551
|
Ye X, Wang Y, Nathans J. The Norrin/Frizzled4 signaling pathway in retinal vascular development and disease. Trends Mol Med 2010; 16:417-25. [PMID: 20688566 DOI: 10.1016/j.molmed.2010.07.003] [Citation(s) in RCA: 132] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Revised: 07/09/2010] [Accepted: 07/09/2010] [Indexed: 01/22/2023]
Abstract
Disorders of retinal vascular growth and function are responsible for vision loss in a variety of diseases, including diabetic retinopathy, age-related macular degeneration, retinopathy of prematurity and retinal artery or vein occlusion. Over the past decade, a new signaling pathway that controls retinal vascular development has emerged from the study of inherited disorders - in both humans and mice - that are characterized by retinal hypovascularization. This pathway utilizes a glial-derived extracellular ligand, Norrin, that acts on a transmembrane receptor, Frizzled4, a coreceptor, Lrp5, and an auxiliary membrane protein, Tspan12, on the surface of developing endothelial cells. The resulting signal controls a transcriptional program that regulates endothelial growth and maturation. It will be of great interest to determine whether modulating this pathway could represent a therapeutic approach to human retinal vascular disease.
Collapse
Affiliation(s)
- Xin Ye
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | |
Collapse
|
552
|
Xie J, Farage E, Sugimoto M, Anand-Apte B. A novel transgenic zebrafish model for blood-brain and blood-retinal barrier development. BMC DEVELOPMENTAL BIOLOGY 2010; 10:76. [PMID: 20653957 PMCID: PMC2914679 DOI: 10.1186/1471-213x-10-76] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Accepted: 07/23/2010] [Indexed: 02/07/2023]
Abstract
Background Development and maintenance of the blood-brain and blood-retinal barrier is critical for the homeostasis of brain and retinal tissue. Despite decades of research our knowledge of the formation and maintenance of the blood-brain (BBB) and blood-retinal (BRB) barrier is very limited. We have established an in vivo model to study the development and maintenance of these barriers by generating a transgenic zebrafish line that expresses a vitamin D-binding protein fused with enhanced green fluorescent protein (DBP-EGFP) in blood plasma, as an endogenous tracer. Results The temporal establishment of the BBB and BRB was examined using this transgenic line and the results were compared with that obtained by injection of fluorescent dyes into the sinus venosus of embryos at various stages of development. We also examined the expression of claudin-5, a component of tight junctions during the first 4 days of development. We observed that the BBB of zebrafish starts to develop by 3 dpf, with expression of claudin-5 in the central arteries preceding it at 2 dpf. The hyaloid vasculature in the zebrafish retina develops a barrier function at 3 dpf, which endows the zebrafish with unique advantages for studying the BRB. Conclusion Zebrafish embryos develop BBB and BRB function simultaneously by 3 dpf, which is regulated by tight junction proteins. The Tg(l-fabp:DBP-EGFP) zebrafish will have great advantages in studying development and maintenance of the blood-neural barrier, which is a new application for the widely used vertebrate model.
Collapse
Affiliation(s)
- Jing Xie
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, USA.
| | | | | | | |
Collapse
|
553
|
Abstract
Cardiac development is comprised of a series of morphological events tightly controlled both spatially and temporally. The molecular pathways controlling early cardiac differentiation are poorly understood, but Wnt signaling is emerging as a critical pathway for multiple aspects of early cardiovascular development. The Wnt pathway plays multiple roles in regulating cellular behavior including proliferation, differentiation, cell migration, and cell polarity. Recent data have demonstrated that Wnt activity is important for early precardiac mesoderm differentiation but must be inhibited in subsequent steps for cardiomyocyte differentiation to proceed. Given the important role that Wnt signaling plays in both the differentiation of cardiomyocytes from pluripotential stem cells and tissue regeneration in general, an increased understanding of this pathway is likely to enhance our knowledge about both cardiovascular development and reparative mechanisms.
Collapse
|
554
|
Muley A, Majumder S, Kolluru GK, Parkinson S, Viola H, Hool L, Arfuso F, Ganss R, Dharmarajan A, Chatterjee S. Secreted frizzled-related protein 4: an angiogenesis inhibitor. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 176:1505-16. [PMID: 20056841 PMCID: PMC2832169 DOI: 10.2353/ajpath.2010.090465] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/24/2009] [Indexed: 12/31/2022]
Abstract
Wnt signaling is involved in developmental processes, cell proliferation, and cell migration. Secreted frizzled-related protein 4 (sFRP4) has been demonstrated to be a Wnt antagonist; however, its effects on endothelial cell migration and angiogenesis have not yet been reported. Using various in vitro assays, we show that sFRP4 inhibits endothelial cell migration and the development of sprouts and pseudopodia as well as disrupts the stability of endothelial rings in addition to inhibiting proliferation. sFRP4 interfered with endothelial cell functions by antagonizing the canonical Wnt/beta-catenin signaling pathway and the Wnt/planar cell polarity pathway. Furthermore, sFRP4 blocked the effect of vascular endothelial growth factor on endothelial cells. sFRP4 also selectively induced apoptotic events in endothelial cells by increasing cellular levels of reactive oxygen species. In vivo assays demonstrated a reduction in vascularity after sFRP4 treatment. Most importantly, sFRP4 restricted tumor growth in mice by interfering with endothelial cell function. The data demonstrate sFRP4 to be a potent angiogenesis inhibitor that warrants further investigation as a therapeutic agent in the control of angiogenesis-associated pathology.
Collapse
Affiliation(s)
- Ajit Muley
- AU-KBC Research Centre, Anna University, Chennai, India
| | | | | | - Steve Parkinson
- School of Anatomy and Human Biology, The University of Western Australia, Perth, Australia
| | - Helena Viola
- Faculty of Life and Physical Sciences, and the School of Biomedical, Biomolecular, and Chemical Sciences, The University of Western Australia, Perth, Australia
| | - Livia Hool
- Faculty of Life and Physical Sciences, and the School of Biomedical, Biomolecular, and Chemical Sciences, The University of Western Australia, Perth, Australia
| | - Frank Arfuso
- School of Anatomy and Human Biology, The University of Western Australia, Perth, Australia
| | - Ruth Ganss
- Western Australian Institute for Medical Research, UWA Centre for Medical Research, Perth, Western Australia, Australia
| | - Arun Dharmarajan
- School of Anatomy and Human Biology, The University of Western Australia, Perth, Australia
| | | |
Collapse
|
555
|
Norrin promotes vascular regrowth after oxygen-induced retinal vessel loss and suppresses retinopathy in mice. J Neurosci 2010; 30:183-93. [PMID: 20053900 DOI: 10.1523/jneurosci.3210-09.2010] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Norrin is a secreted protein that is involved in retinal angiogenesis and activates the Wnt-signaling pathway. We studied the role of Norrin in microvascular endothelial cells in vitro, and in a mouse model of retinopathy characterized by oxygen-induced vascular loss followed by hypoxia-induced pathological neovascularization. Recombinant Norrin significantly increased proliferation, viability, migration, and tube formation in vitro. Two independent transgenic mouse strains with ectopic overexpression of Norrin from the lens (betaB1-Crystallin-Norrin), or the retinal pigment epithelium (Rpe65-Norrin) were generated and exposed to high oxygen. Following oxygen treatment, vascular loss was significantly smaller in retinae of transgenic mice from both strains as compared to wild-type littermates. In addition, the anatomical correct regrowth of vessels was significantly increased, while pathological neovascularization was suppressed. In vitro and in vivo effects of Norrin could be blocked by adding DKK (Dickkopf)-1, an inhibitor of Wnt/beta-catenin signaling. Treatment of microvascular endothelial cells with Norrin caused a substantial increase in the expression of angiopoietin-2 (Ang-2). When inhibitory antibodies against Ang-2 were added to Norrin, the proliferative effects of Norrin were significantly suppressed. We conclude that Norrin is a potent factor to induce angiogenesis in microvascular endothelial cells, which has the distinct potential to suppress the damaging effects of oxygen-induced retinopathy in vivo. The effects of Norrin appear to be mediated, at least partially, via the induction of Ang-2.
Collapse
|
556
|
Liebner S, Plate KH. Differentiation of the brain vasculature: the answer came blowing by the Wnt. JOURNAL OF ANGIOGENESIS RESEARCH 2010; 2:1. [PMID: 20150991 PMCID: PMC2820477 DOI: 10.1186/2040-2384-2-1] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Accepted: 01/14/2010] [Indexed: 01/09/2023]
Abstract
Vascularization of the vertebrate brain takes place during embryonic development from a preformed perineural vascular plexus. As a consequence of the intimate contact with neuroectodermal cells the vessels, which are entering the brain exclusively via sprouting angiogenesis, acquire and maintain unique barrier properties known as the blood-brain barrier (BBB). The endothelial BBB depends upon the close association of endothelial cells with pericytes, astrocytes, neurons and microglia, which are summarized in the term neuro-vascular unit. Although it is known since decades that the CNS tissue provides the cues for BBB induction and differentiation in endothelial cells, the molecular mechanism remained obscure.Only recently, the canonical Wnt/beta-catenin pathway and the Wnt7a/7b growth factors have been implicated in brain angiogenesis on the one hand and in BBB induction on the other. This breakthrough in understanding the differentiation of the brain vasculature prompted us to review these findings embedded in the emerging concepts of Wnt signaling in the vasculature. In particular, interactions with other pathways that are crucial for vascular development such as VEGF, Notch, angiopoietins and Sonic hedgehog are discussed. Finally, we considered the potential role of the Wnt pathway in vascular brain pathologies in which BBB function is hampered, as for example in glioma, stroke and Alzheimer's disease.
Collapse
Affiliation(s)
- Stefan Liebner
- Blood-Brain Barrier Signaling Group, Institute of Neurology (Edinger-Institute, Frankfurt University Medical School, Heinrich-Hofmann-Str. 7, 60528 Frankfurt/Main, Germany
| | | |
Collapse
|
557
|
Daneman R, Rescigno M. The gut immune barrier and the blood-brain barrier: are they so different? Immunity 2009; 31:722-35. [PMID: 19836264 DOI: 10.1016/j.immuni.2009.09.012] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2009] [Accepted: 09/29/2009] [Indexed: 12/18/2022]
Abstract
In order to protect itself from a diverse set of environmental pathogens and toxins, the body has developed a number of barrier mechanisms to limit the entry of potential hazards. Here, we compare two such barriers: the gut immune barrier, which is the primary barrier against pathogens and toxins ingested in food, and the blood-brain barrier, which protects the central nervous system from pathogens and toxins in the blood. Although each barrier provides defense in very different environments, there are many similarities in their mechanisms of action. In both cases, there is a physical barrier formed by a cellular layer that tightly regulates the movement of ions, molecules, and cells between two tissue spaces. These barrier cells interact with different cell types, which dynamically regulate their function, and with a different array of immune cells that survey the physical barrier and provide innate and adaptive immunity.
Collapse
Affiliation(s)
- Richard Daneman
- University of California, San Francisco, Department of Anatomy, San Francisco, CA 94143-0452, USA.
| | | |
Collapse
|
558
|
TSPAN12 regulates retinal vascular development by promoting Norrin- but not Wnt-induced FZD4/beta-catenin signaling. Cell 2009; 139:299-311. [PMID: 19837033 DOI: 10.1016/j.cell.2009.07.048] [Citation(s) in RCA: 289] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Revised: 05/14/2009] [Accepted: 07/30/2009] [Indexed: 11/20/2022]
Abstract
Mutations in the genes encoding the Wnt receptor Frizzled-4 (FZD4), coreceptor LRP5, or the ligand Norrin disrupt retinal vascular development and cause ophthalmic diseases. Although Norrin is structurally unrelated to Wnts, it binds FZD4 and activates the canonical Wnt pathway. Here we show that the tetraspanin Tspan12 is expressed in the retinal vasculature, and loss of Tspan12 phenocopies defects seen in Fzd4, Lrp5, and Norrin mutant mice. In addition, Tspan12 genetically interacts with Norrin or Lrp5. Overexpressed TSPAN12 associates with the Norrin-receptor complex and significantly increases Norrin/beta-catenin but not Wnt/beta-catenin signaling, whereas Tspan12 siRNA abolishes transcriptional responses to Norrin but not Wnt3A in retinal endothelial cells. Signaling defects caused by Norrin or FZD4 mutations that are predicted to impair receptor multimerization are rescued by overexpression of TSPAN12. Our data indicate that Norrin multimers and TSPAN12 cooperatively promote multimerization of FZD4 and its associated proteins to elicit physiological levels of signaling.
Collapse
|
559
|
Ye X, Wang Y, Cahill H, Yu M, Badea TC, Smallwood PM, Peachey NS, Nathans J. Norrin, frizzled-4, and Lrp5 signaling in endothelial cells controls a genetic program for retinal vascularization. Cell 2009; 139:285-98. [PMID: 19837032 DOI: 10.1016/j.cell.2009.07.047] [Citation(s) in RCA: 347] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Revised: 05/11/2009] [Accepted: 07/30/2009] [Indexed: 02/02/2023]
Abstract
Disorders of vascular structure and function play a central role in a wide variety of CNS diseases. Mutations in the Frizzled-4 (Fz4) receptor, Lrp5 coreceptor, or Norrin ligand cause retinal hypovascularization, but the mechanisms by which Norrin/Fz4/Lrp signaling controls vascular development have not been defined. Using mouse genetic and cell culture models, we show that loss of Fz4 signaling in endothelial cells causes defective vascular growth, which leads to chronic but reversible silencing of retinal neurons. Loss of Fz4 in all endothelial cells disrupts the blood brain barrier in the cerebellum, whereas excessive Fz4 signaling disrupts embryonic angiogenesis. Sox17, a transcription factor that is upregulated by Norrin/Fz4/Lrp signaling, plays a central role in inducing the angiogenic program controlled by Norrin/Fz4/Lrp. These experiments establish a cellular basis for retinal hypovascularization diseases due to insufficient Frizzled signaling, and they suggest a broader role for Frizzled signaling in vascular growth, remodeling, maintenance, and disease.
Collapse
Affiliation(s)
- Xin Ye
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | | | | | | | |
Collapse
|
560
|
Franco CA, Liebner S, Gerhardt H. Vascular morphogenesis: a Wnt for every vessel? Curr Opin Genet Dev 2009; 19:476-83. [DOI: 10.1016/j.gde.2009.09.004] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Accepted: 09/15/2009] [Indexed: 01/24/2023]
|
561
|
Freese JL, Pino D, Pleasure SJ. Wnt signaling in development and disease. Neurobiol Dis 2009; 38:148-53. [PMID: 19765659 DOI: 10.1016/j.nbd.2009.09.003] [Citation(s) in RCA: 141] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Revised: 09/01/2009] [Accepted: 09/10/2009] [Indexed: 12/26/2022] Open
Abstract
The Wnt signaling pathway is one of the central morphogenic signaling pathways regulating early vertebrate development. In recent years, it has become clear that the Wnt pathway also regulates many aspects of nervous system development from the patterning stage through the regulation of neural plasticity. In this review, we first present an overview of the components of the Wnt signaling pathway and then go on to discuss the literature describing the multitude of roles of Wnts in nervous system. In the latter portion of the review, we turn to the ways that defects in Wnt signaling lead to neurologic disease.
Collapse
Affiliation(s)
- Jennifer L Freese
- Department of Neurology, University of California, San Francisco, CA, USA
| | | | | |
Collapse
|
562
|
Lee HS, Han J, Bai HJ, Kim KW. Brain angiogenesis in developmental and pathological processes: regulation, molecular and cellular communication at the neurovascular interface. FEBS J 2009; 276:4622-35. [PMID: 19664072 DOI: 10.1111/j.1742-4658.2009.07174.x] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The vascular network of the brain is formed by the invasion of vascular sprouts from the pia mater toward the ventricles. Following angiogenesis of the primary vascular network, brain vessels experience a maturation process known as barriergenesis, in which the blood-brain barrier is formed. In this minireview, we discuss the processes of brain angiogenesis and barriergenesis, as well as the molecular and cellular mechanisms underlying brain vessel formation. At the molecular level, angiogenesis and barriergenesis occur via the coordinated action of oxygen-responsive molecules (e.g. hypoxia-inducible factor and Src-suppressed C kinase substrate/AKAP12) and soluble factors (e.g. vascular endothelial growth factor and angiopoietin-1), as well as axon guidance molecules and neurotrophic factors. At the cellular level, we focus on neurovascular cells, such as pericytes, astrocytes, vascular smooth muscle cells, neurons and brain macrophages. Each cell type plays a unique role, and works with other types to maintain environmental homeostasis and to respond to certain stimuli. Taken together, this minireview emphasizes the importance of the coordinated action of molecules and cells at the neurovascular interface, with regards to the regulation of angiogenesis and barriergenesis.
Collapse
Affiliation(s)
- Hye Shin Lee
- Neurovascular Coordination Research Center, College of Pharmacy, Seoul National University, Korea
| | | | | | | |
Collapse
|
563
|
Ullner PM, Di Nardo A, Goldman JE, Schobel S, Yang H, Engelstad K, Wang D, Sahin M, De Vivo DC. Murine Glut-1 transporter haploinsufficiency: postnatal deceleration of brain weight and reactive astrocytosis. Neurobiol Dis 2009; 36:60-9. [PMID: 19591936 DOI: 10.1016/j.nbd.2009.06.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Revised: 06/23/2009] [Accepted: 06/28/2009] [Indexed: 11/17/2022] Open
Abstract
Glucose transporter type 1 (Glut-1) facilitates glucose flux across the blood-brain-barrier. In humans, Glut-1 deficiency causes acquired microcephaly, seizures and ataxia, which are recapitulated in our Glut-1 haploinsufficient mouse model. Postnatal brain weight deceleration and development of reactive astrogliosis were significant by P21 in Glut-1(+/-) mice. The brain weight differences remained constant after P21 whereas the reactive astrocytosis continued to increase and peaked at P90. Brain immunoblots showed increased phospho-mTOR and decreased phospho-GSK3-beta by P14. After fasting, the mature Glut-1(+/-) females showed a trend towards elevated phospho-GSK3-beta, a possible neuroprotective response. Lithium chloride treatment of human skin fibroblasts from control and Glut-1 DS patients produced a 45% increase in glucose uptake. Brain imaging of mature Glut-1(+/-) mice revealed a significantly decreased hippocampal volume. These subtle immunochemical changes reflect chronic nutrient deficiency during brain development and represent the experimental correlates to the human neurological phenotype associated with Glut-1 DS.
Collapse
Affiliation(s)
- Paivi M Ullner
- Department of Neurology, Colleen Giblin Laboratories for Pediatric Neurology Research, Columbia University, New York, NY, USA
| | | | | | | | | | | | | | | | | |
Collapse
|