551
|
Changenet-Barret P, Gustavsson T, Markovitsi D, Manet I, Monti S. Unravelling molecular mechanisms in the fluorescence spectra of doxorubicin in aqueous solution by femtosecond fluorescence spectroscopy. Phys Chem Chem Phys 2013; 15:2937-44. [DOI: 10.1039/c2cp44056c] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
552
|
Lu F, Doane TL, Zhu JJ, Burda C. Gold nanoparticles for diagnostic sensing and therapy. Inorganica Chim Acta 2012. [DOI: 10.1016/j.ica.2012.05.038] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
553
|
Liu Z, Li W, Wang F, Sun C, Wang L, Wang J, Sun F. Enhancement of lipopolysaccharide-induced nitric oxide and interleukin-6 production by PEGylated gold nanoparticles in RAW264.7 cells. NANOSCALE 2012; 4:7135-7142. [PMID: 23070238 DOI: 10.1039/c2nr31355c] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
While the immunogenicity and cytotoxicity of gold nanoparticles (AuNPs) are noted by many researchers, the mechanisms by which AuNPs exert these effects are poorly understood. In this study, we investigated the effects of polyethylene glycolylated AuNPs (PEG@AuNPs) on lipopolysaccharide (LPS)-induced nitric oxide (NO) and interleukin-6 (IL-6) production and the associated molecular mechanism in RAW264.7 cells. The results showed that PEG@AuNPs were internalized more quickly by LPS-activated RAW264.7 cells than unstimulated cells, and they reached saturation within 24 hours. PEG@AuNPs enhanced LPS-induced production of NO and IL-6 and inducible nitric oxide synthase (iNOS) expression in RAW264.7 cells, partially by activating p38 mitogen-activated protein kinases (p38 MAPK) and nuclear factor-kappaB pathways. In addition, the p38 MAPK inhibitor SB203580 attenuated PEG@AuNP-enhanced LPS-induced NO production and iNOS expression. Overproduction of NO and IL-6 is known to be closely correlated with the pathology of many diseases and inflammations. Thus, it is speculated that the highly biocompatible gold nanoparticles can induce immunotoxicity due to their potency to stimulate macrophages to release aberrant or excessive pro-inflammatory mediators.
Collapse
Affiliation(s)
- Zhimin Liu
- Department of Cell and Developmental Biology, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | | | | | | | | | | | | |
Collapse
|
554
|
Baruah B, Craighead C, Abolarin C. One-phase synthesis of surface modified gold nanoparticles and generation of SERS substrate by seed growth method. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:15168-76. [PMID: 23025402 DOI: 10.1021/la302861b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
In this study, we report a novel and facile single-phase synthesis of stable AuNP-CTAB(NA) conjugates with good dispersibility, bearing a bilayer of cationic surfactant, cetyltrimethylammonium bromide (CTAB) supported by N-nonylamine (NA) as a cosurfactant. We investigated AuNP-CTAB(NA) conjugates by (1)H NMR spectroscopy, UV-vis spectroscopy, Fourier transform infrared spectroscopy (FTIR), dynamic light scattering (DLS), and transmission electron microscopy (TEM). These studies suggest the presence of a CTAB bilayer on the nanoparticles surface forming an admicelle and NA embedded in the hydrophobic core of that bilayer. AuNP-CTAB(NA) conjugates remain dispersed in water even in the presence of high concentrations of salt and over a wide range of solution pHs. These conjugates further grow bigger when treated with additional AuCl(4)(-), CTAB, and NA in the presence of the mild reducing agent, hydroquinone (HQ). The larger AuNP-CTAB(NA)-1 conjugates serve as SERS (surface-enhanced Raman Scattering) substrate of Raman active dye even at nanomolar concentrations.
Collapse
Affiliation(s)
- Bharat Baruah
- Department of Chemistry and Biochemistry, Kennesaw State University, Kennesaw, Georgia 30144-5591, United States.
| | | | | |
Collapse
|
555
|
Yu J, Xie X, Zheng M, Yu L, Zhang L, Zhao J, Jiang D, Che X. Fabrication and characterization of nuclear localization signal-conjugated glycol chitosan micelles for improving the nuclear delivery of doxorubicin. Int J Nanomedicine 2012. [PMID: 23049255 DOI: 10.2147/ijn.s36150ijn-7-5079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Supramolecular micelles as drug-delivery vehicles are generally unable to enter the nucleus of nondividing cells. In the work reported here, nuclear localization signal (NLS)-modified polymeric micelles were studied with the aim of improving nuclear drug delivery. METHODS In this research, cholesterol-modified glycol chitosan (CHGC) was synthesized. NLS-conjugated CHGC (NCHGC) was synthesized and characterized using proton nuclear magnetic resonance spectroscopy, dynamic light scattering, and fluorescence spectroscopy. Doxorubicin (DOX), an anticancer drug with an intracellular site of action in the nucleus, was chosen as a model drug. DOX-loaded micelles were prepared by an emulsion/solvent evaporation method. The cellular uptake of different DOX formulations was analyzed by flow cytometry and confocal laser scanning microscopy. The cytotoxicity of blank micelles, free DOX, and DOX-loaded micelles in vitro was investigated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay in HeLa and HepG2 cells. RESULTS The degree of substitution was 5.9 cholesterol and 3.8 NLS groups per 100 sugar residues of the NCHGC conjugate. The critical aggregation concentration of the NCHGC micelles in aqueous solution was 0.0209 mg/mL. The DOX-loaded NCHGC (DNCHGC) micelles were observed as being almost spherical in shape under transmission electron microscopy, and the size was determined as 248 nm by dynamic light scattering. The DOX-loading content of the DNCHGC micelles was 10.1%. The DOX-loaded micelles showed slow drug-release behavior within 72 hours in vitro. The DNCHGC micelles exhibited greater cellular uptake and higher amounts of DOX in the nuclei of HeLa cells than free DOX and DOX-loaded CHGC (DCHGC) micelles. The half maximal inhibitory concentration (IC(50)) values of free DOX, DCHGC, and DNCHGC micelles against HepG2 cells were 4.063, 0.591, and 0.171 μg/mL, respectively. Moreover, the IC(50) values of free DOX (3.210 μg/mL) and the DCHGC micelles (1.413 μg/mL) against HeLa cells were nearly 6.96- and 3.07-fold (P < 0.01), respectively, higher than the IC(50) value of the DNCHGC micelles (0.461 μg/mL). CONCLUSION The results of this study suggest that novel NCHGC micelles could be a potential carrier for nucleus-targeting delivery.
Collapse
Affiliation(s)
- Jingmou Yu
- Key Laboratory of Systems Biology Medicine of Jiangxi Province, College of Basic Medical Science, Jiujiang University, Jiujiang, China.
| | | | | | | | | | | | | | | |
Collapse
|
556
|
Yu J, Xie X, Zheng M, Yu L, Zhang L, Zhao J, Jiang D, Che X. Fabrication and characterization of nuclear localization signal-conjugated glycol chitosan micelles for improving the nuclear delivery of doxorubicin. Int J Nanomedicine 2012; 7:5079-90. [PMID: 23049255 PMCID: PMC3459689 DOI: 10.2147/ijn.s36150] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Background Supramolecular micelles as drug-delivery vehicles are generally unable to enter the nucleus of nondividing cells. In the work reported here, nuclear localization signal (NLS)-modified polymeric micelles were studied with the aim of improving nuclear drug delivery. Methods In this research, cholesterol-modified glycol chitosan (CHGC) was synthesized. NLS-conjugated CHGC (NCHGC) was synthesized and characterized using proton nuclear magnetic resonance spectroscopy, dynamic light scattering, and fluorescence spectroscopy. Doxorubicin (DOX), an anticancer drug with an intracellular site of action in the nucleus, was chosen as a model drug. DOX-loaded micelles were prepared by an emulsion/solvent evaporation method. The cellular uptake of different DOX formulations was analyzed by flow cytometry and confocal laser scanning microscopy. The cytotoxicity of blank micelles, free DOX, and DOX-loaded micelles in vitro was investigated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay in HeLa and HepG2 cells. Results The degree of substitution was 5.9 cholesterol and 3.8 NLS groups per 100 sugar residues of the NCHGC conjugate. The critical aggregation concentration of the NCHGC micelles in aqueous solution was 0.0209 mg/mL. The DOX-loaded NCHGC (DNCHGC) micelles were observed as being almost spherical in shape under transmission electron microscopy, and the size was determined as 248 nm by dynamic light scattering. The DOX-loading content of the DNCHGC micelles was 10.1%. The DOX-loaded micelles showed slow drug-release behavior within 72 hours in vitro. The DNCHGC micelles exhibited greater cellular uptake and higher amounts of DOX in the nuclei of HeLa cells than free DOX and DOX-loaded CHGC (DCHGC) micelles. The half maximal inhibitory concentration (IC50) values of free DOX, DCHGC, and DNCHGC micelles against HepG2 cells were 4.063, 0.591, and 0.171 μg/mL, respectively. Moreover, the IC50 values of free DOX (3.210 μg/mL) and the DCHGC micelles (1.413 μg/mL) against HeLa cells were nearly 6.96- and 3.07-fold (P < 0.01), respectively, higher than the IC50 value of the DNCHGC micelles (0.461 μg/mL). Conclusion The results of this study suggest that novel NCHGC micelles could be a potential carrier for nucleus-targeting delivery.
Collapse
Affiliation(s)
- Jingmou Yu
- Key Laboratory of Systems Biology Medicine of Jiangxi Province, College of Basic Medical Science, Jiujiang University, Jiujiang, China.
| | | | | | | | | | | | | | | |
Collapse
|
557
|
Dai Y, Yang D, Ma P, Kang X, Zhang X, Li C, Hou Z, Cheng Z, Lin J. Doxorubicin conjugated NaYF(4):Yb(3+)/Tm(3+) nanoparticles for therapy and sensing of drug delivery by luminescence resonance energy transfer. Biomaterials 2012; 33:8704-13. [PMID: 22938822 DOI: 10.1016/j.biomaterials.2012.08.029] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 08/13/2012] [Indexed: 10/27/2022]
Abstract
In this study, we report an anticancer drug delivery system based on doxorubicin (DOX)-conjugated NaYF(4):Yb(3+)/Tm(3+) nanoparticles. The as-synthesized nanoparticles consist of uniform spherical nanoparticles with an average diameter of 25 nm. The drug delivery system demonstrates the ability to release DOX by cleavage of the hydrazone bond in mildly acidic environments. The spectra overlap between emission of donor NaYF(4):Yb(3+)/Tm(3+) nanoparticles at 452 nm ((1)D(2)→(3)F(4)) and 477 nm ((1)G(4)→(3)H(6)) and the broad absorbance of acceptor DOX centered at around 480 nm enables energy transfer to occur between the nanoparticles and DOX. The quenching and recovery of the up-conversion luminescence of NaYF(4):Yb(3+)/Tm(3+) by DOX due to luminescence resonance energy transfer (LRET) mechanism are applied as optical probe to confirm the DOX conjunction and monitor the release of DOX. The DOX-conjugated NaYF(4):Yb(3+)/Tm(3+) nanoparticles exhibit an obvious cytotoxic effect on SKOV3 ovarian cancer cells via MTT assay. Meanwhile, the endocytosis process of DOX-conjugated NaYF(4):Yb(3+)/Tm(3+) nanoparticles by SKVO3 cells was demonstrated through confocal laser scanning microscopy (CLSM), flow cytometry and ICP-OES. Such drug delivery system, which combines pH-triggered drug-release and up-converting nanoparticles-based LRET property, has excellent potential applications in cancer therapy and smart imaging.
Collapse
Affiliation(s)
- Yunlu Dai
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | | | | | | | | | | | | | | | | |
Collapse
|
558
|
Liu W, Li X, Wong YS, Zheng W, Zhang Y, Cao W, Chen T. Selenium nanoparticles as a carrier of 5-fluorouracil to achieve anticancer synergism. ACS NANO 2012; 6:6578-91. [PMID: 22823110 DOI: 10.1021/nn202452c] [Citation(s) in RCA: 246] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
A simple method for preparing 5-fluorouracil surface-functionalized selenium nanoparticles (5FU-SeNPs) with enhanced anticancer activity has been demonstrated in the present study. Spherical SeNPs were capped with 5FU through formation of Se-O and Se-N bonds and physical adsorption, leading to the stable structure of the conjugates. 5FU surface decoration significantly enhanced the cellular uptake of SeNPs through endocytosis. A panel of five human cancer cell lines was shown to be susceptible to 5FU-SeNPs, with IC(50) values ranging from 6.2 to 14.4 μM. Despite this potency, 5FU-SeNP possesses great selectivity between cancer and normal cells. Induction of apoptosis in A375 human melanoma cells by 5FU-SeNPs was evidenced by accumulation of sub-G1 cell population, DNA fragmentation, and nuclear condensation. The contribution of the intrinsic apoptotic pathway to the cell apoptosis was confirmed by activation of caspase-9 and depletion of mitochondrial membrane potential. Pretreatment of cells with a general caspase inhibitor z-VAD-fmk significantly prevented 5FU-SeNP-induced apoptosis, indicating that 5FU-SeNP induced caspase-dependent apoptosis in A375 cells. Furthermore, 5FU-SeNP-induced apoptosis was found dependent on ROS generation. Our results suggest that the strategy to use SeNPs as a carrier of 5FU could be a highly efficient way to achieve anticancer synergism. 5FU-SeNPs may be a candidate for further evaluation as a chemopreventive and chemotherapeutic agent for human cancers, especially melanoma.
Collapse
Affiliation(s)
- Wen Liu
- Department of Chemistry, Jinan University, Guangzhou 510632, China
| | | | | | | | | | | | | |
Collapse
|
559
|
Akhter S, Ahmad MZ, Ahmad FJ, Storm G, Kok RJ. Gold nanoparticles in theranostic oncology: current state-of-the-art. Expert Opin Drug Deliv 2012; 9:1225-43. [PMID: 22897613 DOI: 10.1517/17425247.2012.716824] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION In recent years, extensive multidisciplinary investigations have been carried out in the area of cancer nanotechnology. Gold nanoparticles (GNPs) have emerged as promising carrier for delivery of various pay-loads into their target. In view of their unique physicochemical and optical properties, GNPs have been exploited for multimodality imaging, tumor targeting, and as transporter of various therapeutics. Additionally, GNPs have been used as photothermal therapeutics against cancer. AREAS COVERED This review will focus on recent progress in the field of gold nanomaterials in cancer therapy and diagnosis. Moreover, concern about the toxicity of gold nanomaterials is addressed. EXPERT OPINION GNPs present versatile scaffolds for efficient delivery of cancer chemotherapeutics. Tuneable chemistry of the GNPs contributes to their ever increasing use in oncology research. The promises of a functional cancer therapy using GNPs have been extensively demonstrated, although the materials are still in their infancy stage and not surfaced to meet clinical standards.
Collapse
Affiliation(s)
- Sohail Akhter
- Utrecht University, Department of Pharmaceutics, Department of Pharmaceutical Sciences, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
560
|
Abstract
Cancer is the current leading cause of death worldwide, responsible for approximately one quarter of all deaths in the USA and UK. Nanotechnologies provide tremendous opportunities for multimodal, site-specific drug delivery to these disease sites and Au nanoparticles further offer a particularly unique set of physical, chemical and photonic properties with which to do so. This review will highlight some recent advances, by our laboratory and others, in the use of Au nanoparticles for systemic drug delivery to these malignancies and will also provide insights into their rational design, synthesis, physiological properties and clinical/preclinical applications, as well as strategies and challenges toward the clinical implementation of these constructs moving forward.
Collapse
|
561
|
Abstract
The intersection of particles and directed energy is a rich source of novel and useful technology that is only recently being realized for medicine. One of the most promising applications is directed drug delivery. This review focuses on phase-shift nanoparticles (that is, particles of submicron size) as well as micron-scale particles whose action depends on an external-energy triggered, first-order phase shift from a liquid to gas state of either the particle itself or of the surrounding medium. These particles have tremendous potential for actively disrupting their environment for altering transport properties and unloading drugs. This review covers in detail ultrasound and laser-activated phase-shift nano- and micro-particles and their use in drug delivery. Phase-shift based drug-delivery mechanisms and competing technologies are discussed.
Collapse
|
562
|
Song J, Zhou J, Duan H. Self-assembled plasmonic vesicles of SERS-encoded amphiphilic gold nanoparticles for cancer cell targeting and traceable intracellular drug delivery. J Am Chem Soc 2012; 134:13458-69. [PMID: 22831389 DOI: 10.1021/ja305154a] [Citation(s) in RCA: 302] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We report the development of bioconjugated plasmonic vesicles assembled from SERS-encoded amphiphilic gold nanoparticles for cancer-targeted drug delivery. This new type of plasmonic assemblies with a hollow cavity can play multifunctional roles as delivery carriers for anticancer drugs and SERS-active plasmonic imaging probes to specifically label targeted cancer cells and monitor intracellular drug delivery. We have shown that the pH-responsive disassembly of the plasmonic vesicle, stimulated by the hydrophobic-to-hydrophilic transition of the hydrophobic brushes in acidic intracellular compartments, allows for triggered intracellular drug release. Because self-assembled plasmonic vesicles exhibit significantly different plasmonic properties and greatly enhanced SERS intensity in comparison with single gold nanoparticles due to strong interparticle plasmonic coupling, disassembly of the vesicles in endocytic compartments leads to dramatic changes in scattering properties and SERS signals, which can serve as independent feedback mechanisms to signal cargo release from the vesicles. The unique structural and optical properties of the plasmonic vesicle have made it a promising platform for targeted combination therapy and theranostic applications by taking advantage of recent advances in gold nanostructure based in vivo bioimaging and photothermal therapy and their loading capacity for both hydrophilic (nucleic acids and proteins) and hydrophobic (small molecules) therapeutic agents.
Collapse
Affiliation(s)
- Jibin Song
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457
| | | | | |
Collapse
|
563
|
Zhou R, Zhou H, Xiong B, He Y, Yeung ES. Pericellular Matrix Enhances Retention and Cellular Uptake of Nanoparticles. J Am Chem Soc 2012; 134:13404-9. [DOI: 10.1021/ja304119w] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Rui Zhou
- State Key Laboratory of Chemo/Biosensing and Chemometrics,
College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha 410082, P.R. China
| | - Haiying Zhou
- State Key Laboratory of Chemo/Biosensing and Chemometrics,
College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha 410082, P.R. China
| | - Bin Xiong
- State Key Laboratory of Chemo/Biosensing and Chemometrics,
College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha 410082, P.R. China
| | - Yan He
- State Key Laboratory of Chemo/Biosensing and Chemometrics,
College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha 410082, P.R. China
| | - Edward S. Yeung
- State Key Laboratory of Chemo/Biosensing and Chemometrics,
College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha 410082, P.R. China
| |
Collapse
|
564
|
Snell KE, Ismaili H, Workentin MS. Photoactivated Nitrene Chemistry to Prepare Gold Nanoparticle Hybrids with Carbonaceous Materials. Chemphyschem 2012; 13:3185-93. [DOI: 10.1002/cphc.201200240] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 05/30/2012] [Indexed: 12/14/2022]
|
565
|
Rudzka K, Delgado ÁV, Viota JL. Maghemite Functionalization for Antitumor Drug Vehiculization. Mol Pharm 2012; 9:2017-28. [DOI: 10.1021/mp3002705] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Katarzyna Rudzka
- Department of Applied
Physics, School of Science Campus Fuentenueva, University of Granada,
18071, Granada, Spain
| | - Ángel V. Delgado
- Department of Applied
Physics, School of Science Campus Fuentenueva, University of Granada,
18071, Granada, Spain
| | - Julián L. Viota
- Department
of Physics, Campus Las Lagunillas, University of Jaén, 23071,
Jaén, Spain
| |
Collapse
|
566
|
Huang K, Ma H, Liu J, Huo S, Kumar A, Wei T, Zhang X, Jin S, Gan Y, Wang PC, He S, Zhang X, Liang XJ. Size-dependent localization and penetration of ultrasmall gold nanoparticles in cancer cells, multicellular spheroids, and tumors in vivo. ACS NANO 2012; 6:4483-93. [PMID: 22540892 PMCID: PMC3370420 DOI: 10.1021/nn301282m] [Citation(s) in RCA: 640] [Impact Index Per Article: 49.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
This work demonstrated that ultrasmall gold nanoparticles (AuNPs) smaller than 10 nm display unique advantages over nanoparticles larger than 10 nm in terms of localization to, and penetration of, breast cancer cells, multicellular tumor spheroids, and tumors in mice. Au@tiopronin nanoparticles that have tunable sizes from 2 to 15 nm with identical surface coatings of tiopronin and charge were successfully prepared. For monolayer cells, the smaller the Au@tiopronin NPs, the more AuNPs found in each cell. In addition, the accumulation of Au NPs in the ex vivo tumor model was size-dependent: smaller AuNPs were able to penetrate deeply into tumor spheroids, whereas 15 nm nanoparticles were not. Owing to their ultrasmall nanostructure, 2 and 6 nm nanoparticles showed high levels of accumulation in tumor tissue in mice after a single intravenous injection. Surprisingly, both 2 and 6 nm Au@tiopronin nanoparticles were distributed throughout the cytoplasm and nucleus of cancer cells in vitro and in vivo, whereas 15 nm Au@tiopronin nanoparticles were found only in the cytoplasm, where they formed aggregates. The ex vivo multicellular spheroid proved to be a good model to simulate in vivo tumor tissue and evaluate nanoparticle penetration behavior. This work gives important insights into the design and functionalization of nanoparticles to achieve high levels of accumulation in tumors.
Collapse
Affiliation(s)
- Keyang Huang
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, No. 11, First North Road, Zhongguancun, Beijing, China 100190
| | - Huili Ma
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, No. 11, First North Road, Zhongguancun, Beijing, China 100190
| | - Juan Liu
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, No. 11, First North Road, Zhongguancun, Beijing, China 100190
| | - Shuaidong Huo
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, No. 11, First North Road, Zhongguancun, Beijing, China 100190
- School of Materials Science and Engineering, Tianjin Polytechnic University, Tianjin, China 300387
| | - Anil Kumar
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, No. 11, First North Road, Zhongguancun, Beijing, China 100190
| | - Tuo Wei
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, No. 11, First North Road, Zhongguancun, Beijing, China 100190
| | - Xu Zhang
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, No. 11, First North Road, Zhongguancun, Beijing, China 100190
| | - Shubin Jin
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, No. 11, First North Road, Zhongguancun, Beijing, China 100190
| | - Yaling Gan
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, No. 11, First North Road, Zhongguancun, Beijing, China 100190
| | - Paul C. Wang
- Laboratory of Molecular Imaging, Department of Radiology, Howard University, Washington, D.C. 20060, United States
| | - Shengtai He
- School of Materials Science and Engineering, Tianjin Polytechnic University, Tianjin, China 300387
- Address correspondence to ; ;
| | - Xiaoning Zhang
- Laboratory of Pharmaceutics, School of Medicine, Tsinghua University, Beijing, China 100084
- Address correspondence to ; ;
| | - Xing-Jie Liang
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, No. 11, First North Road, Zhongguancun, Beijing, China 100190
- Address correspondence to ; ;
| |
Collapse
|
567
|
El-Dakdouki MH, Zhu DC, El-Boubbou K, Kamat M, Chen J, Li W, Huang X. Development of multifunctional hyaluronan-coated nanoparticles for imaging and drug delivery to cancer cells. Biomacromolecules 2012; 13:1144-51. [PMID: 22372739 PMCID: PMC5475368 DOI: 10.1021/bm300046h] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Currently, there is high interest in developing multifunctional theranostic platforms for cancer monitoring and chemotherapy. Herein, we report hyaluronan (HA)-coated superparamagnetic iron oxide nanoparticles (HA-SPION) as a promising system for targeted imaging and drug delivery. When incubated with cancer cells, HA-SPIONs were rapidly taken up and the internalization of HA-SPION by cancer cells was much higher than the NPs without HA coating. The high magnetic relaxivity of HA-SPION coupled with enhanced uptake enabled magnetic resonance imaging of cancer cells. Furthermore, doxorubicin (DOX) was attached onto the nanoparticles through an acid responsive linker. While HA-SPION was not toxic to cells, DOX-HA-SPION was much more potent than free DOX to kill not only drug-sensitive but also multi-drug-resistant cancer cells. This was attributed to differential uptake mechanisms and cellular distributions of free DOX and DOX-HA-SPION in cancer cells.
Collapse
Affiliation(s)
- Mohammad H. El-Dakdouki
- Department of Chemistry, Chemistry Building, Room 426, 578 South Shaw Lane, Michigan State University, East Lansing, Michigan 48824, United States
| | - David C. Zhu
- Departments of Radiology and Psychology, Michigan State University, East Lansing, Michigan 48824, United States
- Biomedical Imaging Research Center, Michigan State University, East Lansing, Michigan 48824, United States
| | - Kheireddine El-Boubbou
- Department of Chemistry, Chemistry Building, Room 426, 578 South Shaw Lane, Michigan State University, East Lansing, Michigan 48824, United States
| | - Medha Kamat
- Department of Chemistry, Chemistry Building, Room 426, 578 South Shaw Lane, Michigan State University, East Lansing, Michigan 48824, United States
| | - Jianjun Chen
- College of Pharmacy, University of Tennessee Health Science Center, 847 Monroe Avenue, University of Tennessee, Memphis, Tennessee 38163, United States
| | - Wei Li
- College of Pharmacy, University of Tennessee Health Science Center, 847 Monroe Avenue, University of Tennessee, Memphis, Tennessee 38163, United States
| | - Xuefei Huang
- Department of Chemistry, Chemistry Building, Room 426, 578 South Shaw Lane, Michigan State University, East Lansing, Michigan 48824, United States
- Biomedical Imaging Research Center, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
568
|
Improved cellular specificity of plasmonic nanobubbles versus nanoparticles in heterogeneous cell systems. PLoS One 2012; 7:e34537. [PMID: 22509318 PMCID: PMC3317980 DOI: 10.1371/journal.pone.0034537] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 03/01/2012] [Indexed: 01/23/2023] Open
Abstract
The limited specificity of nanoparticle (NP) uptake by target cells associated with a disease is one of the principal challenges of nanomedicine. Using the threshold mechanism of plasmonic nanobubble (PNB) generation and enhanced accumulation and clustering of gold nanoparticles in target cells, we increased the specificity of PNB generation and detection in target versus non-target cells by more than one order of magnitude compared to the specificity of NP uptake by the same cells. This improved cellular specificity of PNBs was demonstrated in six different cell models representing diverse molecular targets such as epidermal growth factor receptor, CD3 receptor, prostate specific membrane antigen and mucin molecule MUC1. Thus PNBs may be a universal method and nano-agent that overcome the problem of non-specific uptake of NPs by non-target cells and improve the specificity of NP-based diagnostics, therapeutics and theranostics at the cell level.
Collapse
|
569
|
Yeh YC, Creran B, Rotello VM. Gold nanoparticles: preparation, properties, and applications in bionanotechnology. NANOSCALE 2012; 4:1871-80. [PMID: 22076024 PMCID: PMC4101904 DOI: 10.1039/c1nr11188d] [Citation(s) in RCA: 779] [Impact Index Per Article: 59.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Gold nanoparticles (AuNPs) are important components for biomedical applications. AuNPs have been widely employed for diagnostics, and have seen increasing use in the area of therapeutics. In this mini-review, we present fabrication strategies for AuNPs and highlight a selection of recent applications of these materials in bionanotechnology.
Collapse
Affiliation(s)
- Yi-Cheun Yeh
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA
| | | | | |
Collapse
|
570
|
Joshi P, Chakraborti S, Ramirez-Vick JE, Ansari ZA, Shanker V, Chakrabarti P, Singh SP. The anticancer activity of chloroquine-gold nanoparticles against MCF-7 breast cancer cells. Colloids Surf B Biointerfaces 2012; 95:195-200. [PMID: 22445746 DOI: 10.1016/j.colsurfb.2012.02.039] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2011] [Revised: 02/24/2012] [Accepted: 02/26/2012] [Indexed: 12/26/2022]
Abstract
In the present study, 11-mercaptoundecanoic acid-modified gold nanoparticles (∼7 nm) were conjugated with chloroquine to explore their potential application in cancer therapeutics. The anticancer activity of chloroquine-gold nanoparticle conjugates (GNP-Chl) was demonstrated in MCF-7 breast cancer cells. The MCF-7 cells were treated with different concentrations of GNP-Chl conjugates, and the cell viability was assayed using trypan blue, resulting in an IC(50) value of 30 ± 5 μg/mL. Flow cytometry analysis revealed that the major pathway of cell death was necrosis, which was mediated by autophagy. The drug release kinetics of GNP-Chl conjugates revealed the release of chloroquine at an acidic pH, which was quantitatively estimated using optical absorbance spectroscopy. The nature of stimuli-responsive drug release and the inhibition of cancer cell growth by GNP-Chl conjugates could pave the way for the design of combinatorial therapeutic agents, particularly nanomedicine, for the treatment of cancer.
Collapse
Affiliation(s)
- Prachi Joshi
- National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi 110012, India
| | | | | | | | | | | | | |
Collapse
|
571
|
pH-controlled delivery of luminescent europium coated nanoparticles into platelets. Proc Natl Acad Sci U S A 2012; 109:1862-7. [PMID: 22308346 DOI: 10.1073/pnas.1112132109] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Water soluble, luminescent gold nanoparticles are delivered into human platelets via a rapid, pH-controlled mechanism using a pH low insertion peptide, pHLIP. The approach introduces cocoating of gold nanoparticles with a europium luminescent complex, EuL and the pHLIP peptide to give pHLIP•EuL•Au. The 13-nm diameter gold nanoparticles act as a scaffold for the attachment of both the luminescent probe and the peptide to target delivery. Their size allows delivery of approximately 640 lanthanide probes per nanoparticle to be internalized in human platelets, which are not susceptible to transfection or microinjection. The internalization of pHLIP•EuL•Au in platelets, which takes just minutes, was studied with a variety of imaging modalities including luminescence, confocal reflection, and transmission electron microscopy. The results show that pHLIP•EuL•Au only enters the platelets in low pH conditions, pH 6.5, mediated by the pHLIP translocation across the membrane, and not at pH 7.4. Luminescence microscopy images of the treated platelets show clearly the red luminescence signal from the europium probe and confocal reflection microscopy confirms the presence of the gold particles. Furthermore, transmission electron microscopy gives a detailed insight of the internalization and spatial localization of the gold nanoparticles in the platelets. Thus, we demonstrate the potential of the design to translocate multimodal nanoparticle probes into cells in a pH dependent manner.
Collapse
|
572
|
Wang YL, Lu ZY, Laaksonen A. Specific binding structures of dendrimers on lipid bilayer membranes. Phys Chem Chem Phys 2012; 14:8348-59. [DOI: 10.1039/c2cp40700k] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
573
|
Xing T, Yang X, Wang F, Lai B, Yan L. Synthesis of polypeptide conjugated with near infrared fluorescence probe and doxorubicin for pH-responsive and image-guided drug delivery. ACTA ACUST UNITED AC 2012. [DOI: 10.1039/c2jm35627a] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
574
|
Zhao Z, Huang D, Yin Z, Chi X, Wang X, Gao J. Magnetite nanoparticles as smart carriers to manipulate the cytotoxicity of anticancer drugs: magnetic control and pH-responsive release. ACTA ACUST UNITED AC 2012. [DOI: 10.1039/c2jm31692g] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
575
|
Doane TL, Burda C. The unique role of nanoparticles in nanomedicine: imaging, drug delivery and therapy. Chem Soc Rev 2012; 41:2885-911. [DOI: 10.1039/c2cs15260f] [Citation(s) in RCA: 857] [Impact Index Per Article: 65.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
576
|
Liu J, Ma H, Wei T, Liang XJ. CO2 gas induced drug release from pH-sensitive liposome to circumvent doxorubicin resistant cells. Chem Commun (Camb) 2012; 48:4869-71. [DOI: 10.1039/c2cc31697h] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
577
|
Paulo CSO, Pires das Neves R, Ferreira LS. Nanoparticles for intracellular-targeted drug delivery. NANOTECHNOLOGY 2011; 22:494002. [PMID: 22101232 DOI: 10.1088/0957-4484/22/49/494002] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Nanoparticles (NPs) are very promising for the intracellular delivery of anticancer and immunomodulatory drugs, stem cell differentiation biomolecules and cell activity modulators. Although initial studies in the area of intracellular drug delivery have been performed in the delivery of DNA, there is an increasing interest in the use of other molecules to modulate cell activity. Herein, we review the latest advances in the intracellular-targeted delivery of short interference RNA, proteins and small molecules using NPs. In most cases, the drugs act at different cellular organelles and therefore the drug-containing NPs should be directed to precise locations within the cell. This will lead to the desired magnitude and duration of the drug effects. The spatial control in the intracellular delivery might open new avenues to modulate cell activity while avoiding side-effects.
Collapse
Affiliation(s)
- Cristiana S O Paulo
- CNC-Center of Neurosciences and Cell Biology, University of Coimbra, Portugal
| | | | | |
Collapse
|
578
|
Lukianova-Hleb EY, Belyanin A, Kashinath S, Wu X, Lapotko DO. Plasmonic nanobubble-enhanced endosomal escape processes for selective and guided intracellular delivery of chemotherapy to drug-resistant cancer cells. Biomaterials 2011; 33:1821-6. [PMID: 22137124 DOI: 10.1016/j.biomaterials.2011.11.015] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Accepted: 11/10/2011] [Indexed: 02/01/2023]
Abstract
Cancer chemotherapies suffer from multi drug resistance, high non-specific toxicity and heterogeneity of tumors. We report a method of plasmonic nanobubble-enhanced endosomal escape (PNBEE) for the selective, fast and guided intracellular delivery of drugs through a self-assembly by cancer cells of separately targeted gold nanoparticles and encapsulated drug (Doxil). The co-localized with Doxil plasmonic nanobubbles optically generated in cancer cells released the drug into the cytoplasm thus increasing the therapeutic efficacy against these drug-resistant cells by 31-fold, reducing drug dose by 20-fold, the treatment time by 3-fold and the non-specific toxicity by 10-fold compared to standard treatment. Thus the PNBEE mechanism provided selective, safe and efficient intracellular drug delivery in heterogeneous environment opening new opportunities for drug therapies.
Collapse
|
579
|
Shi YF, Tian Z, Zhang Y, Shen HB, Jia NQ. Functionalized halloysite nanotube-based carrier for intracellular delivery of antisense oligonucleotides. NANOSCALE RESEARCH LETTERS 2011; 6:608. [PMID: 22122822 PMCID: PMC3236537 DOI: 10.1186/1556-276x-6-608] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Accepted: 11/28/2011] [Indexed: 05/29/2023]
Abstract
Halloysites are cheap, abundantly available, and natural with high mechanical strength and biocompatibility. In this paper, a novel halloysite nanotube [HNT]-based gene delivery system was explored for loading and intracellular delivery of antisense oligodeoxynucleotides [ASODNs], in which functionalized HNTs [f-HNTs] were used as carriers and ASODNs as a therapeutic gene for targeting survivin. HNTs were firstly surface-modified with γ-aminopropyltriethoxysilane in order to facilitate further biofunctionalization. The f-HNTs and the assembled f-HNT-ASODN complexes were characterized by transmission electron microscopy [TEM], dynamic light scattering, UV-visible spectroscopy, and fluorescence spectrophotometry. The intracellular uptake and delivery efficiency of the complexes were effectively investigated by TEM, confocal microscopy, and flow cytometry. In vitro cytotoxicity studies of the complexes using MTT assay exhibited a significant enhancement in the cytotoxic capability. The results exhibited that f-HNT complexes could efficiently improve intracellular delivery and enhance antitumor activity of ASODNs by the nanotube carrier and could be used as novel promising vectors for gene therapy applications, which is attributed to their advantages over structures and features including a unique tubular structure, large aspect ratio, natural availability, rich functionality, good biocompatibility, and high mechanical strength.
Collapse
Affiliation(s)
- Yin-Feng Shi
- The Education Ministry Key Laboratory of Resource Chemistry, Department of Chemistry, College of Life and Environmental Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai, 200234, China
| | - Zhong Tian
- The Education Ministry Key Laboratory of Resource Chemistry, Department of Chemistry, College of Life and Environmental Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai, 200234, China
| | - Yang Zhang
- The Education Ministry Key Laboratory of Resource Chemistry, Department of Chemistry, College of Life and Environmental Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai, 200234, China
| | - He-Bai Shen
- The Education Ministry Key Laboratory of Resource Chemistry, Department of Chemistry, College of Life and Environmental Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai, 200234, China
| | - Neng-Qin Jia
- The Education Ministry Key Laboratory of Resource Chemistry, Department of Chemistry, College of Life and Environmental Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai, 200234, China
| |
Collapse
|
580
|
Santra S, Kaittanis C, Santiesteban OJ, Perez JM. Cell-specific, activatable, and theranostic prodrug for dual-targeted cancer imaging and therapy. J Am Chem Soc 2011; 133:16680-8. [PMID: 21910482 PMCID: PMC3198802 DOI: 10.1021/ja207463b] [Citation(s) in RCA: 235] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Herein we describe the design and synthesis of a folate-doxorubicin conjugate with activatable fluorescence and activatable cytotoxicity. In this study we discovered that the cytotoxicity and fluorescence of doxorubicin are quenched (OFF) when covalently linked with folic acid. Most importantly, when the conjugate is designed with a disulfide bond linking the targeting folate unit and the cytotoxic doxorubicin, a targeted activatable prodrug is obtained that becomes activated (ON) within the cell by glutathione-mediated dissociation and nuclear translocation, showing enhanced fluorescence and cellular toxicity. In our novel design, folic acid acted as both a targeting ligand for the folate receptor as well as a quencher for doxorubicin's fluorescence.
Collapse
Affiliation(s)
- Santimukul Santra
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL 32826, USA
| | - Charalambos Kaittanis
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL 32826, USA
| | - Oscar J Santiesteban
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL 32826, USA
- Department of Chemistry, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL 32826, USA
| | - J Manuel Perez
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL 32826, USA
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL 32826, USA
- Department of Chemistry, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL 32826, USA
| |
Collapse
|
581
|
PEG-oligocholic acid telodendrimer micelles for the targeted delivery of doxorubicin to B-cell lymphoma. J Control Release 2011; 155:272-81. [PMID: 21787818 DOI: 10.1016/j.jconrel.2011.07.018] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 07/01/2011] [Accepted: 07/10/2011] [Indexed: 01/09/2023]
Abstract
Doxorubicin (DOX) is one of most common anti-cancer chemotherapeutic drugs, but its clinical use is associated with dose-limiting cardiotoxicity. We have recently developed a series of PEG-oligocholic acid based telodendrimers, which can efficiently encapsulate hydrophobic drugs and self-assemble to form stable micelles in aqueous condition. In the present study, two representative telodendrimers (PEG(5k)-CA(8) and PEG(2k)-CA(4)) have been applied to prepare DOX micellar formulations for the targeted delivery of DOX to lymphoma. PEG(2k)-CA(4) micelles, compared to PEG(5k)-CA(8) micelles, were found to have higher DOX loading capacity (14.8% vs. 8.2%, w/w), superior stability in physiological condition, and more sustained release profile. Both of these DOX-loaded micelles can be efficiently internalized and release the drug in Raji lymphoma cells. DOX-loaded micelles were found to exhibit similar in vitro cytotoxic activities against both T- and B-lymphoma cells as the free DOX. The maximum tolerated dose (MTD) of DOX-loaded PEG(2k)-CA(4) micelles in mice was approximately 15 mg/kg, which was 1.5-fold higher of the MTD of free DOX. Pharmacokinetics and biodistribution studies demonstrated that both DOX-loaded micelles were able to prolong the blood retention time, preferentially accumulate and penetrate in B-cell lymphomas via the enhanced permeability and retention (EPR) effect. Finally, DOX-PEG(2k)-CA(4) micelles achieved enhanced anti-cancer efficacy and prolonged survival in Raji lymphoma bearing mice, compared to free DOX and PEGylated liposomal DOX (Doxil®) at the equivalent dose. In addition, the analysis of creatine kinase (CK) and lactate dehydrogenase (LDH) serum enzymes level indicated that DOX micellar formulations significantly reduced the cardiotoxicity associated with free DOX.
Collapse
|