551
|
Sasaki Y, Nagano Y. Plant acetyl-CoA carboxylase: structure, biosynthesis, regulation, and gene manipulation for plant breeding. Biosci Biotechnol Biochem 2005; 68:1175-84. [PMID: 15215578 DOI: 10.1271/bbb.68.1175] [Citation(s) in RCA: 233] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Acetyl-CoA carboxylase (ACCase) catalyzes the first committed step of fatty acid synthesis, the carboxylation of acetyl-CoA to malonyl-CoA. Two physically distinct types of enzymes are found in nature. Heteromeric ACCase composed of four subunits is usually found in prokaryotes, and homomeric ACCase composed of a single large polypeptide is found in eukaryotes. Most plants have both forms, the heteromeric form in plastids, in which de novo fatty acids are synthesized, and the homomeric form in cytosol. This review focuses on the structure and regulation of plant heteromeric ACCase and its manipulation for plant breeding.
Collapse
Affiliation(s)
- Yukiko Sasaki
- Genesis Research Institute, Inc., Nishi-ku, Nagoya, Japan.
| | | |
Collapse
|
552
|
Venema JH, Linger P, van Heusden AW, van Hasselt PR, Brüggemann W. The inheritance of chilling tolerance in tomato (Lycopersicon spp.). PLANT BIOLOGY (STUTTGART, GERMANY) 2005; 7:118-130. [PMID: 15822007 DOI: 10.1055/s-2005-837495] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
During the past 25 years, chilling tolerance of the cultivated (chilling-sensitive) tomato Lycopersicon esculentum and its wild, chilling-tolerant relatives L. peruvianum and L. hirsutum (and, less intensively studied, L. chilense) has been the object of several investigations. The final aim of these studies can be seen in the increase in chilling tolerance of the cultivated genotypes. In this review, we will focus on low-temperature effects on photosynthesis and the inheritance of these traits to the offspring of various breeding attempts. While crossing L. peruvianum (male symbol) to L. esculentum (female symbol) so far has brought the most detailed insight with respect to physiological questions, for practical purposes, e.g., the readily cross ability, crossing programmes with L. hirsutum as pollen donor at present seem to be a promising way to achieve higher chilling-tolerant genotypes of the cultivated tomato. This perspective is due to the progress that has been made with respect to the genetic basis of chilling tolerance of Lycopersicon spp. over the past five years.
Collapse
Affiliation(s)
- J H Venema
- Laboratory of Plant Physiology, University of Groningen, P.O. Box 14, 9750 AA Haren, The Netherlands
| | | | | | | | | |
Collapse
|
553
|
Misumi O, Matsuzaki M, Nozaki H, Miyagishima SY, Mori T, Nishida K, Yagisawa F, Yoshida Y, Kuroiwa H, Kuroiwa T. Cyanidioschyzon merolae genome. A tool for facilitating comparable studies on organelle biogenesis in photosynthetic eukaryotes. PLANT PHYSIOLOGY 2005; 137:567-85. [PMID: 15681662 PMCID: PMC1065357 DOI: 10.1104/pp.104.053991] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2004] [Revised: 12/16/2004] [Accepted: 12/17/2004] [Indexed: 05/19/2023]
Abstract
The ultrasmall unicellular red alga Cyanidioschyzon merolae lives in the extreme environment of acidic hot springs and is thought to retain primitive features of cellular and genome organization. We determined the 16.5-Mb nuclear genome sequence of C. merolae 10D as the first complete algal genome. BLASTs and annotation results showed that C. merolae has a mixed gene repertoire of plants and animals, also implying a relationship with prokaryotes, although its photosynthetic components were comparable to other phototrophs. The unicellular green alga Chlamydomonas reinhardtii has been used as a model system for molecular biology research on, for example, photosynthesis, motility, and sexual reproduction. Though both algae are unicellular, the genome size, number of organelles, and surface structures are remarkably different. Here, we report the characteristics of double membrane- and single membrane-bound organelles and their related genes in C. merolae and conduct comparative analyses of predicted protein sequences encoded by the genomes of C. merolae and C. reinhardtii. We examine the predicted proteins of both algae by reciprocal BLASTP analysis, KOG assignment, and gene annotation. The results suggest that most core biological functions are carried out by orthologous proteins that occur in comparable numbers. Although the fundamental gene organizations resembled each other, the genes for organization of chromatin, cytoskeletal components, and flagellar movement remarkably increased in C. reinhardtii. Molecular phylogenetic analyses suggested that the tubulin is close to plant tubulin rather than that of animals and fungi. These results reflect the increase in genome size, the acquisition of complicated cellular structures, and kinematic devices in C. reinhardtii.
Collapse
Affiliation(s)
- Osami Misumi
- Laboratory of Cell Biology and Frontier Project Life's Adaptation Strategies of Environmental Changes, Department of Life Science, College of Science, Rikkyo University, Toshima, Tokyo 171-8501, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
554
|
Sugiyama Y, Watase Y, Nagase M, Makita N, Yagura S, Hirai A, Sugiura M. The complete nucleotide sequence and multipartite organization of the tobacco mitochondrial genome: comparative analysis of mitochondrial genomes in higher plants. Mol Genet Genomics 2005; 272:603-15. [PMID: 15583938 DOI: 10.1007/s00438-004-1075-8] [Citation(s) in RCA: 198] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2004] [Accepted: 09/30/2004] [Indexed: 11/25/2022]
Abstract
Tobacco is a valuable model system for investigating the origin of mitochondrial DNA (mtDNA) in amphidiploid plants and studying the genetic interaction between mitochondria and chloroplasts in the various functions of the plant cell. As a first step, we have determined the complete mtDNA sequence of Nicotiana tabacum. The mtDNA of N. tabacum can be assumed to be a master circle (MC) of 430,597 bp. Sequence comparison of a large number of clones revealed that there are four classes of boundaries derived from homologous recombination, which leads to a multipartite organization with two MCs and six subgenomic circles. The mtDNA of N. tabacum contains 36 protein-coding genes, three ribosomal RNA genes and 21 tRNA genes. Among the first class, we identified the genes rps1 and psirps14, which had previously been thought to be absent in tobacco mtDNA on the basis of Southern analysis. Tobacco mtDNA was compared with those of Arabidopsis thaliana, Beta vulgaris, Oryza sativa and Brassica napus. Since repeated sequences show no homology to each other among the five angiosperms, it can be supposed that these were independently acquired by each species during the evolution of angiosperms. The gene order and the sequences of intergenic spacers in mtDNA also differ widely among the five angiosperms, indicating multiple reorganizations of genome structure during the evolution of higher plants. Among the conserved genes, the same potential conserved nonanucleotide-motif-type promoter could only be postulated for rrn18-rrn5 in four of the dicotyledonous plants, suggesting that a coding sequence does not necessarily move with the promoter upon reorganization of the mitochondrial genome.
Collapse
Affiliation(s)
- Y Sugiyama
- Center for Gene Research, Nagoya University, Chikusa-ku, 464-0812 Nagoya, Japan.
| | | | | | | | | | | | | |
Collapse
|
555
|
Jansen RK, Raubeson LA, Boore JL, dePamphilis CW, Chumley TW, Haberle RC, Wyman SK, Alverson AJ, Peery R, Herman SJ, Fourcade HM, Kuehl JV, McNeal JR, Leebens-Mack J, Cui L. Methods for obtaining and analyzing whole chloroplast genome sequences. Methods Enzymol 2005; 395:348-84. [PMID: 15865976 DOI: 10.1016/s0076-6879(05)95020-9] [Citation(s) in RCA: 294] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
During the past decade, there has been a rapid increase in our understanding of plastid genome organization and evolution due to the availability of many new completely sequenced genomes. There are 45 complete genomes published and ongoing projects are likely to increase this sampling to nearly 200 genomes during the next 5 years. Several groups of researchers including ours have been developing new techniques for gathering and analyzing entire plastid genome sequences and details of these developments are summarized in this chapter. The most important developments that enhance our ability to generate whole chloroplast genome sequences involve the generation of pure fractions of chloroplast genomes by whole genome amplification using rolling circle amplification, cloning genomes into Fosmid or bacterial artificial chromosome (BAC) vectors, and the development of an organellar annotation program (Dual Organellar GenoMe Annotator [DOGMA]). In addition to providing details of these methods, we provide an overview of methods for analyzing complete plastid genome sequences for repeats and gene content, as well as approaches for using gene order and sequence data for phylogeny reconstruction. This explosive increase in the number of sequenced plastid genomes and improved computational tools will provide many insights into the evolution of these genomes and much new data for assessing relationships at deep nodes in plants and other photosynthetic organisms.
Collapse
Affiliation(s)
- Robert K Jansen
- Section of Integrative Biology, The University of Texas at Austin, Institute of Cellular and Molecular Biology, Austin, Texas 78712-0253, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
556
|
Rumeau D, Bécuwe-Linka N, Beyly A, Louwagie M, Garin J, Peltier G. New subunits NDH-M, -N, and -O, encoded by nuclear genes, are essential for plastid Ndh complex functioning in higher plants. THE PLANT CELL 2005; 17:219-32. [PMID: 15608332 PMCID: PMC544500 DOI: 10.1105/tpc.104.028282] [Citation(s) in RCA: 152] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2004] [Accepted: 11/09/2004] [Indexed: 05/18/2023]
Abstract
In higher plants, the Ndh complex reduces plastoquinones and is involved in cyclic electron flow around photosystem I, supplying extra-ATP for photosynthesis, particularly under environmental stress conditions. Based on plastid genome sequences, the Ndh complex would contain 11 subunits (NDH-A to -K), but homologies with bacterial complex indicate the probable existence of additional subunits. To identify missing subunits, tobacco (Nicotiana tabacum) NDH-H was His tagged at its N terminus using plastid transformation. A functional Ndh subcomplex was purified by Ni(2+) affinity chromatography and its subunit composition analyzed by mass spectrometry. Five plastid encoded subunits (NDH-A, -H, -I, -J, and -K) were identified as well as three new subunits (NDH-M, -N, and -O) homologous to cyanobacterial and higher plant proteins. Arabidopsis thaliana mutants missing one of these new subunits lack a functional Ndh complex, and NDH-M and NDH-N are not detected in a tobacco transformant lacking the Ndh complex. We discuss the involvement of these three nuclear-encoded subunits in the functional integrity of the plastidial complex.
Collapse
Affiliation(s)
- Dominique Rumeau
- Département d'Ecophysiologie Végétale et de Microbiologie, Laboratoire d'Ecophysiologie de la Photosynthèse, Centre National de la Recherche Scientifique, Université de la Méditerranée, Saint-Paul-lez-Durance, France.
| | | | | | | | | | | |
Collapse
|
557
|
Shahid Masood M, Nishikawa T, Fukuoka SI, Njenga PK, Tsudzuki T, Kadowaki KI. The complete nucleotide sequence of wild rice (Oryza nivara) chloroplast genome: first genome wide comparative sequence analysis of wild and cultivated rice. Gene 2004; 340:133-9. [PMID: 15556301 DOI: 10.1016/j.gene.2004.06.008] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2004] [Revised: 05/15/2004] [Accepted: 06/01/2004] [Indexed: 10/26/2022]
Abstract
We determined the complete nucleotide sequence of the chloroplast genome of wild rice, Oryza nivara and compared it with the corresponding published sequence of relative cultivated rice, Oryza sativa. The genome was 134,494 bp long with a large single-copy region of 80,544 bp, a small single-copy region of 12,346 bp and two inverted repeats of 20,802 bp each. The overall A+T content was 61.0%. The O. nivara chloroplast genome encoded identical functional genes to O. sativa in the same order along the genome. On the other hand, detailed analysis revealed 57 insertion, 61 deletion and 159 base substitution events in the entire chloroplast genome of O. nivara. Among substitutions, transversions were much higher than transitions with the former even more frequent than the latter in the coding region. Most of the insertions/deletions were single-base but a few large length mutations were also detected. The frequency of insertion/deletion events was more in the coding region within inverted repeats. In contrast, a very few substitution events were identified in the coding region. Polymorphism was observed among rice cultivars at loci of large insertion/deletion events. This is the first report describing comparative and genome wide chloroplast analysis between a wild and cultivated crop.
Collapse
Affiliation(s)
- M Shahid Masood
- Molecular Biodiversity Laboratory, Genetic Diversity Department, National Institute of Agrobiological Sciences, Kannondai 2-1-2, Ibaraki, Tsukuba 305-8602, Japan
| | | | | | | | | | | |
Collapse
|
558
|
Golding AJ, Finazzi G, Johnson GN. Reduction of the thylakoid electron transport chain by stromal reductants--evidence for activation of cyclic electron transport upon dark adaptation or under drought. PLANTA 2004; 220:356-63. [PMID: 15316779 DOI: 10.1007/s00425-004-1345-z] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2004] [Accepted: 06/12/2004] [Indexed: 05/06/2023]
Abstract
The reduction of P700(+), the primary electron donor of photosystem I (PSI), following a saturating flash of white light in the presence of the photosystem II (PSII) inhibitor 3-(3.4-dichlorophenyl)-1,1-dimethylurea (DCMU), was examined in barley plants exposed to a variety of conditions. The decay kinetic fitted to a double exponential decay curve, implying the presence of two distinct pools of PSI. A fast component, with a rate constant for decay of around 0.03-0.04 ms(-1) was observed to be sensitive to the duration of illumination. This rate constant was slower than, but comparable to, that observed in non-inhibited samples (i.e. where linear flow was active). It was substantially faster than values typically reported for experiments where PSII activity is inhibited. The magnitude of this component rose in leaves that were dark-adapted or exposed to drought. This component was assigned to PSI centres involved in cyclic electron transport. The remaining slowly decaying P700(+) population (rate constant of around 0.001-0.002 ms(-1)) was assigned to centres normally involved in linear electron transport (but inhibited here because of the presence of DCMU), or inactivated centres involved in the cyclic pathway. Processes that might regulate the relative flux through cyclic electron transport are discussed.
Collapse
Affiliation(s)
- Alison J Golding
- School of Biological Sciences, University of Manchester, 3.614 Stopford Building, Oxford Road, Manchester, M13 9PT, UK
| | | | | |
Collapse
|
559
|
Nishimura Y, Kikis EA, Zimmer SL, Komine Y, Stern DB. Antisense transcript and RNA processing alterations suppress instability of polyadenylated mRNA in chlamydomonas chloroplasts. THE PLANT CELL 2004; 16:2849-69. [PMID: 15486097 PMCID: PMC527185 DOI: 10.1105/tpc.104.026203] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2004] [Accepted: 08/26/2004] [Indexed: 05/21/2023]
Abstract
In chloroplasts, the control of mRNA stability is of critical importance for proper regulation of gene expression. The Chlamydomonas reinhardtii strain Delta26pAtE is engineered such that the atpB mRNA terminates with an mRNA destabilizing polyadenylate tract, resulting in this strain being unable to conduct photosynthesis. A collection of photosynthetic revertants was obtained from Delta26pAtE, and gel blot hybridizations revealed RNA processing alterations in the majority of these suppressor of polyadenylation (spa) strains, resulting in a failure to expose the atpB mRNA 3' poly(A) tail. Two exceptions were spa19 and spa23, which maintained unusual heteroplasmic chloroplast genomes. One genome type, termed PS+, conferred photosynthetic competence by contributing to the stability of atpB mRNA; the other, termed PS-, was required for viability but could not produce stable atpB transcripts. Based on strand-specific RT-PCR, S1 nuclease protection, and RNA gel blots, evidence was obtained that the PS+ genome stabilizes atpB mRNA by generating an atpB antisense transcript, which attenuates the degradation of the polyadenylated form. The accumulation of double-stranded RNA was confirmed by insensitivity of atpB mRNA from PS+ genome-containing cells to S1 nuclease digestion. To obtain additional evidence for antisense RNA function in chloroplasts, we used strain Delta26, in which atpB mRNA is unstable because of the lack of a 3' stem-loop structure. In this context, when a 121-nucleotide segment of atpB antisense RNA was expressed from an ectopic site, an elevated accumulation of atpB mRNA resulted. Finally, when spa19 was placed in a genetic background in which expression of the chloroplast exoribonuclease polynucleotide phosphorylase was diminished, the PS+ genome and the antisense transcript were no longer required for photosynthesis. Taken together, our results suggest that antisense RNA in chloroplasts can protect otherwise unstable transcripts from 3'-->5' exonuclease activity, a phenomenon that may occur naturally in the symmetrically transcribed and densely packed chloroplast genome.
Collapse
MESH Headings
- Animals
- Chlamydomonas reinhardtii/genetics
- Chlamydomonas reinhardtii/metabolism
- Chloroplasts/genetics
- DNA, Complementary/genetics
- Exonucleases/metabolism
- Gene Expression Regulation/genetics
- Genome, Plant
- Photosynthesis/genetics
- Plant Proteins/biosynthesis
- Plant Proteins/genetics
- RNA 3' End Processing/genetics
- RNA 3' Polyadenylation Signals/genetics
- RNA Processing, Post-Transcriptional/genetics
- RNA Stability/genetics
- RNA, Algal/biosynthesis
- RNA, Algal/genetics
- RNA, Antisense/genetics
- RNA, Double-Stranded/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Protozoan/biosynthesis
- RNA, Protozoan/genetics
- Species Specificity
Collapse
Affiliation(s)
- Yoshiki Nishimura
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853, USA
| | | | | | | | | |
Collapse
|
560
|
Suzuki JY, Ytterberg AJ, Beardslee TA, Allison LA, Wijk KJ, Maliga P. Affinity purification of the tobacco plastid RNA polymerase and in vitro reconstitution of the holoenzyme. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2004; 40:164-72. [PMID: 15361150 DOI: 10.1111/j.1365-313x.2004.02195.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
We affinity-purified the tobacco plastid-encoded plastid RNA polymerase (PEP) complex by the alpha subunit containing a C-terminal 12 x histidine tag using heparin and Ni(2+) chromatography. The composition of the complex was determined by mass spectrometry after separating the proteins of the >900 kDa complex in blue native and SDS polyacrylamide gels. The purified PEP contained the core alpha, beta, beta', beta" subunits and five major associated proteins of unknown function, but lacked sigma factors required for promoter recognition. The holoenzyme efficiently recognized a plastid psbA promoter when it was reconstituted from the purified PEP and recombinant plastid sigma factors. Reconstitution of a plastid holoenzyme with individual sigma factors will facilitate identification of sigma factor-specific promoter elements.
Collapse
Affiliation(s)
- Jon Y Suzuki
- Waksman Institute, Rutgers, The State University of New Jersey, 190 Frelinghuysen Road, Piscataway, NJ 08854-8020, USA
| | | | | | | | | | | |
Collapse
|
561
|
Clarkson JJ, Knapp S, Garcia VF, Olmstead RG, Leitch AR, Chase MW. Phylogenetic relationships in Nicotiana (Solanaceae) inferred from multiple plastid DNA regions. Mol Phylogenet Evol 2004; 33:75-90. [PMID: 15324840 DOI: 10.1016/j.ympev.2004.05.002] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2003] [Revised: 03/09/2004] [Indexed: 11/24/2022]
Abstract
For Nicotiana, with 75 naturally occurring species (40 diploids and 35 allopolyploids), we produced 4656bp of plastid DNA sequence for 87 accessions and various outgroups. The loci sequenced were trnL intron and trnL-F spacer, trnS-G spacer and two genes, ndhF and matK. Parsimony and Bayesian analyses yielded identical relationships for the diploids, and these are consistent with other data, producing the best-supported phylogenetic assessment currently available for the genus. For the allopolyploids, the line of maternal inheritance is traced via the plastid tree. Nicotiana and the Australian endemic tribe Anthocercideae form a sister pair. Symonanthus is sister to the rest of Anthocercideae. Nicotiana sect. Tomentosae is sister to the rest of the genus. The maternal parent of the allopolyploid species of N. sect. Polydicliae were ancestors of the same species, but the allopolyploids were produced at different times, thus making such sections paraphyletic to their extant diploid relatives. Nicotiana is likely to have evolved in southern South America east of the Andes and later dispersed to Africa, Australia, and southwestern North America.
Collapse
Affiliation(s)
- James J Clarkson
- Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK.
| | | | | | | | | | | |
Collapse
|
562
|
Arai Y, Shikanai T, Doi Y, Yoshida S, Yamaguchi I, Nakashita H. Production of polyhydroxybutyrate by polycistronic expression of bacterial genes in tobacco plastid. PLANT & CELL PHYSIOLOGY 2004; 45:1176-84. [PMID: 15509840 DOI: 10.1093/pcp/pch139] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Transgenic techniques are used to enhance and improve crop production, and their application to the production of chemical resources in plants has been under investigation. To achieve this latter goal, multiple-gene transformation is required to improve or change plant metabolic pathways; when accomplished by plant nuclear transformation, however, this procedure is costly and time consuming. We succeeded in the metabolic engineering of the tobacco plant by introducing multiple genes within a bacteria-like operon into a plastid genome. A tobacco plastid was transformed with a polycistron consisting of the spectinomycin resistance gene and three bacterial genes for the biosynthesis of the biodegradable polyester, poly[(R)-3-hydroxybutyrate] (PHB), after modification of their ribosome binding sites. DNA and RNA analysis confirmed the insertion of the introduced genes into the plastid genome and their polycistronic expression. As the result, the transplastomic tobacco accumulated PHB in its leaves. The introduced genes and the PHB productivity were maternally inherited, avoiding genetic spread by pollen diffusion, and were maintained stably in the seed progeny. Despite the low PHB productivity, this report demonstrates the feasibility of transplastomic technology for metabolic engineering. This "phyto-fermentation" system can be applied to plant production of various chemical commodities and pharmaceuticals.
Collapse
Affiliation(s)
- Yuko Arai
- Microbial Toxicology Laboratory, RIKEN Institute, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198 Japan
| | | | | | | | | | | |
Collapse
|
563
|
Kumar S, Dhingra A, Daniell H. Plastid-expressed betaine aldehyde dehydrogenase gene in carrot cultured cells, roots, and leaves confers enhanced salt tolerance. PLANT PHYSIOLOGY 2004; 136:2843-54. [PMID: 15347789 PMCID: PMC523346 DOI: 10.1104/pp.104.045187] [Citation(s) in RCA: 185] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2004] [Revised: 06/24/2004] [Accepted: 06/25/2004] [Indexed: 05/18/2023]
Abstract
Salinity is one of the major factors that limits geographical distribution of plants and adversely affects crop productivity and quality. We report here high-level expression of betaine aldehyde dehydrogenase (BADH) in cultured cells, roots, and leaves of carrot (Daucus carota) via plastid genetic engineering. Homoplasmic transgenic plants exhibiting high levels of salt tolerance were regenerated from bombarded cell cultures via somatic embryogenesis. Transformation efficiency of carrot somatic embryos was very high, with one transgenic event per approximately seven bombarded plates under optimal conditions. In vitro transgenic carrot cells transformed with the badh transgene were visually green in color when compared to untransformed carrot cells, and this offered a visual selection for transgenic lines. BADH enzyme activity was enhanced 8-fold in transgenic carrot cell cultures, grew 7-fold more, and accumulated 50- to 54-fold more betaine (93-101 micromol g(-1) dry weight of beta-Ala betaine and Gly betaine) than untransformed cells grown in liquid medium containing 100 mm NaCl. Transgenic carrot plants expressing BADH grew in the presence of high concentrations of NaCl (up to 400 mm), the highest level of salt tolerance reported so far among genetically modified crop plants. BADH expression was 74.8% in non-green edible parts (carrots) containing chromoplasts, and 53% in proplastids of cultured cells when compared to chloroplasts (100%) in leaves. Demonstration of plastid transformation via somatic embryogenesis utilizing non-green tissues as recipients of foreign DNA for the first time overcomes two of the major obstacles in extending this technology to important crop plants.
Collapse
Affiliation(s)
- Shashi Kumar
- Department of Molecular Biology and Microbiology, University of Central Florida, Orlando, FL 32816-2364, USA
| | | | | |
Collapse
|
564
|
Rumeau D, Bécuwe-Linka N, Beyly A, Carrier P, Cuiné S, Genty B, Medgyesy P, Horvath E, Peltier G. Increased zinc content in transplastomic tobacco plants expressing a polyhistidine-tagged Rubisco large subunit. PLANT BIOTECHNOLOGY JOURNAL 2004; 2:389-99. [PMID: 17168886 DOI: 10.1111/j.1467-7652.2004.00083.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Rubisco is a hexadecameric enzyme composed of two subunits: a small subunit (SSU) encoded by a nuclear gene (rbcS), and a large subunit (LSU) encoded by a plastid gene (rbcL). Due to its high abundance, Rubisco represents an interesting target to express peptides or small proteins as fusion products at high levels. In an attempt to modify the plant metal content, a polyhistidine sequence was fused to Rubisco, the most abundant protein of plants. Plastid transformation was used to express a polyhistidine (6x) fused to the C-terminal extremity of the tobacco LSU. Transplastomic tobacco plants were generated by cotransformation of polyethylene glycol-treated protoplasts using two vectors: one containing the 16SrDNA marker gene, conferring spectinomycin resistance, and the other the polyhistidine-tagged rbcL gene. Homoplasmic plants containing L8-(His)6S8 as a single enzyme species were obtained. These plants contained normal Rubisco amounts and activity and displayed normal photosynthetic properties and growth. Interestingly, transplastomic plants accumulated higher zinc amounts than the wild-type when grown on zinc-enriched media. The highest zinc increase observed exceeded the estimated chelating ability of the polyhistidine sequence, indicating a perturbation in intracellular zinc homeostasis. We discuss the possibility of using Rubisco to express foreign peptides as fusion products and to confer new properties to higher plants.
Collapse
Affiliation(s)
- Dominique Rumeau
- CEA Cadarache, Direction des Sciences du Vivant, Département d'Ecophysiologie Végétale et de Microbiologie, Unité Mixte de Recherche 6191 CNRS-CEA-Université de la Méditerranée, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
565
|
Kanno M, Yokoyama J, Suyama Y, Ohyama M, Itoh T, Suzuki M. Geographical distribution of two haplotypes of chloroplast DNA in four oak species (Quercus) in Japan. JOURNAL OF PLANT RESEARCH 2004; 117:311-317. [PMID: 15232717 DOI: 10.1007/s10265-004-0160-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2004] [Accepted: 05/18/2004] [Indexed: 05/24/2023]
Abstract
Chloroplast DNA polymorphism in four oak species (Quercus serrata, Q. mongolica var. crispula, Q. dentata and Q. aliena) was studied using collections from a total of 127 localities in Japan and South Korea on the basis of five intergenic spacers (trnD-trnT, trnT-trnL, rps14-psaB, trnS-trnT and trnQ-trnS). Although no variation existed in sequences among the four species, a single nucleotide (T/C) substitution in the trnQ-trnS intergenic spacer was found in all the four species, resulting in two haplotypes (T- and C-type). Phylogenetic analyses of the four species and related species showed that the C-type is derived and even likely of monophyletic origin, while the T-type is ancestral. Geographically, the T-type is widespread from South Korea to Japan, whereas the C-type is restricted to eastern Japan with rare exceptions. "Eastern Japan" approximately coincides with the distribution range of the boreal conifer forest during the last glacial maximum. Overall evidence suggests that the mutation from T- to C-type occurred in an individual of one of the four oak species and then was transferred to all the species by hybridization in eastern Japan, and that the Kanto District provided individuals with the C-type with a refugium during the last glacial maximum.
Collapse
Affiliation(s)
- Munetake Kanno
- Botanical Garden, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-0862, Japan.
| | | | | | | | | | | |
Collapse
|
566
|
Dufourmantel N, Pelissier B, Garçon F, Peltier G, Ferullo JM, Tissot G. Generation of fertile transplastomic soybean. PLANT MOLECULAR BIOLOGY 2004; 55:479-89. [PMID: 15604694 DOI: 10.1007/s11103-004-0192-4] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
We describe here the development of a plastid transformation method for soybean, a leguminous plant of major agronomic interest. Chloroplasts from embryogenic tissue of Glycine max have been successfully transformed by bombardment. The transforming DNA carries a spectinomycin resistance gene (aadA) under the control of tobacco plastid regulatory expression elements, flanked by two adjacent soybean plastome sequences allowing its targeted insertion between the trnV gene and the rps12/7 operon. All generated spectinomycin resistant plants were transplastomic and no remaining wild type plastome copies were detected. No spontaneous mutants were obtained. The transformation efficiency is similar to that of tobacco plastids. All transplastomic T0 plants were fertile and T1 progeny was uniformly spectinomycin resistant, showing the stability of the plastid transgene. This is the first report on the generation of fertile transplastomic soybean.
Collapse
|
567
|
Byrne M, Macdonald B, Brand J. Phylogeography and divergence in the chloroplast genome of Western Australian Sandalwood (Santalum spicatum). Heredity (Edinb) 2004; 91:389-95. [PMID: 14512954 DOI: 10.1038/sj.hdy.6800346] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Western Australian sandalwood (Santalum spicatum) is widespread throughout Western Australia across the semiarid and arid regions. The diversity and phylogeographic patterns within the chloroplast genome of S. spicatum were investigated using restriction fragment length polymorphism analysis of 23 populations. The chloroplast diversity was structured into two main clades that were geographically separated, one centred in the southern (semiarid region) and the other in the northern (arid) region. Fragmentation due to climatic instability was identified as the most likely influence on the differentiation of the lineages. The lineage in the arid region showed a greater level of differentiation than that in the southern region, suggesting a higher level of gene flow or a more recent range expansion of sandalwood in the southern region. The phylogeographic pattern in the chloroplast genome is congruent with that detected in the nuclear genome, which identified different genetic influences between the regions and also suggested a more recent expansion of sandalwood in the southern region.
Collapse
Affiliation(s)
- M Byrne
- Science Division, Department of Conservation and Land Management, Locked Bag 104, Bentley Delivery Centre, WA 6983, Australia.
| | | | | |
Collapse
|
568
|
Joliot P, Béal D, Joliot A. Cyclic electron flow under saturating excitation of dark-adapted Arabidopsis leaves. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2004; 1656:166-76. [PMID: 15178478 DOI: 10.1016/j.bbabio.2004.03.010] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2003] [Revised: 03/12/2004] [Accepted: 03/25/2004] [Indexed: 10/26/2022]
Abstract
The rate of cyclic electron flow measured in dark-adapted leaves under aerobic conditions submitted to a saturating illumination has been performed by the analysis of the transmembrane potential changes induced by a light to dark transfer. Using a new highly sensitive spectrophotometric technique, a rate of the cyclic flow of approximately 130 s(-1) has been measured in the presence or absence of 3-(3,4-dichloro-phenyl)-1,1-dimethylurea (DCMU). This value is approximately 1.5 times larger than that previously reported [Proc. Natl. Acad. Sci. U. S. A. 99 (2001) 10209]. We have characterized in the presence or absence of DCMU charge recombination process (t(1/2) approximately 60 micros) that involves P(700)(+) and very likely the reduced form of the iron sulfur acceptor F(X). This led to conclude that, under saturating illumination, the PSI centers involved in the cyclic pathway have most of the iron sulfur acceptors F(A) and F(B) reduced. In the proposed mechanism, electrons are transferred from a ferredoxin bound to a site localized on the stromal side of the cytochrome b(6)f complex to the Q(i) site. Two possible models of the organization of the membrane complexes are discussed, in which the cyclic and linear electron transfer chains are isolated one from the other.
Collapse
Affiliation(s)
- Pierre Joliot
- Institut de Biologie Physico-Chimique, CNRS UPR 1261, 13, rue Pierre-et-Marie Curie, 75005 Paris, France.
| | | | | |
Collapse
|
569
|
Tang J, Xia H, Cao M, Zhang X, Zeng W, Hu S, Tong W, Wang J, Wang J, Yu J, Yang H, Zhu L. A comparison of rice chloroplast genomes. PLANT PHYSIOLOGY 2004; 135:412-20. [PMID: 15122023 PMCID: PMC429394 DOI: 10.1104/pp.103.031245] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Using high quality sequence reads extracted from our whole genome shotgun repository, we assembled two chloroplast genome sequences from two rice (Oryza sativa) varieties, one from 93-11 (a typical indica variety) and the other from PA64S (an indica-like variety with maternal origin of japonica), which are both parental varieties of the super-hybrid rice, LYP9. Based on the patterns of high sequence coverage, we partitioned chloroplast sequence variations into two classes, intravarietal and intersubspecific polymorphisms. Intravarietal polymorphisms refer to variations within 93-11 or PA64S. Intersubspecific polymorphisms were identified by comparing the major genotypes of the two subspecies represented by 93-11 and PA64S, respectively. Some of the minor genotypes occurring as intravarietal polymorphisms in one variety existed as major genotypes in the other subspecific variety, thus giving rise to intersubspecific polymorphisms. In our study, we found that the intersubspecific variations of 93-11 (indica) and PA64S (japonica) chloroplast genomes consisted of 72 single nucleotide polymorphisms and 27 insertions or deletions. The intersubspecific polymorphism rates between 93-11 and PA64S were 0.05% for single nucleotide polymorphisms and 0.02% for insertions or deletions, nearly 8 and 10 times lower than their respective nuclear genomes. Based on the total number of nucleotide substitutions between the two chloroplast genomes, we dated the divergence of indica and japonica chloroplast genomes as occurring approximately 86,000 to 200,000 years ago.
Collapse
Affiliation(s)
- Jiabin Tang
- Institute of Genetics and Developmental Biology and Beijing Genomics Institute, Chinese Academy of Sciences, Beijing 101300, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
570
|
Abstract
Protochlorophyllide (Pchlide) reductases are key enzymes in the process of chlorophyll biosynthesis. In this review, current knowledge on the molecular organization, substrate specificity and assembly of the light-dependent reduced nicotinamide adenine dinucleotide phosphate:Pchlide oxidoreductases are discussed. Characteristics of light-independent enzymes are also described briefly, and the possible reasons for the selection of light-dependent enzymes during the course of evolution are discussed.
Collapse
Affiliation(s)
- Benoît Schoefs
- Laboratoire de Phytobiologie cellulaire, UMR-INRA/UB 1088, FRE-CNRS 2625-Plante Microbe Environnement, Université de Bourgogne à Dijon, Dijon, France
| | | |
Collapse
|
571
|
Ohad I, Dal Bosco C, Herrmann RG, Meurer J. Photosystem II proteins PsbL and PsbJ regulate electron flow to the plastoquinone pool. Biochemistry 2004; 43:2297-308. [PMID: 14979726 DOI: 10.1021/bi0348260] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The psbEFLJ operon of tobacco plastids encodes four bitopic low molecular mass transmembrane components of photosystem II. Here, we report the effect of inactivation of psbL on the directional forward electron flow of photosystem II as compared to that of the wild type and the psbJ deletion mutant, which is impaired in PSII electron flow to plastoquinone [Regel et al. (2001) J. Biol. Chem. 276, 41473-41478]. Exposure of Delta psbL plants to a saturating light pulse gives rise to the maximal fluorescence emission, Fm(L), which is followed within 4-6 s by a broader hitherto not observed second fluorescence peak in darkness, Fm(D). Conditions either facilitating oxidation or avoiding reduction of the plastoquinone pool do not affect the Fm(L) level of Delta psbL plants but prevent the appearance of Fm(D). The level of Fm(D) is proportional to the intensity and duration of the light pulse allowing reduction of the plastoquinone pool in dark-adapted leaves prior to the activation of PSI and oxidation of plastoquinol. Lowering the temperature decreases the Fm(D) level in the Delta psbL mutant, whereas it increases considerably the lifetime of Q(A)*- in the Delta psbJ mutant. The thermoluminescence signal generated by Q(A)*-/S(2) charge recombination is not affected; on the other hand, charge recombination of Q(B)*-/S(2,3) could not be detected in Delta psbL plants. PSII is highly sensitive to photoinhibition in Delta psbL. We conclude that PsbL prevents reduction of PSII by back electron flow from plastoquinol protecting PSII from photoinactivation, whereas PsbJ regulates forward electron flow from Q(A)*- to the plastoquinone pool. Therefore, both proteins contribute substantially to ensure unidirectional forward electron flow from PSII to the plastoquinone pool.
Collapse
Affiliation(s)
- Itzhak Ohad
- Department of Biological Chemistry and Minerva Center of Photosynthesis Research, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | | | | | |
Collapse
|
572
|
Miyamoto T, Obokata J, Sugiura M. A site-specific factor interacts directly with its cognate RNA editing site in chloroplast transcripts. Proc Natl Acad Sci U S A 2004; 101:48-52. [PMID: 14694196 PMCID: PMC314136 DOI: 10.1073/pnas.0307163101] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2003] [Indexed: 11/18/2022] Open
Abstract
RNA editing involves a variety of genetic systems and occurs by different mechanisms. In higher plant chloroplasts, specific sites of some transcripts are subject to C-to-U conversion. We have previously shown that site-specific trans-acting factors for psbE and petB mRNA editing bind corresponding cis-elements, which are located 5 nucleotides upstream from the editing site. Here we report that, by using mRNAs labeled either at the center of the upstream cis-element or at the editing site, the site-specific factors can be cross-linked with nucleotides at both positions. Mutations of nucleotides in the proximal region of the editing site revealed a correlation between editing activity and cross-linking efficiency of factors with the editing site, even though cross-linking with the upstream cis-element was unaffected. These observations suggest that the site-specific factor binds stably to the upstream ciselement, whereas it interacts weakly with the editing site. This finding raises the intriguing possibility that the site-specific factor is involved in both site-determination and C-to-U conversion in chloroplast RNA editing.
Collapse
Affiliation(s)
- Tetsuya Miyamoto
- Center for Gene Research, Nagoya University, Nagoya 464-8602, Japan
| | | | | |
Collapse
|
573
|
Abstract
This is the story of how we started studying the green bands seen on SDS-polyacrylamide gels of thylakoid membranes dissociated with the non-ionic detergent beta-octyl-D-glucopyranoside. We explain some of the complications we and other workers encountered along the pathway to untangling the chlorophyll-protein complexes of higher plants, and give a concise summary of the complexes, their polypeptides and their genes.
Collapse
Affiliation(s)
- Edith L Camm
- Biology Department, University College of the Fraser Valley, Abbotsford, British Columbia, Canada
| | | |
Collapse
|
574
|
NAKAMURA C, OHTANI K, MORI N, PANAYOTOV I, KANEDA C. Physical mapping of chloroplast DNAs of Agropyron glaucum, Ag. trichophorum and Haynaldia villosa using alloplasmic common wheat with cytoplasms of respective species. Genes Genet Syst 2004. [DOI: 10.1266/ggs.69.645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
575
|
|
576
|
Sakai A, Takano H, Kuroiwa T. Organelle Nuclei in Higher Plants: Structure, Composition, Function, and Evolution. INTERNATIONAL REVIEW OF CYTOLOGY 2004; 238:59-118. [PMID: 15364197 DOI: 10.1016/s0074-7696(04)38002-2] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Plant cells have two distinct types of energy-converting organelles: plastids and mitochondria. These organelles have their own DNAs and are regarded as descendants of endosymbiotic prokaryotes. The organelle DNAs associate with various proteins to form compact DNA-protein complexes, which are referred to as organelle nuclei or nucleoids. Various functions of organelle genomes, such as DNA replication and transcription, are performed within these compact structures. Fluorescence microscopy using the DNA-specific fluorochrome 4',6-diamidino-2-phenylindole has played a pivotal role in establishing the concept of "organelle nuclei." This fluorochrome has also facilitated the isolation of morphologically intact organelle nuclei, which is indispensable for understanding their structure and composition. Moreover, development of an in vitro transcription?DNA synthesis system using isolated organelle nuclei has provided us with a means of measuring and analyzing the function of organelle nuclei. In addition to these morphological and biochemical approaches, genomics has also had a great impact on our ability to investigate the components of organelle nuclei. These analyses have revealed that organelle nuclei are not a vestige of the bacterial counterpart, but rather are a complex system established through extensive interaction between organelle and cell nuclear genomes during evolution. Extensive diversion or exchange during evolution is predicted to have occurred for several important structural proteins, such as major DNA-compacting proteins, and functional proteins, such as RNA and DNA polymerases, resulting in complex mechanisms to control the function of organelle genomes. Thus, organelle nuclei represent the most dynamic front of interaction between the three genomes (cell nuclear, plastid, and mitochondrial) constituting eukaryotic plant cells.
Collapse
Affiliation(s)
- Atsushi Sakai
- Department of Biological Sciences, Faculty of Science, Nara Women's University, Nara 630-8506, Japan
| | | | | |
Collapse
|
577
|
Masuda T, Takamiya KI. Novel Insights into the Enzymology, Regulation and Physiological Functions of Light-dependent Protochlorophyllide Oxidoreductase in Angiosperms. PHOTOSYNTHESIS RESEARCH 2004; 81:1-29. [PMID: 16328844 DOI: 10.1023/b:pres.0000028392.80354.7c] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The reduction of protochlorophyllide (Pchlide) is a key regulatory step in the biosynthesis of chlorophyll in phototrophic organisms. Two distinct enzymes catalyze this reduction; a light-dependent NADPH:protochlorophyllide oxidoreductase (POR) and light-independent Pchlide reductase (DPOR). Both enzymes are widely distributed among phototrophic organisms with the exception that only POR is found in angiosperms and only DPOR in anoxygenic photosynthetic bacteria. Consequently, angiosperms become etiolated in the absence of light, since the reduction of Pchlide in angiosperms is solely dependent on POR. In eukaryotic phototrophs, POR is a nuclear-encoded single polypeptide and post-translationally imported into plastids. POR possesses unique features, its light-dependent catalytic activity, accumulation in plastids of dark-grown angiosperms (etioplasts) via binding to its substrate, Pchlide, and cofactor, NADPH, resulting in the formation of prolamellar bodies (PLBs), and rapid degradation after catalysis under subsequent illumination. During the last decade, considerable progress has been made in the study of the gene organization, catalytic mechanism, membrane association, regulation of the gene expression, and physiological function of POR. In this review, we provide a brief overview of DPOR and then summarize the current state of knowledge on the biochemistry and molecular biology of POR mainly in angiosperms. The physiological and evolutional implications of POR are also discussed.
Collapse
Affiliation(s)
- Tatsuru Masuda
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8501, Japan
| | | |
Collapse
|
578
|
Krogmann D. Discoveries in oxygenic photosynthesis (1727-2003): a perspective. PHOTOSYNTHESIS RESEARCH 2004; 80:15-57. [PMID: 16328809 DOI: 10.1023/b:pres.0000030443.63979.e6] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
We present historic discoveries and important observations, related to oxygenic photosynthesis, from 1727 to 2003. The decision to include certain discoveries while omitting others has been difficult. We are aware that ours is an incomplete timeline. In part, this is because the function of this list is to complement, not duplicate, the listing of discoveries in the other papers in these history issues of Photosynthesis Research. In addition, no one can know everything that is in the extensive literature in the field. Furthermore, any judgement about significance presupposes a point of view. This history begins with the observation of the English clergyman Stephen Hales (1677-1761) that plants derive nourishment from the air; it includes the definitive experiments in the 1960-1965 period establishing the two-photosystem and two-light reaction scheme of oxygenic photosynthesis; and includes the near-atomic resolution of the structures of the reaction centers of these two Photosystems, I and II, obtained in 2001-2002 by a team in Berlin, Germany, coordinated by Horst Witt and Wolfgang Saenger. Readers are directed to historical papers in Govindjee and Gest [(2002a) Photosynth Res 73: 1-308], in Govindjee, J. Thomas Beatty and Howard Gest [(2003a) Photosynth Res 76: 1-462], and to other papers in this issue for a more complete picture. Several photographs are provided here. Their selection is based partly on their availability to the authors (see Figures 1-15). Readers may view other photographs in Part 1 (Volume 73, Photosynth Res, 2002), Part 2 (Volume 76, Photosynth Res, 2003) and Part 3 (Volume 80 Photosynth Res, 2004) of the history issues of Photosynthesis Research. Photographs of most of the Nobel-laureates are included in Govindjee, Thomas Beatty and John Allen, this issue. For a complementary time line of anoxygenic photosynthesis, see H. Gest and R. Blankenship (this issue).
Collapse
|
579
|
Bukhov N, Carpentier R. Alternative photosystem I-driven electron transport routes: mechanisms and functions. PHOTOSYNTHESIS RESEARCH 2004; 82:17-33. [PMID: 16228610 DOI: 10.1023/b:pres.0000040442.59311.72] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
In addition to the linear electron transport, several alternative Photosystem I-driven (PS I) electron pathways recycle the electrons to the intersystem electron carriers mediated by either ferredoxin:NADPH reductase, NAD(P)H dehydrogenase, or putative ferredoxin:plastoquinone reductase. The following functions have been proposed for these pathways: adjustment of ATP/NADPH ratio required for CO(2) fixation, generation of the proton gradient for the down-regulation of Photosystem II (PS II), and ATP supply the active transport of inorganic carbon in algal cells. Unlike ferredoxin-dependent cyclic electron transport, the pathways supported by NAD(P)H can function in the dark and are likely involved in chlororespiratory-dependent energization of the thylakoid membrane. This energization may support carotenoid biosynthesis and/or maintain thylakoid ATPase in active state. Active operation of ferredoxin-dependent cyclic electron transport requires moderate reduction of both the intersystem electron carriers and the acceptor side of PS I, whereas the rate of NAD(P)H-dependent pathways under light depends largely on NAD(P)H accumulation in the stroma. Environmental stresses such as photoinhibition, high temperatures, drought, or high salinity stimulated the activity of alternative PS I-driven electron transport pathways. Thus, the energetic and regulatory functions of PS I-driven pathways must be an integral part of photosynthetic organisms and provides additional flexibility to environmental stress.
Collapse
Affiliation(s)
- Nikolai Bukhov
- Timiriazev Institute of Plant Physiology, Russian Academy of Science, Botanicheskaya 35, 127276, Moscow, Russia
| | | |
Collapse
|
580
|
Obukosia SD, Richards CM, Boyer CD. Expression of plastid-encoded photosynthetic genes during chloroplast or chromoplast differentiation in Cucurbitae pepo L. fruits. PHYTOCHEMISTRY 2003; 64:1213-1221. [PMID: 14599519 DOI: 10.1016/s0031-9422(03)00164-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The objective of the study was to determine the patterns of expression of two photosynthetic genes rbcL and psbA, during chloroplast and chromoplast differentiation in fruit tissues of three Cucurbitae pepo L. cultivars: Early Prolific, Foodhook Zucchini and Bicolor Gourds. In two Early Prolific isogenic lines, YYBB and YYB+B+, the steady-state amounts of rbcL and psbA transcripts increased with fruit development upto 14 days post-pollination. The YYB+B+ line in which chloroplast differentiates into chromoplast at about pollination, did not show significantly higher amounts of both transcripts compared to YYBB, in which chromoplast develops early prior to pollination. In the Bicolor Gourds, in which the chromoplast and chloroplast containing tissues lie in juxtaposition on the same fruit, showed little differences in rbcL and psbA transcripts between the two tissues, if any the chromoplast containing tissue contained more of both transcripts than the chloroplast containing tissue. In Fordhook Zucchini fruits, where the chloroplast containing tissue developed early prior to pollination and was maintained, the steady-state amounts of rbcL transcripts increased to a maximum at 3 days post-pollination and levelled at 14 and 21 days post-pollination. In contrast, in Fordhook Zucchini fruits, the psbA transcript increased gradually up to 21 days post-pollination. In Fordhook Zucchini, the apparent ratios of psbA transcripts versus rbcL transcripts ranged from 2.5 to 3.9, at day 3 to 21 post-pollination, while in Bicolor Gourds were 2.9 and 4.5 at days 14 and 21 post-pollination. The two photosynthetic genes, psbA and rbcL were developmentally regulated and differentially expressed. However, their expression in chloroplast containing fruit tissues was not higher than in the chromoplast containing fruit tissues.
Collapse
Affiliation(s)
- Silas D Obukosia
- Department of Crop Science, University of Nairobi, PO Box 30197, Nairobi, Kenya.
| | | | | |
Collapse
|
581
|
Halbhuber Z, Petrmichlová Z, Alexciev K, Thulin E, Stys D. Overexpression and purification of recombinant membrane PsbH protein in Escherichia coli. Protein Expr Purif 2003; 32:18-27. [PMID: 14680935 DOI: 10.1016/s1046-5928(03)00188-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2002] [Revised: 05/25/2003] [Indexed: 11/28/2022]
Abstract
In this work, we featured an expression system that enables the production of sufficient quantities ( approximately mg) of low molecular weight membrane protein of photosystem II, PsbH protein, for solid-state NMR as well as other biophysical studies. PsbH gene from cyanobacterium Synechocystis sp. PCC 6803 was cloned into a plasmid expression vector, which allowed expression of the PsbH protein as a glutathione-S transferase (GST) fusion protein in Escherichia coli BL21(DE3) cells. A relatively large GST anchor overcomes foreseeable problems with the low solubility of membrane proteins and the toxicity caused by protein incorporation into the membrane of the host organism. As a result, the majority of fusion protein was obtained in a soluble state and could be purified from crude bacterial lysate by affinity chromatography on immobilized glutathione under non-denaturing conditions. The PsbH protein was cleaved from the carrier protein with Factor Xa protease and purified on DEAE-cellulose column with yields of up to 2.1 microg protein/ml of bacterial culture. The procedure as we optimized is applicable for isolation of small membrane proteins for structural studies.
Collapse
Affiliation(s)
- Zbynek Halbhuber
- Photosynthesis Research Center, Institute of Physical Biology, University of South Bohemia, Zamek 136, 373 33 Nove Hrady, Czech Republic
| | | | | | | | | |
Collapse
|
582
|
Sun G. Interspecific polymorphism at non-coding regions of chloroplast, mitochondrial DNA and rRNA IGS region in Elymus species. Hereditas 2003; 137:119-24. [PMID: 12627837 DOI: 10.1034/j.1601-5223.2002.01547.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Several published universal primers for amplification of non-coding regions of chloroplast, mitochondrial and ribosomal (rRNA) IGS region were tested whether they can amplify respective regions in Elymus species. PCR-RFLP analysis of the chloroplast, mitochondral DNA, and rRNA IGS region of the genus Elymus was used to determine if the method could be employed to detect inter-specific variation in this genus. Published universal primers for amplification of trnK [tRNA-Lys (UUU) exon 1]-trnK [tRNA-Lys (UUU) exon2], and mitochondrial nad1 exon B-nadl exon C intron successfully amplified the respective regions in Elymus species. However, the primers for amplification of chloroplast trnD-trnT intron and rRNA IGS failed to amplify the respective region in Elymus species. New primer pairs were designed and successfully amplified the cpDNA trnD-trnT intron and rRNA IGS region in Elymus species. The amplification products were digested with seven restriction enzymes. The results showed that the investigated regions of chloroplast and mitochondrial genomes are variable in most of the tested taxa and contain multiple variable regions. These regions should serve as useful molecular markers in phylogenetic studies of closely related species, at least at the interspecific level in Elymus. It is likely that further studies, including larger sample sizes, more regions of these genomes and/or more powerful methods for the detection of cpDNA and mt DNA variation will reveal additional variation for this genus. Highly inter- and intra-specific polymorphisms for rRNA IGS region were detected, suggesting the IGS will be a useful molecular marker for population studies of Elymus species.
Collapse
Affiliation(s)
- Genlou Sun
- Biology Department, Saint Mary's University, Halifax, Nova Scotia, Canada.
| |
Collapse
|
583
|
Chung SM, Staub JE. The development and evaluation of consensus chloroplast primer pairs that possess highly variable sequence regions in a diverse array of plant taxa. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2003; 107:757-67. [PMID: 12827249 DOI: 10.1007/s00122-003-1311-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2002] [Accepted: 03/31/2003] [Indexed: 05/22/2023]
Abstract
Although universal or consensus chloroplast primers are available, they are limited by their number and genomic distribution. Therefore, a set of consensus chloroplast primer pairs for simple sequence repeats (ccSSRs) analysis was constructed from tobacco (Nicotiana tabacum L.) chloroplast sequences. These were then tested for their general utility in the genetic analysis of a diverse array of plant taxa. In order to increase the number of ccSSRs beyond that previously reported, the target sequences for SSR motifs was set at A or T ( n >/= 7) mononucleotide repeats. Each SSR sequence motif, along with +/-200-bp flanking sequences from the first of each mononucleotide base repeat, was screened for homologies with chloroplast DNA sequences of other plant species in GenBank databases using BLAST search procedures. Twenty three putative marker loci that possessed conserved flanking sequence spans were selected for consensus primer pair construction using commercially available computer algorithms. All primer pairs produced amplicons after PCR employing genomic DNA from members of the Cucurbitaceae (six species) and Solanaceae (four species). Sixteen, 22 and 19 of the initial 23 primer pairs were successively amplified by PCR using template DNA from species of the Apiaceae (two species), Brassicaceae (one species) and Fabaceae (two species), respectively. Twenty of 23 primer pairs were also functional in three monocot species of the Liliaceae [onion (Allium cepa L.) and garlic (Allium sativum L.)], and the Poaceae [oat (Avena sativa L.)]. Sequence analysis of selected ccSSR fragments suggests that ccSSR length and sequence variation could be useful as a tool for investigating the genetic relationships within a genus or closely related taxa (i.e., tribal level). In order to provide for a marker system having significant coverage of the cucumber chloroplast genome, ccSSR primers were strategically "recombined" and named recombined consensus chloroplast primers (RCCP) for PCR analysis. Successful amplification after extended-length PCR of 16 RCCP primer pairs from cucumber ( Cucumis sativus L.) DNA suggested that the amplicons detected are representative of the cucumber chloroplast genome. These RCCP pairs, therefore, could be useful as an initial molecular tool for investigation of traits related to a chloroplast gene(s) in cucumber, and other closely related species.
Collapse
Affiliation(s)
- Sang-Min Chung
- USDA/ARS, Vegetable Crops Unit, Department of Horticulture, 1575 Linden Drive, University of Wisconsin, Madison, WI 53706 USA
| | | |
Collapse
|
584
|
CHASE MARKW, KNAPP SANDRA, COX ANTONYV, CLARKSON JAMESJ, BUTSKO YELENA, JOSEPH JEFFREY, SAVOLAINEN VINCENT, PAROKONNY ALEXS. Molecular systematics, GISH and the origin of hybrid taxa in Nicotiana (Solanaceae). ANNALS OF BOTANY 2003; 92:107-27. [PMID: 12824072 PMCID: PMC4243627 DOI: 10.1093/aob/mcg087] [Citation(s) in RCA: 168] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Phylogenetic relationships in the genus Nicotiana were investigated using parsimony analyses of the internal transcribed spacer (ITS) regions of nuclear ribosomal DNA (nrDNA). In addition, origins of some amphidiploid taxa in Nicotiana were investigated using the techniques of genomic in situ hybridization (GISH), and the results of both sets of analyses were used to evaluate previous hypotheses about the origins of these taxa. Phylogenetic analyses of the ITS nrDNA data were performed on the entire genus (66 of 77 naturally occurring species, plus three artificial hybrids), comprising both diploid and polyploid taxa, and on the diploid taxa only (35 species) to examine the effects of amphidiploids on estimates of relationships. All taxa, regardless of ploidy, produced clean, single copies of the ITS region, even though some taxa are hybrids. Results are compared with a published plastid (matK) phylogeny using fewer, but many of the same, taxa. The patterns of relationships in Nicotiana, as seen in both analyses, are largely congruent with each other and previous evolutionary ideas based on morphology and cytology, but some important differences are apparent. None of the currently recognized subgenera of Nicotiana is monophyletic and, although most of the currently recognized sections are coherent, others are clearly polyphyletic. Relying solely upon ITS nrDNA analysis to reveal phylogenetic patterns in a complex genus such as Nicotiana is insufficient, and it is clear that conventional analysis of single data sets, such as ITS, is likely to be misleading in at least some respects about evolutionary history. ITS sequences of natural and well-documented amphidiploids are similar or identical to one of their two parents-usually, but not always, the maternal parent-and are not in any sense themselves 'hybrid'. Knowing how ITS evolves in artificial amphidiploids gives insight into what ITS analysis might reveal about naturally occurring amphidiploids of unknown origin, and it is in this perspective that analysis of ITS sequences is highly informative.
Collapse
Affiliation(s)
- MARK W. CHASE
- Molecular Systematics Section, Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK
| | - SANDRA KNAPP
- Department of Botany, Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - ANTONY V. COX
- Molecular Systematics Section, Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK
| | - JAMES J. CLARKSON
- Molecular Systematics Section, Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK
| | - YELENA BUTSKO
- Institute of Cell Biology and Genetics, Kiev, Ukraine
| | - JEFFREY JOSEPH
- Molecular Systematics Section, Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK
| | - VINCENT SAVOLAINEN
- Molecular Systematics Section, Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK
| | | |
Collapse
|
585
|
Motohashi R, Ito T, Kobayashi M, Taji T, Nagata N, Asami T, Yoshida S, Yamaguchi-Shinozaki K, Shinozaki K. Functional analysis of the 37 kDa inner envelope membrane polypeptide in chloroplast biogenesis using a Ds-tagged Arabidopsis pale-green mutant. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2003; 34:719-31. [PMID: 12787252 DOI: 10.1046/j.1365-313x.2003.01763.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
To study the functions of the nuclear genes involved in chloroplast development, we systematically analyzed albino and pale-green Arabidopsis thaliana mutants by using a two-component transposon system based on the Ac/Ds element of maize as a mutagen. One of the pale-green mutants, albino or pale green mutant 1 (designated as apg1), did not survive beyond the seedling stage, when germinated on soil. The chloroplasts of the apg1 plants contained decreased numbers of lamellae with reduced levels of chlorophyll. A gene encoding a 37 kDa polypeptide precursor of the chloroplast inner envelope membrane was disrupted by insertion of the Ds transposon in apg1. The 37 kDa protein had partial sequence similarity to the S-adenosylmethionine-dependent methyltransferase. The apg1 plants lacked plastoquinone (PQ), suggesting that the APG1 protein is involved in the methylation step of PQ biosynthesis, which is localized at the envelope membrane. Our results demonstrate the importance of the 37 kDa protein of the chloroplast inner envelope membrane for chloroplast development in Arabidopsis.
Collapse
Affiliation(s)
- Reiko Motohashi
- Plant Functional Genomics Group, RIKEN (Institute of Physical and Chemical Research) Genomic Sciences Center, 1-7-22 Tsurumi-ku, Yokohama 230-0045, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
586
|
Lössl A, Eibl C, Harloff HJ, Jung C, Koop HU. Polyester synthesis in transplastomic tobacco (Nicotiana tabacum L.): significant contents of polyhydroxybutyrate are associated with growth reduction. PLANT CELL REPORTS 2003; 21:891-9. [PMID: 12789507 DOI: 10.1007/s00299-003-0610-0] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2002] [Revised: 01/31/2003] [Accepted: 02/14/2003] [Indexed: 05/24/2023]
Abstract
The pathway for synthesis of polyhydroxybutyrate (PHB), a polyester produced by three bacterial enzymes, was transferred to the tobacco plastid genome by the biolistic transformation method. The polycistronic phb operon encoding this biosynthetic pathway was cloned into plastome transformation vectors. Following selection and regeneration, the content and structure of plant-produced hydroxybutyrate was analysed by gas chromatography. Significant PHB synthesis was limited to the early stages of in vitro culture. Within the transformants, PHB synthesis levels were highly variable. In the early regeneration stage, single regenerates reached up to 1.7% PHB in dry weight. At least 70% of plant-produced hydroxybutyric acid was proven to be polymer with a molecular mass of up to 2,500 kDa. PHB synthesis levels of the transplastomic lines were decreasing when grown autotrophically but their phb transcription levels remained stable. Transcription of the three genes is divided into two transcripts with phbB being transcribed separately from phbC and phbA. In mature plants even low amounts of PHB were associated with male sterility. Fertility was only observed in a mutant carrying a defective phb operon. These results prove successful expression of the entire PHB pathway in plastids, concomitant, however, with growth deficiency and male sterility.
Collapse
Affiliation(s)
- A Lössl
- Department of Botany, Ludwig-Maximilians-Universität, Menzinger Strasse 67, 80638, Munich, Germany.
| | | | | | | | | |
Collapse
|
587
|
Kroth PG. Protein transport into secondary plastids and the evolution of primary and secondary plastids. INTERNATIONAL REVIEW OF CYTOLOGY 2003; 221:191-255. [PMID: 12455749 DOI: 10.1016/s0074-7696(02)21013-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chloroplasts are key organelles in algae and plants due to their photosynthetic abilities. They are thought to have evolved from prokaryotic cyanobacteria taken up by a eukaryotic host cell in a process termed primary endocytobiosis. In addition, a variety of organisms have evolved by subsequent secondary endocytobioses, in which a heterotrophic host cell engulfed a eukaryotic alga. Both processes dramatically enhanced the complexity of the resulting cells. Since the first version of the endosymbiotic theory was proposed more than 100 years ago, morphological, physiological, biochemical, and molecular data have been collected substantiating the emerging picture about the origin and the relationship of individual organisms with different primary or secondary chloroplast types. Depending on their origin, plastids in different lineages may have two, three, or four envelope membranes. The evolutionary success of endocytobioses depends, among other factors, on the specific exchange of molecules between the host and endosymbiont. This raises questions concerning how targeting of nucleus-encoded proteins into the different plastid types occurs and how these processes may have developed. Most studies of protein translocation into plastids have been performed on primary plastids, but in recent years more complex protein-translocation systems of secondary plastids have been investigated. Analyses of transport systems in different algal lineages with secondary plastids reveal that during evolution existing translocation machineries were recycled or recombined rather than being developed de novo. This review deals with current knowledge about the evolution and function of primary and secondary plastids and the respective protein-targeting systems.
Collapse
Affiliation(s)
- Peter G Kroth
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| |
Collapse
|
588
|
Plader W, Sugiura M. The Shine-Dalgarno-like sequence is a negative regulatory element for translation of tobacco chloroplast rps2 mRNA: an additional mechanism for translational control in chloroplasts. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2003; 34:377-82. [PMID: 12713543 DOI: 10.1046/j.1365-313x.2003.01732.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Most prokaryotic mRNAs contain within the 5' untranslated region (UTR), a Shine-Dalgarno (SD) sequence, which is complementary to the 3' end of 16S rRNA and serves as a major determinant for correct translational initiation. The tobacco chloroplast rps2 mRNA possesses an SD-like sequence (GGAG) at a proper position (positions -8 to -5 from the start codon). Using an in vitro translation system from isolated tobacco chloroplasts, the role of this sequence in translation was examined. Unexpectedly, the mutation of the SD-like element resulted in a large increase in translation. Internal and external deletions within the 5' UTR revealed that the region from -20 to -5 was involved in the negative regulation of translation. Scanning mutagenesis assays confirmed the above result. Competition assays suggested the existence of a trans-acting factor(s) involved in translational regulation. In this study, we discuss a possible mechanism for the negative regulation of rps2 mRNA translation.
Collapse
|
589
|
Hohmann U, Jacobs G, Telgmann A, Gaafar RM, Alam S, Jung C. A bacterial artificial chromosome (BAC) library of sugar beet and a physical map of the region encompassing the bolting gene B. Mol Genet Genomics 2003; 269:126-36. [PMID: 12715161 DOI: 10.1007/s00438-003-0821-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2002] [Accepted: 01/17/2003] [Indexed: 11/28/2022]
Abstract
In sugar beet (Beta vulgaris L.), early bolting is caused by a single dominant gene, designated B. Twenty AFLP markers selected from a 7.8-cM segment of the B region on chromosome 2 were used to screen a YAC library, and a first-generation physical map including the B gene, made up of 11 YACs, was established. Because the genome coverage of the YAC library was low, a BAC library was constructed in the vector pBeloBAC11. This library consists of 57,600 clones with an average insert size of 116 kb, corresponding to 8.8 genome equivalents. Screening of the BAC library with chloroplast and mitochondrial DNA probes indicated that less than 0.1% of the clones contained organelle-derived DNA. To fill the gaps in the physical map around the B gene, the BAC library was screened with four AFLP markers and 10 YAC-derived probes. In total, 54 different BACs were identified. Overlaps between BACs were detected by using BAC termini amplified by PCR as probes, and by RFLP fingerprinting. In this way, a minimal tiling path of the central 4.6-cM region was constructed, which consists of 14 BACs. The B locus was localized to a 360-kb contig, a size which makes positional cloning of the gene feasible.
Collapse
Affiliation(s)
- U Hohmann
- Institute for Crop Science and Plant Breeding, Christian-Albrechts-University of Kiel, Olshausenstrasse 40, 24098 Kiel, Germany
| | | | | | | | | | | |
Collapse
|
590
|
Halitschke R, Gase K, Hui D, Schmidt DD, Baldwin IT. Molecular interactions between the specialist herbivore Manduca sexta (lepidoptera, sphingidae) and its natural host Nicotiana attenuata. VI. Microarray analysis reveals that most herbivore-specific transcriptional changes are mediated by fatty acid-amino acid conjugates. PLANT PHYSIOLOGY 2003; 131:1894-902. [PMID: 12692348 PMCID: PMC166945 DOI: 10.1104/pp.102.018184] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2002] [Revised: 12/26/2002] [Accepted: 01/14/2003] [Indexed: 05/18/2023]
Abstract
Evidence is accumulating that insect-specific plant responses are mediated by constituents in the oral secretions and regurgitants (R) of herbivores, however the relative importance of the different potentially active constituents remains unclear. Fatty acid-amino acid conjugates (FACs) are found in the R of many insect herbivores and have been shown to be necessary and sufficient to elicit a set of herbivore-specific responses when the native tobacco plant Nicotiana attenuata is attacked by the tobacco hornworm, Manduca sexta. Attack by this specialist herbivore results in a large transcriptional reorganization in N. attenuata, and 161 genes have been cloned from previous cDNA differential display-polymerase chain reaction and subtractive hybridization with magnetic beads analysis. cDNAs of these genes, in addition to those of 73 new R-responsive genes identified by cDNA-amplified fragment-length polymorphism display of R-elicited plants, were spotted on polyepoxide coated glass slides to create microarrays highly enriched in Manduca spp.- and R-induced genes. With these microarrays, we compare transcriptional responses in N. attenuata treated with R from the two most damaging lepidopteran herbivores of this plant in nature, M. sexta and Manduca quinquemaculata, which have very similar FAC compositions in their R, and with the two most abundant FACs in Manduca spp. R. More than 68% of the genes up- and down-regulated by M. sexta R were similarly regulated by M. quinquemaculata R. A majority of genes up-regulated (64%) and down-regulated (49%) by M. sexta R were similarly regulated by treatment with the two FACs. In contrast, few genes showed similar transcriptional changes after H(2)O(2)- and R-treatment. These results demonstrate that the two most abundant FACs in Manduca spp. R can account for the majority of Manduca spp.-induced alterations of the wound response of N. attenuata.
Collapse
Affiliation(s)
- Rayko Halitschke
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Winzerlaer Strasse 10, D-07745 Jena, Germany
| | | | | | | | | |
Collapse
|
591
|
Hasegawa K, Yukawa Y, Obokata J, Sugiura M. A tRNA(Leu)-like sequence located immediately upstream of an Arabidopsis clock-regulated gene is transcriptionally active: efficient transcription by an RNA polymerase III-dependent in vitro transcription system. Gene 2003; 307:133-9. [PMID: 12706895 DOI: 10.1016/s0378-1119(03)00452-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A tRNA(Leu)-like sequence is located within a probable enhancer region of the RNA polymerase II-dependent gene encoding an RNA-binding protein, Atgrp7, in Arabidopsis (Mol. Gen. Genet. 261 (1999) 811). To examine whether this sequence is transcribed, we used our in vitro transcription system from tobacco cell nuclei. In vitro assays demonstrated that this tRNA-like sequence is transcribed by RNA polymerase III and its transcript is processed into tRNA-size molecules. Transcription starts at the CAA motif, a transcription initiation site for many plant tRNA genes. Mutation analyses indicated that transcription of this sequence depends on promoter elements typical for plant tRNA genes. We therefore concluded that this is a transcriptionally active tRNA(Leu)(AAG) gene. Mutation of a basic promoter element of the tRNA gene exerted no influence on the transcription of the downstream protein-coding gene, suggesting that no apparent interference occurs between the two adjacent genes.
Collapse
Affiliation(s)
- Keiko Hasegawa
- Center for Gene Research, Nagoya University, Nagoya 464-8602, Japan
| | | | | | | |
Collapse
|
592
|
Hayashi K, Shiina T, Ishii N, Iwai K, Ishizaki Y, Morikawa K, Toyoshima Y. A role of the -35 element in the initiation of transcription at psbA promoter in tobacco plastids. PLANT & CELL PHYSIOLOGY 2003; 44:334-41. [PMID: 12668780 DOI: 10.1093/pcp/pcg041] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Most plastid promoters recognized by bacteria-like plastid RNA polymerase (PEP) are similar to E. coli sigma(70)-type promoters comprising "-35" and "-10" elements. Among them, psbA promoter is unique in bearing additional elements between the conserved -35 and -10 elements. The psbA promoter activity is differentially maintained in the mature chloroplasts where the activity of most PEP promoters declines. Previously, we identified two types of PEP activities in wheat seedlings [Satoh et al. (1999) Plant J. 18: 407]; PEP present in the mature chloroplasts of the leaf tip (tip-type PEP) can initiate transcription from the -35-destructed psbA promoter, but the -35 element is essential for transcription by PEP present in immature chloroplasts of the leaf base (base-type PEP). To reveal which type of PEP functions in various types of plastids in tobacco, we analyzed the tobacco psbA promoter by means of a transplastomic approach. The promoter core context (-42 to +9) was sufficient for developmental regulation of the psbA promoter activity. The -35 promoter element was important for transcription initiation at the psbA promoter in all types of plastids, including chloroplasts in mature leaves, leucoplasts in roots, etioplasts in etiolated cotyledons. The conclusion is that the PEP bearing a promoter preference, similar to the wheat base-type PEP, functions dominantly in tobacco chloroplasts.
Collapse
Affiliation(s)
- Keiko Hayashi
- Graduate School of Human and Environmental Studies, Kyoto University, Sakyo-ku, Kyoto, 606-8501 Japan
| | | | | | | | | | | | | |
Collapse
|
593
|
Abstract
The presence of chloroplast DNA was established in 1963. With the development of recombinant DNA technologies, chloroplast DNA was selected as one of the first candidates for genome sequencing. The first physical map was reported for maize chloroplasts in 1976. As tobacco has been popular as an experimental system, tobacco chloroplast DNA has been extensively analyzed and the complete nucleotide sequence was established in 1986. This sequencing and the availability of tobacco chloroplast transformation techniques and of in vitro expression systems have formed the basis of an ongoing functional genomics program.
Collapse
Affiliation(s)
- Masahiro Sugiura
- Graduate School of Natural Sciences, Nagoya City University, Yamanohata, Mizuho, Nagoya, 467-8501, Japan,
| |
Collapse
|
594
|
Bogorad L. Photosynthesis research: advances through molecular biology - the beginnings, 1975-1980s and on... PHOTOSYNTHESIS RESEARCH 2003; 76:13-33. [PMID: 16228563 DOI: 10.1023/a:1024957602990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Restriction endonuclease recognition sites and genes for rRNAs were first mapped on chloroplast chromosomes in 1975-1976. This marked the beginning of the application of molecular biology tools to photosynthesis research. In the first phase, knowledge about proteins involved in photosynthesis was used to identify plastid and nuclear genes encoding these proteins on cloned segments of DNA. Soon afterwards the DNA sequences of the cloned genes revealed the full primary sequences of the proteins. Knowledge of the primary amino acid sequences provided deeper understanding of the functioning of the protein and interactions among proteins of the photosynthetic apparatus. Later, as chloroplast DNA sequencing proceeded, genes were discovered that encoded proteins that had not been known to be part of the photosynthetic apparatus. This more complete knowledge of the composition of reaction centers and of the primary amino acid sequences of individual proteins comprising the reaction centers opened the way to determining the three-dimensional structures of reaction centers. At present, the availability of cloned genes, knowledge of the gene sequences and systems developed to genetically manipulate photosynthetic organisms is permitting experimental inquiries to be made into crucial details of the photosynthetic process.
Collapse
Affiliation(s)
- Lawrence Bogorad
- Department of Molecular and Cellular Biology, Harvard University, The Biological Laboratories, 16 Divinity Ave., Cambridge, MA, 02138, USA,
| |
Collapse
|
595
|
Abstract
Tobacco chloroplasts are ready to be tested as a platform for the expression of recombinant proteins on a commercial scale. They hold the promise of reproducible yields of 5-25% of total soluble cellular protein in leaves and reliability has been achieved through refinement of an expression toolkit that includes vectors, recently developed expression cassettes and systems for marker gene removal. Implementation of plastid transformation technology in other crops, however, has met with difficulty and has delayed agronomic applications.
Collapse
Affiliation(s)
- Pal Maliga
- Waksman Institute, Rutgers, The State University of New Jersey, 190 Frelinghuysen Road, Piscataway, NJ 08854-8020, USA.
| |
Collapse
|
596
|
Matsuoka Y, Yamazaki Y, Ogihara Y, Tsunewaki K. Whole chloroplast genome comparison of rice, maize, and wheat: implications for chloroplast gene diversification and phylogeny of cereals. Mol Biol Evol 2002; 19:2084-91. [PMID: 12446800 DOI: 10.1093/oxfordjournals.molbev.a004033] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The fully sequenced chloroplast genomes of maize (subfamily Panicoideae), rice (subfamily Bambusoideae), and wheat (subfamily Pooideae) provide the unique opportunity to investigate the evolution of chloroplast genes and genomes in the grass family (Poaceae) by whole-genome comparison. Analyses of nucleotide sequence variations in 106 cereal chloroplast genes with tobacco sequences as the outgroup suggested that (1) most of the genic regions of the chloroplast genomes of maize, rice, and wheat have evolved at similar rates; (2) RNA genes have highly conservative evolutionary rates relative to the other genes; (3) photosynthetic genes have been under strong purifying selection; (4) between the three cereals, 14 genes which account for about 28% of the genic region have evolved with heterogeneous nucleotide substitution rates; and (5) rice genes tend to have evolved more slowly than the others at loci where rate heterogeneity exists. Although the mechanism that underlies chloroplast gene diversification is complex, our analyses identified variation in nonsynonymous substitution rates as a genetic force that generates heterogeneity, which is evidence of selection in chloroplast gene diversification at the intrafamilial level. Phylogenetic trees constructed with the variable nucleotide sites of the chloroplast genes place maize basal to the rice-wheat clade, revealing a close relationship between the Bambusoideae and Pooideae.
Collapse
Affiliation(s)
- Yoshihiro Matsuoka
- Fukui Prefectural University, Matsuoka-cho, Yoshida-gun, Fukui 910-1195, Japan.
| | | | | | | |
Collapse
|
597
|
Kashino Y, Koike H, Yoshio M, Egashira H, Ikeuchi M, Pakrasi HB, Satoh K. Low-molecular-mass polypeptide components of a photosystem II preparation from the thermophilic cyanobacterium Thermosynechococcus vulcanus. PLANT & CELL PHYSIOLOGY 2002; 43:1366-73. [PMID: 12461137 DOI: 10.1093/pcp/pcf168] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Using a recently introduced electrophoresis system [Kashino et al. (2001) Electrophoresis 22: 1004], components of low-molecular-mass polypeptides were analyzed in detail in photosystem II (PSII) complexes isolated from a thermophilic cyanobacterium, Thermosynechococcus vulcanus (formerly, Synechococcus vulcanus). PsbE, the large subunit polypeptide of cytochrome b(559), showed an apparent molecular mass much lower than the expected one. The unusually large mobility could be attributed to the large intrinsic net electronic charge. All other Coomassie-stained polypeptides were identified by N-terminal sequencing. In addition to the well-known cyanobacterial PSII polypeptides, such as PsbE, F, H, I, L, M, U, V and X, the presence of PsbY, PsbZ and Psb27 was also confirmed in the isolated PSII complexes. Furthermore, the whole amino acid sequence was determined for the polypeptide which was known as PsbN. The whole amino acid sequence revealed that this polypeptide was identical to PsbTc which has been found in higher plants and green algae. These results strongly suggest that PsbN is not a member of the PSII complex. It is also shown that cyanobacteria have cytochrome b(559) in the high potential form as in higher plants.
Collapse
Affiliation(s)
- Yasuhiro Kashino
- Himeji Institute of Technology, Faculty of Science, Harima Science Garden City, Hyogo, 678-1297 Japan.
| | | | | | | | | | | | | |
Collapse
|
598
|
Maul JE, Lilly JW, Cui L, dePamphilis CW, Miller W, Harris EH, Stern DB. The Chlamydomonas reinhardtii plastid chromosome: islands of genes in a sea of repeats. THE PLANT CELL 2002; 14:2659-79. [PMID: 12417694 PMCID: PMC153795 DOI: 10.1105/tpc.006155] [Citation(s) in RCA: 296] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2002] [Accepted: 09/10/2002] [Indexed: 05/17/2023]
Abstract
Chlamydomonas reinhardtii is a unicellular eukaryotic alga possessing a single chloroplast that is widely used as a model system for the study of photosynthetic processes. This report analyzes the surprising structural and evolutionary features of the completely sequenced 203,395-bp plastid chromosome. The genome is divided by 21.2-kb inverted repeats into two single-copy regions of approximately 80 kb and contains only 99 genes, including a full complement of tRNAs and atypical genes encoding the RNA polymerase. A remarkable feature is that >20% of the genome is repetitive DNA: the majority of intergenic regions consist of numerous classes of short dispersed repeats (SDRs), which may have structural or evolutionary significance. Among other sequenced chlorophyte plastid genomes, only that of the green alga Chlorella vulgaris appears to share this feature. The program MultiPipMaker was used to compare the genic complement of Chlamydomonas with those of other chloroplast genomes and to scan the genomes for sequence similarities and repetitive DNAs. Among the results was evidence that the SDRs were not derived from extant coding sequences, although some SDRs may have arisen from other genomic fragments. Phylogenetic reconstruction of changes in plastid genome content revealed that an accelerated rate of gene loss also characterized the Chlamydomonas/Chlorella lineage, a phenomenon that might be independent of the proliferation of SDRs. Together, our results reveal a dynamic and unusual plastid genome whose existence in a model organism will allow its features to be tested functionally.
Collapse
Affiliation(s)
- Jude E Maul
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, New York 14853, USA
| | | | | | | | | | | | | |
Collapse
|
599
|
Miyamoto T, Obokata J, Sugiura M. Recognition of RNA editing sites is directed by unique proteins in chloroplasts: biochemical identification of cis-acting elements and trans-acting factors involved in RNA editing in tobacco and pea chloroplasts. Mol Cell Biol 2002; 22:6726-34. [PMID: 12215530 PMCID: PMC134032 DOI: 10.1128/mcb.22.19.6726-6734.2002] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2002] [Revised: 05/13/2002] [Accepted: 06/20/2002] [Indexed: 11/20/2022] Open
Abstract
RNA editing in higher-plant chloroplasts involves C-to-U conversions at specific sites. Although in vivo analyses have been performed, little is known about the biochemical aspects of chloroplast editing reactions. Here we improved our original in vitro system and devised a procedure for preparing active chloroplast extracts not only from tobacco plants but also from pea plants. Using our tobacco in vitro system, cis-acting elements were defined for psbE and petB mRNAs. Distinct proteins were found to bind specifically to each cis-element, a 56-kDa protein to the psbE site and a 70-kDa species to the petB site. Pea chloroplasts lack the corresponding editing site in psbE since T is already present in the DNA. Parallel in vitro analyses with tobacco and pea extracts revealed that the pea plant has no editing activity for psbE mRNAs and lacks the 56-kDa protein, whereas petB mRNAs are edited and the 70-kDa protein is also present. Therefore, coevolution of an editing site and its cognate trans-factor was demonstrated biochemically in psbE mRNA editing between tobacco and pea plants.
Collapse
|
600
|
Ogihara Y, Ohsawa T. Molecular analysis of the complete set of length mutations found in the plastomes of Triticum-Aegilops species. Genome 2002; 45:956-62. [PMID: 12416629 DOI: 10.1139/g02-046] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Precise location and nature of each of 14 length mutations detected among chloroplast DNAs of Triticum-Aegilops species by RFLP analysis were determined at the nucleotide sequence level. Each mutation was compared with at least three non-mutated wild-type plastomes as standards. These 14 length mutations were classified into 4 duplications and 10 deletions. One duplication occurred in the small single-copy region close to the border of the inverted repeat, and the remaining 13 length mutations took place in the large single-copy region. All length mutations occurred in the intergenic regions, suggesting that these length mutations do not affect plastid gene expression. Saltatory replication was the cause of all duplications, whereas intramolecular recombination mediated by short direct repeats played a substantial role in the deletions. Recurrent occurrences of certain deletion events were found in some AT-rich regions, which constituted hot spots for deletion. Out of four hypervariable regions detected among the grass plastomes, two (downstream of rbcL and a tRNA gene accumulated region) were still active after differentiation of Triticum and Aegilops complex.
Collapse
Affiliation(s)
- Y Ogihara
- Kihara Institute for Biological Research and Graduate School of Integrated Science, Yokohama City University, Yokohama, Japan.
| | | |
Collapse
|