoA moiety. From these results and a modeling study on substrate binding, we concluded that the hydrophobic cavity is responsible for the hydrophobic interaction between CURS1 and a β-keto acid, and this hydrophobic interaction enables the β-keto acid moiety to access the catalytic center of CURS1 efficiently.
Collapse
Affiliation(s)
| | - Ken-ichi Miyazono
- Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Masaru Tanokura
- Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | |
Collapse
|
575
|
Abstract
The identification of small drug-like compounds that selectively inhibit the function of biological targets has historically been a major focus in the pharmaceutical industry, and in recent years, has generated much interest in academia as well. Drug-like compounds are valuable as chemical genetics tools to probe biological pathways in a reversible, dose- and time-dependent manner for drug target identification. In addition, small molecule compounds can be used to characterize the shape and charge preferences of macromolecular binding sites, for both structure-based and ligand-based drug design. High-throughput screening is the most common experimental method used to identify lead compounds. Because of the cost, time, and resources required for performing high-throughput screening for compound libraries, the use of alternative strategies is necessary for facilitating lead discovery. Virtual screening has been successful in prioritizing large chemical libraries to identify experimentally active compounds, serving as a practical and effective alternative to high-throughput screening. Methodologies used in virtual screening such as molecular docking and scoring have advanced to the point where they can rapidly and accurately identify lead compounds in addition to predicting native binding conformations. This chapter provides instructions on how to perform a virtual screen using freely available tools for structure-based lead discovery.
Collapse
Affiliation(s)
- Yat T Tang
- Center for Computational Biology, School of Medicine, Washington University in St. Louis, St. Louis, MO, USA.
| | | |
Collapse
|
576
|
Khavrutskii IV, Wallqvist A. Computing Relative Free Energies of Solvation using Single Reference Thermodynamic Integration Augmented with Hamiltonian Replica Exchange. J Chem Theory Comput 2010; 6:3427-3441. [PMID: 21151738 PMCID: PMC2998072 DOI: 10.1021/ct1003302] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
This paper introduces an efficient single-topology variant of Thermodynamic Integration (TI) for computing relative transformation free energies in a series of molecules with respect to a single reference state. The presented TI variant that we refer to as Single-Reference TI (SR-TI) combines well-established molecular simulation methodologies into a practical computational tool. Augmented with Hamiltonian Replica Exchange (HREX), the SR-TI variant can deliver enhanced sampling in select degrees of freedom. The utility of the SR-TI variant is demonstrated in calculations of relative solvation free energies for a series of benzene derivatives with increasing complexity. Noteworthy, the SR-TI variant with the HREX option provides converged results in a challenging case of an amide molecule with a high (13-15 kcal/mol) barrier for internal cis/trans interconversion using simulation times of only 1 to 4 ns.
Collapse
Affiliation(s)
- Ilja V Khavrutskii
- Biotechnology HPC Software Applications Institute, Telemedicine and Advanced Technology Research Center, US Army Medical Research and Materiel Command, Fort Detrick, MD 21702
| | | |
Collapse
|
577
|
Structural insights into the acidophilic pH adaptation of a novel endo-1,4-β-xylanase from Scytalidium acidophilum. Biochimie 2010; 92:1407-15. [DOI: 10.1016/j.biochi.2010.07.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Accepted: 07/02/2010] [Indexed: 11/22/2022]
|
578
|
Sellers RP, Alexander LD, Johnson VA, Lin CC, Savage J, Corral R, Moss J, Slugocki TS, Singh EK, Davis MR, Ravula S, Spicer JE, Oelrich JL, Thornquist A, Pan CM, McAlpine SR. Design and synthesis of Hsp90 inhibitors: exploring the SAR of Sansalvamide A derivatives. Bioorg Med Chem 2010; 18:6822-56. [PMID: 20708938 PMCID: PMC2933939 DOI: 10.1016/j.bmc.2010.07.042] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2010] [Revised: 07/13/2010] [Accepted: 07/19/2010] [Indexed: 01/10/2023]
Abstract
Utilizing the structure-activity relationship we have developed during the synthesis of the first two generations and mechanism of action studies that point to the interaction of these molecules with the key oncogenic protein Hsp90, we report here the design of 32 new Sansalvamide A derivatives and their synthesis. Our new structures, designed from previously reported potent compounds, were tested for cytotoxicity on the HCT116 colon cancer cell line, and their binding to the biological target was analyzed using computational studies involving blind docking of derivatives using Autodock. Further, we show new evidence that our molecules bind directly to Hsp90 and modulate Hsp90's binding with client proteins. Finally, we demonstrate that we have integrated good ADME properties into a new derivative.
Collapse
Affiliation(s)
- Robert P. Sellers
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182-1030. Tel: 619-594-5580, fax: 619-594-4634
| | - Leslie D. Alexander
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182-1030. Tel: 619-594-5580, fax: 619-594-4634
| | - Victoria A. Johnson
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182-1030. Tel: 619-594-5580, fax: 619-594-4634
| | - Chun-Chieh Lin
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182-1030. Tel: 619-594-5580, fax: 619-594-4634
| | - Jeremiah Savage
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182-1030. Tel: 619-594-5580, fax: 619-594-4634
| | - Ricardo Corral
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182-1030. Tel: 619-594-5580, fax: 619-594-4634
| | - Jason Moss
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182-1030. Tel: 619-594-5580, fax: 619-594-4634
| | - Tim S. Slugocki
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182-1030. Tel: 619-594-5580, fax: 619-594-4634
| | - Erinprit K. Singh
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182-1030. Tel: 619-594-5580, fax: 619-594-4634
| | - Melinda R. Davis
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182-1030. Tel: 619-594-5580, fax: 619-594-4634
| | - Suchitra Ravula
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182-1030. Tel: 619-594-5580, fax: 619-594-4634
| | - Jamie E. Spicer
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182-1030. Tel: 619-594-5580, fax: 619-594-4634
| | - Jenna L. Oelrich
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182-1030. Tel: 619-594-5580, fax: 619-594-4634
| | - Andrea Thornquist
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182-1030. Tel: 619-594-5580, fax: 619-594-4634
| | - Chung-Mao Pan
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182-1030. Tel: 619-594-5580, fax: 619-594-4634
| | - Shelli R. McAlpine
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182-1030. Tel: 619-594-5580, fax: 619-594-4634
| |
Collapse
|
579
|
Insights into the binding of Phenyltiocarbamide (PTC) agonist to its target human TAS2R38 bitter receptor. PLoS One 2010; 5:e12394. [PMID: 20811630 PMCID: PMC2928277 DOI: 10.1371/journal.pone.0012394] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Accepted: 08/02/2010] [Indexed: 12/02/2022] Open
Abstract
Humans' bitter taste perception is mediated by the hTAS2R subfamily of the G protein-coupled membrane receptors (GPCRs). Structural information on these receptors is currently limited. Here we identify residues involved in the binding of phenylthiocarbamide (PTC) and in receptor activation in one of the most widely studied hTAS2Rs (hTAS2R38) by means of structural bioinformatics and molecular docking. The predictions are validated by site-directed mutagenesis experiments that involve specific residues located in the putative binding site and trans-membrane (TM) helices 6 and 7 putatively involved in receptor activation. Based on our measurements, we suggest that (i) residue N103 participates actively in PTC binding, in line with previous computational studies. (ii) W99, M100 and S259 contribute to define the size and shape of the binding cavity. (iii) W99 and M100, along with F255 and V296, play a key role for receptor activation, providing insights on bitter taste receptor activation not emerging from the previously reported computational models.
Collapse
|
580
|
PoxA, yjeK, and elongation factor P coordinately modulate virulence and drug resistance in Salmonella enterica. Mol Cell 2010; 39:209-21. [PMID: 20670890 DOI: 10.1016/j.molcel.2010.06.021] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Revised: 03/03/2010] [Accepted: 05/14/2010] [Indexed: 11/21/2022]
Abstract
We report an interaction between poxA, encoding a paralog of lysyl tRNA-synthetase, and the closely linked yjeK gene, encoding a putative 2,3-beta-lysine aminomutase, that is critical for virulence and stress resistance in Salmonella enterica. Salmonella poxA and yjeK mutants share extensive phenotypic pleiotropy, including attenuated virulence in mice, an increased ability to respire under nutrient-limiting conditions, hypersusceptibility to a variety of diverse growth inhibitors, and altered expression of multiple proteins, including several encoded on the SPI-1 pathogenicity island. PoxA mediates posttranslational modification of bacterial elongation factor P (EF-P), analogous to the modification of the eukaryotic EF-P homolog, eIF5A, with hypusine. The modification of EF-P is a mechanism of regulation whereby PoxA acts as an aminoacyl-tRNA synthetase that attaches an amino acid to a protein resembling tRNA rather than to a tRNA.
Collapse
|
581
|
Paskaleva EE, Xue J, Lee DYW, Shekhtman A, Canki M. Palmitic acid analogs exhibit nanomolar binding affinity for the HIV-1 CD4 receptor and nanomolar inhibition of gp120-to-CD4 fusion. PLoS One 2010; 5:e12168. [PMID: 20730055 PMCID: PMC2921400 DOI: 10.1371/journal.pone.0012168] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Accepted: 07/16/2010] [Indexed: 11/19/2022] Open
Abstract
Background We recently reported that palmitic acid (PA) is a novel and efficient CD4 fusion inhibitor to HIV-1 entry and infection. In the present report, based on in silico modeling of the novel CD4 pocket that binds PA, we describe discovery of highly potent PA analogs with increased CD4 receptor binding affinities (Kd) and gp120-to-CD4 inhibition constants (Ki). The PA analogs were selected to satisfy Lipinski's rule of drug-likeness, increased solubility, and to avoid potential cytotoxicity. Principal Findings PA analog 2-bromopalmitate (2-BP) was most efficacious with Kd ∼74 nM and Ki ∼122 nM, ascorbyl palmitate (6-AP) exhibited slightly higher Kd ∼140 nM and Ki ∼354 nM, and sucrose palmitate (SP) was least efficacious binding to CD4 with Kd ∼364 nM and inhibiting gp120-to-CD4 binding with Ki ∼1486 nM. Importantly, PA and its analogs specifically bound to the CD4 receptor with the one to one stoichiometry. Significance Considering observed differences between Ki and Kd values indicates clear and rational direction for improving inhibition efficacy to HIV-1 entry and infection. Taken together this report introduces a novel class of natural small molecules fusion inhibitors with nanomolar efficacy of CD4 receptor binding and inhibition of HIV-1 entry.
Collapse
Affiliation(s)
- Elena E. Paskaleva
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, New York, United States of America
| | - Jing Xue
- Department of Chemistry, State University of New York at Albany, Albany, New York, United States of America
| | - David Y-W. Lee
- Mailman Research Center, McLean Hospital, Harvard Medical School, Belmont, Massachusetts, United States of America
| | - Alexander Shekhtman
- Department of Chemistry, State University of New York at Albany, Albany, New York, United States of America
| | - Mario Canki
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, New York, United States of America
- * E-mail:
| |
Collapse
|
582
|
Pierri CL, Parisi G, Porcelli V. Computational approaches for protein function prediction: a combined strategy from multiple sequence alignment to molecular docking-based virtual screening. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1804:1695-712. [PMID: 20433957 DOI: 10.1016/j.bbapap.2010.04.008] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Revised: 03/04/2010] [Accepted: 04/14/2010] [Indexed: 12/12/2022]
Abstract
The functional characterization of proteins represents a daily challenge for biochemical, medical and computational sciences. Although finally proved on the bench, the function of a protein can be successfully predicted by computational approaches that drive the further experimental assays. Current methods for comparative modeling allow the construction of accurate 3D models for proteins of unknown structure, provided that a crystal structure of a homologous protein is available. Binding regions can be proposed by using binding site predictors, data inferred from homologous crystal structures, and data provided from a careful interpretation of the multiple sequence alignment of the investigated protein and its homologs. Once the location of a binding site has been proposed, chemical ligands that have a high likelihood of binding can be identified by using ligand docking and structure-based virtual screening of chemical libraries. Most docking algorithms allow building a list sorted by energy of the lowest energy docking configuration for each ligand of the library. In this review the state-of-the-art of computational approaches in 3D protein comparative modeling and in the study of protein-ligand interactions is provided. Furthermore a possible combined/concerted multistep strategy for protein function prediction, based on multiple sequence alignment, comparative modeling, binding region prediction, and structure-based virtual screening of chemical libraries, is described by using suitable examples. As practical examples, Abl-kinase molecular modeling studies, HPV-E6 protein multiple sequence alignment analysis, and some other model docking-based characterization reports are briefly described to highlight the importance of computational approaches in protein function prediction.
Collapse
Affiliation(s)
- Ciro Leonardo Pierri
- Department of Pharmaco-Biology, Laboratory of Biochemistry and Molecular Biology, University of Bari, Va E. Orabona, 4 - 70125 Bari, Italy.
| | | | | |
Collapse
|
583
|
Arakawa M, Yanamala N, Upadhyaya J, Halayko A, Klein-Seetharaman J, Chelikani P. The importance of valine 114 in ligand binding in beta(2)-adrenergic receptor. Protein Sci 2010; 19:85-93. [PMID: 19916165 DOI: 10.1002/pro.285] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
G-protein coupled receptors (GPCRs) are transmembrane signaling molecules, with a majority of them performing important physiological roles. beta(2)-Adrenergic receptor (beta(2)-AR) is a well-studied GPCRs that mediates natural responses to the hormones adrenaline and noradrenaline. Analysis of the ligand-binding region of beta(2)-AR using the recently solved high-resolution crystal structures revealed a number of highly conserved amino acids that might be involved in ligand binding. However, detailed structure-function studies on some of these residues have not been performed, and their role in ligand binding remains to be elucidated. In this study, we have investigated the structural and functional role of a highly conserved residue valine 114, in hamster beta(2)-AR by site-directed mutagenesis. We replaced V114 in hamster beta(2)-AR with a number of amino acid residues carrying different functional groups. In addition to the complementary substitutions V114I and V114L, the V114C and V114E mutants also showed significant ligand binding and agonist dependent G-protein activation. However, the V114G, V114T, V114S, and V114W mutants failed to bind ligand in a specific manner. Molecular modeling studies were conducted to interpret these results in structural terms. We propose that the replacement of V114 influences not only the interaction of the ethanolamine side-chains but also the aryl-ring of the ligands tested. Results from this study show that the size and orientation of the hydrophobic residue at position V114 in beta(2)-AR affect binding of both agonists and antagonists, but it does not influence the receptor expression or folding.
Collapse
Affiliation(s)
- Makoto Arakawa
- Department of Oral Biology, University of Manitoba, Winnipeg, Manitoba, Canada R3E 0W4
| | | | | | | | | | | |
Collapse
|
584
|
Sturgill TW, Hall MN. Activating mutations in TOR are in similar structures as oncogenic mutations in PI3KCalpha. ACS Chem Biol 2009; 4:999-1015. [PMID: 19902965 PMCID: PMC2796128 DOI: 10.1021/cb900193e] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
![]()
TOR (Target of Rapamycin) is a highly conserved Ser/Thr kinase and a central controller of cell growth. Using the crystal structure of the related lipid kinase PI3KCγ, we built a model of the catalytic region of TOR, from the FAT domain to near the end of the FATC domain. The model reveals that activating mutations in TOR, identified in yeast in a genetic selection for Rheb-independence, correspond to hotspots for oncogenic mutations in PI3KCα. The activating mutations are in the catalytic domain (helices kα3, kα9, kα11) and the helical domain of TOR. Docking studies with small molecule inhibitors (PP242, NVP-BEZ235, and Ku-0063794) show that drugs currently in development utilize a novel pharmacophore space to achieve specificity. Thus, our model provides insight on the regulation of TOR and may be useful in the design of new anticancer drugs.
Collapse
Affiliation(s)
- Thomas W. Sturgill
- Department of Pharmacology, University of Virginia Health Sciences Center, Charlottesville, Virginia 22908
| | | |
Collapse
|
585
|
Li L, Bum-Erdene K, Baenziger PH, Rosen JJ, Hemmert JR, Nellis JA, Pierce ME, Meroueh SO. BioDrugScreen: a computational drug design resource for ranking molecules docked to the human proteome. Nucleic Acids Res 2009; 38:D765-73. [PMID: 19923229 PMCID: PMC2808957 DOI: 10.1093/nar/gkp852] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BioDrugScreen is a resource for ranking molecules docked against a large number of targets in the human proteome. Nearly 1600 molecules from the freely available NCI diversity set were docked onto 1926 cavities identified on 1589 human targets resulting in >3 million receptor-ligand complexes requiring >200,000 cpu-hours on the TeraGrid. The targets in BioDrugScreen originated from Human Cancer Protein Interaction Network, which we have updated, as well as the Human Druggable Proteome, which we have created for the purpose of this effort. This makes the BioDrugScreen resource highly valuable in drug discovery. The receptor-ligand complexes within the database can be ranked using standard and well-established scoring functions like AutoDock, DockScore, ChemScore, X-Score, GoldScore, DFIRE and PMF. In addition, we have scored the complexes with more intensive GBSA and PBSA approaches requiring an additional 120,000 cpu-hours on the TeraGrid. We constructed a simple interface to enable users to view top-ranking molecules and access purchasing and other information for further experimental exploration.
Collapse
Affiliation(s)
- Liwei Li
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | | | | | | | | | | | | |
Collapse
|
586
|
D’Ursi P, Chiappori F, Merelli I, Cozzi P, Rovida E, Milanesi L. Virtual screening pipeline and ligand modelling for H5N1 neuraminidase. Biochem Biophys Res Commun 2009; 383:445-9. [DOI: 10.1016/j.bbrc.2009.04.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2009] [Accepted: 04/09/2009] [Indexed: 10/20/2022]
|