551
|
Abstract
Varicella zoster virus (VZV) is one of eight members of the Herpesviridae family for which humans are the primary host; it causes two distinct diseases, varicella (chickenpox) and zoster (shingles). Varicella results from primary infection, during which the virus establishes latency in sensory neurons, a characteristic of all members of the Alphaherpesvirinae subfamily. Zoster is caused by reactivation of latent virus, which typically occurs when cellular immunity is impaired. VZV is the first human herpesvirus for which a vaccine has been licensed. The vaccine preparation, v-Oka, is a live-attenuated virus stock produced by the classic method of tissue culture passage in animal and human cell lines. Over 90 million doses of the vaccine have been administered in countries worldwide, including the USA, where varicella morbidity and mortality has declined dramatically. Over the last decade, several laboratories have been committed to investigating the mechanism by which the Oka vaccine is attenuated. Mutations have accumulated across the genome of the vaccine during the attenuation process; however, studies of the contribution of these changes to vaccine attenuation have been hampered by the lack of a suitable animal model of VZV disease and by the heterogeneity that exists among the viral population within the vaccine preparation. Notwithstanding, a wealth of data has been generated using various laboratory methodologies. Studies of the vaccine virus in human xenografts implanted in severe combined immunodeficiency-hu mice, have enabled analyses of the replication dynamics of the vaccine in dorsal root ganglia, T lymphocytes and skin. In vitro assays have been used to investigate the effect of vaccine mutations on viral gene expression and sequence analysis of vaccine rash viruses has permitted investigations into spread of the vaccine virus in a human host. We present here a review of what has been learned thus far about the molecular and phenotypic characteristics of the Oka vaccine.
Collapse
MESH Headings
- Animals
- Chickenpox/immunology
- Chickenpox/prevention & control
- Chickenpox/virology
- Chickenpox Vaccine/administration & dosage
- Chickenpox Vaccine/genetics
- Chickenpox Vaccine/immunology
- Ganglia, Spinal/drug effects
- Ganglia, Spinal/immunology
- Ganglia, Spinal/pathology
- Ganglia, Spinal/virology
- Herpes Zoster/immunology
- Herpes Zoster/prevention & control
- Herpes Zoster/virology
- Herpesvirus 3, Human/drug effects
- Herpesvirus 3, Human/genetics
- Herpesvirus 3, Human/immunology
- Humans
- Immunity, Cellular
- Mice
- Mice, SCID
- Polymorphism, Single Nucleotide
- Sensory Receptor Cells/drug effects
- Sensory Receptor Cells/immunology
- Sensory Receptor Cells/pathology
- Sensory Receptor Cells/virology
- Skin/drug effects
- Skin/immunology
- Skin/pathology
- Skin/virology
- Transplantation, Heterologous/immunology
- Vaccines, Attenuated/administration & dosage
- Vaccines, Attenuated/genetics
- Vaccines, Attenuated/immunology
- Virus Activation/drug effects
Collapse
Affiliation(s)
- Mark Quinlivan
- Herpesvirus Team and National VZV Laboratory, MMRHLB, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | | | | |
Collapse
|
552
|
Abstract
NK cell effector function is regulated by a range of activating and inhibitory receptors, and many of their known ligands are MHC class I molecules. Human NK receptors encoded by the Killer immunoglobulin-like receptor (KIR) gene family recognize polymorphic HLA-C as well as some HLA-A and HLA-B molecules. KIRs are expressed by uterine NK (uNK) cells, which are distinctive NK cells directly in contact with the invading fetal placental cells that transform the uterine arteries during the first trimester. Trophoblast cells express both maternal and paternal HLA-C allotypes and can therefore potentially interact with KIRs expressed by uNK. Therefore, allorecognition of paternal HLA-C by maternal KIR might influence trophoblast invasion and vascular remodeling, with subsequent effects on placental development and the outcome of pregnancy. We discuss here the studies relating to KIR/HLA-C interactions with an emphasis on how these function during pregnancy to regulate placentation.
Collapse
Affiliation(s)
- Olympe Chazara
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | | | | |
Collapse
|
553
|
Comas I, Gagneux S. A role for systems epidemiology in tuberculosis research. Trends Microbiol 2011; 19:492-500. [PMID: 21831640 DOI: 10.1016/j.tim.2011.07.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 07/05/2011] [Accepted: 07/12/2011] [Indexed: 10/17/2022]
Abstract
Despite being a curable disease, tuberculosis (TB) killed more people in 2009 than during any previous year in history. Progress in TB research has been slow, and remains burdened by important gaps in our knowledge of the basic biology of Mycobacterium tuberculosis, the causative agent of TB, and its interaction with the human host. Fortunately, major systems biology initiatives have recently been launched that will help fill some of these gaps. However, to fully comprehend TB and control this disease globally, current systems biological approaches will not suffice. The influence of host and pathogen diversity, changes in human demography, and socioeconomic and environmental factors will also need to be considered. Such a multidisciplinary approach might be best described as 'systems epidemiology' in an effort to overcome the traditional boundaries between basic biology and classical epidemiology.
Collapse
Affiliation(s)
- Iñaki Comas
- Division of Mycobacterial Research, MRC National Institute for Medical Research, London, UK
| | | |
Collapse
|
554
|
Blokhuis JH, van der Wiel MK, Doxiadis GGM, Bontrop RE. The extreme plasticity of killer cell Ig-like receptor (KIR) haplotypes differentiates rhesus macaques from humans. Eur J Immunol 2011; 41:2719-28. [DOI: 10.1002/eji.201141621] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Revised: 05/16/2011] [Accepted: 06/20/2011] [Indexed: 11/09/2022]
|
555
|
Ashcroft KJ, Syed F, Arscott G, Bayat A. Assessment of the influence of HLA class I and class II loci on the prevalence of keloid disease in Jamaican Afro-Caribbeans. ACTA ACUST UNITED AC 2011; 78:390-6. [DOI: 10.1111/j.1399-0039.2011.01755.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
556
|
Engineering T cells specific for a dominant severe acute respiratory syndrome coronavirus CD8 T cell epitope. J Virol 2011; 85:10464-71. [PMID: 21813600 DOI: 10.1128/jvi.05039-11] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Severe acute respiratory syndrome (SARS) is a highly contagious and life threatening disease, with a fatality rate of almost 10%. The etiologic agent is a novel coronavirus, severe acute respiratory syndrome coronavirus (SARS-CoV), with animal reservoirs found in bats and other wild animals and thus the possibility of reemergence. In this study, we first investigated at 6 years postinfection whether SARS-specific memory T cells persist in SARS-recovered individuals, demonstrating that these subjects still possess polyfunctional SARS-specific memory CD4+ and CD8+ T cells. A dominant memory CD8+ T cell response against SARS-CoV nucleocaspid protein (NP; amino acids 216 to 225) was then defined in SARS-recovered individuals carrying HLA-B*40:01, a HLA-B molecule present in approximately one-quarter of subjects of Asian ethnicities. To reconstitute such a CD8+ T cell response, we isolated the alpha and beta T cell receptors of the HLA-B*40:01-restricted SARS-specific CD8+ T cells. Using T cell receptor gene transfer, we generated SARS-specific redirected T cells from the lymphocytes of normal individuals. These engineered CD8+ T cells displayed avidity and functionality similar to that of natural SARS-specific memory CD8+ T cells. They were able to degranulate and produce gamma interferon, tumor necrosis factor alpha, and macrophage inflammatory proteins 1α and 1β after antigenic stimulation. Since there is no effective treatment against SARS, these transduced T cells specific for an immunodominant SARS epitope may provide a new avenue for treatment during a SARS outbreak.
Collapse
|
557
|
Parham P, Norman PJ, Abi-Rached L, Guethlein LA. Variable NK cell receptors exemplified by human KIR3DL1/S1. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2011; 187:11-9. [PMID: 21690332 PMCID: PMC3223120 DOI: 10.4049/jimmunol.0902332] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Variegated expression of variable NK cell receptors for polymorphic MHC class I broadens the range of an individual's NK cell response and the capacity for populations and species to survive disease epidemics and population bottlenecks. On evolutionary time scales, this component of immunity is exceptionally dynamic, unstable, and short-lived, being dependent on coevolution of ligands and receptors subject to varying, competing selection pressures. Consequently these systems of variable NK cell receptors are largely species specific and have recruited different classes of glycoprotein, even within the primate order of mammals. Such disparity helps to explain substantial differences in NK cell biology between humans and animal models, for which the population genetics is largely ignored. KIR3DL1/S1, which recognizes the Bw4 epitope of HLA-A and -B and is the most extensively studied of the variable NK cell receptors, exemplifies how variation in all possible parameters of function is recruited to diversify the human NK cell response.
Collapse
MESH Headings
- Alleles
- Animals
- Disease Models, Animal
- Evolution, Molecular
- HLA-B Antigens/genetics
- HLA-B Antigens/immunology
- HLA-B Antigens/metabolism
- Histocompatibility Antigens Class I/genetics
- Histocompatibility Antigens Class I/immunology
- Histocompatibility Antigens Class I/metabolism
- Humans
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Peptide Fragments/immunology
- Peptide Fragments/metabolism
- Phylogeny
- Receptors, KIR3DL1/genetics
- Receptors, KIR3DL1/immunology
- Receptors, KIR3DL1/metabolism
- Receptors, KIR3DS1/genetics
- Receptors, KIR3DS1/immunology
- Receptors, KIR3DS1/metabolism
Collapse
Affiliation(s)
- Peter Parham
- Department of Structural Biology, and Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, USA
| | - Paul J. Norman
- Department of Structural Biology, and Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, USA
| | - Laurent Abi-Rached
- Department of Structural Biology, and Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, USA
| | - Lisbeth A. Guethlein
- Department of Structural Biology, and Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, USA
| |
Collapse
|
558
|
Terajima M, Ennis FA. T cells and pathogenesis of hantavirus cardiopulmonary syndrome and hemorrhagic fever with renal syndrome. Viruses 2011; 3:1059-73. [PMID: 21994770 PMCID: PMC3185782 DOI: 10.3390/v3071059] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Revised: 06/30/2011] [Accepted: 07/01/2011] [Indexed: 12/17/2022] Open
Abstract
We previously hypothesized that increased capillary permeability observed in both hantavirus cardiopulmonary syndrome (HCPS) and hemorrhagic fever with renal syndrome (HFRS) may be caused by hantavirus-specific cytotoxic T cells attacking endothelial cells presenting viral antigens on their surface based on clinical observations and in vitro experiments. In HCPS, hantavirus-specific T cell responses positively correlated with disease severity. In HFRS, in one report, contrary to HCPS, T cell responses negatively correlated with disease severity, but in another report the number of regulatory T cells, which are thought to suppress T cell responses, negatively correlated with disease severity. In rat experiments, in which hantavirus causes persistent infection, depletion of regulatory T cells helped infected rats clear virus without inducing immunopathology. These seemingly contradictory findings may suggest delicate balance in T cell responses between protection and immunopathogenesis. Both too strong and too weak T cell responses may lead to severe disease. It is important to clarify the role of T cells in these diseases for better treatment (whether to suppress T cell functions) and protection (vaccine design) which may need to take into account viral factors and the influence of HLA on T cell responses.
Collapse
Affiliation(s)
- Masanori Terajima
- Center for Infectious Disease and Vaccine Research, Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01655, USA; E-Mail:
| | - Francis A. Ennis
- Center for Infectious Disease and Vaccine Research, Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01655, USA; E-Mail:
| |
Collapse
|
559
|
Pathway-based analysis of genetic susceptibility to cervical cancer in situ: HLA-DPB1 affects risk in Swedish women. Genes Immun 2011; 12:605-14. [PMID: 21716314 DOI: 10.1038/gene.2011.40] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We have conducted a pathway-based analysis of genome-wide single-nucleotide polymorphism (SNP) data in order to identify genetic susceptibility factors for cervical cancer in situ. Genotypes derived from Affymetrix 500k or 5.0 arrays for 1076 cases and 1426 controls were analyzed for association, and pathways with enriched signals were identified using the SNP ratio test. The most strongly associated KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways were Asthma (empirical P=0.03), Folate biosynthesis (empirical P=0.04) and Graft-versus-host disease (empirical P=0.05). Among the 11 top-ranking pathways were 6 related to the immune response with the common denominator being genes in the major histocompatibility complex (MHC) region on chromosome 6. Further investigation of the MHC revealed a clear effect of HLA-DPB1 polymorphism on disease susceptibility. At a functional level, DPB1 alleles associated with risk and protection differ in key amino-acid residues affecting peptide-binding motifs in the extracellular domains. The results illustrate the value of pathway-based analysis to mine genome-wide data, and point to the importance of the MHC region and specifically the HLA-DPB1 locus for susceptibility to cervical cancer.
Collapse
|
560
|
Ferrando-Martinez S, Leal M, González-Escribano MF, Vega Y, Ruiz-Mateos E. Simplified sequence-specific oligonucleotide-based polymerase chain reaction protocol to characterize human major histocompatibility complex A*02 and A*24 specificities. Hum Immunol 2011; 72:869-71. [PMID: 21741422 DOI: 10.1016/j.humimm.2011.05.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Revised: 05/24/2011] [Accepted: 05/25/2011] [Indexed: 01/06/2023]
Abstract
Major histocompatibility complex (MHC) multimer technology is used in studies of high scientific and clinical interest for the identification, analysis, purification, and adoptive transfer of virus-specific T cells. MHC peptide multimers are usually specific for MHC A*02 or A*24 specificities because both specificities exhibit a high worldwide frequency. However, commercially available typing methods perform complete typing instead of browsing for these prevailing specificities. In this study we demonstrate an easy and accessible polymerase chain reaction-based method to accurately identify A*02 and A*24 samples in a cost-effective way.
Collapse
Affiliation(s)
- Sara Ferrando-Martinez
- Laboratory of Molecular Immuno-Biology, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | | | | | | | | |
Collapse
|
561
|
Toxicogenomics of nevirapine-associated cutaneous and hepatic adverse events among populations of African, Asian, and European descent. AIDS 2011; 25:1271-80. [PMID: 21505298 DOI: 10.1097/qad.0b013e32834779df] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
OBJECTIVE Nevirapine is widely prescribed for HIV-1 infection. We characterized relationships between nevirapine-associated cutaneous and hepatic adverse events and genetic variants among HIV-infected adults. DESIGN We retrospectively identified cases and controls. Cases experienced symptomatic nevirapine-associated severe (grade III/IV) cutaneous and/or hepatic adverse events within 8 weeks of initiating nevirapine. Controls did not experience adverse events during more than 18 weeks of nevirapine therapy. METHODS Cases and controls were matched 1: 2 on baseline CD4 T-cell count, sex, and race. Individuals with 150 or less CD4 T cells/μl at baseline were excluded. We characterized 123 human leukocyte antigen (HLA) alleles and 2744 single-nucleotide polymorphisms in major histocompatibility complex (MHC) and drug metabolism and transport genes. RESULTS We studied 276 evaluable cases (175 cutaneous adverse events, 101 hepatic adverse events) and 587 controls. Cutaneous adverse events were associated with CYP2B6 516G→T (OR 1.66, all), HLA-Cw*04 (OR 2.51, all), and HLA-B*35 (OR 3.47, Asians; 5.65, Thais). Risk for cutaneous adverse events was particularly high among Blacks with CYP2B6 516TT and HLA-Cw*04 (OR 18.90) and Asians with HLA-B*35 and HLA-Cw*04 (OR 18.34). Hepatic adverse events were associated with HLA-DRB*01 (OR 3.02, Whites), but not CYP2B6 genotypes. Associations differed by population, at least in part reflecting allele frequencies. CONCLUSION Among patients with at least 150 CD4 T cells/μl, polymorphisms in drug metabolism and immune response pathways were associated with greater likelihood of risk for nevirapine-related adverse events. Results suggest fundamentally different mechanisms of adverse events: cutaneous, most likely MHC class I-mediated, influenced by nevirapine CYP2B6 metabolism; hepatic, most likely MHC class II-mediated and unaffected by such metabolism. These risk variants are insensitive for routine clinical screening.
Collapse
|
562
|
Lotem M, Kadouri L, Merims S, Ospovat I, Nissan A, Ron I, Frankenburg S, Machlenkin A, Israel S, Steinberg H, Hamburger T, Peretz T. HLA-B35 correlates with a favorable outcome following adjuvant administration of an HLA-matched allogeneic melanoma vaccine. ACTA ACUST UNITED AC 2011; 78:203-7. [DOI: 10.1111/j.1399-0039.2011.01709.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
563
|
Hawkins O, Verma B, Lightfoot S, Jain R, Rawat A, McNair S, Caseltine S, Mojsilovic A, Gupta P, Neethling F, Almanza O, Dooley W, Hildebrand W, Weidanz J. An HLA-presented fragment of macrophage migration inhibitory factor is a therapeutic target for invasive breast cancer. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2011; 186:6607-16. [PMID: 21515791 DOI: 10.4049/jimmunol.1003995] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
This report describes a novel HLA/peptide complex with potential prognostic and therapeutic roles for invasive breast cancer. Macrophage migration inhibitory factor (MIF) mediates inflammation and immunity, and MIF overexpression is observed in breast cancer. We hypothesized that the HLA class I of cancerous breast epithelial cells would present MIF-derived peptides. Consistent with this hypothesis, the peptide FLSELTQQL (MIF(19-27)) was eluted from the HLA-A*0201 (HLA-A2) of breast cancer cell lines. We posited that if this MIF(19-27)/HLA-A2 complex was exclusively found in invasive breast cancer, it could be a useful prognostic indicator. To assess the presentation of MIF peptides by the HLA of various cells and tissues, mice were immunized with the MIF(19-27)/HLA-A2 complex. The resulting mAb (RL21A) stained invasive ductal carcinoma (IDC) but not ductal carcinoma in situ, fibroadenoma, or normal breast tissues. RL21A did not stain WBCs (total WBCs) or normal tissues from deceased HLA-A2 donors, substantiating the tumor-specific nature of this MIF/HLA complex. As this MIF/HLA complex appeared specific to the surface of IDC, RL21A was tested as an immunotherapeutic for breast cancer in vitro and in vivo. In vitro, RL21A killed the MDA-MB-231 cell line via complement and induction of apoptosis. In an in vivo orthotopic mouse model, administration of RL21A reduced MDA-MB-231 and BT-20 tumor burden by 5-fold and by >2-fold, respectively. In summary, HLA-presented MIF peptides show promise as prognostic cell surface indicators for IDC and as targets for immunotherapeutic intervention.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/therapeutic use
- Antibody Affinity/immunology
- Antibody Specificity/immunology
- Apoptosis/drug effects
- Apoptosis/immunology
- Breast Neoplasms/drug therapy
- Breast Neoplasms/immunology
- Breast Neoplasms/pathology
- Carcinoma, Ductal, Breast/drug therapy
- Carcinoma, Ductal, Breast/immunology
- Carcinoma, Ductal, Breast/pathology
- Cell Line
- Cell Line, Tumor
- Cell Survival/drug effects
- Cell Survival/immunology
- Dose-Response Relationship, Drug
- Female
- HLA-A Antigens/immunology
- HLA-A Antigens/metabolism
- HLA-A2 Antigen
- Humans
- Kinetics
- Macrophage Migration-Inhibitory Factors/chemistry
- Macrophage Migration-Inhibitory Factors/immunology
- Macrophage Migration-Inhibitory Factors/metabolism
- Mice
- Mice, Nude
- Peptides/immunology
- Peptides/metabolism
- Prognosis
- Protein Binding/immunology
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Oriana Hawkins
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|